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Aris-Taylor dispersion in the subarachnoid space

Luca Salerno ,* Giulia Cardillo ,† and Carlo Camporeale ‡

Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy§

(Received 23 January 2019; accepted 16 March 2020; published 27 April 2020)

A complete theory able to assess the longitudinal dispersion of a passive solute injected
into an annular cavity subject to a pulsatile flow and a porous medium is provided. The
Aris-Taylor method of statistical moments is combined with the Brinkman approach for
porous flows and morphological dispersion, in order to get an analytical relationship for the
time-dependent enhanced dispersion coefficient. The application of intrathecal drug deliv-
ery in the cerebrospinal fluid contained in the subaracnoid space is discussed in detail. The
main result of the theory and its assumptions are also numerically validated through the use
of a finite-volume solver. The role of several physiological features, such as the geometry,
temporal frequency, and wavelength, of the pressure forcing are analyzed. It turns out that
the presence of delicate strands of connective tissue, called trabeculae, that fill the cavity
and link the innermost layer of meninges plays a crucial role. They in fact induce extra
terms of morphological dispersion and act synergistically with pulsation to produce realis-
tic times of drug delivery in clinically significant conditions. The results have potential for
the optimization of delivery protocols of drug therapies of the central nervous system.

DOI: 10.1103/PhysRevFluids.5.043102

I. INTRODUCTION

When an inert solute is introduced into a Poiseuille flow, the combined effect of random lateral
excursions caused by diffusion and the velocity profile causes an enhanced longitudinal dispersion.
If the flow regime is pulsatile, differential advection and transversal diffusion combine in order to
cause in each cycle a progressive longitudinal spreading of solute having an effective diffusivity
much larger than the molecular one. More specifically, the initially uniform plug of solute is
stretched by shear flow, so that the particles moving at different speeds increase their relative
distance, generating concentration gradients in the transverse direction. Such gradients promote
transverse diffusion, which dislocates particles from one streamline to another with a different
speed and concentration. This mixing assures that during backflow the particle may not return to its
original position, causing a net longitudinal spread in each cycle. The result of this phenomenon is
shown in Fig. 1.

If the transverse section is not small enough to be completely affected by diffusion within one
cycle (2π/ω∗ � δ∗2

r /4D), an elevated number of oscillations is needed before a particle has moved
within the whole range of velocity. So, for small times (t < ω−1) the process is mainly regulated by
molecular diffusion, while for longer times the solute spreads with a shear-enhanced diffusivity.

Shear-flow-enhanced dispersion was first analyzed by Taylor [1], who provided a complete
description of the asymptotic, cross-sectionally averaged axial concentration distribution under
steady-flow conditions. The analysis was extended to a wider range of Péclet numbers and
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(b) (c)

FIG. 1. Numerical solution of the tracer dispersion in the time span of a single period (see Appendix B).
(a) Lateral distribution of CSF velocity in the SAS at five times. (b) Longitudinal view of the concentration
field (the injection point is located at the top of the panel). The solid portions of the horizontal lines mark the
front of the same isoconcentration contour line (c = 0.6) at times t and t + T , respectively. The advance of the
front is evident. (c) Three-dimensional view of the computational domain.

geometries by Aris [2] using the method of statistical moments. The Taylor-Aris formulation is
limited to the case of steady flows but Watson [3] evaluated the increase in mass rate transfer
of a diffusing substance for oscillatory flows in circular pipes. Results were given for a general
cross section in the limiting cases of slow and fast oscillations of the flow. Vedel and Bruus [4,5]
combined the Aris method of moments with Dirac’s bra-ket formalism and obtained a relation for
the effective solute diffusivity De(t ), for a given time-dependent laminar flow, in a straight channel
of a generic cross-sectional shape. The aim of the present study is to develop a self-consistent
analytical dispersion theory tailored for a drug injection into the spinal subarachnoid space, wherein
the cerebrospinal fluid (CSF) has a pulsatile flow, through an extension of the Vedel and Bruus [4]
formulation to porous media.

The cerebrospinal fluid is a Newtonian fluid, with a density and kinematic viscosity similar
to those of water [6,7], which is continuously secreted from the blood plasma in the choroid
plexus of the brain ventricles [6]. Its primary mechanical function is to protect the brain and the
spinal cord, serving as a shock absorber for the central nervous system [8]. It allows changes
in intracranial pressure to be modulated, and along with the cerebral blood flow, it regulates the
intracranial pressure itself [9]. The CSF fills the subarachnoid space (SAS), a thin annular cavity
surrounding the spinal cord, where the CSF is subject to a pulsatile laminar flow essentially driven
by changes in the intracranial blood volume during the cardiac cycle [7,9] and modulated by other
physiological factors, such as the respiratory rate [10]. Intrathecal drug delivery is the administration
of medications into the subarachnoid space through injection. This procedure is currently used in
clinical practice and it is promising for the treatment of several pathologies of the central nervous
system (including some cancers [11] and CSF infection [12]) and for the administration of analgesic
drugs that cannot be delivered systematically [13]. However, intrathecal delivery protocols and
facilities are not optimized yet, since under- or overdosage frequently occurs, thus affecting the
anticancer effect or inducing nerve damage [14,15]. Therefore the fluid dynamic processes and the
effective diffusivity of these medications urgently need to be assessed quantitatively.
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ARIS-TAYLOR DISPERSION IN THE SUBARACHNOID …

In the literature, there are important experimental and computational studies evaluating the dis-
persion of drugs in the SAS. Hettiarachchi et al. [13] conducted infusion tests with a radionucleotide
and fluorescent dye under both stagnant and pulsatile flow conditions, within an experimental
surrogate model of the human spinal canal. Nelissen [10] developed a laser scanning setup with
which he performed quasi-instantaneous, three-dimensional laser-induced fluorescence as well as
two-dimensional particle image velocimetry. Hsu et al. [16] proposed a novel method, namely,
a medical-image-based computational fluid dynamics, for investigating intrathecal drug delivery.
This methodology combines quantitative medical imaging and CFD to generate patient-specific
computational models. Haga et al. [17] investigated the effects of injection parameters on solute
distribution within the cervical subarachnoid space, using a Lagrangian approach in a numerical
platform. Pizzichelli et al. [18] introduced a numerical model able to simultaneously account for
solute transport in the fluid and in the spinal cord, using a discontinuous Galerkin method and a
three-dimensional patient-specific geometry.

