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Abstract: Background: Postural instability is one of the most troublesome motor symptoms of
Parkinson’s Disease (PD). It impairs patients’ quality of life and results in high risk of falls. The aim of
this study is to provide a reliable tool for the automated assessment of postural instability. Methods:
Data acquisition was performed on 42 PD patients and 7 young healthy subjects. They were asked
to keep a quiet stance position for at least 30 s while wearing a waist-mounted smartphone. A total
number of 414 features was extracted from both time and frequency domain, selected based on
Pearson’s correlation, and fed to an optimized Support Vector Machine. Results: The implemented
model was able to differentiate patients with mild postural instability from those with severe postural
instability and from healthy controls, with 100% accuracy. Conclusion: This study demonstrated
the feasibility of using inertial sensors embedded in commercial smartphones and proposed a simple
protocol for accurate postural instability scoring. This tool can be used for early detection of PD
motor signs, disease follow-up and fall prevention.

Keywords: Parkinson’s Disease; postural stability; artificial intelligence; UPDRS; smartphone

1. Introduction

Parkinson’s Disease (PD) is a multi-systemic neurodegenerative disorder, affecting about 4% of
people over the age of 80 [1]. It causes both motor and non-motor signs and symptoms, mainly due
to the death of dopaminergic neurons in the substantia nigra pars compacta in the midbrain. The main
PD motor symptoms encompass rigidity, slowness of movement (bradykinesia), impaired posture
and balance, loss of automatic movements, speech and writing disability [2]. The diagnosis of
PD is mainly based on clinical observation of direct signs of the disease, thus it is conditioned to
the manifestation of motor symptoms [3]. Postural stability (PS) is typically impaired in PD patients,
and worsens with disease progression [4,5]. The difficulty in balancing the Center of Mass (COM)
makes PD patients prone to the risk of falls [6]. However, in the initial stages of the disease, PS is
often difficult to evaluate during outpatient visits, so it is seldom employed as a diagnostic criterion.
On the other hand, the scoring of PS is useful to monitor the progression of the disease. In fact,
a pronounced impairment in PS may denote a definite progression towards severe disease conditions.

PS is clinically assessed following the MDS–UPDRS (Movement Disorder Society–Unified
Parkinson’s Disease Rating Scale) part-III recommendations [7]. Item 3.12—”Postural Stability”
contains the PS evaluation details. In brief, the retropulsion test allows the clinician to evaluate
the response to the body displacement due to a quick and forceful pull on the subject’s shoulders.

Electronics 2020, 9, 919; doi:10.3390/electronics9060919 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-0875-6913
https://orcid.org/0000-0001-8579-3772
http://www.mdpi.com/2079-9292/9/6/919?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9060919
http://www.mdpi.com/journal/electronics


Electronics 2020, 9, 919 2 of 14

The evaluation is in the form of a score between 0 and 4, based on the recovery time and on
the number of steps the subject takes to recover the stance position. However, it should be noticed
that the retropulsion test represents a somehow invasive measure, does not exclude a risk of fall for
patients, and cannot be implemented in a non-controlled environment.

The main objective of this work is to provide an automated tool, capable of accurately evaluate
postural stability in PD subjects, employing a simple and safe exercise of quiet stance. Such a tool can
be used to assess PS in initial stages of the disease, as well as to monitor the disease progression and risk
of falls also in domestic environment [8]. In fact, the use of commercial smartphones, a widespread
and easy to use technology, can offer precious benefits to both patients and caregivers, in view of a
home-monitoring system during activities of daily living.

Postural control is highly correlated to the movements of the COM [6], and this latter concept is
directly and quantitatively measurable by means of wearable (e.g., accelerometers and gyroscopes) or
non-wearable (e.g., stabilometric board) sensors [6]. Many literature studies have proven the capability
of inertial sensors to quantify postural control in healthy and PD population [6,8]. The lumbar
region has been identified as the most suitable location for data acquisition [9]. A direct comparison
between outcomes of stabilometric boards, representing the gold standard for PS assessment, and inertial
sensors yielded a sound correlation among the two measures [10], paving the way to a possible PS
assessment outside the laboratory environment. Further studies have demonstrated the possibility of
discriminating PD subjects from healthy controls [6], distinguishing patients with mild and severe
disease progression [8], detecting subjects with high risk of falls [11] and monitoring disease
progression [8]. Most literature studies share similar inclusion criteria, clinical assessment, sample
dimension, instrumentation, experimental protocol, and types of features extracted from raw inertial
data. In more detail, data sets typically include subjects with diagnosis of idiopathic PD and possibly
healthy controls. For example, in [6,8] the dataset includes 13 PD patients and 12 healthy controls.
Clinical information encompasses the UPDRS-part III score, Hoeh & Yahr stage (H&Y, measure of
disease progression in Parkinson’s Disease) and years from diagnosis. Most commonly employed
sensors are tri-axial accelerometer and gyroscope. As for feature extraction, common measures
describe COM displacement and velocity [12]; signal variability as computed from variance, root mean
square and standard deviation [13]; movement rapidity as computed by jerkiness [6]; spectral-domain
measures, such as total power and power in specific bands [13].

