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ABSTRACT

The use of dense networks of rain gauges to verify the skill of quantitative numerical precipitation
forecasts requires bridging the scale gap between the finite resolution of the forecast fields and the point
measurements provided by each gauge. This is usually achieved either by interpolating the numerical
forecasts to the rain gauge positions, or by upscaling the rain gauge measurements by averaging techniques.
Both approaches are affected by uncertainties and sampling errors due to the limited density of most rain
gauge networks and to the high spatiotemporal variability of precipitation. For this reason, an estimate of
the sampling errors is crucial for obtaining a meaningful comparison. This work presents the application of
a stochastic rainfall downscaling technique that allows a quantitative comparison between numerical fore-
casts and rain gauge measurements, in both downscaling and upscaling approaches, and allows a quanti-
tative assessment of the significance of the results of the verification procedure.

1. Introduction

The assessment of hydrogeological risk in small
catchments requires the availability of skillful, high-
resolution quantitative precipitation forecasts (QPFs),
with a lead time of at least 24–48 h (Ferraris et al. 2002;
Siccardi et al. 2005), which is usually provided by the
output of a limited area circulation model (LAM; Bac-
chi et al. 2003). Within this framework, the verification
of the model prediction skill represents an essential
step for the development of efficient operational fore-
casting chains.

Different observational sources are available for this
verification, such as radar and satellite observations
and rain gauge data. Dense networks of rain gauges, in

particular, provide direct observations of precipitation
with high resolution in time at specific locations in
space (see, e.g., Colle et al. 1999). There is, however, a
scale gap, or inconsistency, between the point measure-
ments provided by rain gauges and the spatial scales
resolved by LAMs, which are typically of the order of
5–10 km. In addition, meteorological forecasts cannot
be considered reliable at their nominal resolution
(Patterson and Orszag 1971; Harris et al. 2001), so that
a comparison with forecast fields smoothed on even
larger scales is required.

The two main methods used to bridge the scale gap
are smoothing (averaging) the rain gauge data at the
scale of the forecast (point-to-area upscaling) or, vice
versa, interpolating the forecast to the gauge positions
(area-to-point downscaling).1 There are two main dif-

Corresponding author address: Jost von Hardenberg, ISAC-
CNR, Strada Provinciale Lecce-Monteroni Km. 1.2, 73100 Lecce,
Italy.
E-mail: j.vonhardenberg@isac.cnr.it

1 Alternative, multiscale, methods have also been developed,
such as scale recursive estimation (Tustison et al. 2003).
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ficulties with these comparisons: On one hand, averag-
ing small numbers of rain gauges at the scale of the
forecast leads to limited representativeness and large
uncertainties (Bras and Rodriguez-Iturbe 1976; Ciach
and Krajewski 1999). Conversely, smooth interpolation
of the forecast grid points at the position of the rain
gauges underestimates the variability of the local pre-
cipitation at these points. Both problems are enhanced
by the intermittent nature of precipitation (Hendrick
and Comer 1970; Zawadski 1973).

To cope with these “representativeness errors,” Tus-
tison et al. (2001) suggested the use of stochastic models
capable of representing the statistical properties of pre-
cipitation at multiple scales. In particular, rainfall
downscaling techniques (Droegemeier et al. 2000; Fer-
raris et al. 2003) allow us to derive, from a single pre-
cipitation forecast with limited spatial and temporal
resolution, higher-resolution stochastic ensembles of
precipitation fields, which reproduce the statistical
properties of observed precipitation at small scales,
while conserving the large-scale features of the fore-
cast. As such, rainfall downscaling provides a stochastic
interpolation technique that is able to correctly repro-
duce, in a statistical sense, the small-scale structure of
precipitation and can thus represent a fundamental aid
for QPF verification.

As a specific example of this application, we use
stochastic downscaling to verify precipitation forecasts
issued by the Consortium for Small-scale Modeling’s
limited-area nonhydrostatic model (COSMO-LAMI;
Marsigli et al. 2001; Montani et al. 2003) over an area
covering northwestern Italy and compare them with di-
rect measurements from a dense network of rain
gauges, for three different events that took place in
2005 and 2006. To this end, we follow both a downscal-
ing and an upscaling approach, based on the Rainfall
Filtered Autoregressive Model (RainFARM) stochas-
tic downscaling method introduced by Rebora et al.
(2006b).