Despite these valuable studies, a robust analytical model is still lacking. In this paper, we provide
a consistent theory for the computation of the time-dependent dispersion coefficient, including the
geometrical effects, the role of unsteadiness, and the important influence of anatomical fine network
within the SAS. These fine structures within the SAS influence the transversal mixing and the CSF
flow field, thus affecting the diffusion process.

Along with the analytical results, a numerical analysis is performed using software (Comsol)
solving the equations for the momentum and solute transport. In this way, the influence of dispersion
on the kinematic behavior of velocity waves (driven by pressure waves) is tested and the validity of
theoretical results is discussed in detail. Wetheoretically show that shear, pulsatility, and porosity act
in a synergistic way to enhance the dispersion of several orders of magnitude [13,19] with respect to
the pure molecular diffusion, a mechanism that turns out to be decisive in optimizing drug release
and timing in pharmacological therapies of the nervous system, particularly when the target of the
therapy is the brain.

The paper is organized as follows: Sec. II shows the mathematical problem, with a solution of
the velocity field and computation of the dispersion coefficient; Sec. III provides a comparison
between numerical and theoretical results and a sensitivity analysis and discusses the role of the
internal layout. Some conclusions are drawn in Sec. IV. Finally, the nomenclature used is reported
in Sec. V.

II. ANALYTICAL MODEL

The proposed analytical model evaluates the shear-induced enhanced drug diffusion in the flow
direction. In particular, the role of convective transport associated with the pulsatile CSF flow
is analyzed in the SAS. The latter is sketched as an annular cavity bounded by two concentric
cylindrical surfaces, having radii equal to r∗

i and r∗
e , respectively [see Fig. 2(c)]. In order to analyze

the influence of the pulsatile flow and the fine structures within the SAS on the drug transport
phenomenon, many anatomical details are deliberately simplified in the geometry. However, as we
discuss in Sec. IV, the values of the CSF flow field are comparable to MRI measurements and to
other SAS models [6,7,20,21].

A. Solution of the flow field

The driving force of the flow can be divided into an unsteady oscillatory component inducing
zero net flow and a constant component associated with steady streaming. The latter component is
related to the production and reabsorption of the fluid in the brain. Under normal conditions, CSF is
in fact produced in the ventricular cavity at the rate of 0.3 ÷ 0.7 ml/min [7], and it is reabsorbed into
the arachnoid villi inside the cerebral ventricles. The magnitude of the CSF eliminated by the spinal
canal is instead just conjectured since it is very small and undetectable in CINE-MRI measurements
[6,7,20,22]. The magnitude of the steady streaming is therefore much smaller than the oscillatory
component, which is caused by the pulse waves generated inside the rigid cranial vault [7] (during
each systole 1–2 ml of CSF is pumped into the spinal SAS and returns to the cranial SAS during
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FIG. 2. Subarachnoid space and spinal cord. (a) Sagittal view of the spinal cord and intrathecal drug
delivery. (b) Anatomical representation of the spinal cord and meninges. (c) Transversal section and model
geometry.

dystole [6]). For this reason the steady streaming component will be neglected and we simply set

∂ p∗

∂z∗ = �∗ exp [i ω∗t∗] + c.c., (1)

where ω∗ is the frequency of the CSF flow oscillation and �∗ is the amplitude of the pulse pressure
gradient. Henceforth, an asterisk indicates a nondimensionless quantity, while c.c. refers to complex
conjugation.

After assuming axial symmetry and using the scales δ∗
r = r∗

e − r∗
i , L∗, U ∗ = U ∗

max, μU ∗L∗/δ∗2
r ,

and 2π/ω∗ to nondimensionalize the radial and longitudinal lengths, velocities, pressures, and time,
respectively (where D is the drug molecular diffusion, ρ the fluid density, μ its dynamic viscosity,
and U ∗

max the maximum value of velocity), the longitudinal component of the Navier-Stokes
equation reads

W 2

2π

∂u

∂t
+ Re

n
u
∂u

∂z
+ ∂ p

∂z
= ∂2u

∂r2
+ 1

r

∂u

∂r
, (2)

where r and z are the (dimensionless) radial and longitudinal coordinates, respectively, p is
the pressure, u(r, z, t ) is the longitudinal velocity, Re = ρU ∗δ∗

r /μ is the Reynolds number,
W = √

ω∗δ∗2
r /ν is the Womersley number, namely, the ratio between the transient inertial forces

and viscous forces, and n = L∗/δ∗
r . If the temporal frequency of the oscillation is small (i.e., small

Womersley number), the velocity has enough time to adapt to the change in the pressure gradient.
Thus, the velocity changes almost in phase with the pressure gradient and its profile reduces to the
Poiseuille flow driven by a constant pressure. On the contrary, if the oscillations are rapid (high
Womersley number), there is a lag between velocity and pressure and the velocity distribution
differs from the Poiseuille solution.