The results achieved in the present work point out that a waist-worn smartphone can be used
as an automated tool to provide a picture of postural impairment in PD patients in about 30 s.
This smartphone-based approach was able to distinguish subjects with optimal, slightly impaired
and impaired postural control with 100% accuracy. To the best of our knowledge, no classification
based on postural impairment level has been performed yet. The present study is meant to provide an
easy-to-use and practical tool for the gross evaluation of postural stability in PD patients. At present,
the implemented tool could be employed for a continuous and remote monitoring of postural
impairment in PD patients. The rest of this work is organized as follows. In Section 2 we describe
the data included in our study, the experimental protocol and the implementation of the algorithm
for PS evaluation; in Section 3 we report the results and discuss the significance of the work
and the limitations of the present study; finally, in Section 4 we draw our conclusions, outlining
a practical use of the algorithm and proposing possible future developments.

2. Materials and Methods

In this Section we describe in detail the employed dataset (Section 2.1) as well as the experimental
protocol used for data acquisition (Section 2.2). Moreover, we provide a preliminary evaluation to
assess the feasibility of this study (Section 2.3); we describe the feature extraction task, focusing
on the most relevant features (Section 2.4). We address a novel feature selection method based on
correlation between features and PS score (Section 2.5). Finally, we discuss the selection of the final
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Machine Learning (ML) model and the optimization process (Section 2.6). A schematic workflow is
provided in Figure 1.

Figure 1. Schematic of the steps employed for the implementation of the algorithm.

2.1. The Dataset

Data acquisition has been carried out at the Regional Reference Center for Parkinson’s Disease
and Movement Disorders, University Hospital Città della Salute e della Scienza, Turin (Italy). The study
has been conducted in accordance with the Declaration of Helsinki and approved by the local
Ethics Committee. Participants received detailed information on the study purposes and execution,
and written informed consent for observational study was obtained. Demographic and clinical data
were noted anonymously. Patients agreed to the video-taping of the procedure after receiving suitable
explanations and privacy guarantees. The experiments have been carried out in hospital during
the periodically scheduled outpatient visits; hence, the patients’ safety was granted by the presence of
the medical staff. A total number of 42 PD patients has been recruited in the study. The inclusion criteria
were: a clinical diagnosis of idiopathic Parkinson’s Disease with motor signs and symptoms; no major
cognitive impairment or other conditions preventing the patient from correctly accomplishing the task;
ability to keep a stance position without assistance for at least one minute; absence of dyskinesia
and other comorbidities or conditions affecting balance.

Given that the experiments have been carried out during the outpatient visit, most patients were
in daily on condition, i.e., under the effect of their usual drug dose, even though a variable time interval
had elapsed since the last administration. Data acquisition has also been performed on 7 young healthy
subjects. The choice of a control population that does not match the PD sample for age was driven
by the need of selecting some subjects with recognized optimal postural control. This allowed us to
define a scale into which to position different PS levels, with controls representing the best achievable
value. The number of controls was chosen in order to match that of PD patients with the worst possible
postural control level. The population characteristics are summarized in Table 1 for all PD patients
and control subjects, whereas in Table 2 are divided based on PS score.

Table 1. Demographic and clinical characteristics of subjects involved in this study.

Sample Subjects (Male) Age Disease Duration H&Y PS Score
(Mean ± SD) (Mean ± SD) (Mean ± SD) (Mean ± SD)

PD 42 (31) 68.6 ± 10.7 10.3 ± 6.6 2.3 ± 0.6 1.1 ± 1
Control 7 (5) 27.2 ± 2 / / /

Table 2. Demographic and clinical characteristics of Parkinson’s Disease (PD) subjects divided for
postural stability (PS) score.