The rest of this paper is organized as follows. In sec-
tion 2 we describe the forecast model, the observational
data, and the RainFARM downscaling technique. In
section 3 we bridge the scale gap by directly interpo-
lating the forecasted precipitation fields to the positions
of the rain gauges by means of RainFARM. In this way,
a stochastic ensemble of forecasts is created at each rain
gauge position and its statistical agreement with the
observations is explored. In section 4, we take the up-
scaling approach and aggregate the observational data
and LAM forecasts at large scales. In this case, rainfall
downscaling is used to generate stochastic ensembles of
high-resolution forecasts that allow us to estimate the

sampling error and the significance of the results. Sec-
tion 5 gives our conclusions and perspectives.

2. Data and models

a. The precipitation forecasts

In this paper we consider QPF fields issued by the
COSMO-LAMI model (Marsigli et al. 2001; Montani et
al. 2003), a regional version of the Lokal Model (Doms
and Schattler 1998), used for operational and research
forecasting in Italy. Three precipitation events over
northwestern Italy, which started, respectively, at 1200
UTC on 10 April 2005, 1200 UTC on 7 September 2005,
and 0200 UTC on 14 September 2006, and whose oc-
currence was predicted by the numerical model, are
used as sample cases. These events were selected
among eight events in the period 2005–06, which led to
serious civil protection alarms in the area of interest,
choosing those with the largest intensity and available
number of rain gauge measurements. For each event,
the maximum forecast lead time provided by COSMO-
LAMI was 72 h, starting at 0000 UTC on, respectively,
10 April 2005, 7 September 2005, and 13 September
2006. To mimic the operational conditions, we focus on
the forecasts that were issued between 12 and 24 h
before the start of the intense precipitation event. Each
forecast field consists of precipitation accumulated over
3 h, with a spatial resolution of 7 km.

These three case studies presented the following syn-
optic situations:

• 10–12 April 2005: A low pressure center over the
northern part of the Mediterranean Sea was main-
tained for 2 days by an Arctic airflow. The cyclone
led to convective instability with intense bursts of
precipitation over the northern regions of Italy.

• 7–9 September 2005: Strong convective activity over
southeastern France and northwestern Italy was due
to a low pressure center positioned between the Ibe-
rian Peninsula and the western Mediterranean Sea.
The situation over the northern Italian regions was
characterized by heavy precipitation due to orga-
nized storm structures.

• 13–15 September 2006: A deep low pressure structure
extended from the British Islands to the Sahara with
an intense warm moist flow over all of Italy. This
scenario brought unstable conditions with heavy pre-
cipitation, especially over the northern regions of
Italy.

b. The observational network

The verification dataset consists of measurements
from a dense regional network of rain gauges provided
by the Italian national Civil Protection Department.
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This is an extremely dense operational network, never
used before in its entirety in a verification study. The
study area is a window of 448 km � 448 km covering
northwestern Italy, in which a large number of rain
gauges with instrumental resolution of 0.2 mm is avail-
able for the periods of interest. Figure 1 illustrates the
position of the rain gauges and the study area. For each
case study, we consider only rain gauges for which a
complete, uninterrupted, 72-h-long time series is avail-
able (10–12 April 2005, 284 rain gauges; 7–9 September
2005, 200 rain gauges; 13–15 September 2006, 545 rain
gauges) and focus on the total rainfall volume and on
the maximum hourly precipitation intensity over the
full duration of the time series (72 h).

c. The stochastic downscaling model

Stochastic downscaling techniques are used to gen-
erate, from forecast fields with coarser resolution, a
high-resolution stochastic ensemble of precipitation
fields that reproduce the statistical properties of the
observed precipitation while conserving the features of
the large-scale forecast (Rebora et al. 2006b). A wide
range of stochastic downscaling techniques is reported
upon in the literature, ranging from point-process mod-
els (Waymire et al. 1984) to fractal cascades (Lovejoy
and Mandelbrot 1985; Perica and Foufoula-Georgiou
1996; Menabde et al. 1997) to autoregressive models
(e.g., Bell 1987). The skill of such models was compared
in Ferraris et al. (2003), finding similar ability (or in-
ability) among the different methods to reproduce one-

point probability distribution functions, two-point cor-
relations in space and time, and the spectrum of gen-
eralized dimensions of observed precipitation.

