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EAST: Encoding-Aware Sparse Training for
Deep Memory Compression of ConvNets

Matteo Grimaldi, Valentino Peluso, Andrea Calimera
Politecnico di Torino, 10129 Torino, Italy

Abstract—The implementation of Deep Convolutional Neural
Networks (ConvNets) on tiny end-nodes with limited non-volatile
memory space calls for smart compression strategies capable
of shrinking the footprint yet preserving predictive accuracy.
There exist a number of strategies for this purpose, from those
that play with the topology of the model or the arithmetic
precision, e.g. pruning and quantization, to those that operate
a model agnostic compression, e.g. weight encoding. The tighter
the memory constraint, the higher the probability that these
techniques alone cannot meet the requirement, hence more
awareness and cooperation across different optimizations become
mandatory. This work addresses the issue by introducing EAST,
Encoding-Aware Sparse Training, a novel memory-constrained
training procedure that leads quantized ConvNets towards deep
memory compression. EAST implements an adaptive group
pruning designed to maximize the compression rate of the weight
encoding scheme (the LZ4 algorithm in this work). If compared to
existing methods, EAST meets the memory constraint with lower
sparsity, hence ensuring higher accuracy. Results conducted on
a state-of-the-art ConvNet (ResNet-9) deployed on a low-power
microcontroller (ARM Cortex-M4) validate the proposal.

I. INTRODUCTION & MOTIVATIONS

The deployment of Convolutional Neural Networks
(ConvNets) on the edge of the Internet-of-Things (IoT)
is a challenge as tiny sensor nodes are powered by low-cost
microcontroller units (MCU) with limited memory and
computational resources. The lack of memory space is of
particular relevance here. Indeed, even the most optimized
ConvNets may require tens of MBs of pre-trained parameters,
while for off-the-shelf MCUs the non-volatile memories
range from 32 KB to 2 MB. Moreover, flash memories are
also used to host other routines to drive the sensors and/or
to pre-process the data, reducing, even more, the available
space. Not less important, a ConvNet is trained to process a
single specific task, while multi-sensor applications (e.g. [1])
have to process different sources of information, thus needing
multiple ConvNets on board.
Several recent works investigated aggressive optimization
techniques for memory compression. Among them, quan-
tization via fixed-point representation is now considered a
mandatory step. The use of 8-bit integers is a common choice
for general-purpose MCUs [2] as it reduces the memory
footprint up to 4× w.r.t. 32-bit floating-point with no, or
negligible, accuracy loss. However, quantization alone might
be not enough to fit stringent memory requirements. Sparse
training via weight pruning [3] [4] is an additional strategy that
can improve the compression if combined with some encoding
scheme and/or when quantization is jointly applied [5] [6].
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Figure 1: Sparsity vs. Accuracy of a compressed 9-layer ResNet
under different memory constraints (the labeled numbers). The net
is trained on CIFAR-10, then compressed via weight pruning and
encoding. The blue dash-dotted line marks the accuracy of the
original dense version (140KB).

Sparse trained and quantized ConvNets get easier to be com-
pressed by lossless encoding schemes as their weight tensors
have long chains of zeros or repeated values.
As a rule of thumb, the higher the sparsity, the larger the
compression rate. However, under stringent constraints, i.e. a
few tens of KBs, the level of sparsity which will let encoding
schemes meet the constraint is extremely high, much higher
than what ConvNets may tolerate. Fig. 1 illustrates such an
important aspect for a 9-layer ResNet trained on CIFAR-10.
Above 90% of sparsity, the value needed to achieve a memory
footprint ≤40KB, the accuracy curve shows a sudden drop.
This poses a new challenge: Is there a way to achieve higher
compression rates with lower sparsity to preserve accuracy?
Yes indeed, and this work aims at providing a first viable
optimization strategy named EAST (Encoding-Aware Sparse
Training). The rationale is simple, yet effective: find groups of
adjacent weights to be pruned rather than pruning single con-
nections. EAST implements a sparse training procedure based
on adaptive group pruning where the group size adapts to the
memory constraint minimizing the amount of sparsity needed.
EAST operates the LZ4 [7] encoding scheme, which (i) can
be implemented with a lightweight routine of few bytes of
memory and (ii) guarantees fast decompression and negligible
impact on the inference latency; other encoding schemes can
be seamlessly applied. The validation is conducted on a state-
of-the-art 9-layer ResNet trained on the CIFAR-10 dataset and
ported on an Arm Cortex-M4 MCU. A comparison against the
same network compressed with a classical weight pruning and
encoded with the same LZ4 scheme proves EAST can achieve
higher accuracy (up to 8.73%) when the available memory is
very limited (12KB of flash).