PS Score Subjects (Male) Age (Range) Disease Duration (Range) H&Y (Range)

PS 0 16 (10) 64.2 (52–83) 8.2 (2–21) 1.4 (1–2)
PS 1 15 (10) 69.3 (53–87) 9.3 (1–22) 2 (2)
PS 2 3 (3) 78 (74–81) 15.5 (11–20) 3 (3)
PS 3 8 (6) 67.7 (55–81) 18.4 (12–24) 3 (3)

The clinical PS assessment was carried out by expert neurologists by means of the retropulsion
test (MDS–UPDRS-part III, item 3.12). Neurologists assigned a score between 0 and 4, following
the MDS–UPDRS recommendations. Based on this clinical score, PD subjects were divided into classes;
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the distribution of patients in each class, along with the control population, is reported in Figure 2.
As can be appreciated from Figure 2a, no patient is reported in class 4, despite item 3.12 being in the
range [0, 4]. This is in line with the MDS–UPDRS recommendations. In fact, a score of 4 is assigned in
case the subject is largely unstable, and is unable to regain stability after it is lost. Thus, such patients
usually do not perform the retropulsion test. As for patients in class 0 and 1, they take a maximum of
2 and 5 steps for recovering their balance, respectively. As for patients in class 2 and 3, they largely
share a drastic deficiency of postural reflexes. Class 2 patients should be able to recover their balance
taking a maximum of 5 steps backward, whereas class 3 patients should not. However, it is not
common among neurologists to wait for the patient to take 5 steps backwards before grabbing them in
a safe way. As a consequence, class 2 and 3 are largely overlapped, and the distinction between the two
is somewhat arbitrary. Moreover, the variance v of the data distribution computed either keeping
classes 2 and 3 separated or merged together revealed a negligible difference, i.e., ∆v < 1%. Thus,
in accordance with the expert neurologists participating in this study, we decided to merge classes
2 and 3 into a single class, named 2 in the rest of this paper. The resulting distribution is reported
in Figure 2b.

(a) Original

(b) Class 2 and 3 merged

Figure 2. Distribution of subjects based on clinical PS score.

2.2. Experimental Protocol

Data acquisition was performed by means of inertial sensors, i.e., tri-axial accelerometer
and tri-axial gyroscope, embedded in a commercial smartphone. The smartphone was placed
inside an elastic band and secured to the patients lower back, at L3–L5 level. The smartphone
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recorded and locally stored inertial data by means of SensorLog, a commercial app for Android 6.0.
Once collected, data were exported in CSV format and processed offline using MATLAB, version
2019b for Windows 10. We verified that the reported values were not limited by neither the Operative
System nor the application employed by visual and computational analysis of the data exported in
CSV files. Subjects were asked to keep a stable upright position, with their feet approximately 10 cm
apart, their arms relaxed along the body, eyes open looking straight ahead. Data recording was carried
out only once for at least 30 s.

2.3. Preliminary Evaluation

First of all, we investigated the technical characteristics of the employed smartphone, in terms of
resolution and noise. Such specifications are very important in our context, since the experimental
protocol only encompasses a stance phase, with subjects keeping a static position. Hence, small
variations of the inertial sensors should be appreciated, and this requires adequate sensor resolution
and noise levels. In Table 3 we report the technical specification of the sensors embedded in
the smartphone Samsung Galaxy S5 mini employed in our experiments.

Table 3. Smartphone embedded inertial sensors specifications.

Sensor Range (Min-Max) Resolution Noise Sampling Frequency

3-axis Accelerometer ±2–±16 g 16 bits 70 ( µg
rt−Hz ) 200 Hz

3-axis Gyroscope ±250–±2000 dps 16 bits 3.8 ( mdps
rt−Hz ) 200 Hz

We have verified that sensor noise was negligible if compared to the expected signal amplitude,
performing some preliminary data acquisition tasks; this will be further discussed in Section 3.

In order to check the feasibility of a multi-class classification problem, we performed some
preliminary steps, briefly described in the rest of this Section. First of all, we verified whether
significant differences arose between different classes in the frequency domain. To this end,
we computed the Power Spectral Density (PSD) for each signal in the database, keeping each
acceleration and angular velocity component separated, and after removing mean values and possible
trends in raw signals. In more detail, a Welch periodogram was computed, setting the window length
equal to the signal length (30 s) and zero window overlap, in order to achieve the highest possible
frequency resolution. Then, we computed the spectrogram similarity among subjects belonging to
the same class, and among those belonging to different classes. To this end, we employed a Dynamic
Time Warping (DTW) approach.