In the following, we use the recently developed Rain-
fall Filtered Autoregressive Model (RainFARM;
Rebora et al. 2006a,b) to downscale precipitation fore-
casts. This model is based on the nonlinear transforma-
tion of a linearly correlated Gaussian stochastic field,
obtained by extrapolating the large-scale spatiotempo-
ral power spectrum of the forecast to the small, unre-
solved scales. In this approach, we define the spatial
and temporal scales, L0 and T0, above which the QPF is
assumed to be reliable and is kept as it is. Below these
scales, stochastic realizations of the precipitation field
are obtained by (i) inverting a power spectrum with
random Fourier phases, which produces a Gaussian
field, and (ii) taking the exponential of the field gener-
ated in step (i), possibly with the inclusion of a small
precipitation threshold below which the value of pre-
cipitation is set to zero. The small-scale form of the
power spectrum is obtained by small-scale extrapola-
tion of the QPF spectrum measured on scales larger
than L0 and T0, assuming a power-law spectral shape.
The “reliability scales” L0 and T0 represent the only
free parameters of the model. All other parameters,
such as the spectral slopes used to extrapolate the spec-
trum, are directly estimated from the large-scale prop-
erties of the fields.

With this approach, we are able to generate an en-
semble of high-resolution stochastic precipitation fields
(each member of the ensemble corresponding to a dif-
ferent choice of the random Fourier phases at small
scales), which all coincide with the original QPF when
aggregated on scales larger than L0 and T0. As shown
by Rebora et al. (2006b) (to whom we refer for details),
the precipitation fields produced by RainFARM cor-
rectly reproduce the small-scale statistics of the precipi-
tation, such as the scaling properties of the main statis-
tical moments, the spatiotemporal correlation structure
of the fields, and the spectrum of the generalized fractal
dimensions, and capture the temporal persistence of
the observed precipitation also at scales smaller than
the reliability scales.

3. Area-to-point downscaling

Area-to-point interpolation of forecast fields by
classical methods, such as simple nearest neighbors, lin-
ear interpolation, or distance-weighted interpolation
(Barnes 1964; Cressman 1959), underestimates the vari-
ability of the precipitation observed by rain gauges.
Conditional stochastic interpolation (such as kriging-
based methods) and stochastic downscaling represent
alternative interpolation techniques that can provide a

FIG. 1. The study area and the network of the rain gauges used
for the verification of the QPFs. Each point indicates the location
of a rain gauge.
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solution to this problem. Clearly, the fields generated
by these methods cannot be used as single deterministic
forecasts, but ensembles of stochastic fields can be used
to gauge the range of variability expected at each rain
gauge position. It is then possible to verify whether the
observed precipitation falls within this range.

In the following, we use the RainFARM downscaling
technique to generate, for each numerical precipitation
forecast, an ensemble of 50 high-resolution stochastic
precipitation fields with a temporal resolution of 1 h
and a spatial resolution of 875 m (1/8 of the COSMO-
LAMI spatial resolution). The time series of precipita-
tion measured at each rain gauge, accumulated over 1-h
periods, are then compared with the time series gener-
ated by RainFARM at the nearest downscaling grid
point. Figure 2 illustrates the procedure.

Two sample precipitation time series are reported in
Fig. 3, where they are compared with the ensemble of
time series obtained by applying the downscaling pro-
cedure described above to the QPF. The gray bands
bracket the interval containing 95% of the members of
the downscaling ensemble. The example in Fig. 3a
shows good agreement between the downscaled fore-
cast and the measurement, as the observed precipita-
tion time series falls within the 95% confidence bands
produced by downscaling the QPF. By contrast, the
rain gauge measurements in Fig. 3b provide an example
of an error of the meteorological model, as the ob-
served precipitation is very different from any time se-
ries obtained by downscaling the numerical QPF.