II. RELATED WORKS

Weight pruning is a common technique to generate sparse
ConvNets. During training, less important connections are
gradually removed until a target level of compression is
reached. The weight magnitude is the most popular proxy
to drive weight selection, with the intuition that collapsing
low-value weights to zero affects the prediction accuracy less.
Pioneering works in this field [3] demonstrated that most of
the parameters can be removed (up to 90%), still keeping
the accuracy of the dense model. Combined with aggressive
quantization (down to 2 bits) and weight encoding, sparse
ConvNets may achieve impressive compression ratios, up to
49× depending on the network topology [5]. Also, other
recent works investigated the bond between weight pruning
and quantization [6] [8] [9], suggesting a joint optimization to
determine the best combination of pruning rate and bit-width.
While those kinds of strategies are effective with arithmetic
units supporting arbitrary bit-widths, general-purpose cores
(the focus of this work) provide a limited instruction-set which
restricts the choice of the bit-width to few options, i.e., 8-bit
for the Cortex-M core used in this work.
The authors of [4] showed that large-sparse models outper-
forms small-dense models. However, above a certain threshold
of sparsity (>90%), the ConvNet may experience dramatic
accuracy degradation. This work addresses this issue with
an encoding-aware pruning that meets the same memory
constraint with fewer weights pruned.
An interesting study conducted in [10] empirically demon-
strated that a ConvNet contains an iso-accuracy sub-network
that can be discovered via sparse training. This sub-network
may represent the smallest achievable implementation that
guarantees the highest accuracy, therefore it could be the best
starting point for any encoding scheme. However, how to find
it under extremely high levels of sparsity still remains an open
issue. This work explores a complementary strategy, namely,
to maximize the efficiency of the encoding scheme forcing a
certain degree of proximity for zeroed weights.
Also, other works experimented pruning at higher-granularity,
namely groups of adjacent weights. An example is [11], in
which the group size is fixed to match the parallelism of
single-instruction multiple-data (SIMD) units to reduce the
inference latency. Rather than improving performance, in this
work, we aim at decreasing the memory footprint. Specifically,
we adopt group pruning to accelerate the compression rate.
As a distinctive feature, both the group size and the physical
place of the pruned groups adapt during training according to
the target memory. Moreover, our strategy is effective also for
cores without a SIMD unit (e.g. Cortex-M0 and M3).
Sparse networks can be compressed using different encoding
techniques, like Huffman Coding [5], Compressed Sparse
Column [12], Zero Run Length [13], to name the most known.
In this work we focus on the LZ4 algorithm which proved
faster than others during decompression (in the order of several
GB/s on high-end CPUs). For LZ4 to be effective, and in
general for any compression algorithm, to have big chunks
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Figure 2: Weight Pruning (a) vs Group Pruning (b). Colored weights
denotes zero-values

of adjacent zeros is paramount. That is why an efficient
compression strategy should take the sparsity distribution (and
not just its absolute value) as a first order variable.

III. METHODOLOGY

A. Flow Overview

The optimization flow encompasses three stages: (i) sparse
training, (ii) quantization, and (iii) encoding. The first, Sparse
training, is to train the sparse network under a user-defined
memory constraint. Then, Quantization reduces the arithmetic
precision of the model to a given bit-width (8-bit in this
work). Finally, Encoding compresses the model size leveraging
favorable patterns made available through the sparse training.
The EAST strategy implements the first stage.

