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THE ACTION OF VOLTERRA INTEGRAL OPERATORS WITH HIGHLY

SINGULAR KERNELS ON HÖLDER CONTINUOUS, LEBESGUE AND

SOBOLEV FUNCTIONS

RAFFAELE CARLONE, ALBERTO FIORENZA, AND LORENZO TENTARELLI

Abstract. For kernels ν which are positive and integrable we show that the operator g 7→ Jνg =∫ x
0
ν(x− s)g(s)ds on a finite time interval enjoys a regularizing effect when applied to Hölder con-

tinuous and Lebesgue functions and a “contractive” effect when applied to Sobolev functions. For
Hölder continuous functions, we establish that the improvement of the regularity of the modulus
of continuity is given by the integral of the kernel, namely by the factor N(x) =

∫ x
0
ν(s)ds. For

functions in Lebesgue spaces, we prove that an improvement always exists, and it can be expressed
in terms of Orlicz integrability. Finally, for functions in Sobolev spaces, we show that the operator
Jν “shrinks” the norm of the argument by a factor that, as in the Hölder case, depends on the
function N (whereas no regularization result can be obtained).

These results can be applied, for instance, to Abel kernels and to the Volterra function
I(x) = µ(x, 0,−1) =

∫∞
0
xs−1/Γ(s) ds, the latter being relevant for instance in the analysis of

the Schrödinger equation with concentrated nonlinearities in R2.

Keywords: Volterra functions, singular kernels, Volterra integral equations, Sonine kernels, Orlicz integrability.

MSC 2010: 26A33, 47G10, 45E99, 44A99, 46E30.

1. Introduction

Many mathematical models of physical phenomena deal with systems of Volterra integral equations
with singular kernels (e.g. [19, 22, 26]). In this paper, motivated by some nonlinear Volterra integral
equations arising in Quantum Mechanics, we investigate the properties of convolution operators with
kernels possibly more singular than the more known Abel ones. Namely, given a generic positive,
locally integrable function ν, we study the action of the operator g 7→ Jνg defined by

(1) (Jνg)(x) :=

∫ x

0
ν(x− s)g(s)ds, x ≥ 0,

on intervals [0, T ], with T > 0 (this assumption being understood in the whole paper).
Precisely, we prove its regularizing effect in Hölder and Lebesgue spaces and its “contractive”

effect in Sobolev spaces (where with “contractive” we mean that the Sobolev norm of Jνg on [0, T ]
can be estimated by the norm of g times a constant that gets smaller as T → 0).

It is also worth highlighting that the assumption of local integrability of ν is the minimum
requirement so that definition (1) make sense in general. In fact, the aim of the paper (even though
some results will require additional hypothesis) is to work with the least set of assumptions that
are necessary in order to detect remarkable effects from the application of the operator Jν .

A particular relevance in applications is acquired by the case

(2) ν(x) = I(x) :=

∫ ∞
0

xs−1

Γ(s)
ds
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2 R. CARLONE, A. FIORENZA, AND L. TENTARELLI

(Figure 1), where the operator Jν reads

(3) (Jνg)(x) = (Ig)(x) :=

∫ x

0
I(x− s)g(s)ds.

We observe that, if we denote by µ(x, σ, α) the Volterra functions defined by

µ(x, σ, α) :=

∫ ∞
0

xα+ssσ

Γ(α+ s+ 1)Γ(σ + 1)
ds,

then I(x) coincides with µ(x, 0,−1), which is the so-called Volterra function of order −1 (see [14],
Section 18.3), that is discussed in Section 2.

In addition, recalling that a kernel m ∈ L1(0, T ) is said a Sonine kernel if it is a divisor of the
unit with respect to the convolution operation, that is, if there exists another kernel ` ∈ L1(0, T )
such that ∫ x

0
`(x− s)m(s)ds = 1, for a.e. x ∈ [0, T ],

then, one can prove that I is a Sonine kernel, with `(x) = −γ − log x, γ representing the Euler-
Mascheroni constant (see eq. (15)). The class of Sonine kernels is wide and there are many papers
(see e.g. [36] and references therein), starting with the pioneering one by Sonine ([35]), where
embedding theorems for integral operators with kernels displaying singularities at the origin of the
type

a(x)xα−1 logm
(

2T

x

)
, 0 < α < 1, −∞ < m <∞,

are discussed. However, we stress that the results proved in the present paper are more general
since they take into account also kernels that are more singular in a neighborhood of the origin,
such as, indeed, the Volterra function I, whose asymptotyc expansion near 0 is given by 1

x log2(1/x)

(see (8)).
It is also worth mentioning that a first discussion on the operator I is present in [32], whereas

similar integral operators, but with more regular kernels, have been investigated more recently
by [8, 31]. More in detail, in [8] it is analyzed the case of a certain class of almost decreasing
Sonine kernels in terms of weighted generalized Hölder spaces, while in [31] an “inverse” operator is
discussed within the framework of Lp spaces. We also recall that in [18] some relevant features of
Volterra functions are pointed out, such as asymptotic expansions and some striking relations with
the Ramanujan integrals.

The interest of the operator I is mainly due to its applications in Quantum Mechanics, and
precisely in the study of the Schrödinger equation with nonlinear point interactions in R2.

We recall briefly that a Schrödinger equation with a linear point interaction with strength α ∈ R,
placed at y ∈ R2, is

i∂tψ(t) = Hαψ(t),

where Hα is a differential operator with domain

D(Hα) =

{
ψ ∈ L2(R2) : ∀λ > 0, ψ = φλ + q G2,λ(· − y), φλ ∈ H2(R2), q ∈ C,

lim
x→y

φλ(x) =
(
α+ 1

2π log
√
λ

2 + γ
2π

)
q

}
(G2,λ denoting the Green’s function of (−∆ + λ) in R2) and action

(Hα + λ)ψ = (−∆ + λ)φλ, ∀ψ ∈ D(Hα).
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For a complete discussion on the solution of this equation through the theory of self-adjoint exten-
sion, we refer the reader to [5]. In addition, it is well known that, given an initial datum ψ0 ∈ D(Hα),
the solution of the associated Cauchy problem reads

ψ(t,x) = (U0(t)ψ0)(x) +
i

2π

∫ t

0
U0(t− s;x− y) q(s)ds,

where U0(t) is the the propagator of the free Schrödinger equation in R2 (with integral kernel

U0(t; |x|) = e−
|x|2
4it /2it) and q(t) (with a little abuse of notation that is usual in the literature) is a

complex-valued function satisfying the so-called charge equation

(4) q(t) +

∫ t

0
I(t− s)

(
4πα− log 4 + 2γ − iπ

2

)
q(s)ds = 4π

∫ t

0
I(t− s)(U0(s)ψ0)(y)ds.

Now, a nonlinear point interaction arises when one assumes that the strength of the interaction
depends in fact on the function q(t), and in particular when one sets α = α0|q(t)|2σ (α0 ∈ R\{0},
σ > 0) in (4), thus obtaining

(5) q(t) +

∫ t

0
I(t− s)

(
4πα0|q(t)|2σ − log 4 + 2γ − iπ

2

)
q(s)ds = 4π

∫ t

0
I(t− s)(U0(s)ψ0)(y)ds,

(see [9, 10]). Since in the nonlinear case no theory of self-adjoint extensions is available, the relevance
of the operator I is clear: the well-posedness of the associated Cauchy problem is strictly related
to the study of the existence and uniqueness of solutions of (5), which strongly depends on the
properties of I.

Remark 1.1. Even though the application presented above concerns complex-valued functions, this
papers only manages real-valued functions. However, one can check that the results of Section 5
(which are actually required in [9, 10]) can be easily generalized to complex-valued functions.

Another topical example of integral kernels that are included in our general framework are the
well known Abel kernels, which correspond to the choice

(6) ν(x) =
xα−1

Γ(α)
, 0 < α < 1,

in (1). These ones are very important in the theory of fractional integration and generalized differ-
entiation ([19, 32]) and, again, in Quantum Mechanics. In the study of nonlinear point interactions
in R and R3, indeed, the resulting integral equations present the kernel (6), with α = 1/2, in place
of I (see [1, 2, 3, 6, 7]).

Finally, we describe briefly the main results of the paper. They concern, as we told at the
beginning, the properties of the operator Jν in Hölder spaces, Lp spaces and Sobolev spaces.

Preliminarily, since it is crucial in the following, we define the integral function of the kernel ν

(7) N(x) =

∫ x

0
ν(s)ds, x > 0.

Since ν is always supposed positive and locally integrable, it turns out that N is a positive, increasing
and absolutely continuous function with N(x)→ 0 as x→ 0.