It is noteworthy that the physiological elasticity of the meninges induces pressure and velocity
waves propagating with a celerity of about 5–10 m/s and a wavelength of about 5–10 m [6]. Due
to the relative shortness of the spinal length (∼0.5 m) this celerity is high enough to assume that
the velocity profile changes almost simultaneously throughout the spine in response to the pressure
change. Additionally, under physiological conditions the quantities W 2/2π and Re are comparable,
and the length-to-gap ratio n is about 100, so the second term in (2) can be safely neglected. These
considerations allow us to neglect the wave nature of the flow fields, as if the boundaries were
undeformable. Therefore, we are authorized to adopt the ansatz u = û(r)eiωt , make use of (1) in
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Eq. (2), and impose no-slip conditions on the walls (r = ri and r = ri + 1), so obtaining

∂2û

∂r2
+ 1

r

∂ û

∂r
− iW 2û = δ, (3)

û(ri ) = û(ri + 1) = 0, (4)

where ri = r∗
i /δ∗

r and δ = �∗δ∗2
r /U ∗μ. The exact solution of problems (3) and (4) is

û(r) = u0{1 − b1J0[αr] + b2Y0[αr]}, (5)

where α = i3/2W , u0 =δ/α2, J0 and Y0 are Bessel functions of order 0 of the first and second kinds,
respectively, and b1 and b2 fulfill the boundary conditions, (4), and read

b1 = Y0[−α − αri] − Y0[−αri]

J0[αri]Y0[−α − αri] − J0[α + αri]Y0[−αri]
, (6)

b2 = J0[α + αri] − J0[αri]

J0[αri]Y0[−α − αri] − J0[α + αri]Y0[−αri]
. (7)

B. Role of porosity

The internal layout of anatomical fine structures within the SAS is quite tangled. There are
different types of structures (trabeculae, nerve roots, and ligaments), having specific physiological
functions, which are characterized by different shapes, numbers, and sizes (see Fig. 2). In the present
work, we focus on the obstruction caused by trabeculae, delicate strands of connective tissue linking
the two innermost layers of the meninges. With the aim of taking into account these anatomical fine
structures inside the SAS, the above modeling of the flow field is improved by adding a Brinkman
term, −u/κ , to the right-hand side of the Navier Stokes equation [23],

W 2

2πφ

∂u

∂t
+ Re

n
u
∂u

∂z
+ ∂ p

∂z
= ∂2u

∂r2
+ 1

r

∂u

∂r
− u

κ
. (8)

This term accounts for the momentum loss due to the porous medium, which is characterized by
porosity φ (i.e., the ratio between the volume not filled by trabeculae V ∗

tr and the total subarachnoid
cavity volume) and permeability κ∗ = δ∗2

r κ . This requires that in the following u is intended as the
local value of the volume-averaged velocity in the voids [24].

Trabeculae are randomly arranged structures, so in order to allow for an estimation of κ∗ and
φ, we consider a simplified layout made up of isotropic straight cylindrical elements connecting
the meninges. We observe that a comparison performed among different approaches (Gupta et al.
[23], Koch and Brady [25], Spielman and Goren [26]) to evaluate the permeability of a low-density
fiber bed shows comparable results. Nevertheless, the formulation developed by Gupta et al. is
also true when trabeculae are randomly arranged and it was tested for SAS anatomy [23]. The
latter approach was based on a closed-form solution of the permeability of unidirectional fiber beds
derived from phase-averaging of Navier-Stokes equations over a representative repetitive unit. In
this way, a formula for the dimensionless permeability κ = κ∗/δ∗2

r was obtained [27]:

κ = πφ(1 − √
(1 − φ)2r2

t

24(1 − φ)3/2 , (9)

where rt = r∗
t /δ∗

r is the dimensionless trabecular radius.
After taking into account the above improvements, expression (5) is still a solution of Eq. (8)

provided that W is substituted by the quantity

Wp =
√

W 2

φ
− i

κ
. (10)

Note that the term i/κ induces a further phase lag between velocity and pressure.
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C. Modeling of the dispersion

Transport of solutes within the SAS is influenced by molecular diffusion, advection associated
with the pulsatile CSF flow and the presence of anatomical fine structures within the cavity. In
particular, the latter aspect induces a morphological dispersion due to different randomly distributed
pathways that particles follow inside the porous matrix. The process of morphological dispersion
has a long tradition in the fluid mechanics of porous media [25,26,28–30] and can be readily
incorporated into the present analysis by considering the effective drug diffusivity as the sum of
the molecular diffusivity and a 2 × 2 tensor D, having DL and Dr as the diagonal components (the
longitudinal and radial directions, respectively) and 0 as the off-diagonal terms. Following Koch
and Brady [25], DL and Dr read

DL ∼ D
[

171

3200
π3 r∗

t√
κφr

P + 243

50

φ2
r r∗2

t

κ
P(ln P)2

]
, Dr ∼ 9

6400

π3r∗
t P

φr
√

κ
D, (11)

with

φr = 1 − φ, P = ûpr∗
t

D , (12)

where φr is the volume fraction of trabeculae, ûp is the mean velocity of the fluid (the interstitial
velocity), and P is the Péclet number based on the trabecular radius.

In order to study this contribution, some assumptions are necessary: (i) the matrix is assumed
to be rigid, impermeable, isotropic, and not influenced by CSF flow; (ii) the solute is considered
as an inert scalar; (iii) drug absorption is neglected; and (iv) the solute concentration is sufficiently
low, therefore it does not influence CSF properties. Recalling the above-mentioned scaling and
introducing C0 as the average drug concentration value, the dimensionless volume-averaged
concentration in the voids c(z, r, t ) is driven by a standard advection-diffusion equation,

∂c

∂t
+ (1 + γ )
2 u

∂c

∂z
= gL

∂2c

∂z2
+ gr

1

r

∂

∂r

(
r
∂c

∂r

)
, (13)

where


 = τω

τr
, γ = 1 − φ

φ
, gL = τω

τDL
, gr = τω

τDr
, (14)

with

τω = 2π

ω∗ , τr = δ∗
r

U ∗ , τDL = δ∗2
r

D + DL
, τDr = δ∗2

r

D + Dr
, (15)

representing the oscillating, shear, lateral diffusion, and transversal diffusion time scales, respec-
tively.

The initial and boundary conditions associated with (13) are

c(z, r, 0) = c̃(z, r), (16)

∂c

∂r
= 0 for r = ri and r = 1, (17)

za∂b
z c → 0 for z → L

2
and a, b = 0, 1, 2 . . . , (18)

where c̃ is the initial concentration field, Eq. (17) sets zero flux at the walls, and Eq. (18) sets
smoothness of the solution at the upstream and downstream ends of the channel, L being the
dimensionless length of the cavity.