B. EAST

Encoding-Aware Pruning. As already introduced in Section I,
accuracy-driven weight pruning algorithms return tensors with
sequences of zeros much longer than in the original dense
model. Although this helps to increase the compression rate
of the encoding scheme, there is no direct control on the
position of the zeros, which is ruled by accuracy. The EAST
technique is based on the assumption that a weight pruning
which is aware of the encoding scheme could make better
use of sparsity. A pictorial view of this principle is given
in Fig. 2, which illustrates how multi-dimensional tensors
are transformed into a 1-D array that can be processed by
standard general-purpose cores. Fig. (a) shows a standard
weight pruning, while Fig. (b) is for a group pruning with
group size (GS) of 4. In both cases, the picture refers to a
channel-last layout organization (the same scheme used by
the inference library adopted in this work). The colored items
represent the pruned weights. While for the standard method
the pruned weights are often placed far away as the selection
is just accuracy-driven (smaller weights pruned first), with a



group pruning the proximity of the pruned weights is forced
by the size of the group itself. This brings to clear advantages.
Indeed, even if both cases show the same sparsity (59%), group
pruning gets 55% higher compression ratio (using LZ4, see
Sec. III-C). The savings get larger when considering tensors
of higher dimensionality.
It is thereby intuitive that the group size serves as a control
knob to reach the best trade-off between accuracy, sparsity, and
compression rate. When the available memory is extremely
small, groups of larger size may help to achieve higher
compression with lower sparsity, hence preserving accuracy
more. With a too-small group size, e.g. 1 as for standard
weight pruning, the amount of sparsity needed by the encoding
algorithm to meet the memory constraint would be too large,
with negative effects on the accuracy. The EAST strategy
implements a memory-driven adaptive group sizing during the
sparse training procedure.
Sparse Training. In EAST, both sparsity and group size are
gradually increased during the training loop until the memory
constraint is met. In the beginning, the sparsity is low and the
group size is set to one, hence EAST behaves like a standard
weight pruning. If the memory constraint is not satisfied,
sparsity and group size are updated following a pre-defined
schedule. The sparse training iterates for a new bunch of
epochs and if the memory constraint is still not met, sparsity
and group size are newly updated. The larger the group size,
the faster the memory reduction. Therefore, group pruning
helps to converge faster attaining the target memory with a
lower sparsity. The group selection is driven by the `2-norm:
groups with lower norm are removed first. However, they can
be restored later during the training steps that follow. Once
the target memory is met, the sparsity and group size updates
are stopped, the pruned weights are frozen, and the training
iterates for the last set of epochs adjusting the remaining
weights in order to maximize accuracy.
Hyperparamters. Group pruning is applied at the end of
each epoch, namely after a complete iteration over the entire
training set. The initial target sparsity is 30% with an increased
step of 1% every epoch; the step is halved at epochs 20 and
50. The initial group size is set to one; starting from epoch
20, it increases with a step of 1 every 10 epochs.

C. Quantization & Encoding

After the sparse training, the 32-bit floating-point ConvNet
is quantized to 8-bit. The effect of the quantization is (i)
to reduce the memory footprint ensuring marginal accuracy
loss, (ii) to increase the frequency of repeated weights, (iii)
to accelerate the inference time. We opted for a binary-point
quantization scheme which is fully compliant with the infer-
ence library used for on-board deployment (CMSIS-NN [2]),
therefore tailored for the target MCU (the Cortex-M by ARM).
As the very last stage, the quantized model is compressed.
EAST can operate different encoding algorithms, but we found
the LZ4 algorithm is a good choice for resource-constrained
MCUs due to its lightweight routine that ensures high decod-
ing speed. On-board measurements validated this qualitative

analysis. The implemented compression strategy is layer-wise,
namely, layers are compressed as separate blocks. This solu-
tion allows more efficient management of the available SRAM
as it avoids one-shot full model decoding. In fact, layers are
processed in sequence during inference, therefore each layer
block can be decoded independently and temporarily stored in
the SRAM using time-shared buffers.