In the case of Hölder spaces, it is well known ([19], Theorem 4.2.1 p. 70) that when the kernel is
ν(t) = tα−1, 0 < α < 1, the operator Jν transforms C0,β functions into C0,α+β ones, improving this
way the regularity of the modulus of continuity. As a consequence of our main result of Section 3
(Theorem 3.1), we will see that more generally the improvement is at least given by the integral
function of the kernel: the phenomenon that the power α−1 gives as improvement the exponent α is
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therefore true also for any locally integrable kernel which is assumed just equivalent to a decreasing
function in a neighborhood of the origin and not blowing too much (derivative bounded above, for
instance) in its domain.

In the case of Lp spaces, it is well known ([19], Theorem 4.1.4 p. 67) that when the kernel is

ν(t) = tα−1, the operator Jν transforms Lp functions, 1 < p < 1/α, into Lp/(1−αp) functions. To a
minor integrability of the kernel corresponds a minor gain of integrability for Jν , and apparently
the gain disappears when the kernel is just L1. As a consequence of our main result of Section 4
(Theorem 4.1), we will show that any kernel locally integrable (again, we assume that it is equivalent
to a decreasing function in a neighborhood of the origin) gives an improvement of integrability,
measured in terms of Orlicz spaces. The improvement is strictly linked to the Orlicz integrability
of the kernel, hence it always exists: a classical, remarkable theorem in Orlicz spaces theory (see
e.g. [24], p. 60) tells that any function L1 is always in some Orlicz space strictly contained in L1.
Furthermore, in the case p = ∞, we show (Proposition 4.2), under the unique assumption of local
integrability, that Jν transforms L∞ functions in continuous functions and that the L∞ norm of
Jνg on [0, T ] is controlled by the norm of g times N(T ).

Finally, in the case of Sobolev spaces, it is well known ([19], Theorem 4.2.2 p. 73) that when the
kernel is ν(t) = tα−1, the operator Jν transforms W θ,1 functions, with 0 < θ < 1− α, in W θ+α−ε,1

functions. Analogous results for W θ,p functions are discussed in [3, 23]. In this case, the minor
integrability of the kernel yields a minor gain in the Sobolev index, which disappears when the
kernel is just L1 (also the preservation of the index is not straightforward). As a consequence of
our main result of Section 5 (Theorem 5.1), we will show that when p = 2, provided θ 6= 1/2, the
Sobolev index is in fact preserved and the Sobolev norm of Jνg is bounded, up to a multiplicative
constant, by the norm of g times N(T ). Furthermore, we will prove that (almost) the same result

holds for H1/2 functions, but just in the case ν = I (Theorem 5.2), and for W 1,1 functions (Theorem
5.3).

2. The Volterra kernel I

Since the case of a kernel equal to the Volterra function I (defined by (2), Figure 1) is the most
relevant in the applications, it is worth stressing some basic features of I. In this way one can easily
see that the abstract results established in the following sections can be actually applied to this
kernel.

First, we recall (see [14, 32]) that I is analytic for t > 0 and that

(8)

I(x) =
1

x log2
(

1
x

) [1 +O(|log x|−1)
]
, as x→ 0

I(x) = ex +O(x−1), as x→ +∞.

Consequently, the first expansion shows that I ∈ L1
loc(R+) and that I 6∈ Lploc(R

+), for any p > 1.
Also the derivative and the integral function of I will play a crucial role in the sequel. Hence,

recalling (see again [14, 32])

(9)
d

dx
µ(x, 0, n) = µ(x, 0, n− 1), n ∈ Z, n ≤ 0,

and I(x) := µ(x, 0,−1), we stress that

(10)
d

dx
I(x) = µ(x, 0,−2) =

x→0

1

x2 log2
(

1
x

) [−1 +O(|log x|−1)
]
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Figure 1. The plot of I(x) is in black, the plot of the first order of the asymptotic
expansion of I(x) around 0 is dotted.

and that

(11)
d

dx
µ(x, 0, 0) = I(x).

Furthermore, we can state the following lemma.

Lemma 2.1. The function I is convex on R+ and admits a positive minimum.

Proof. The second part is immediate since I is continuous, positive and coercive by (8). On the

other hand, in order to prove the second part, it is sufficient to show d2

dx2
I(x) ≥ 0; namely, by (9),

that d3

dx3
µ(x, 0, 0) ≥ 0. Now, following [18] (eq. (3.1)) and [20], we find that

µ(x, 0, 0) = ex −R(x), where R(x) :=

∫ ∞
0

e−sx

s(log2 s+ π2)
ds

denotes the Ramanujan function (Figure 2). Hence, d3

dx3
µ(x, 0, 0) = ex − d3

dx3
R(x) and, since R is

completely monotonic (i.e., for every k > 0, R(k) does exist and (−1)kR(k) ≥ 0), this entails that
d3

dx3
µ(x, 0, 0) ≥ 0 and thus that I is convex. �

2 4 6 8 10

0.30

0.35

0.40

0.45

0.50

Figure 2. The plot of R(x) .

It is also convenient to introduce the function

(12) N (x) =

∫ x

0
I(s)ds, x ≥ 0,
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(Figure 3). By the properties of I, we see that N is positive, increasing and absolutely continuous
on bounded intervals intervals. Moreover, N (x)→ 0 as x→ 0, and precisely

(13) N (x) =
1

log
(

1
x

) +O(| log x|−2), as x→ 0.

0.05 0.10 0.15 0.20 0.25 0.30

0.2

0.4

0.6

0.8

Figure 3. Plot of N (x) around zero

Remark 2.1. One easily sees that, as one sets ν = I in (7), N is equal to N . On the other hand,
from (9) one also notes that N coincides, up to an additive constant, with µ(·, 0, 0).

Finally, we point out a relevant property of the operator I defined by (3), which is strictly
connected to the fact that I is a Sonine kernel. First, define the integral operator

(Φg)(x) :=

∫ x

0
φ(x− s)g(s)ds, where φ(x) = −γ − log x.

Then, one notes that, as φ ∈ L1(0, T ), Φ is well defined for each function g ∈ L1(0, T ). In addition,
one can prove the following result.

Proposition 2.1. If g ∈ L1(0, T ), then(
Φ(Ig)

)
(x) =

(
I(Φg)

)
(x) =

∫ x

0
g(s)ds, ∀x ∈ [0, T ].

Proof. We first observe that one has

(14)

∫ x

0
I(x− s)φ(s)ds = 1.

In [32], Lemma 32.1, it is indeed claimed that (setting α = 1, h = 0 therein)

(15)

∫ x

0
(log s− ψ(1))

d

dx
µ(x− s, 0, 0)ds = −1,

with ψ(1) = −γ, and since from (11) d
dxµ(x, 0, 0) = I(x), (14) is proved.

Now, in the expression(
I(Φg)

)
(x) =

∫ x

0

∫ x−s

0
I(s)φ(x− s− σ)g(σ)dσ ds,
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we exchange the order of the integration, since∫ x

0

∫ x−s

0
I(s)φ(x− σ − s)g(σ)dσ ds+

∫ x

0

∫ x−σ

0
I(s)φ(x− σ − s)g(σ)ds dσ =

=

∫ x

0

∫ x

0
I(s)φ(|x− σ − s|)g(σ)ds dσ = 2

∫ x

0

∫ x−s

0
I(s)φ(|x− σ − s|)g(σ)dσ ds,

and using (14), we conclude that(
I(Φg)

)
(x) =

∫ x

0

∫ x−σ

0
I(s)φ(x− σ − s)g(σ)ds dσ =

∫ x

0
g(σ)dσ.

Finally, given that an easy change of variable shows
(
Φ(Ig)

)
(x) =

(
I(Φg)

)
(x), the proof is complete.

�

Remark 2.2. We note that, in view of Theorem 5.3, it is

d

dx

(
Φ(Ig)

)
(x) =

d

dx

(
I(Φg)

)
(x) = g(x).

3. Regularization in Hölder spaces

Let 0 < τ0 < ∞ and let ν, ν̃ be absolutely continuous and positive in ]0, τ0]. We say that ν, ν̃ are
equivalent if there exist two positive constants c1, c2 such that

c1ν(x) ≤ ν̃(x) ≤ c2ν(x) ∀x ∈]0, τ0].

Of course any function equivalent to ν in ]0, τ0] is of type bν, where b = b(·) is absolutely continuous
in ]0, τ0] and such that

(16) 0 < b− ≤ b(x) ≤ b+ <∞ ∀x ∈]0, τ0].

The statements of this section hold for certain functions ν which are decreasing in intervals of
the type (0, τ0) and, more generally, they hold for functions equivalent to decreasing functions in
intervals of the type (0, τ0). For the sake of simplicity, the functions ν in the statements will be always
assumed equivalent to decreasing functions in intervals of the type (0, τ0), and the corresponding
decreasing functions will be written as products bν, where b = b(·) is an absolutely continuous
function in ]0, τ0] satisfying (16).