The DTW is able to measure the similarity between two signals, after non-linear stretching
and distortion in order to minimize the difference to the maximum possible extent. It returns two
parameters: the residual Euclidean distance between the processed signals, and the so-called warping
index, which takes into account the amout of interpolating samples employed. In our case, let us define
the inertial data vi measured on patient i, i = 1, · · · , Np, with Np being the number of considered
subjects. vi encompasses six components, namely the three components of acceleration and angular
velocity respectively. Given a pair of subjects i, j 6= i and for each one of the six signal components
w = 1, · · · , 6:

1. The DTW is applied to the corresponding w-th dimension of vi and vj.
2. The Euclidean distance dw

i,j output by the DTW algorithm is obtained.
3. Once the 6 distance values {dw

i,j, w = 1, · · · , 6} are available for all i, j 6= i pairs, a single parameter
is obtained for each i–th subject, as reported in Equation (1).

di = minw

{ Np

∑
j=1,j 6=i

dw
i,j

}
(1)
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We have run this algorithm on the inertial data from our population, after transforming them
terms of spectrograms, having verified that DTW measures turned out more reliable in the frequency
domain. We considered the DTW distances between signal pairs belonging to the same class (intra-class
distances), and signal pairs belonging to different classes (inter-class distances). As an example,
Figure 3 reports intra-class distances for class 0 and inter-class distances between classes 0–1 and 0–2,
for the antero-posterior acceleration signal.

Figure 3. Intra-class distance (Class 0), inter-class distance between classes 0 and 1, inter-class distance
between classes 0 and 2. Antero-posterior acceleration signal.

As can be appreciated from Figure 3, median values of DTW distances exhibit an increasing
trend with the distance of the considered class, while data variability is similar. Given that data was
found to exhibit a continuous, non-normal distribution, we employed the Mann–Whitney U test to
check whether the DTW distance data in different classes presented statistically different distributions.
The test was performed on: intra-class data for class 0 and inter-class data for class 0 vs. 1; inter-class
data for class 0 vs. 1 and inter-class data for class 0 vs. 2. The test outcomes confirmed that data in
Figure 3 are characterized by significantly different distributions (p-values < 0.0001), hence can be
separated by a proper algorithm. Once verified the feasibility of our classification study, we further
proceeded extracting characteristics features from raw signals and selecting the most significant ones.
These steps are described in the following Sections.

2.4. Feature Extraction

From our dataset, which includes 3 acceleration and 3 angular velocity components, we extracted
a large set of time- and frequency-domain features. A thorough literature research, together with
a visual inspection of the signals, led to the collection of 414 features (i.e., 69 features from each
acceleration and angular velocity component). A list of features is reported in Table 4, possibly along
with a brief description of those features that are not self-explaining. Please notice that, for the sake of
brevity, in case a feature is computed on different frequency bands (e.g., RAPP, Npband), it is reported
only once in the table.

Some features, e.g., Np, F0 amplitude, F0 width, were selected because they are well known to
be representative of the signal spectral characteristics. Other parameters, e.g., Pb, RAPP, Np band,
have been selected after a visual inspection of the PSD of signals grouped by class, as they are deemed
significant to catch intra-class similarities and inter-class differences. For example, we found that class
3 PSD exhibits a higher peak and a broader distribution along the signal bandwidth with respect to
the other classes. Specifically, in class 0 and 1 most of the signal power lies below 1 Hz, while a shift
toward high frequencies (i.e., up to 5 Hz) is observed for class 2 data. Based on these observation,
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we defined features capable to represent the signal power in some specific frequency bands (e.g.,
Pb [0–1] Hz, Pb [1–2] Hz), the power ratio between different bands (e.g., RAPP [0–1]/[1–5] Hz),
the number of spectral peaks in some specific bands (e.g., Np band [0–1] Hz, Np band [1–5] Hz). Due to
the large feature set, we proceeded with feature selection, followed by a dimensionality reduction step,
as discussed in the next Section.

Table 4. Dataset of features extracted from the each component of acceleration and angular velocity
signals.