Following Aris’s method, one has

D∗
e

(DL + D)/gL
= 1

2

dμ2

dt
= 1

2

d

dt

(
m2 − m2

1

)
, (19)
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where mp is the pth full moment of the solute concentration field, namely,

mp = 〈1, cp(r, t )〉 =
〈
1,

1

L

∫ L/2

−L/2
xpc(r, z, t )dz

〉
, (20)

in which cp is the axial moment of concentration and the angular bracket notation refers to the
internal product, defined by

〈 f , g〉 = 2π

a

∫ ri+1

ri

r f (r)g(r)dr, (21)

where a is the cross section of the annular cavity.
Following the approach of Vedel and Bruus [4] for harmonic oscillating flow (an extension of

Barton’s [31] method) and including the morphological dispersion, we multiply (13) by zp, integrate
over z, and use (20). In this way, we get the recursive equations

∂cp

∂t
− gr

r

∂

∂r

(
r
∂cp

∂r

)
= gL p(p − 1)cp−2(r, t ) + 
(1 + γ ) u(r, t )p cp−1(r, t ), (22)

dmp(t )

dt
= gL p(p − 1)〈1, cp−2〉 + 
(1 + γ ) p〈u, cp−1〉, (23)

with p = 0, 1, 2, . . . , while the boundary and initial conditions become

∂cp

∂r
= 0 for r = ri and r = 1, (24)

cp(r, 0) = c̃p(r), mp(0) = 〈xp, c̃〉. (25)

By setting p = 0 in (22), one obtains a homogeneous equation for the zeroth axial moment
c0(r, t ), solvable through separation of variables in terms of a projection onto the Fourier basis { fn},
namely,

c0(r, t ) =
∞∑

n=0

a0ne−grλnt fn(r), (26)

where the coefficients a0n satisfy the initial condition a0n = 〈 fn, c̃0〉, while fn is the solution of the
eigenvalue problem [

∂2

∂r2
+ 1

r

∂

∂r
+ λn

]
fn = 0,

∂ fn

∂r

∣∣∣∣
r=1

= ∂ fn

∂r

∣∣∣∣
r=ri

= 0. (27)

The solution of the above problem is

fn = 1

ξn

[
J0(�nr) − J1(�nri )

Y1(�nri )
Y0(�nr)

]
, (28)

where �n = √
λn is the nth root of the characteristic equation,

J1(�nri )Y1(�n) − Y1(�nri )J1(�n) = 0, (29)

and ξn is a factor which assures orthonormality of the solution. An example of the eigenvalue set is
reported in Fig. 3. Recursively, the first axial moment is obtained by solving (22) with p=1 and
c0(r, t ) evaluated as above, obtaining

c1(r, t ) = (1 + γ )

∞∑

m=0

∞∑
n=0

(a1nδnm + 2a0nRe[βmneiωt ]) fme−grλnt , (30)
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FIG. 3. Example of an eigenvalue set for the parameters reported in Table I.

with

βkn = 〈 fk û(r), fn〉
grλk − grλn + 2π i

, (31)

a1n = 1



〈 fn, c̃1(r)〉 −

∞∑
k=0

2a0kRe[βnk]. (32)

Let us consider the case where c̃ is uniformly distributed in the cross section at the initial time.
In this case we obtain

m1 = 2(1 + γ )
 Re

[
〈û, 1〉1 − e2π it

2π i

]
, (33)

dm1

dt
= 2(1 + γ )
 Re[〈û, 1〉e2π it ], (34)

1

2

dm2

dt
= gL +(1 + γ )2
2

⎧⎨
⎩

∞∑
m=0

1∑
l,k=−1

〈ûk, fm〉〈 fm, ûl〉
grλm + ilω

[e2π ilt − e−λmgrt ]e−2πkit

⎫⎬
⎭, (35)

and by integrating the last equation we get

m2(t ) = gLt + 
2(1 + γ )2
∞∑

n=0

{
2Re

[ 〈û, fn〉〈 fn, û〉
grλn + 2π i

]
t

+ 2Re

[ 〈û, fn〉〈 fn, û〉
(grλn + 2π i)2

(
e−(λngr+2π i)t − 1

)] + 2Re

[ | 〈û, fn〉 |2
grλn + 2π i

e4π it − 1

4π i

]

+ 2Re

[ | 〈û, fn〉 |2
grλn + 2π i

e−(λngr−2π i)t − 1

grλn − 2π i

]}
, (36)

with l, k 
= 0, û1 = û(r), and û−1 = û∗(r), where the asterisk refers to complex conjugation.
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Finally, the (dimensionless) effective diffusivity is evaluated by substituting (5), (28), and (33)–
(35) into Eq. (19) and it reads

De(t ) = gL + (1 + γ )2
2
∞∑

n=1

{
4Re[〈 fn, û〉e2π it ] × Re

[ 〈 fn, û〉
grλn + 2π i

(e2π it − e−grλnt )

]}
. (37)

Equation (37) is the main result of the present work, and the exact expression for 〈 fn, û〉 is provided
in Appendix A.

A time-scale-based analysis of the above result is instructive. In the nonporous standard case
τDL = τDr = δ∗2

r /D ∼ 104τω, because the lateral and longitudinal morphological diffusivities due to
ligaments are both 0 [see Eqs. (14) and (15)]. Moreover, the shear time scale τr is 102 times smaller
than the oscillation time scale (τω ∼ 1s). Thus, since gL � 
2 and γ = 0, Eq. (37) reduces to De ∼

2�(t ), where �(t ) is the contribution due to oscillation given by summation in Eq. (37). When
translated in dimensional units, it follows that at long term (i.e., t � 1/grλ1, namely, the second
exponential term vanishing) the average effective diffusivity is proportional to the ratio between the
square of the displacement of the tracer during the correlation time in the case of nonpulsatility and
the correlation time itself,