Lemma 3.1. Let 0 < β < 1, and let ν ∈ AC(]0, T ]) ∩ L1(0, T ) be positive and equivalent to a
decreasing function in (0, τ0) for some 0 < τ0 ≤ T . If

(17) x→ 1

xβ

∫ x

0
b(s)ν(s)ds ↘ in (0, τ0),

then

(18)
ν(ετ)ε

N(ε)
≤ c (b(·), ν(·), T ) τβ−1 ∀ 1 < τ <

T

ε
, ∀ 0 < ε < T,

where N is defined by (7).

Remark 3.1. Inequalities coming from assumptions of monotonicity of ratios between functions
and powers are very well known among researchers working in Orlicz spaces. Some proofs of such
inequalities work also without the assumption of convexity (the reader may compare this lemma e.g.
with Theorem 3 in [30] or with the results in Section 3 of [27]), however, the main feature of (18)
is that it has been obtained from assumptions of monotonicity which hold only in a neighborhood
of the origin and not in the whole domain of the functions involved (where, however, at least a
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boundedness is required; this assumption appears implicitly in the hypothesis of continuity which
holds until the endpoint T ).

Proof. We preliminarly note that, since bν is decreasing in (0, τ0),

(19) ν(x) ≤ 1

b−
b(x)ν(x) 6

1

b−
· 1

x

∫ x

0
b(s)ν(s)ds ≤ b+

b−
N(x)

x
∀x ∈ (0, τ0] .

Let 0 < ε < T , 1 < τ <
T

ε
. If ετ 6 τ0, by (19) and (17) respectively,

(20)
ν(ετ) ε

N(ε)
6
b+

b−
N(ετ)

ε τ

ε

N(ε)
=
b+

b−
N(ετ)

(ε τ)β
(ε τ)β

τ N(ε)
6

(
b+

b−

)2
N(ε)

εβ
(ετ)β

τ N(ε)
=

(
b+

b−

)2

τβ−1

and, if τ0 < ετ < T , 0 < ε 6 τ0 then again by (17),
N(ε)

εβ
>

b−

b+
N(τ0)

τβ0
and therefore, setting

ν+ = max
[τ0,T ]

ν ,

(21)
ν(ετ) ε

N(ε)
6 ν+ε1−β εβ

N(ε)
6
b+

b−
ν+

(
T

τ

)1−β τβ0
N(τ0)

=
b+

b−
ν+T 1−βτβ0
N(τ0)

τβ−1 ≤ b+

b−
ν+T

N(τ0)
τβ−1

Finally, if τ0 < ετ < T , ε > τ0 then, since ν > 0 implies that N is increasing,

(22)
ν(ετ) ε

N(ε)
6 ν+ε1−β εβ

N(ε)
6 ν+

(
T

τ

)1−β (ε τ)β

N(τ0)
<
ν+T 1−βT β

τ1−β N(τ0)
=

ν+ T

N(τ0)
τβ−1.

From (20), (21), (22), we get (18). �

The following statement is an immediate consequence of Lemma 3.1.

Corollary 3.1. In the same assumptions of Lemma 3.1, for any α < 1− β it is∫ T
ε

1
(τ + 1)α−1 ν(ετ)ε

N(ε)
dτ ≤ c (b(·), ν(·), T )

∫ T
ε

1
(τ + 1)α−1τβ−1dτ ≤ c (b(·), ν(·), T, α+ β) <∞

uniformly in ε, 0 < ε < T .

The next lemma is trivially true for decreasing functions ν (see the CASE (i) of the proof), and it
provides a version of the inequality in case of functions which are decreasing only in a neighborhood
of the origin (however, as in the remark above, one can see that, again, an assumption of boundedness
has been made implicitly).

Lemma 3.2. If ν ∈ AC(]0, T ]) ∩ L1(0, T ) is positive and equivalent to a decreasing function in
(0, τ0) for some 0 < τ0 ≤ T , then

(23)

∫ y

x
ν(s)ds ≤ c (b(·), ν(·), T )

∫ y−x

0
ν(s)ds ∀x, y ∈ (0, T ),

y

2
≤ x < y.

Proof. We examine the three cases
(i) x < y ≤ τ0

(ii) τ0 ≤ x < y ≤ T
(iii) x < τ0 < y ≤ T
CASE (i): Since bν is decreasing in (0, τ0),∫ y

x
ν(s)ds =

∫ y−x

0
ν(s+ x)ds ≤ b+

b−

∫ y−x

0
ν(s)ds ∀x, y ∈ (0, τ0),

y

2
≤ x < y.



THE ACTION OF VOLTERRA INTEGRAL OPERATORS WITH HIGHLY SINGULAR KERNELS 9

CASE (ii): We have

(24)

∫ y

x
ν(s)ds ≤ ν+(y − x) =

ν+∫ y−x
0 ν(s)ds

(y − x)

∫ y−x

0
ν(s)ds ∀x, y ∈ (τ0, T ),

y

2
≤ x < y,

where ν+ = max
[τ0,T ]

ν.

There are two possibilities:
(ii)1 y − x ≤ τ0

(ii)2 y − x > τ0

In the case (ii)1, since bν is decreasing in (0, τ0),∫ y−x

0
ν(s)ds ≥ b−

b+
ν(τ0)(y − x)

and therefore from (24)∫ y

x
ν(s)ds ≤ b+

b−
ν+

ν(τ0)

∫ y−x

0
ν(s)ds ∀x, y ∈ (τ0, T ),

y

2
≤ x < y;

in the case (ii)2, setting ν− = min
]0,T ]

ν > 0,

∫ y−x

0
ν(s)ds ≥ τ0ν

−

and then, using y − x ≤ y/2 ≤ T/2, from (24) we get∫ y

x
ν(s)ds ≤ ν+

τ0ν−
T

2

∫ y−x

0
ν(s)ds ∀x, y ∈ (τ0, T ),

y

2
≤ x < y.

CASE (iii): We have ∫ y

x
ν(s)ds =

∫ τ0

x
ν(s)ds+

∫ y

τ0

ν(s)ds

and applying CASE (i) with y replaced by τ0 and CASE (ii) with x replaced by τ0,∫ y

x
ν(s)ds ≤ b+

b−

∫ τ0−x

0
ν(s)ds+ max

{
b+

b−
ν+

ν(τ0)
,
ν+T

2τ0ν−

}∫ y−τ0

0
ν(s)ds.

Since in our case τ0 < y, it is τ0 − x < y − x, hence the first term can be estimated by the right
hand side of (23); similarly, since x < τ0, it is y − τ0 < y − x and the same conclusion holds for the
second term. �

In next theorem we are going to consider an assumption on ν stronger (as we are going to see)
with respect to that one of Lemma 3.1: in the case b ≡ 1 (a similar digression can be done in the
general case, replacing ν by bν) we will assume that the positive function ν ∈ AC(]0, T ])∩L1(0, T )
is such that x→ x1−βν(x) is decreasing in (0, τ0) for some 0 < τ0 ≤ T , 0 < β < 1− α, where α is a
given number in (0, 1). It is easy to verify that this latter assumption implies that the function N ,
defined by (7), is such that

N(x)

xβ
↘ in (0, τ0) ,

and also that ν is decreasing in (0, τ0) (because ν(x) = xβ−1 · x1−βν(x) is product of positive
decreasing functions).
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Let us verify the first assertion. Since x → x1−βν(x) decreasing in (0, τ0), it is (note that, since
also ν is absolutely continuous, their derivatives exist a.e.)

σ
d

dσ
ν(σ) 6 (β − 1)ν(σ) for a.e. σ ∈ (0, τ0) ,

hence, integrating the above inequality in (ε, x), where 0 < ε < x < τ0, and noting that σν(σ) is
absolutely continuous too, we have

xν(x)− εν(ε) =

∫ x

ε
σ
d

dσ
ν(σ)dσ +

∫ x

ε
ν(σ)dσ

≤ (β − 1)

∫ x

ε
ν(σ)dσ +

∫ x

ε
ν(σ)dσ = β

∫ x

ε
ν(σ)dσ .

If we let ε→ 0, since ν is decreasing, it is

0 < εν(ε) ≤
∫ ε

0
ν(σ)dσ → 0 ,

and therefore we get
xν(x) ≤ βN(x) ∀x ∈ (0, τ0) ,

from which the assertion follows.
On the other hand, the fact that the assumption is really stronger is shown by the following

Example 3.1. Let 1 < τ0 <∞, and let

ν(σ) =


1

2
√
σ

if σ ∈ (0, 1)

1

2
if σ ∈ (1, τ0)

so that

N(x) =


√
x if x ∈ (0, 1)

x+ 1

2
if x ∈ (1, τ0)

Then
N(x)

xβ
↘ in (0, τ0)

is satisfied for β = τ0/(τ0 + 1), while for the same β the function x → x1−βν(x) is not decreasing
in (0, τ0) (because it is not decreasing in (1, τ0)).