ID Study Feature Description

1,2,3 Present Study Mean, SD, Variance -
4,5,6 [12,14,15] Minimum, Maximum, Range -

7 [11,16] Root Mean Square -
8 [6,16] Mean velocity Average COM velocity
9 [6,15] Jerk Measure of postural adjustments
10 Present Study Mean Jerk -
11 [13] mad Mean Absolute Deviation
12 [13] MALA Mean Absolute Linear Acceleration
12 [13] SMA Simple Moving Average
13 [13] ZCR Zero Crossing Rate
14 Present Study Displacement -

15,16 Present Study Kurtosis, Skewness -
17,18 [15,16] Total Power, Maximum Power -
19,20 [16] Mean Frequency, Peak Frequency -

21 Present Study Spectral Entropy Shannon entropy
22,23 [6,16] F50, F95 Fn is the frequency value below which is present n% of total power

24 Present Study Pb Power in different bands
25 Present Study RAPP Ratio of Power in different bands
26 Present Study Np Number of spectral Peaks
27 Present Study Npband Number of spectral peaks in different bands
28 Present Study F0 amplitude Amplitude of the fundamental harmonic
29 Present Study F0 width Width of the fundamental harmonic
30 Present Study F0 Frequency-value of the fundamental harmonic
31 Present Study Npth Number of peaks over 50% of the maximum value

2.5. Feature Selection

The aim of this task is to identify the most significant features, defined as those achieving
the highest correlation with the clinical score. We decided to face this task using Pearson
correlation r as a measure recognized to provide good selection performance. Starting from all
the 414 features, we wanted to identify the smallest adequate feature subset, i.e., that containing
features with high correlation with the target (most significant) and low correlation between each
other (non-redundant). To this end, let us define f = { f1, f2, · · · , fN} as the vector containing all N
features. We computed the Pearson correlation between all features and the target t, achieving a vector
r f t = {r f1t, r f2t, · · · , r fN t}. Moreover, we computed the correlation coefficient between each feature
pair: r f f = {r fi f j

}, i, j = 1, · · · , N.
Given the large dimensionality of the initial dataset, we discarded features exhibiting r < 0.4,

this threshold representing the edge between weak and moderate correlation. Then, we removed
redundant features, keeping only those ones which achieve r f t much higher than the maximum
correlation with the other features (r f f ). For the sake of clarity, the algorithm for feature selection is
described below.

Algorithm 1 led to the selection of 8 features. In order to investigate whether a further
dimensionality reduction was possible, we performed a Principal Component Analysis (PCA) on
the resulting subset of features, after verifying the normal distribution of each feature. The first three
principal components were found to explain 82% of the total variance; this is not deemed sufficient
to justify a further dimensionality reduction on the feature subset. Hence, the feature selection
process ended up with 8 features, reported in Table 5, along with the original ID, source, component
specification and correlation coefficient.
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Algorithm 1 Feature selection Algorithm

Require: f1, f2, . . . fn, t . N features, target vector
Ensure: f1, f2, . . . fm . M < N features

procedure FS( f1, f2, . . . fn, t) . Feature Selection function
while i < N do . Iterate for each feature

if r fit > 0.4 & r fit > 1.33 ·maxj 6=i{r fi f j
} . Look for significant and non-redundant features

select fi . Add ith to the feature subset
end while
f1, f2, . . . fm . End up with a subset of M features

end procedure

Table 5. The most significant and non-redundant features, computed by means of Algorithm 1.

ID Study Feature Components r

3 Present Study Variance z 0.4
21 Present Study Spectral Entropy y, z 0.44, 0.53
22 [6,16] f50 x, z 0.52, 0.55
25 Present Study RAPP (2−3)Hz