The agreement between the observations and the
downscaled QPF time series for all available rain
gauges can be quantified with the help of rank histo-
grams, a verification technique commonly used for
evaluating ensemble forecasts (Hamill and Colucci
1998). Rank histograms check “where” an observation
falls with respect to an ensemble of forecast data. In this
approach, each verification data point is compared to
the corresponding values of a forecast ensemble and
the verification rank (defined as the number of en-
semble values exceeding it) is recorded. Repeating this
procedure for all verification instances allows the con-
struction of a frequency histogram of the verification
ranks.

In an ideal and well-balanced ensemble prediction
system, a verification data point is equally likely to lie
between any two ordered adjacent ensemble members
(or to fall outside the ensemble range on either side of
the distribution). For this reason, the rank histogram of
a successful ensemble prediction is expected to present
a uniform, flat distribution (Hamill 2001). Deviations
from a flat distribution are expected in the case of er-
rors from the meteorological model.

We apply the same technique to the situation consid-
ered here and use as verification data the accumulated
precipitation over 72 h and the maximum hourly pre-
cipitation intensity observed at each rain gauge during
the event. These two measures are compared with the
equivalent quantities obtained for the ensemble of pre-
cipitation fields generated by applying RainFARM to

FIG. 2. An illustration of the forecast verification procedure based on stochastic rainfall downscaling.
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the COSMO-LAMI forecasts, and the corresponding
rank histograms are computed. Before discussing the
results provided by rank histograms, however, we need
to address two basic issues. First, we need to define
what a “flat” rank histogram is, in a statistical sense.
Second, we need to verify that the RainFARM down-
scaling technique is able to correctly represent the vari-
ability of the precipitation at the unresolved scales.

One way to answer the first question and quantita-
tively determine flatness bounds is based on the use of
surrogate data. To this end, we compare two datasets
that are statistically identical and thus obtain a bound
on the sampling errors. We construct a new ensemble of
downscaled stochastic fields (the “surrogate data”) and
derive from this new set the corresponding precipita-
tion time series at each rain gauge position. Comparing
each of these surrogate time series with the original
ensemble of downscaled time series and determining
their rank histograms, we obtain a measure of the ex-
pected variability in each class of the rank histogram
due to statistical variability and sampling errors. Fixing
a confidence level of 95%, this procedure allows for
defining error bars such that if less than 5% of the
values of the rank histograms lie outside the bars, the
histogram can safely be considered to be flat; that is, the
downscaled fields are compatible with the observations.

To answer the second question, that is, whether
RainFARM correctly represents the small-scale statis-
tics of precipitation, we apply the procedure first for an
ideal, control case. To this end, we construct a perfect
forecast by aggregating the rain gauge data of the event

of 13–15 September 2006 on a scale of 56 km and 6 h.
This “perfect forecast” is then downscaled with Rain-
FARM, generating an ensemble of 50 downscaled, sto-
chastic forecast fields. Assigning to each rain gauge the
time series at the closest grid point of these downscaled
fields, we obtain a corresponding ensemble of time se-
ries at each rain gauge position. The rank histograms
comparing the original observations with the stochastic
forecasts are reported in Fig. 4. For each rain gauge, the
number of forecasts exceeding the observation is
counted and the corresponding rank histogram is re-
ported.2 The 95% confidence bands obtained in the
way described above are also reported upon in the fig-
ure. The values of the rank histogram for this control
case fall outside the 95% confidence bands only for
about 5% of the histogram classes, confirming that
RainFARM is able to reconstruct the observed vari-
ability of the precipitation at small scales and that, as
expected, a perfect forecast leads to a flat distribution
of the rank frequencies.

Using the same approach, we can now analyze the
three events described above. In the following, we use
different choices of the reliability scales below which
the numerical QPFs are stochastically downscaled. We
vary their values from the nominal scales of the forecast

2 One important issue in this type of comparison is related to
the presence of a large number of zeroes, and to the treatment
they receive. In the construction of the rank histograms, we did
not count rain gauges where both the observation and the fore-
casts were below the rain gauge resolution (0.2 mm).