Before the statement of the main theorem of this section, we observe that the kernels ν of our
interest are such that their difference quotients are bounded above, i.e. there exists a constant
K > 0 such that

ν(y)− ν(x) ≤ K(y − x) ∀x, y ∈ (0, T ), x < y

This property (which holds automatically, in particular, for all the kernels ν which are decreasing
in the whole (0, T )) is expressed in an equivalent way in the assumption (26) below.

Theorem 3.1. If g ∈ C0,α([0, T ]), 0 < α < 1, 0 < T < ∞, g(0) = 0, and if ν ∈ AC(]0, T ]) ∩
L1(0, T ), ν > 0, is such that

(25) x→ x1−βb(x)ν(x) is decreasing in (0, τ0)

for some 0 < τ0 ≤ T , 0 < β < 1− α , b ∈ AC(]0, τ0[) , 0 < b− ≤ b(x) ≤ b+ <∞ ,
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(26) |ν(x)− ν(y)| ≤ ν(x)− ν(y) +K0(y − x) for some K0 > 0, ∀x, y ∈ (0, T ), x < y ,

then, setting

Jνg(t) =

∫ t

0
ν(t− s)g(s)ds t ∈ (0, T ),

it is

(27) |Jνg(x)− Jνg(y)| ≤ c (b(·), ν(·), T, α, β) [g]α|x− y|αN(|x− y|) ∀x, y ∈ (0, T ),
y

2
≤ x < y ,

where

N(x) =

∫ x

0
ν(σ)dσ .

Proof. Let x, y ∈ (0, T ), y2 ≤ x < y. It is

Jνg(y)− Jνg(x) =

∫ y

0
ν(y − s)g(s)ds−

∫ x

0
ν(x− s)g(s)ds

=

∫ y

0
ν(s)g(y − s)ds−

∫ y

y−x
ν(s− y + x)g(y − s)ds

=

∫ y

0
ν(s)g(y)ds−

∫ y

0
ν(s)[g(y)− g(y − s)]ds

−
∫ y

y−x
ν(s− y + x)g(y)ds+

∫ y

y−x
ν(s− y + x)[g(y)− g(y − s)]ds

= g(y)

∫ y

0
ν(s)ds−

∫ y−x

0
ν(s)[g(y)− g(y − s)]ds−

∫ y

y−x
ν(s)[g(y)− g(y − s)]ds

− g(y)

∫ y

y−x
ν(s− y + x)ds+

∫ y

y−x
ν(s− y + x)[g(y)− g(y − s)]ds

= g(y)[N(y)−N(x)]−
∫ y−x

0
ν(s)[g(y)− g(y − s)]ds

+

∫ y

y−x
[ν(s− y + x)− ν(s)][g(y)− g(y − s)]ds.

Therefore

|Jνg(y)− Jνg(x)|

≤ |g(y)[N(y)−N(x)]|+
∣∣∣∣∫ y−x

0
ν(s)[g(y)− g(y − s)]ds

∣∣∣∣
+

∣∣∣∣∫ y

y−x
[ν(s− y + x)− ν(s)][g(y)− g(y − s)]ds

∣∣∣∣ := A+B + C.

We estimate each term in turn. Since g ∈ C0,α([0, T ]), g(0) = 0, and since N is increasing and
0 < α < 1,

A = |g(y)[N(y)−N(x)]|
≤ [g]αy

α[N(y)−N(x)]

= [g]α(yα − xα)[N(y)−N(x)] + [g]αx
α[N(y)−N(x)]

≤ [g]α(y − x)α[N(y)−N(x)] + [g]αx
α[N(y)−N(x)].
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By (25) the function bν is decreasing in (0, τ0), hence by (23)

N(y)−N(x) =

∫ y

0
ν(s)ds−

∫ x

0
ν(s)ds =

∫ y

x
ν(s)ds

≤ c (b(·), ν(·), T )

∫ y−x

0
ν(s)ds = c (b(·), ν(·), T )N(y − x)

and therefore

A ≤ c (b(·), ν(·), T ) [g]α(y − x)αN(y − x) + [g]αx
α[N(y)−N(x)].

The first term can be estimated by the right hand side of (27). As to the second term, we begin
observing that

xα[N(y)−N(x)] = xα
N(y)−N(x)

y − x
(y − x) = xαν(ξ)(y − x),

for some ξ ∈ (x, y).
We consider first the case ξ ≤ τ0, so that

xαν(ξ)(y − x) = b(ξ)−1xαb(ξ)ν(ξ)(y − x) ≤ 1

b−
xαb(x)ν(x)(y − x)

(because bν is decreasing in (0, τ0)). Since α < 1− β, by (25)

x→ xαb(x)ν(x) is decreasing in (0, τ0)

and therefore, since τ0 ≥ x ≥ y
2 ≥

y−x
2 ,

xαb(x)ν(x)(y − x) ≤
(
y − x

2

)α
b

(
y − x

2

)
ν

(
y − x

2

)
(y − x)

= 21−α(y − x)αb

(
y − x

2

)
ν

(
y − x

2

)(
y − x

2

)
= 21−α(y − x)α

∫ (y−x)/2

0
b

(
y − x

2

)
ν

(
y − x

2

)
ds

≤ 21−α(y − x)α
∫ (y−x)/2

0
b(s)ν(s)ds ≤ 21−αb+(y − x)αN(y − x) .

Now we consider the case ξ > τ0. Setting ν+ = max
x∈[τ0,T ]

xαν(x), ν− = min
x∈]0,T ]

xαν(x) > 0, it is

xαν(ξ)(y − x) ≤ ξαν(ξ)(y − x) ≤ ν+(y − x) =
ν+∫ y−x

0 sαν(s)ds
(y − x)

∫ y−x

0
sαν(s)ds .

Now there are two possibilities: y − x ≤ τ0, y − x > τ0. In the first possibility,∫ y−x

0
sαν(s)ds ≥ 1

b+

∫ y−x

0
sαb(s)ν(s)ds ≥ 1

b+
τα0 b(τ0)ν(τ0)(y − x)

and therefore

ν+∫ y−x
0 sαν(s)ds

(y − x)

∫ y−x

0
sαν(s)ds ≤ b+ν+

τα0 b(τ0)ν(τ0)

∫ y−x

0
sαν(s)ds

≤ b+ν+

τα0 b(τ0)ν(τ0)

∫ y−x

0
(y − x)αν(s)ds =

b+ν+

τα0 b(τ0)ν(τ0)
(y − x)αN(y − x) ;
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in the second possibility, ∫ y−x

0
sαν(s)ds ≥ τ0 · ν−

and therefore, using y − x ≤ y
2 ≤

T
2 ,

ν+∫ y−x
0 sαν(s)ds

(y − x)

∫ y−x

0
sαν(s)ds ≤ ν+

τ0ν−
· T

2

∫ y−x

0
sαν(s)ds

≤ Tν+

2τ0ν−
(y − x)αN(y − x) .

We have therefore shown that also the second term can be estimated by the right hand side of (27).
On the other hand, it is quite easy to check that also B can be estimated in the same way, in fact

B =

∣∣∣∣∫ y−x

0
ν(s)[g(y)− g(y − s)]ds

∣∣∣∣ ≤ ∫ y−x

0
ν(s)[g]αs

αds

≤ [g]α

∫ y−x

0
ν(s)(y − x)αds = [g]α(y − x)αN(y − x).

It remains to estimate C. It is

C =

∣∣∣∣∫ y

y−x
[ν(s− y + x)− ν(s)][g(y)− g(y − s)]ds

∣∣∣∣ ≤ [g]α

∫ y

y−x
|ν(s− y + x)− ν(s)|sαds

We now use the assumption (26), so that

C ≤ [g]α

∫ y

y−x
[ν(s− y + x)− ν(s)] sαds+ [g]α

∫ y

y−x
K0(y − x)sαds .

Making the change of variables σ =
s

y − x
in the first term, we have

C ≤ [g]α(y − x)α+1

∫ y
y−x

1
[ν((y − x)(σ − 1))− ν((y − x)σ)]σαdσ + [g]α

∫ y

y−x
K0(y − x)sαds

We observe that x >
y

2
>
x

2
implies

y

y − x
> 2, therefore

C ≤ [g]α(y − x)α+1

{∫ 2

1
[ν((y − x)(σ − 1))− ν((y − x)σ)]σαdσ+

+

∫ y
y−x

2
[ν((y − x)(σ − 1))− ν((y − x)σ)]σαdσ

}
+ [g]α

∫ y

y−x
K0(y − x)sαds

:= C1 + C2 + C3

We observe that the sign of C1 and the sign of C2 are not necessarily positive; both C1 and C2

will be splitted into more terms, each of them being not necessarily positive; however, all of them
will be shown to be smaller than the right hand side of (27).