D∗
e = �2

s

tcorr
�∗, (38)

where the correlation time tcorr is akin to the lateral diffusion time scale, i.e., tcorr ∼ δ∗2
r /D, the

displacement is �s = U ∗√τωtcorr, and the overbar indicates phase-averaging.
In the presence of porosity, the transverse diffusivity Dr is larger than the molecular diffusivity

(Dr ∼ 500D) and the tortuous flow induced by ligaments reduces the time for transverse mixing to
τDr ∼ 150 τω. Moreover, in the longitudinal direction, the trabeculae induce hydrodynamic diffusion
that becomes predominant in the dispersion phenomenon (DL ∼2 ×104D). Thus, since gL ∼ 
2

and γ � 1, Eq. (37) reduces to De ∼ gL +
2�(t ), while the average effective diffusivity at long
times in dimensional units reads

D∗
e = DL + �2

s

tcorr
�∗. (39)

In addition, by following [4], we can also get a phase-averaged diffusivity, so after using Eq. (19),
we obtain the solution for the time-dependent phase-averaged variance σ 2 of the spatial solute
distribution,

σ 2(t ) = 2
∫ t

0
De(t )dt = 2

∫ t

0

1

T

∫ t+T

t
De(t ′)dt ′dt

= gLt + (1 + γ )2
2
∞∑

n=1

{
2Re

[ 〈û, fn〉〈 fn, û, 〉
grλn + 2π i

]
t

+ 4Re

[ 〈û, fn〉
grλn + 2π i

]
× Re

[
〈 fn, û〉 1 − e−grλnT

(grλn + 2π i)2

(
1 − e−(grλn+2π i)t

)]}
. (40)

III. RESULTS

A. Sensitivity analysis

A sensitive analysis is conducted here in order to investigate the impact of the SAS anatomy,
the frequency of pulsatility, and the forcing pressure on the effective diffusivity, when the porous
medium is neglected. In particular, values of diffusivity in the transient regime are compared. The
physiological values of the parameters are chosen as a benchmark case [8,13,16,21], indicated by the
subscript B henceforth, and both the analytical and the numerical solutions are considered. Details
of the different scenarios are reported in Table II, while details about the numerical simulations are
reported in Appendix B.

043102-9



SALERNO, CARDILLO, AND CAMPOREALE

TABLE I. Physiological values of the model parameters.

Quantity Symbol Value Unit

CSF density [6,7] ρ 1050 kg/m3

CSF dynamic viscosity [6,7] μ 0.001 Pa s
Drug molecular diffusivity D 2.1×10−10 m2/s
Spinal length L∗ 0.50 m
External SAS radius [32–34] r∗

e 0.015 m

Internal SAS radius [32–34] r∗
i 0.01 m

Amplitude pressure wave [35] P0 250 Pa
Oscillation frequency [13] ω 2π 1/s
Womersley number W 12

Figure 4(a) shows that De decreases moderately when the external radius of the cavity is
increased (scenarios SR,1–3). This is mainly due to a decrease in the peak velocity and to the
consequent reduction of the shear in the velocity profile.

The change in the pulse pressure affects the magnitude of dispersion to a great extent [see
Fig. 4(b)]. For instance, a 50% reduction in �∗ causes a fourfold decrease in De. Although the
meninges are here assumed to be undeformable and z dependency of the flow field solution has
been neglected, it is instructive to relate the amplitude of the pulse pressure gradient �∗ to the
features of real CSF flow measured in humans. As stated above, such flows are kinematic waves that
normally propagate with celerity c∗

w ∼ 5–10 m/s. Basically, this celerity is related to the wavelength
l∗ and the frequency according to c∗

w = ω∗l∗/2π . Since �∗ is the product of the pulse pressure
amplitude and the spatial wave number k∗, an increase in �∗ is numerically equivalent to a decrease
in the wavelength l∗ = 2π/k∗. Let us recall that the Moens-Korteweg equation states that the phase
celerity (called the pulse-wave velocity by physicians) is proportional to the root square of the wall
elastic module [36]. This means that, since the frequency is externally imposed by the heart rate, a
variation in �∗ can also be considered equivalent to different wall rigidities, although the present
model does not account for this aspect explicitly. This aspect provides an additional interpretation of
the sensitivity analysis on �∗. It is in fact reasonable to suppose that more flexible boundaries may
damp the dispersion of the solute within the SAS. This argument is in line with the recent analysis
by Lawrence et al. [37], which modeled the dura mater (i.e., the outer wall) as an elastic membrane
and did not obtain a significant role of shear dispersion. However, that analysis did not consider the
role of the porous medium, an element that is shown to be significant in the next section.

Since there is a strong correlation between heart rate and CSF pulsation, an increase (decrease)
in ω allows us to understand how the effective diffusivity is affected in tachycardic (brachycardic)

TABLE II. Summary of the different runs for the sensitivity analysis (gL = gr = τω/τD).

Test case Re (m) ω∗ (1/s) L (m)

Benchmark 0.015 2π (60 bpm) 5
Sl,1 0.015 2π 3
Sl,2 0.015 2π 8
Sl,3 0.015 2π 10
SR,1 0.0120 2π 5
SR,2 0.0135 2π 5
SR,3 0.0165 2π 5
Sω,1 0.015 11/6 π (55 bpm) 5
Sω,2 0.015 14/6 π (70 bpm) 5
Sω,3 0.015 16/6 π (80 bpm) 5
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FIG. 4. Influence of the external radius (SR,1–3), gradient amplitude (Sl,1–3), and frequency (Sω,1–3) on the
effective dimensionless diffusivity. The label ”B” refers to the values of the benchmark case. Solid lines refer
to the analytical results, and asterisks to the numerical results (see Appendix B for further details). Note the
different scaling among the rows of panels.

patients (Sω,1–3). A low value of ω (i.e., small Womersely number W ) implies a well-developed
velocity profile and an increase in the shear-induced dispersion [4]. Instead, if the flow varies too
rapidly (high W ), the velocity profile development is hindered and the peak velocity is reduced, so
the shear is dampened and the dispersion of solute decreases.