IV. EXPERIMENTAL RESULTS

A. Benchmarks, Datasets, and Training

We used as benchmark a 9-layer ResNet [14] (ResNet-9)
for image classification on the CIFAR-10 dataset. ResNet-9
currently holds the first position in the DawnBench Competi-
tion [15]. In our implementation, we removed 75% of the filter
from each convolutional layer. As it is already optimized for
fast training and inference, this ConvNet represents a challeng-
ing test-case to assess the efficiency of different compression
pipelines.
The dataset is split in training (45K images), validation (5K)
and test (10K) set. The model with the highest accuracy on the
validation set is selected for evaluation. For data augmentation,
we applied padding with random crop, random horizontal flip,
and cutout. The same setting is used for both dense and sparse
training. The training is driven by SGD for 200 epochs with
batch-size 128. The learning rate follows a cosine annealing
schedule with an initial value of 0.1. All the experiments have
been run in Pytorch 1.2.
For what concerns quantization, the fixed-point position is
determined by a heuristic that minimizes the mean squared
error between the floating-point and the 8-bit values. For the
intermediate activations, the statistics have been collected on
a sub-set of the validation set (size 100 samples).
Table I reports the top-1 accuracy on the test set and the mem-
ory size of the network. The reported values refer to a standard
training (i.e. EAST off). Results confirm the efficiency of
quantization (column Q8) that gets 4× memory reduction
with negligible accuracy losses (0.09%) w.r.t. the floating-point
ConvNet (column FP32). Applying the LZ4 compression to
the quantized model does not show significant savings: just a
few bytes of memory reduction (column Q8+LZ4).

Table I: Top-1 accuracy on CIFAR-10 and weight memory of
the dense ResNet-9 after 32-bit floating-point training (FP32), after
quantization (Q8), and after LZ4 compression (Q8+LZ4).

FP32 Q8 Q8+LZ4

Top-1 91.10% 91.01% 91.01%
Memory 558 KB 140 KB 140 KB

B. Results

EAST opens the deep memory space. Table II reports the
comparison between a standard sparse training via weight
pruning (WP) and the proposed flow built upon EAST. The
two are compared for different target memories (Mt). The
WP is trained using the same sparsity schedule of EAST (see
Sec. III-B). For each Mt, the table collects the compression



Table II: Sparsity (S) and Top-1 Accuracy (A) of weight pruning
(WP) and EAST on ResNet-9 at different memory constraint Mt
(KB). CR is the compression ratio w.r.t. the floating-point ConvNet.

Mt CR SWP SEAST AWP AEAST ∆A

112 5.0× 58.5% 49.5% 89.80% 89.46% -0.34%
80 7.0× 76.0% 60.5% 88.67% 88.61% -0.06%
48 11.6× 89.5% 74.8% 87.51% 87.44% -0.07%
40 14.0× 92.0% 79.0% 86.80% 86.82% 0.02%
32 17.4× 94.0% 83.3% 85.30% 86.11% 0.81%
24 23.3× 96.0% 87.8% 82.33% 83.65% 1.32%
20 27.9× 96.8% 90.0% 79.63% 81.11% 1.48%
16 34.9× 97.5% 91.8% 74.16% 78.45% 4.29%
12 46.5× 98.3% 94.0% 55.59% 64.32% 8.73%