The first term can be estimated as follows:
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C1 = [g]α(y − x)α+1

∫ 2

1
[ν((y − x)(σ − 1))− ν((y − x)σ)]σαdσ

6 2α[g]α(y − x)α+1

∫ 2

1
ν((y − x)(σ − 1))dσ

= 2α[g]α(y − x)α
∫ y−x

0
ν(τ)dτ

= 2α[g]α(y − x)αN(y − x) .

In order to estimate C2, we need to use the following inequality, which, as we are going to see,
follows easily from the fact that the positive bν ∈ AC(]0, T ]) is decreasing in (0, τ0):

(28)
1

y − x

∫ y

x
ν(s)ds ≤

(
b+

b−
+
ν+

ν−

)
ν(x) ∀x, y ∈ (0, T ), x < y ,

where ν+ = max
[τ0,T ]

ν and ν− = min
[τ0,T ]

ν > 0.

In order to show (28), let us fix x, y ∈ (0, T ), x < y. If y ≤ τ0, using that bν is decreasing in
(0, τ0), we have

1

y − x

∫ y

x
ν(s)ds ≤ 1

b−
1

y − x

∫ y

x
b(s)ν(s)ds ≤ 1

b−
b(x)ν(x) ≤

(
b+

b−
+
ν+

ν−

)
ν(x).

If τ0 ≤ x,

1

y − x

∫ y

x
ν(s)ds ≤ ν+ =

ν+

ν−
ν− ≤ ν+

ν−
ν(x) ≤

(
b+

b−
+
ν+

ν−

)
ν(x).

The last case is x < τ0 < y, where the following inequalities hold:

1

y − x

∫ y

x
ν(s)ds =

1

y − x

∫ τ0

x
ν(s)ds+

1

y − x

∫ y

τ0

ν(s)ds

≤ 1

τ0 − x

∫ τ0

x
ν(s)ds+

1

y − τ0

∫ y

τ0

ν(s)ds ≤ b+

b−
ν(x) +

ν+

ν−
ν(x) =

(
b+

b−
+
ν+

ν−

)
ν(x) .

Using the change of variable σ = τ + 1, the integration by parts formula, ν > 0, (28) and Lemma
3.2, we now estimate C2 as follows:
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C2 = [g]α(y − x)α+1

∫ y
y−x

2
[ν((y − x)(σ − 1))− ν((y − x)σ)]σαdσ

= [g]α(y − x)α+1

∫ x
y−x

1
[ν((y − x)τ)− ν((y − x)(τ + 1))] (τ + 1)αdτ

= [g]α(y − x)α+1

∫ x
y−x

1
(τ + 1)αd

(
1

y − x

∫ (y−x)τ

(y−x)(τ+1)
ν(s)ds

)

= [g]α(y − x)α+1

 (τ + 1)α

y − x

∫ (y−x)τ

(y−x)(τ+1)
ν(s)ds

∣∣∣∣∣
τ= x

y−x

τ=1

− 1

y − x

∫ x
y−x

1

(∫ (y−x)τ

(y−x)(τ+1)
ν(s)ds

)
α(τ + 1)α−1dτ

}

= [g]α(y − x)α

(τ + 1)α
∫ (y−x)τ

(y−x)(τ+1)
ν(s)ds

∣∣∣∣∣
τ= x

y−x

τ=1

+

∫ x
y−x

1

(∫ (y−x)(τ+1)

(y−x)τ
ν(s)ds

)
α(τ + 1)α−1dτ

}

= [g]α(y − x)α

{(
y

y − x

)α ∫ x

y
ν(s)ds− 2α

∫ y−x

2(y−x)
ν(s)ds

+

∫ x
y−x

1

[∫ (y−x)(τ+1)

(y−x)τ
ν(s)ds

]
α(τ + 1)α−1dτ

}

6 [g]α(y − x)α

{
2α
∫ 2(y−x)

y−x
ν(s)ds+ c (b(·), ν(·))

∫ x
y−x

1
[(y − x)ν((y − x)τ)]α(τ + 1)α−1dτ

}
6 [g]α(y − x)α {2αc (b(·), ν(·), T )N(y − x)

+ c (b(·), ν(·)) (y − x)α
N(y − x)

y − x

∫ y
y−x

1
(τ + 1)α−1 ν((y − x)τ) (y − x)

N(y − x)
dτ

}
By Corollary 3.1 the integral inside the parenthesis is bounded by a constant independent of y− x,
depending only on b(·), ν(·), T, α+ β. Hence the estimate becomes

C2 ≤ [g]α(y − x)α {2αc (b(·), ν(·), T )N(y − x) + αc (b(·), ν(·), T, α+ β)N(y − x)}

and therefore also C2 is estimated by the right hand side of (27).
Finally, we need to estimate C3.
We have

C3 = [g]α

∫ y

y−x
K0(y − x)sαds ≤ [g]αK0

∫ T

0
sαds(y − x)

= c (ν(·), T, α) [g]α(y − x) = c (ν(·), T, α) [g]α
(y − x)1−α

N(y − x)
(y − x)αN(y − x)

≤ c (b(·), ν(·), T, α) [g]α(y − x)αN(y − x)
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where the last inequality follows from the fact that from (25) and from β < 1− α it follows that

1

x1−α

∫ x

0
b(s)ν(s)ds↘ in (0, τ0) ,

hence N(x)/x1−α is bounded below in (0, T ) by a positive constant, i.e. its reciprocal is bounded
above by a positive constant (depending only on b, ν and α). �

Remark 3.2. In the case b ≡ 1, ν(σ) = σβ−1, τ0 = T , Theorem 3.1 gives back Theorem 4.2.1 in [19].
Another interesting case is

(29) ν(σ) =
1

σ(log (1/σ))2
, σ small

which satisfies the assumption (25) of Theorem 3.1 for any 0 < α < 1, for any 0 < β < 1− α, with
b ≡ 1. Of course those positive functions ν ∈ AC(]0, T ])∩L1(0, T ), which are just equivalent to the
right hand side of (29) only in a neighborhood of the origin, and then not blowing up “too much”
(as, for instance, the function I(t) in (2), whose derivative – see (10) – is again a Volterra function
which is bounded above), are examples for Theorem 3.1 and in such cases the resulting regularity
for Jν is the same as that one given for (29).

Remark 3.3. From the proof of Theorem 3.1 it is clear that the assumption (26) can be weakened
as follows:

|ν(x)− ν(y)| ≤ ν(x)− ν(y) +K0(y − x)αN(y − x) for some K0 > 0, ∀x, y ∈ (0, T ),
y

2
≤ x < y.

Remark 3.4. For a given ν satisfying the assumptions of Theorem 3.1 one may look for the best
regularity action for Jν , i.e. one may look for the greatest α satisfying the assumptions of the
theorem or, equivalently, for the smallest β satisfying (25) (in the case of the classical spaces of
Hölder continuous functions, the inclusions between the spaces are easy and well known; for a
recent book on this topic see [17]): this problem is linked to the notion of Boyd indices (see e.g.
[27]). For a short survey including a bibliography on this topic, and for a “concrete” way to compute
them for explicit examples, see e.g. [15],[16].

Remark 3.5. It is interesting to note that in the paper [33] (see also [8]) the authors prove a result
of the same type as Theorem 3.1, where kernels more general than powers are considered. However,
in [33] the assumption to belong to a certain class Vλ, 0 < λ < 1, implies that the kernel enjoys a
higher integrability property (in fact, if k ∈ Vλ, it is k(x) ≤ c x−λ around zero), hence kernels like
our model example I, discussed in Section 2, cannot be considered.

4. Regularization in Lp spaces

We begin some background on Young’s functions and Orlicz spaces. In the following a convex
function A defined on [0,∞[ is said to be a Young’s function if it is convex and such that A(0) = 0,
A(x) > 0 for x > 0. This assumption implies that Young’s functions are strictly increasing and
invertible, so that it makes sense to consider its inverse A−1, defined in [0,∞[. The Orlicz space
LA(0, T ) (here T is a fixed positive real number) is the Banach function space of all real-valued
(Lebesgue) measurable functions f on (0, T ) such that

‖f‖LA(0,T ) = ‖f‖A := inf

{
λ > 0 :

∫ T

0
A

(
|f(t)|
λ

)
dt ≤ 1

}
<∞

(here we use the convention inf ∅ = +∞). In the special case A(t) = tp, 1 ≤ p <∞, the Orlicz space
reduces to the familiar Lebesgue space. For essentials about Orlicz spaces and Banach function
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spaces the reader may refer to [11], Sections 2.10.2 and 2.10.3 (and references therein for extensive
treatments). A well known result of the theory is that if two Young’s functions A, B are such that

A(c1x) ≤ B(x) ≤ A(c2x) for x large ,

then, in spite ‖ · ‖A, ‖ · ‖B may be different, the spaces themselves (namely, the set of the functions
such that the norms are finite) coincide. In particular, the spaces are completely determined by the
values of the Young’s functions assumed for x large.