We emphasize that for all tests the numerical results are in good agreement with the analytical
predictions, even though the former are usually slightly higher than the latter. In addition, both
numerical and analytical results are characterized by a transitory phase, with the presence of a
single frequency equal to ω∗, which gradually switches to a second harmonic (2ω∗) at long times
(Fig. 8). However, remember that all tests show a good agreement between analytical and numerical
results after the development of the transient. For this reason, in the following the analytical solution
is considered and discussed just for the time period after the end of the transitory state (but see the
discussion of the key role of porosity).

B. Effects of the porous medium within the SAS

As known, obstacles in the cavity create eddies and radial motion, so enhancing dispersion [38],
but also inducing additional head loss that reduces the average velocity and shear. By using the
above theory, the role trabeculae play in the present problem can be assessed by observing their
effects on the flow field and shear dispersion. The main features of the considered porous medium
are summarized in Table III.
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TABLE III. Characteristics of the porous medium.

Quantity Symbol Value Unit

Molecular diffusivity D 2.1×10−10 m2/s
SAS porosity [23,39] φ 0.99
Trabecular radius [23,38] rT 15 μm
Permeability κ 1.5×10−8 m2

Transversal diffusivity Dr 1.27×10−7 m2/s
Longitudinal diffusivity DL 4.85×10−6 m2/s
Interstitial velocity û 1.5 cm/s
Trabecular density ρT 250 Tr/cm3

The permeability κ is calculated through Eq. (9) by assuming standard physiological values
of porosity, φ = 0.99, and a trabecular radius rp =15 μm (Refs. [19,23,39]). We recall that the
model in [25] [Eq. (11)], used here to compute the lateral (DL) and radial (Dr) diffusivity,
is valid for P � 1. This condition is satisfied with the physiological values of the trabecular
radius (∼15 × 10−6 m), interstitial velocity (∼2 × 10−2 m/s), and drug molecular diffusivity (e.g.,
baclofen, a common antispasticity drug administered intrathecally, has a molecular diffusivity of
2.1 × 10−10 m2/s [13]).

The trabecular pattern throughout the SAS is complex and poorly understood. The simulations
in [19] considered a conservative estimate of the trabecular density ρt ∼ 85 Tr cm−3 in the dorsal
region of the SAS, while Tangen et al. [21] analyzed a broader physiological range (ρt = 40–
200 Tr cm−3). Nevertheless, the impact of the trabecular density variability on the porosity is modest
because of the limited volume of the single ligaments. In the present study, in agreement with the
anatomical values of ρt , an interval of porosity from 0.999 to 0.985 has been analyzed.

Figure 5 provides a comparison of the radial distribution of velocity over the time lapse of a single
period in the porous vs nonporous case. The porous medium induces a significant reduction in the
maximal and mean velocity (note the different scales between the two panels) and the characteristic
inflection point of the Womersley profile in the nonporous case has disappeared. In this respect, it
is noteworthy that the evaluation of CSF displaced into and out of the spinal SAS during a cardiac
cycle shows that the values obtained here for the porous case are more similar to MRI measurements
(∼2 ml) than in the nonporous case (∼10 ml) [6,40].

The peak values of the dimensionless diffusivity decreases with the molecular diffusivity in a
similar manner in the porous and nonporous cases [see Fig. 6(a)]. When reported in dimensional
units [Fig. 6(b)], the peak diffusivity is almost independent of the molecular diffusivity when D
is changed in the interval 10−11–10−6 m2/s. Nevertheless, the average values of diffusivity behave
differently in the nonporous and porous cases (Fig. 7): when reported in dimensional units, the latter
case shows D∗

e as almost independent of the molecular diffusivity, while it dramatically decreases
under the nonporous condition when D is changed in the interval 10−11–10−6 m2/s. In other words,
drug dispersion in a porous cavity is independent of the solute characteristics.

Another important result is that the fine structures within the SAS affect to a great extent the
average value of De (Fig. 7). This is due to the increase in gL and gr in the presence of obstacles,
which spread the solute more rapidly (we recall that gr =gL =τω/τD in the nonporous case). From
Eq. (37), an increase in gL causes an increase in the whole time series De(t ), while an increase in
gr reduces the amplitude of fluctuations, so the minimum values of De are always positive, and the
maximum, minimum, and mean values are closer together than in the nonporous case (Fig. 8).

IV. DISCUSSION AND CONCLUSIONS

This work provides a new modeling approach for the evaluation of dispersion of a passive
scalar within an annular porous cavity under pulsatile conditions. The theoretical results have
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FIG. 5. Comparison of the velocity distribution between (a) the nonporous (solid curves) and (b) the porous
(dot-dashed curves) cases over one time period.

FIG. 6. Comparison of the maximum values of (a) the dimensionless vs (b) the dimensional effective
diffusivity. Standard case (solid line), porous case with φ = 0.990 (dot-dashed line with squares), φ = 0.999
(dot-dashed line with asterisks), and φ = 0.985 (dot-dashed line with triangles).
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(a)

(b)

FIG. 7. Comparison of the mean values of (a) the dimensionless vs (b) the dimensional effective diffusivity.
Standard case (solid line), porous case with φ = 0.990 (dot-dashed line with squares), φ = 0.999 (dot-dashed
line with asterisks), and φ = 0.985 (dot-dashed line with triangles).

potential relevance for drug dispersion due to intrathecal injection in the cerebrospinal fluid of the
subarachnoid space.