FIG. 3. Examples of single-site rain gauge time series. The gray bands include 95% of the individual members
of the ensemble obtained by stochastically downscaling the numerical forecast. (a) Rain gauge at Front Malone,
Turin, Italy. (b) Rain gauge at Colle San Bernardo, Cuneo, Italy. Both cases refer to the event of 13–15 Sep 2006.
In the downscaling procedure, the forecast was considered reliable down to scales of L0 � 28 km and T0 � 3 h.
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fields (7 km and 3 h) up to values of 112 km and 24 h.
Figure 5 reports, as a function of the reliability scale,
the percentage of rank histogram classes that fall within
the 95% confidence bands (determined as discussed for

the control). The results reported in Fig. 5 indicate that
the events on 10–12 April 2005 and on 13–15 Septem-
ber 2006 display significant forecast errors, both for the
accumulated and for the maximum precipitation. For

FIG. 5. Percentage of the classes of the rank histogram that fall within the 95% confidence bands, as a function of the values of the
spatial and temporal reliability scales. (a), (d) Event of 10–12 Apr 2005; (b), (e) event of 7–9 Sep 2005; and (c), (f) event of 13–15 Sep
2006. (a)–(c) Precipitation accumulated over 72 h; (d)–(f) maximum hourly precipitation intensity within the 72 h.

FIG. 4. Rank histograms for the perfect forecast case. (a) Precipitation accumulated over 72 h, and (b) hourly
precipitation maxima within the 72 h. In both cases, the reliability scales used in the downscaling procedure are
L0 � 28 km and T0 � 3 h. Error bars indicate the 95% confidence bands obtained as described in the text.
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no value of the reliability scales does the percentage of
rank histogram classes falling within the confidence
bands reach 95%, an indication of significant deviation
from the flat distribution expected for no model error.
Only the forecast of the maximum hourly precipitation
forecast for the event of 7–9 September 2005 shows
good skill by reaching a maximum above the 95%
threshold, at the values of reliability scales L0 � 56 km
and T0 � 3 h. The corresponding plots for the accumu-
lated precipitation in the same event do not reach the
95% threshold but they get very close to it for the same
values of the reliability scales.

To get more insight into the nature of the meteoro-
logical forecast errors, in Fig. 6 we show the rank his-
tograms corresponding to the reliability scales achiev-
ing the best score in Fig. 5. The precipitation maxima
forecasted for the event of 7–9 September 2005 display
an almost flat rank distribution, with only a small indi-
cation of the overestimation due to the high histogram
value in the largest rank class. The corresponding ac-
cumulated precipitation forecast, on the other hand,
clearly reveals an overestimate of the meteorological
forecast, as indicated by the exceedingly large histo-

gram value in the largest rank class. The event on 10–12
April 2005 mainly shows an overestimate in the meteo-
rological forecast, while on 13–15 September 2006 the
observed precipitation was underestimated for a large
number of rain gauges, both in terms of the accumu-
lated and the maximum precipitation. On both dates
there is also an indication of an overestimate of the
spread of the meteorological forecast compared to the
observations, since both ends of the rank histogram
present values above the confidence bands.

A point of concern is that, in principle, the resolution
of the downscaled fields (875 m) is still much larger
than the very small, pointlike, area spanned by a rain
gauge. We verified some of the results in this section
using a finer, 437.5-m, resolution for the 13–15 Septem-
ber 2006 event. The analysis shown in Fig. 5 also pro-
vided the same results at this smaller resolution, indi-
cating that the chosen resolution is fine enough to rep-
resent rain gauge measurements.

4. Point-to-area upscaling

Upscaling procedures combine rain gauge measure-
ments to provide an estimate of the average precipita-

FIG. 6. Rank histograms corresponding to the reliability scales showing the least forecast error in Fig. 5. The ranks are determined
by counting the number of stochastic downscaled time series exceeding the observation at each rain gauge. (a), (d) Event of 10–12 Apr
2005; (b), (e) event of 7–9 Sep 2005; and (c), (f) event of 13–15 Sep 2006. (a)–(c) Precipitation accumulated over 72 h; (d)–(f) maximum
hourly precipitation intensity within the 72 h. Error bars indicate the 95% confidence bands, obtained as described in the text.
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tion over a large area. Averaging a limited number of
rain gauges, however, is inevitably accompanied by po-
tentially severe sampling errors. This problem has been
discussed in detail in the past (Rodriguez-Iturbe and
Mejia 1974; Zawadski 1973), and different methods,
mainly based on estimating the small-scale correlation
structure of precipitation, have been developed to iden-
tify the contribution of sampling errors to the total er-
ror (see, e.g., Anagnostou et al. 1999; Ciach and Kra-
jewski 1999).