For measurable functions f 6≡ 0 on (0, T ), the decreasing rearrangement f∗ is defined by the right
continuous inverse of t → µ(t) = meas(s ∈ (0, T ) : |f(s)| > t), i.e. f∗(t) = inf{λ > 0 : µ(λ) > t}.
Orlicz spaces LA(0, T ) are rearrangement-invariant: this means, in particular, that the norm is not
affected after the action of the decreasing rearrangement operator: ‖f‖A = ‖f∗‖A.

We may state the following

Theorem 4.1. Let 1 < p < ∞, 0 < T < ∞, and let A be a Young’s function. If ν ∈ L1(0, T ),
ν > 0, is such that

(30) x→ ν(x) is decreasing in (0, τ0) for some 0 < τ0 ≤ T ,

(31) x→ ν(x) is bounded in (τ0, T ) (in the case τ0 < T ) ,

(32) N(t) ≤ cνtA−1

(
1

t

)
for some cν > 0, ∀t ∈ (0, τ0) ,

where

N(t) =

∫ t

0
ν(σ)dσ ,

then, setting

Jνg(t) =

∫ t

0
ν(t− s)g(s)ds t ∈ (0, T ),

it is

(33) ‖Jνg‖C ≤ c (ν(·), A(·), p, T ) ‖g‖p ,

where C is the Young’s function (Proof of Lemma 4.2 in [29]) defined by

(34) C−1(x) =

∫ x

0
t
−2+ 1

pA−1(t)dt, x ≥ 0.

Before giving the proof of the theorem, which is a quite easy consequence (in fact, an application)
of a classical result about fractional integration in Orlicz spaces, we highlight a couple of examples
which are relevant for this paper.

Example 4.1. Let 1 < p <∞ and 0 < α < 1/p, and let ν(s) = sα−1 ∈ Lr(0, T ) ⊂ L1(0, T ), for all

1 < r < 1/(1−α). Then A(x) = x1/(1−α) satisfies (32), hence C given by (34) is C(x) = xp/(1−αp),

and Jνg ∈ Lp/(1−αp) for all g ∈ Lp. This special case gives back the refined version of the continuity
property for the Abel operator in Lp spaces, see Theorem 4.1.3 in [19].

Notice that when α approaches 0, the exponent r of integrability of ν approaches 1, and the
exponent p/(1 − αp) of integrability of Jνg approaches p, which means no gain of integrability: in
the framework of the Lebesgue spaces, kernels in L1 which do not possess the higher integrability
property (see e.g. next two examples and, in particular, the Volterra function I(t)) are not able to
improve the integrability through the operator Jν .
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Example 4.2. Let 1 < p <∞ and let β > 1, and let ν(s) = 1
s logβ( 1

s )
∈ L1(0, 1/2). Then

N(t) =

∫ t

0

1

σ logβ
(

1
σ

)dσ =
1

β − 1
log1−β

(
1

t

)
,

hence

A(x) ≈ x logβ−1 x for x large

satisfies (32). The Young’s function C given by (34) is

C(x) ≈ xp logp(β−1) x for x large ,

and Jνg ∈ LC for all g ∈ Lp. It is interesting to note that the kernel does not belong to any Lebesgue
space Lp with p > 1, and that the logarithm in the expression of C (which has a positive power and
therefore it is divergent at infinity) represents an Orlicz gain of integrability for Jνg.

For any kernel considered in Theorem 4.1, the existence of a Young function A satisfying (32)
can be easily established; moreover, for any ν the function Jνg always enjoys an Orlicz gain of
integrability with respect to g: this is the heart of the following simple result, which is consequence
of standard statements of Orlicz spaces theory, namely, of the fact that any function L1(0, T ) is
always in some Orlicz space LΨ(0, T ) strictly contained in L1(0, T ) (see e.g. [24], p.60), of the
Hölder’s inequality in Orlicz spaces (see e.g. [4], 8.11 p. 234)

(35)

∫ T

0
fg ds ≤ 2‖f‖Ψ‖g‖Ψ̃

where Ψ̃ is the Young function defined by Ψ̃(s) = maxt≥0(st − Ψ(t)), of the equivalences (see e.g.
[4], (7) p. 230 and [34], respectively)

(36) (Ψ̃)−1(t) ≈ t

Ψ−1(t)
t > 0

(37) ‖1(0,t)‖Ψ =
1

Ψ−1(1/t)
0 < t ≤ T ,

and finally of

(38) LC(0, T ) ⊂ LΨ(0, T ) ⇔ Ψ(t) ≤ C(kt) for some k > 0, for t large .

Proposition 4.1. In the assumptions of Theorem 4.1, for every ν there exists a Young function A
satisfying (32), and therefore LC(0, T ) is strictly contained in Lp(0, T ).

Proof. Let A be a Young function such that ν ∈ LA(0, T ), A(x)/x being increasing and divergent
at infinity. By (35), (37), (36) respectively,

N(t) =

∫ t

0
ν(σ)dσ =

∫ T

0
ν(σ)χ(0,t)dσ ≤ 2‖ν‖A‖1(0,t)‖Ã = cν ·

1

(Ã)−1(1/t)
≈ cνtA−1

(
1

t

)
As to the second part of the statement, from (34) we get that setting, for large s, x = C(s) and
t = A−1(x) (note that x and t are large as well)

C(s)

sp
=

x

C−1(x)p
=

(
x1/p

C−1(x)

)p
=

(
x

A−1(x)

)p
=

(
A(t)

t

)p
↗∞ ,

and using both implications in (38), we get the assertion. �
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Example 4.3. It is immediate to realize that the statement of Theorem 4.1 remains true if ν is
replaced by any function equivalent to ν in a neighborhood of the origin. Hence all the previous
remark still holds if ν is replaced by the function I(t) in (2).

The proof of Theorem 4.1 will follow as consequence of the following result appeared in Sharpley
([34, Theorem 3.8]), in the more abstract setting of general convolution operators, defined in [29].
In this latter paper our operator Jν , which goes back to [21], is explicitly mentioned as example
(see the end of the Section IV therein). Here we state it in a more convenient form, and using our
notation:

Theorem 4.2. Suppose that A, B are Young’s functions such that

(39) xB′(x) ≤ cBB(x) for some cB > 1 , for x large

and

(40) cCC(x) ≤ xC ′(x) for some cC > 1 , for x large ,

where C is the Young’s function defined by

(41)
1

xC−1(x)
=

1

A−1(x)
· 1

B−1(x)
for x large .

Then,

(42) ‖Jνg‖C ≤ cA,B sup
x

{
ν∗∗(x)

A−1
(

1
x

)} ‖g‖B ,
where (Jν is defined by (1) and) ν∗∗ denotes the averaged rearrangement of ν, defined by

ν∗∗(t) =
1

t

∫ t

0
ν∗(s)ds .

Proof of Theorem 4.1.
Setting B(t) = tp, (39) is obviously satisfied with equality and cB = 1; from (41) we get that if

C is defined by
1

xC−1(x)
=

1

A−1(x)
· 1

x1/p
for x large ,

i.e. if (34) holds, then (40) is satisfied: in fact, from the convexity of the Young function A,
the function A−1(x)/x is decreasing, hence from (34) we deduce that also the following ones are
decreasing:

C−1(x)

x1/p
,

x

C(x)1/p
,

xp

C(x)
,

and therefore C(x)/xp is increasing, from which (40) is satisfied with cC = p. We are therefore
allowed to apply Theorem 4.2.

From (30) and (31) it follows that for small values of t it is ν(t) = ν∗(t), hence, by (32), for x
small it is

ν∗∗(x)

A−1
(

1
x

) =
N(x)

xA−1
(

1
x

) ≤ cν ,
and of course the same conclusion holds (for a possibly different cν) for all x ∈ (0, T ). Hence the
supremum in the right hand side of (42) is a finite constant c (ν(·), A(·), p, T ), from which (33)
follows.

Finally, the case p = ∞ is considered in the next result, where the regularizing effect of Jν is
expressed through continuity.
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Proposition 4.2. If ν > 0 and ν ∈ L1(0, T ), then for any g ∈ L∞(0, T ) there results

Jνg ∈ C0([0, T ])

and

(43) ‖Jνg‖L∞(0,T ) ≤ N(T )‖g‖L∞(0,T ),

where N is the integral function of ν defined by (7).