The results show that both the pulsatility and the porosity can affect the timing of drug release
in a relevant way through the mechanism of shear dispersion. Due to the high value of the
Womersley number (W ∼12), the velocity profile of CSF in the cavity is in fact greatly influenced
by transient inertial forces, which cause a lag between the velocity and the pressure gradient and,
consequently, a relatively flat distribution in the core. Moreover, the fine arachnoid ligaments,
modeled here through the Brinkman term in the Navier-Stokes equations, reduce the maximal
and mean velocity, cause further flattening of the core velocity and an increase in the lag between
velocity and pressure (the velocity is almost in phase with −∂ p/∂z). Nevertheless, the trabeculae

FIG. 8. Temporal behavior of the dimensionless diffusivity. (a) Nonporous case; (b) porous case. Note the
differences in the scaling and in the mean values of oscillation between (a) and (b).
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produce an additional component of the diffusivity tensor (i.e., DL, Dr) that increases the effective
longitudinal diffusivity and reduces the time of solute dispersion. As a result, the characteristic time
of drug dispersion, Td , from the injection point (z∗ = 0) to the cranial end (z∗ = L∗/2) is between
L∗2/4D∗

e and L∗2/4D∗max
e , which is dramatically lower than the sole action of molecular diffusivity

(L∗2/4D ∼ 104 h) if the fluid is considered at rest or than the pure steady streaming advection
(∼4 h) if pulsatility is neglected.

We emphasize that, although the porosity is very close to unity, the presence of ligament strands
in the cavity plays a key role in further reducing Td with respect to the nonporous case and in
weakening its dependence on the solute characteristics. In the nonporous case, Td is in fact highly
dependent on the molecular diffusivity (spanning between 1 and 106 h for D = 10−6–10−11 m2/s),
while in the porous case both D∗

e and D∗max
e assume higher values and become closer to each other

[Fig. 8(b)]. It follows that the presence of trabeculae considerably reduces its dependence on D
and decreases the timing of dispersion (with the remarkable value of Td ∼50 min for φ = 0.999).
This means that the dispersion phenomenon is no longer drug specific and it develops with features
that are consistent with clinical observations. Moreover, the contribution of ligaments to DL and
Dr increases with an increase in the porosity [25]. This means that the trabeculae affect the drug’s
spread even though they are present in a very limited number. With a porosity equal to 0.999,
although the maximum values of diffusivity are close to those in the nonporous case (Fig. 6), their
average values are considerably higher (Fig. 7).

The sensitivity analysis showed that some features of the pressure wave, such as � and ω, play
a key role that should be carefully monitored during intrathecal treatments. In fact, tachycardic
conditions (high values of ω) or low CSF pulse pressure gradients could delay the drug delivery and
the achievement of the site target of therapies. In the sensitivity analysis, mutual influence between
ω and � was neglected, while under physiological conditions when the heart rate rises, the total
blood volume inflated and deflated in each cardiac cycle changes accordingly, thus influencing the
CSF pressure wave as well. To model this systemic effect could be clinically relevant but it would
require coupling with a cerebral-cardiovascular simulator able to resolve the relation between �

and ω (e.g., [41]). This aspect will be considered in a forthcoming study. On the contrary, the role
of geometric parameters, such as ri, is moderate so the approximation of a constant cross section
seems quite reasonable.

Since the theoretical model does not account for a finite domain, a transient regime developed
that lasted a time span ∼(grλ1)−1, which is much longer than the value predicted by the numerical
simulations. Nevertheless, the behavior obtained by the theory after the transient is in excellent
agreement with the numerical simulations. Furthermore, in the porous case, the transient regime is
dramatically reduced, to only 5 s, which is negligible compared with Td . Therefore, the shortcoming
of analyzing an infinite domain is not a real concern when porosity is considered.

Another apparent limitation of this approach is that the solute is considered to be uniformly
distributed over the annular cross section at the start time. This assumption might be considered
unrealistic with respect to clinical intrathecal injections where the catheter induces nonuniformity
in the initial distribution. Nevertheless, the presence of trabeculae again solves the issue, since
it enhances solute diffusion in the azimuthal direction, fostering the homogenization of the
concentration across the annular section. The typical time of azimuthal diffusion along one-half of
the annular perimeter is (πr∗

e )2D−1
θ , where Dθ is the morphologically induced diffusion coefficient

in the azimuthal direction. Considering the analyzed trabecular pattern (i.e., radially arranged in
the SAS), we can assume that Dθ is between Dr and DL, which leads to typical time scales for the
homogenization in the range 0.2–70 s. It follows that azimuthal homogenization is obtained in a
time lapse much shorter than Td , and the assumption that the initial point distribution of the drug is
uniform is quite acceptable. An exemplificative case of cloud dispersion of a drug instantaneously
injected in the middle of the domain is reported in Fig. 9.

The use of Darcy’s law to model anatomical fine structure could break down at the present high
values of porosity. Nevertheless, this approach was tested by Gupta et al. [23] for investigating three-
dimensional subject-specific CSF dynamics in the inferior cranial space. Furthermore, in the present
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FIG. 9. Drug dispersion for an instantaneous solute injection (porous case; φ = 0.99). The spatial distribu-
tion is assumed to be Gaussian with zero mean and σ 2 provided by Eq. (40).

study nerve roots and dentate ligaments were neglected, but such additional fine structures within
the SAS further reduce the real value of the porosity, making the Darcy assumption appropriate.

The lateral and longitudinal diffusivities derived from Koch’s theory for fibrous media are
basically valid in the long-time limit, namely, t > rt/U ∗√φr . This time is less than the oscillation
time, so the use of such coefficients is suitable after the first oscillation.

The actual value of the transversal hydrodynamic diffusivity Dr should be set to 0 at the walls of
the SAS, because of the no-slip condition (as discussed in [42]), instead of a constant as supposed
here. This assumption generates a slight overestimation of the coefficient gr , which affects the
oscillation range of the effective diffusivity and the duration of the transitory regime. Nevertheless,
the average diffusivity value remains the same and the dispersion phenomenon is unaffected [see
Eq. (37)].

A recent study [37] showed that spine eccentricity may induce a steady streaming which
influences drug dispersion. By considering the MRI-derived measurements of CSF flow due to
production and reabsorption [7] and assuming that the whole fluid volume (cerebral and spinal)
is equally involved in the circulation, the mean steady velocity of CSF in the SAS obtained is about
0.8 mm/min. This steady streaming spreads a drug bolus injected in the lumbar region throughout
the SAS with a time scale Td ∼ 350 min, which is much larger than that for the pulsatility.
Nevertheless, the variation of eccentricity with axial position could also induce additional secondary
flows and influence transversal mixing. The issue of the combined effect of porosity and eccentricity
remains open, however.