An alternative approach, which we follow here, is
again based on the use of stochastic rainfall downscal-
ing. We aim to determine the sampling error distribu-
tion that would be expected if the forecast were perfect.
Since downscaling models are constructed to reproduce
the spatiotemporal variability of precipitation at the small
unresolved scales, they can be used to estimate such
intervals by means of a Monte Carlo approach. After
generating a large ensemble of stochastic forecasts by
downscaling a QPF field, the corresponding stochastic
time series at each rain gauge position can be obtained.
The spatial average of these time series, derived in the
same way as for the observations, leads to an ensemble
of large-scale average precipitation estimates whose
distribution allows us to estimate the sampling errors
expected for a perfect meteorological forecast.

As an example, we consider the three events already
discussed above and use the COSMO-LAMI rain fore-

casts aggregated on a scale of L � 28 km in space and
T � 3 h in time. The aggregated forecast is compared
with the observed precipitation, obtained by averaging
the measurements of all rain gauges located in each grid
box of size L � L. In the following, as a simple ex-
ample, we use plain arithmetic averages to aggregate
rain gauge measurements, but for operational verifica-
tion purposes, methods with lower RMSE and which
better account for the spatial dependence of the obser-
vations, such as block kriging, could be used. The reso-
lution chosen in this example allows for an adequate
number of rain gauges in each box (on average, we have
five rain gauges in each box), while keeping a suffi-
ciently large number of grid boxes over the study area.
The maxima and accumulated precipitation over 72 h
are computed for both the aggregated forecast and the
averaged observations. The resulting maps of the aver-
aged observations and forecasts are shown in Figs. 7
and 8, for the accumulated precipitation and the pre-
cipitation maxima, respectively. Visual inspection of
these maps suggests that in all three cases the meteo-
rological forecast was affected by strong errors at the
scale considered here. Only the precipitation maxima
for the event on 7–9 September 2005 show a reasonable
correspondence between the meteorological forecast
and the observations, as was already indicated by the
behavior of the rank histograms discussed in the previ-
ous section.

FIG. 7. Maps of precipitation volumes (mm), accumulated over the entire period of 72 h and aggregated on a spatial scale of 28 km,
for the three events. (a), (d) Event of 10–12 Apr 2005; (b), (e) event of 7–9 Sep 2005; and (c), (f) event of 13–15 Sep 2006. (a)–(c)
Observed precipitation from rain gauges; (d)–(f) COSMO-LAMI forecast.
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To verify the meteorological forecasts, in Fig. 9 we
show the scatterplots, over the whole set of grid boxes
containing at least four rain gauges, of the forecasts
versus the observations. A perfect forecast would pro-
duce scatterplots where the points are aligned, with
small spread, along the 45° line. In general, the numeri-
cal meteorological forecasts display a large scatter with
respect to the upscaled observations and deviate from
the 45° line, suggesting the presence of potentially se-
vere forecast errors and bias.

To provide a quantitative basis to the above state-
ment, we must assess whether the observed deviations
from the 45° line are significant. To this end, we con-
sider the ensemble of the time series already discussed
in the previous section, obtained by stochastically
downscaling the QPF and taking, for each rain gauge,
the closest grid point in the downscaled field. In this
way, for each member of the ensemble we get a set of
numerical time series that have the same spatial distri-
bution as the set of rain gauges. However, each numeri-
cal time series is obtained exactly from the numerical
forecast that we want to verify. By aggregating these
time series on the same spatiotemporal scales as was
done for the true rain gauge data, we get a precipitation
field that differs from the original numerical QPF only
because of sampling errors and statistical variability
(i.e., its expected value is equal to the original QPF, and