Proof. Recalling (3) and (13), (43) is immediate. Then, it is left to prove that Jνg is continuous.
To this aim, fix x0 ∈ [0, T [ and x ∈ ]x0, T ]. Easy computations yield

Jνg(x)− Jνg(x0) =

∫ T

0
ν(x− s)1[x0,x](s)g(s)ds+

−
∫ T

0

(
ν(x0 − s)− ν(x− s)

)
1[0,x0](s)g(s)ds

and hence

|Jνg(x)− Jνg(x0)| ≤
∫ T

0
ν(x− s)1[x0,x](s)|g(s)|ds+

+

∫ T

0
|ν(x0 − s)− ν(x− s)|1[0,x0](s)|g(s)|ds

≤N(x− x0)‖g‖L∞(0,T ) + ‖g‖L∞(0,T )

∫
R
|νe(x0 − s)− νe(x− s)|ds,

where

νe(s) =

{
ν(s), if s ∈ ]0, T [ ,

0, if s ∈ R\ ]0, T [ .

Therefore, the first term converges to zero by the continuity of N and the second term converges
to zero by the mean continuity property (see [28]). Since the same holds if x < x0, one has
Jνg(x)→ Jνg(x0), which concludes the proof.

�

5. Contraction in Sobolev spaces

We start with some basics on Sobolev spaces with fractional index. Let −∞ ≤ a < b ≤ +∞ and
θ ∈ (0, 1). We denote by Hθ(a, b) the Sobolev space defined by

Hθ(a, b) := {g ∈ L2(a, b) : [g]2
Ḣθ(a,b)

<∞},

where

[g]2
Ḣθ(a,b)

:=

∫
[a,b]2

|g(x)− g(y)|2

|x− y|1+2θ
dydx.

This is a Hilbert space with the natural norm

‖g‖2Hθ(a,b) := ‖g‖2L2(a,b) + [g]2
Ḣθ(a,b)

.

When a = −∞ and b = +∞, Hθ(R) can be equivalently defined using the Fourier transform (see
[13]); that is, if we define the Fourier transform as

ĝ(k) :=
1√
2π

∫
R
e−ikxg(x)dx,
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then there exist two constants c1,θ, c2,θ > 0 such that

(44) c1,θ‖(1 + k2)θ/2 ĝ ‖L2(R) ≤ ‖g‖Hθ(R) ≤ c2,θ‖(1 + k2)θ/2 ĝ ‖L2(R).

Remark 5.1. We recall that with θ = 1 we mean the Sobolev space H1, with the usual definition,
whereas, with a little abuse, θ = 0 is an equivalent notation for L2.

Now, before stating the main theorem of this section, we recall a result on truncation/extension
of functions in Hθ(0, T ).

Lemma 5.1. Let g ∈ Hθ(0, T ), 0 ≤ θ ≤ 1, and set

(45) ge(x) =


g(x), if x ∈ [0, T ],

g(2T − x), if x ∈ ]T, 2T ],

0, if x ∈ R\[0, 2T ].

The following holds:

(i) if θ ∈ [0, 1/2[ , then ge ∈ Hθ(R);

(ii) if θ ∈ ]1/2, 1] and g(0) = 0, then ge ∈ Hθ(R).

Moreover, in both cases, there exists a constant cθ > 0 (independent of g and T ) such that

(46) ‖ge‖Hθ(R) ≤ cθ‖g‖Hθ(0,T ).

Proof. The proof is a straightforward application of Lemma 2.1 in [7]. Cases θ = 0, 1 are trivial.
Consider, then, an arbitrary θ ∈ (0, 1). First, we can easily check that ‖ge‖2L2(0,2T ) = 2‖g‖2L2(0,T )

and that, with some change of variables,

[ge]
2
Ḣθ(0,2T )

= 2[g]2
Ḣθ(0,T )

+ 2

∫
[0,T ]2

|g(x)− g(y)|2

|x+ y − 2T |1+2θ
dydx.

Moreover, since |x+ y − 2T | ≥ |x− y| for every (y, x) ∈ [0, T ]2,∫
[0,T ]2

|g(x)− g(y)|2

|x+ y − 2T |1+2θ
dydx ≤ [g]2

Ḣθ(0,T )
.

Hence [ge]
2
Ḣθ(0,2T )

≤ 4[g]2
Ḣθ(0,T )

, so that

(47) ‖ge‖Hθ(0,2T ) ≤ 2‖g‖Hθ(0,T ).

Now, from Lemma 2.1 of [7], we know that if θ ∈ ]0, 1/2[ , then there exists cθ > 0 such that

(48) ‖ge‖Hθ(R) ≤ cθ‖ge‖Hθ(0,2T ).

On the other hand, the same lemma shows that (48) holds even if θ ∈ ]1/2, 1[ , provided that
g(0) = 0 (since this entails by definition ge(0) = ge(2T ) = 0). Combining (48) and (47), the proof
is complete. �

Remark 5.2. Note that, when θ > 1/2, the assumption g(0) = 0 is meaningful as g is continuous
by Sobolev embeddings ([12, 13]). What is more, this requirement is mandatory, since otherwise ge
might not preserve continuity on R.

Remark 5.3. We also stress that the case θ = 1/2 is not managed by Lemma 5.1 since Lemma 2.1
in [7] is not valid in general for this choice of θ, due to the failure of Hardy inequality (see e.g. [25]).

Then, we can state the main result of this section. We recall that, as in the previous sections, Jν
denotes the operator defined by (1) and N the integral function of the kernel defined by (7).
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Theorem 5.1. If θ ∈ [0, 1] and ν > 0, ν ∈ L1(0, T ), then there exists a constant cθ > 0 such that

(49) ‖Jνg‖Hθ(0,T ) ≤ cθN(T )‖g‖Hθ(0,T ), ∀g ∈ Hθ(0, T ), θ < 1/2.

Moreover, (49) is valid also when θ > 1/2, provided that g satisfies g(0) = 0.

Proof. Fix θ ∈ [0, 1]\{1/2}. Then, let again

νe(x) :=

{
ν(x), if x ∈ ]0, T [ ,

0, if x ∈ R\ ]0, T [

and, for any g ∈ Hθ(0, T ), define

f(x) :=

∫ x

0
νe(x− s)ge(s)ds,

where ge is the extension of g obtained via Lemma 5.1. Note that (46) applies if either θ < 1/2 or
θ > 1/2 with, in this second case, the further assumption that g(0) = 0. As f(x) = (Jνg)(x) for all
x ∈ [0, T ],

(50) ‖Jνg‖Hθ(0,T ) = ‖f‖Hθ(0,T ) ≤ ‖f‖Hθ(R).

Now, by definition

f̂(k) =
1√
2π

∫
R
e−ikx

∫
R
νe(x− s)ge(s)1[0,x](s)ds dx.

Since 1[0,x](s) = H(s)−H(s− x), where H denotes the Heaviside function,

f̂ = ̂νe ∗ (geH)− ̂(νeHr) ∗ ge,

with Hr(s) = H(−s). Consequently, by well known properties of the Fourier transform,

f̂ = c
(
ν̂eĝeH − ν̂eHrĝe

)
.

Thus, noting that ge(x)H(x) = ge(x) and νe(x)Hr(x) = 0,

(51) f̂ = c ν̂eĝe.

Then, combining (50), (44) and (51),

(52) ‖Jνg‖2Hθ(0,T ) ≤ c
∫
R

(1 + k2)θ|ν̂e(k)|2 |ĝe(k)|2dk.

Moreover, we observe that |ν̂e(k)| ≤ cN(T ) and, plugging into (52), that

‖Jνg‖2Hθ(0,T ) ≤ c ·N
2(T )‖ge‖2Hθ(R).

Combining with (46), (49) follows. �

Remark 5.4. We observe that the “contractive” effect of Jν , pointed out in the Introduction, is in
the fact that N(T ) → 0, as T → 0. It entails that on small intervals the operator “shrinks” the
norm of the argument function by a factor that gets smaller whenever T gets smaller.

Remark 5.5. Note that in the previous theorem, when θ > 1/2 the assumption g(0) = 0 cannot
be removed, since otherwise the result is false. If one dropped this requirement, indeed, then the
statement would imply that N(x) = (Jν1)(x) belongs to Hθ(0, T ), which cannot hold in general. A
remarkable counterexample is given by the case ν = I, where one can prove that N = N does not
belong to Hθ(0, T ) for any θ > 1/2 (see Lemma 5.2).
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The case θ = 1/2 is far more awkward since no “extension-to-zero” result, such as Lemma 5.1,
is available. However, in the case ν = I, we can state an analogous for Theorem 5.1. In order to
prove it, it is though required a further investigation of the behavior of the integral function I.

Lemma 5.2. The function N defined by (12) does not belong to Hθ(0, T ) for any θ ∈ ]1/2, 1]. On
the other contrary, it belongs to Hθ(0, T ) for every θ ∈ [0, 1/2].