ratio (CR) achieved after quantization and encoding, the
sparsity reached after training (columns SWP and SEAST), the
top-1 accuracy measured on the test-set (AWP and AEAST)
and the relative accuracy distance (∆A) between EAST and
WP. As demonstrated by previous works, when the memory
constraint is met with low sparsity, weight pruning guarantees
marginal accuracy losses. For instance, at Mt = 112 KB
the accuracy loss is only 1.21% lower than the dense 8-
bit ConvNet (89.80% vs 91.01%). In this region of memory,
EAST reaches similar accuracy levels than weight pruning,
0.34% lower in the worst case (Mt = 112 KB). However, in
the deep memory space (Mt ≤ 40 KB) weight pruning starts
experiencing dramatic accuracy degradation. The reason is that
very high sparsity (> 90%) is needed to reach the desired
memory constraint, therefore the model loses its expressive
power as only a few weights remain up. In this region EAST
outperforms WP; the encoding-aware pruning enables better
control of the sparsity indeed (SEAST < SWP), preserving
the same amount of information within the same amount of
memory. On the extreme corner, Mt = 12 KB, EAST is 8.73%
more accurate than WP due to a lower sparsity (94% vs
98.3%). To emphasize the role of EAST, one can consider
that with the same amount of sparsity (e.g. 94%) the model
optimized with EAST is 2.7× smaller (row 12 KB vs 32 KB).
EAST accelerates the memory compression. Fig. 3 shows
the evolution of the memory footprint during the training
epochs for both WP (blue line) and EAST (red line) under
the same memory constraint Mt = 32 KB. During the first
20 epochs, when the group size is one (as set by the training
schedule, see Sec. III-B), EAST follows the same trend of WP.
Every time the group size gets increased (events indicated with
black dots), the memory compression accelerates quickly. As
a result, EAST reaches the target memory (indicated with the
dashed black line) 43 epochs sooner than WP. These findings
suggest that the group size works as an effective knob to boost
the compression rate without seeking additional sparsity.
Efficient deployment of sparse ConvNets. We validated the
optimization flow on a STM32 NUCLEO-F412ZG [16] board
powered with an Arm Cortex-M4 core running at 100 MHz,
1 MB of flash memory, and 512 KB of SRAM. As the infer-
ence engine, we adopted the CMSIS-NN library. The original
dense ConvNet takes 28 KB of SRAM to store intermediate
activations and classifies a single image in 492 ms. The sparse
ConvNets needs 884 B of flash for the LZ4 routine, which
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Figure 3: Epochs vs. Memory in weight pruning (blue line) and
EAST (red line) for Mt = 32KB (dashed line). The dots indicates
when the group size increases.

thereby has a negligible impact on the compression rates
achieved. Furthermore, an additional SRAM buffer of 36 KB
is needed to store the decompressed weights. Since this buffer
is time-shared among different layers, its size is given by
the biggest layer. However, the buffer can be dynamically
allocated just before the execution of the ConvNet.
The total execution time is function of the memory constraint
Mt: the larger the Mt, the longer the decompression stage.
For ResNet-9 generated with EAST, the execution time ranges
from 482 ms at Mt = 12 KB to 497 ms at Mt = 112 KB. At
the lowest memory, the decompression only accounts for 6 ms;
in all cases, the network layers execute faster than the dense
counterpart as the weights resides in the SRAM instead of
flash.

C. Final Remark

This work opens new paths towards the optimization of
ConvNets in memory-bounded cores. EAST is particularly
suited for the deep memory space, where it outperforms state-
of-the-art sparse training. Nevertheless, further investigation is
needed to bridge the accuracy gap with dense nets at extreme
constraints. First, we plan to consider other proxies than the
`2-norm to drive the group selection. Second, group size and
sparsity follow a relative straightforward scheduling during the
training; in order to achieve better trade-offs between sparsity,
group size, and the position of the pruned groups, future
works will explore the adoption of smarter hyper-parameter
tuning techniques (e.g. Bayesian optimization or reinforcement
learning) that might help EAST to reach global optima in the
sparsity-memory-accuracy space.

V. CONCLUSION

EAST is a novel strategy for the training of memory-bounded
sparse ConvNets. Leveraging the working principle upon
which the encoding algorithms are built, it trains sparse net-
works that are more amenable to compression, yet less sparse
and thus more accurate. The collected results are promising;
EAST reaches up to 46.5× compression w.r.t. the original
floating-point model achieving 8.73% higher accuracy than
state-of-the-art sparse training. Also, we presented an efficient
per-layer compression strategy, which exploits the proposed
sparse training on commercial off-the-shelf IoT cores.
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