if we had a very large number of time series, then we
should exactly recover the original QPF). For each
member of the ensemble, we can then obtain a scatter-
plot of the original field versus the sampled one; the
bands that contain, say, 95% of the estimates provide a
measure of the confidence limits on the sampling er-
rors, and are shown in gray in Fig. 9. The behavior of
the scatterplots confirms the results of the downscaling
analysis reported in the previous section: In the event of
7–9 September 2005, the QPF displays good forecast
skill for hourly precipitation maxima, as shown by the
large number of rain gauges falling within the gray
bands, but it provides an overestimate of the accumu-
lated precipitation. For the events of 10–12 April 2005
and 13–15 September 2006, the forecasts of the precipi-
tation maxima are less skillful than for the September
2005 event; in particular, the April 2005 accumulated
precipitation is significantly overestimated while the
September 2006 accumulated precipitation is signifi-
cantly underestimated.

5. Summary and conclusions

In this work we have discussed how stochastic down-
scaling can be effectively used as a tool to verify quan-
titative precipitation forecasts obtained from numerical
models against point observations provided by rain

FIG. 8. Maps of the maximum hourly precipitation intensity (mm h�1) in the entire period of 72 h, aggregated on a spatial scale of
28 km, for the three events. (a), (d) Event of 10–12 Apr 2005; (b), (e) event of 7–9 Sep 2005; and (c), (f) event of 13–15 Sep 2006. (a)–(c)
Observed precipitation from rain gauges; (d)–(f) COSMO-LAMI forecast.
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gauges. Downscaling techniques can be used as an em-
pirical way to generate the small-scale variability and
correlation structure of precipitation, starting from
larger-scale QPF fields, and to characterize representa-
tiveness errors using ensembles of downscaled fields.
When the verification is performed by area-to-point in-
terpolation, the downscaling approach allows the char-
acterization of the expected variability at rain gauge
positions and to check whether the QPF is compatible
with the observed precipitation data. Investigating dif-
ferent aggregation scales also makes it possible to de-
termine the scales above which a meteorological model
can be considered reliable. When the opposite (point to
area) averaging approach is used for verification,
Monte Carlo downscaling ensembles provide a measure
of the expected range of the variability of areal aver-
ages based on a limited number of rain gauges.

A crucial point for the feasibility of the approach
described in this paper is the availability of downscaling
techniques that are able to capture the variability and
the correlation structure of the observed precipitation
at small spatial and temporal scales. The RainFARM
technique used here meets this condition, and so do

downscaling methods such as that described by
Venugopal et al. (1999).

On a side note, the present analysis has shown that,
at least in the three events considered here, the numeri-
cal precipitation forecasts were affected by a significant
error. Only in one case (the event of 7–9 September
2005) was the QPF able to correctly predict the ob-
served hourly precipitation maxima (see Fig. 5). Even
in this case, however, the total precipitation volumes
were still affected by significant error. The QPFs for the
other two events were affected by significant over- or
underestimates, suggesting that, at least at the scales
considered here (of the order of 30–50 km in space and
3 h in time), the meteorological forecast cannot be con-
sidered quantitatively reliable. We have repeated the
analyses considering only the first, second, or third in-
tervals of 24 h in the 72-h-long forecast, and found
analogous results, with an expected degradation of the
forecast skill in the last 24-h segment.

Clearly, this conclusion cannot be taken as a general
statement and a more complete verification study over
a larger database of events and with other numerical
precipitation forecast models is required, possibly also

FIG. 9. Scatterplots of observed vs forecasted precipitation, aggregated on the scale L � 28 km and T � 3 h. (a), (d) Event of 10–12
Apr 2005; (b), (e) event of 7–9 Sep 2005; and (c), (f) event of 13–15 Sep 2006. (a)–(c) Precipitation accumulated over 72 h; (d)–(f)
maximum hourly precipitation intensity within the 72 h. The gray bands represent the 95% confidence limits for sampling errors,
obtained as described in the text.
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exploring verification metrics that differ from those
considered here. In our opinion, a careful verification
of numerical QPFs is an essential, albeit sometimes dis-
carded, component in the construction of effective op-
erational chains for hydrometeorological risk assess-
ment. The preliminary results reported here raise some
concerns, and a large-scale verification study is called
for. The downscaling approach discussed in this work
provides a possible methodology for this type of veri-
fication studies.
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