In this study, an oversimplified representation of the meningeal surface was deliberately used
in order to analyze the role of pulsatile flow and the anatomical fine structure. In particular, the
wall roughness was neglected. A chaotic flow triggered by the presence of ridges on the meningeal
surface might generate mixing phenomena, as pointed out in [43]. However, quantification of the
morphological irregularity of the SAS walls requires three-dimensional subject-specific SAS models
tailored on detailed MRI [44]. A comparison between a numerical modeling of a high-resolution
SAS conformation and the theoretical results, to investigate the role of wall roughness, is therefore
left for future analyses.

To sum up, a complete theory able to assess longitudinal dispersion in an annular porous cavity
with pulsatile flow is provided and discussed. The model has the potential torapidly and accurately
assess the effective diffusivity of drugs for intrathecal therapies, highlighting the key role of the
anatomical fine structures and CSF pulsations. Moreover, it allows us to identify the frequency of
oscillation, the wavelength of the wave pressure, and the distance between trabeculae as the key
physiological parameters of the dispersion phenomenon.
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V. NOMENCLATURE

Quantity Symbol

Spinal subarachnoid space SAS
Cerebrospinal fluid CSF
Bra-ket notation 〈•, •〉
Nondimensionless quantity •∗

Cylindrical coordinate system (r, θ, z)
Cross section of annular cavity a
Concentration field of solute c
pth axial moment cp

Characteristic concentration (average drug concentration value) C0

Effective diffusivity De

Molecular diffusivity D
Longitudinal diffusivity DL

Radial diffusivity Dr

nth basis function fn

First kind of Bessel functions of order k Jk

Wave number of pressure wave k
Wavelength of pressure wave l
Porous length scale lp

Longitudinal length of spine L∗

pth full moment of concentration mp

Pressure of CSF p
Péclet number P
Amplitude of pressure wave P0

Internal radius of SAS r∗
e

External radius of SAS r∗
i

Trabecular radius r∗
t

Reynolds number Re

Schmidt number S
Oscillation period T
Correlation time tcorr

Axial velocity component of CSF u
Interstitial velocity ûp

Second kind of Bessel functions of order k Yk

Womersley number W
Porous Womersley number Wp

Generalized wave number α
Kronecker delta δm,n

Amplitude of pressure-gradient wave �
CSF density ρ
CSF viscosity μ
Permeability of SAS (porous medium) κ
Spatial variance of solute concentration σ 2

Porosity of SAS φ
Shear time scale τr

Diffusive time scale τD
Lateral diffusion time scale τDL

Transversal diffusion time scale τDr

Oscillating time scale τω

Frequency of CSF oscillation ω

043102-17



SALERNO, CARDILLO, AND CAMPOREALE

APPENDIX A: ANALYTICAL RESULTS OF INTEGRALS

The general form of the integrals in (5) reads

〈 fn, û〉 = 2u0

ξn�n
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r2

i − 1
)(
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)
Y n

1
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, (A1)

where

Y r
i = Yi[riα], Jr

i = Ji[riα], Y n
i = Yi[ri�n], Jn

i = Ji[ri�n] (A2)

Y �
i = Yi[(1 + ri )�n], J�

i = Ji[(1 + ri )�n], Y α
i = Yi[(1 + ri )α], Jα

i = Ji[(1 + ri)α]. (A3)

APPENDIX B: NUMERICS

A numerical validation of the theoretical solution was developed through a comparison with CFD
runs using the software Comsol 4.2a. In agreement with the theoretical framework, the computa-
tional domain is an annular cavity bounded by two concentric cylindrical surfaces, composed of the
upper and the lower parts of the SAS, with a thin ring for the injection of the solute in between.
In order to reduce computational times, we have taken advantage of the azimuthal symmetry,
thus considering a two-dimensional axisymmetric model. The domain was spatially discretized by
5×104 triangular elements. The solver resolves the continuity equation, Navier-Stokes equations,
and advection-diffusion equation and computes the flow field and the concentration field in the
SAS. The simulations were conducted under unsteady conditions with a time step equal to 0.05 s.
According to Eq. (1), at the inlet (cranial end of the domain), a time-dependent driving pressure was
imposed,

Pinlet = P0 cos(ω∗t∗), (B1)

where P0 is the steady pressure of the CSF within the SAS. In order to numerically emulate the
propagation of a wave in a rigid domain, at the outlet boundary (the caudal end), the lagged time-
dependent pressure was set:

Poutlet = P0 cos(ω∗t∗ − k∗L∗). (B2)

This trick was adopted in order to numerically mimic the effect of gradient oscillation—as it was
considered in the theory—without embarking on the numerical simulation of a compressible fluid
in a deformable domain. Figure 10 reports the pressure field and its z derivative—the pressure
gradient—along the tube at different times, as resolved by the numerical simulation. It is evident
that the pressure gradient is practically constant throughout the domain, an aspect that justifies the
assumptions of the present theory [namely, Eq. (1)].

The convection-diffusion equation was solved by considering the injected drug as a passive scalar
[17] and the solute concentration was set equal to c̃ = 1 at the injection, while at the inlet and outlet
boundaries zero concentration was imposed in order to mimic no leakage of the drug from the SAS.
To avoid numerical errors, a smoothed step function was also applied to the initial condition. Finally,
zero concentration flux and no slip condition were imposed at the walls.

Figure 1 shows how the tracer profile reflects the velocity profile at different times during the
time span of a single period T . The two horizontal lines refer to the advance of the front position
of the same isoconcentration contour line after a single period. From the numerical solution of
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FIG. 10. Numerical solution for (a) the pressure field and (b) the pressure gradient along the tube, over one
time period.

the concentration field, we spatially integrated the concentration fields at different time steps and
computed M1(t ), dM1/dt , and dM2/dt . According to (19), we finally get the value of De(t ).

Table I summarizes the physiological values that have been considered as the benchmark case
for the numerical validation and the sensitivity analysis.
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