(0−2)Hz x,y 0.69, 0.54

25 Present Study RAPP (1−2Hz)
(0−1)Hz x 0.58

2.6. Classification

An a-priori selection of one among the numerous available Machine Learning (ML) algorithms is
often inadequate and/or difficult to justify. For this reason, we performed the classification task using
different ML models, namely: k-Nearest Neighbor (kNN), Decision Tree (DT) and Support Vector
Machine (SVM). For each of them, an optimization of the relevant parameters has been heuristically
performed. The very first step consisted in the decision of whether to address a binary or a multi-class
classification. In our specific case, considering the simple data acquisition protocol, i.e., subjects
resting in upright position with a single waist-mounted smartphone, the multi-class classification
(i.e., able to distinguish control subjects and PD patients with different PS scores) is presumably
very demanding. Thus, we fed all the above mentioned ML models with the addressed feature
subset. In a Leave-One-Subject-Out (LOSO) validation [17,18], a Linear-SVM-based provided the best
results, achieving accuracy equal to 70.1% and average F1 score equal to 67.3%. For the sake of
completeness, we also investigated the performance of a Random Forest (RF) approach, as this method
is one of the most popular and accurate multi-class classification methods [19]. To this end, we have
tried different ensemble methods based on DT learners, further optimizing the model parameters.
The models were fed with all the initial dataset, i.e., all the features extracted from all components
of subjects belonging to all classes. The Optimization procedure was based on a Bayesian approach
aiming to minimize the misclassification rate; the number of iterations was set to 30. In the following
we report the optimized parameters along with the eligible choice and parameters ranges: Esemble
method Adaboost (Bag, Adaboost, RusBoost); Maximum number of splits 2 (1–39); Number of Learners
79 (10–100); Learning rate 0.01 (0.001–0.5). The obtained 65% accuracy and 48.6% mean F1-score for
RF and the slightly superior performance of the SVM approach were not deemed satisfactory to
justify the choice of a classic multi-class classification approach; hence, we abandoned the multi-class
approach and followed an alternative strategy, described in the following.

The general idea is to reduce a multi-class classification problem to some binary classification
tasks [20], in order to exploit the well-known high generalization capability of SVM, used in several
literature studies on Parkinson’s Disease [21–24]. We propose a new approach to face multi-class
classification problems. It consists in using a first classification layer, employed to achieve a gross
evaluation of postural stability. Then a second layer classification is performed.
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First Layer: this classification step was meant to create a scale, whose lower and upper bounds
represent subjects with opposite postural control (optimal vs. severely impaired). Given the availability
of inertial data from the control population, we set up a binary classification problem, employing
control subjects (i.e., people with the best possible postural control) and PD patients in class 2 (i.e.,
people with the worst postural control level among the considered population). We have implemented
different ML models, namely SVM, KNN, DT, in order to select the one leading to the best performance.
The confusion matrices of the employed models are reported in Section 3.

Once the model was built and subject to a LOSO validation, we performed a subsequent test
on PD patients belonging to classes 0 and 1. The SVM model yields an integer classification index,
i.e., the label of the predicted class, as well as a soft output, i.e., a posteriori probability that a
data-point belongs to either class. We computed this soft output from all the tested subjects; then,
we investigated the correlation between this soft parameter and the clinical labelled classes, in order to
assess the accuracy of such measure in the classification tasks. The results are reported and discussed
in detail in Section 3. The obtained correlation, although strong, was deemed not sufficient for a fine
multi-class classification, thus we proceeded with a further classification step.

Second Layer: In order to go beyond the simple correlation value and perform a finer classification,
we refined our algorithm by further implementing three linear-SVM classifiers, thus reducing the single
initial multi-class problem to three binary classification tasks. The input of each SVM is the entire
feature set, regarding only the classes to be distinguished by the specific SVM model (e.g., class 0
and 2 are input to the classifier which has to distinguish subjects in class 2 from those in class 0).
These and other results will be reported and discussed in Section 3.

3. Results and Discussion

In this Section, the main classification results of our work are reported and discussed in
detail. As for the first classification layer, which is meant to classify subjects with very different
postural control, the achieved results for different ML models are reported in Figure 4 in terms of
confusion matrices.

(a) Linear-SVM (b) kNN (c) DT

Figure 4. Confusion matrices of different Machine Learning (ML) models. Label −1 and 2 indicate
control and class 2 subjects, respectively.

The results were obtained using a LOSO validation and extracting the discrete output from each
model. As can be appreciated in Figure 4, SVM provided the best performance in differentiating
controls from PD patients with seriously impaired postural control. Thus, such a model has been used
for the subsequent processing.

Figure 5 reports the soft output of the SVM model, together with the best-fit line, i.e., the line
minimizing the mean square error. We can notice that a significant gap holds between controls and class
0 subjects. A gap is also appreciable between class 0 and class 2 subjects. Still, class 1 data are partially
overlapped to both class 0 and 2 data. Nevertheless, a high Pearson correlation is achieved between
the SVM soft output and the clinical score, i.e., r = 0.76 with p < 0.0001. This witnesses the potential
effectiveness of our approach, given that a proper classification algorithm is addressed.
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Figure 5. Distribution of the continuous output provided by the Support Vector Machine (SVM) model,
along with the best-fit line.