Proof. The first part is immediate. In fact, if N ∈ Hθ(0, T ), then it should be Hölder continuous
in [0, T ] as well (see [12]). However, one can easily see that this is not the case by (13).

On the other hand, one easily checks that N ∈ L2(0, T ), so that it is left to prove that

[N ]Ḣ1/2(0,T ) < ∞ (since Hθ(0, T ) ⊂ H1/2(0, T ) for all θ ∈ [0, 1/2[ , by [13]). An easy computa-

tion shows that

[N ]2
Ḣ1/2(0,T )

= 2

∫ T

0

∫ x/2

0

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx+ 2

∫ T

0

∫ x

x/2

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx.
Looking at the first integral and recalling that N is increasing, we find∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 ≤ 4
N 2(x)

x2
, ∀y ∈ (0, x/2).

Hence, combining with (13) and (8),

2

∫ T

0

∫ x/2

0

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx ≤ c∫ T

0

N 2(x)

x
dx ∼ c

∫ T

0
I(x)dx <∞.

Concerning the second integral, Jensen inequality yields∫ T

0

∫ x

x/2

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx =

∫ T

0

∫ x

x/2

∣∣∣∣ 1

x− y

∫ x

y
I(s)ds

∣∣∣∣2 dy dx
≤
∫ T

0

∫ x

x/2

1

x− y

∫ x

y
I2(s)ds dy dx.

Furthermore, since I is positive and convex by Lemma 2.1, it is I2(s) ≤ I2(x) + I2(y) for every
s ∈ [y, x], so that∫ T

0

∫ x

x/2

1

x− y

∫ x

y
I2(s)ds dy dx ≤

∫ T

0

∫ x

x/2
(I2(y) + I2(x))dy dx.

Now, noting that log−4(1/y) ≤ log−4(1/x) for all y ∈ (x/2, x) and using again (8),∫ T

0

∫ x

x/2
I2(y)dy dx ∼

∫ T

0

∫ x

x/2

1

y2 log4( 1
y )
dy dx ≤ c

∫ T

0

1

x log4( 1
x)
dx <∞,

whereas, on the other hand,∫ T

0

∫ x

x/2
I2(x)dy dx ≤ c

∫ T

0
x I2(x)dx ∼ c

∫ T

0

1

x log4( 1
x)
dx <∞.

Thus ∫ T

0

∫ x

x/2

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx <∞
and, summing up, it is [N ]Ḣ1/2(0,T ) <∞, which concludes the proof. �

Therefore, we can claim the following result on the operator I defined in (3).
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Theorem 5.2. If g ∈ H1/2(0, T ) ∩ L∞(0, T ), then

(53) ‖Ig‖H1/2(0,T ) ≤ c ·max{‖N‖H1/2(0,T ),N (T )}
(
‖g‖L∞(0,T ) + ‖g‖H1/2(0,T )

)
(where c > 0 is independent of g and T ).

Proof. Since θ = 1/2, (46) does not hold. However, defining ge as in (45), ‖ge‖L2(R) =
√

2 ‖g‖L2(0,T )

and hence, arguing as in the proof of Theorem 5.1 (with ν = I), one can check that

(54) ‖Ig‖L2(0,T ) ≤ c · N (T )‖g‖L2(0,T ).

Then, it is left to estimate [Ig]Ḣ1/2(0,T ). First, we note that for every 0 < y < x < T

(Ig)(x)− (Ig)(y) =

∫ x

y
I(s)g(x− s)ds−

∫ y

0
I(s)(g(x− s)− g(y − s))ds.

Hence,

[Ig]2
Ḣ1/2(0,T )

≤ 4

∫ T

0

∫ x

0

∣∣∣∣ 1

x− y

∫ x

y
I(s)g(x− s)ds

∣∣∣∣2 dy dx+

4

∫ T

0

∫ x

0

∣∣∣∣∫ y

0
I(s)

g(x− s)− g(y − s)
t− s

ds

∣∣∣∣2 dy dx.(55)

Now, one can easily see that, since g ∈ L∞(0, T ),

4

∫ T

0

∫ x

0

∣∣∣∣ 1

x− y

∫ x

y
I(s)g(x− s)ds

∣∣∣∣2 dy dx+ ≤ 4‖g‖2L∞(0,T )

∫ T

0

∫ x

0

∣∣∣∣N (x)−N (y)

x− y

∣∣∣∣2 dy dx
= 2‖g‖2L∞(0,T )[N ]2

Ḣ1/2(0,T )

≤ 2‖g‖2L∞(0,T )‖N‖
2
Ḣ1/2(0,T )

(56)

(where ‖N‖Ḣ1/2(0,T ) is finite by Lemma 5.2). On the other hand, by Jensen inequality and mono-

tonicity of N ,

4

∫ T

0

∫ x

0

∣∣∣∣∫ y

0
I(s)

g(x− s)− g(y − s)
t− s

ds

∣∣∣∣2 dy dx ≤
≤ 4N (T )

∫ T

0

∫ x

0

∫ y

0
I(s)

∣∣∣∣g(x− s)− g(y − s)
x− y

∣∣∣∣2 ds dy dx.
From the Fubini Theorem and a change of variables∫ T

0

∫ x

0

∫ y

0
I(s)

∣∣∣∣g(x− s)− g(y − s)
x− y

∣∣∣∣2 ds dy dx =

=

∫ T

0
I(s)

∫ T−s

0

∫ x

0

∣∣∣∣g(x− s)− g(y − s)
x− y

∣∣∣∣2 dy dx ds
≤ [g]2

Ḣ1/2(0,T )
N (T ).
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Consequently,

(57) 4

∫ T

0

∫ x

0

∣∣∣∣∫ y

0
I(s)

g(x− s)− g(y − s)
t− s

ds

∣∣∣∣2 dy dx ≤ 4N 2(T )‖g‖2
Ḣ1/2(0,T )

and plugging (57) and (56) into (55),

[Ig]2
Ḣ1/2(0,T )

≤ c ·max{‖N‖2
Ḣ1/2(0,T )

,N 2(T )}
(
‖g‖2L∞(0,T ) + ‖g‖2

Ḣ1/2(0,T )

)
.

Finally, combining with (54), (53) follows. �

Remark 5.6. Note that, again, the contractive effect is preserved since both N (T ) and ‖N‖Ḣ1/2(0,T )

converges to 0, as T → 0.

Remark 5.7. It is also worth stressing that Theorem 5.2 holds as well for any positive and integrable
kernel ν whose integral function N ∈ H1/2(0, T ) (such as, for instance, Abel kernels). However,
since this is a very specific assumption, we preferred to present it in the relevant case of the Volterra
kernel, where N ∈ H1/2(0, T ) can be clearly shown, leaving to the reader further generalizations.

Finally, we show that a version of Theorem 5.1 holds also in W 1,1(0, T ). This result could seem
disconnected from the framework of our paper, but nevertheless it further clarifies some specific
features of Jν and, then, we mention it for the sake of completeness.

Theorem 5.3. If ν > 0 and ν ∈ L1(0, T ), then

(58) ‖Jνg‖W 1,1(0,T ) ≤ N(T )
(
|g(0)|+ ‖g‖W 1,1(0,T )

)
, ∀g ∈W 1,1(0, T ).

Proof. Recalling (1) and arguing as in the proof of Theorem 5.1, one finds that

(Jνg)(x) = f(x) ∀x ∈ [0, T ],

where

(59) f(x) =

∫
R
νT (x− s)gT (s)1[0,x](s)ds,

with

νT (x) :=

{
ν(x), if x ∈ ]0, T [ ,

0, if x ∈ R\ ]0, T [ ,
and gT (x) :=

{
g(x), if x ∈ ]0, T [ ,

0, if x ∈ R\ ]0, T [ .

Now, recalling that 1[0,x](s) = H(s) − H(s − x) (H denoting the Heaviside function) and that
νT (s)H(−s) = 0, (59) reads

f(x) = (νT ∗ gT )(x).

Then, by well known properties of the convolution product

‖Jνg‖L1(0,T ) ≤ ‖f‖L1(R) ≤ ‖νT ‖L1(R)‖gT ‖L1(R) = N(T )‖g‖L1(0,T ).

On the other hand, by (1),

(Jνg)(x) =

∫ x

0
ν(s)g(x− s)ds

and thus
d

dx
(Jνg)(x) = g(0)ν(x) +

∫ x

0
ν(x− s) d

ds
g(s).

Consequently, since d
dsg ∈ L

1(0, T ), arguing as before one finds (58). �
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Remark 5.8. The proof of the previous theorem stresses a relevant difference between the cases W 1,1

and H1, that arises in fact from the lack of further integrability (of “power type”) of ν. Indeed, if
ν belongs only to L1(0, T ) the additional assumption g(0) = 0 clearly cannot be removed in H1,
whereas it is not necessary in W 1,1.
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