As already discussed in Section 2.6, a second layer classification was further implemented.
The performance of the three binary SVM models is reported in Figure 6 in terms of confusion matrices,
and in Table 6 in terms of Accuracy, Sensitivity, Specificity, Precision and F1 score.

(a) Control vs. Class 0 (b) Control vs. Class 1 (c) Class 0 vs. Class 2

Figure 6. Confusion matrices obtained with three binary SVM classifiers. Label −1 and 0 and 2 denote
control, class 1 and class 2 subjects respectively.

Table 6. Classification performance achieved using the three binary SVM models.

Classification Task Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Control vs. Class 0 100 100 100 100 100
Control vs. Class 1 95.0 100 86.0 94.0 97.0
Class 0 vs. Class 1 82.8 85.7 80.0 80.0 82.8
Class 0 vs. Class 2 100 100 100 100 100
Class 1 vs. Class 2 72.0 63.6 78.6 70.0 71.2

As can be appreciated from Figure 6 and Table 6, the achieved performance are very satisfactory,
achieving very high accuracy in three out of the five classification tasks. It can be appreciated that
the classification task leads to impaired performance when trying to distinguish subjects belonging to
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adjacent classes. This can be due both to a harder classification task and to the intra- and inter-rater
variability, intrinsic uncertainty of the clinical evaluation, of one class [7,25,26]. This latter consideration
suggests us to not rely on such fine classification, as it may provide misleading results.

It is worth noting that these results have been obtained using only 8 features and three very
simple SVM models.

We deem the performance achieved in this study very promising. Satisfactory performance
was obtained for multiple binary classification, allowing us to discriminate between control subjects,
and patients with slight, mild and severe postural instability. As for the practical use of the algorithm,
we believe that a first approach could be to use the regression model described in Figure 5, in order to
achieve a first indication of the postural control impairment entity (e.g., mild). Then, the appropriate
binary SVM model can be applied to perform a finer classification. We believe this approach to be very
reasonable and efficient. For the sake of completeness, having employed only 8 features and simple
ML models as SVMs, and being the input a short inertial signal, processing times were found to be
extremely reduced (i.e., 5 ms for data loading, 50 ms for feature extraction, 2 ms for classification).
This makes us confident about a possible real-time on-board implementation of the algorithm.

It is worth noting that a simple protocol is employed, which only includes a short stance period
and can safely performed during daily living. This fact, along with the use of a smartphone, has paved
the way for a remote passive monitoring of PD patients in home environment. Furthermore, our term
of comparison is the clinical evaluation carried out following item 3.12—“Postural Stability” of
the MDS–UPDRS, i.e., the retropulsion test. This is completely different from the experimental protocol
employed in this study. In fact, whereas the retropulsion test is standard in outpatient context, it is not
safe in a domestic environment. This is the reason that has led to the employed, simple and safe
protocol to assess postural control by means of a non-invasive and safe test. On the other hand,
this choice has made the classification task more difficult.

Finally, we want to clarify that the obtained results have to be considered with caution,
having employed a reduced dataset (42 PD patients, 7 Control subjects). Due to the cardinality
of the classes and to the simple protocol choice, the data and the algorithm were not sufficiently
adequate to perform a fine classification between adjacent classes. As for a possible implementation of
the algorithm for an early detection of postural impairment in PD patients, a much larger cohort of PD
patients in the early stage of the disease, together with an age-matched control population, has to be
employed. As for a finer classification between adjacent classes, the cardinality of each PS class has to
be increased, in order to give much more statistical meaningfulness to the results. Furthermore, due to
the intrinsic intra- and inter-rater variability, the evaluation has to be performed by many neurologists,
in order to employ the average clinical evaluation as the ground truth of the classification task.

4. Conclusions and Future Works

This work is part of a larger study on Parkinson’s Disease, aiming to assess both motor
and non-motor symptoms associated with the beginning and progression of the disease. In [27],
we have assessed freezing of gait, i.e., a sudden non-voluntary block of gait, and the leg agility task,
item 3.8 of the MDS–UPDRS, achieving promising results, using such a widespread device as the
commercial smartphone. In this study, we have been focused on postural stability, as it represents one
of the most troublesome motor symptom associated to PD. Moreover, it is strongly correlated with fall
risk and reduced quality of life of PD patients. Thus, a non-invasive and accurate automated evaluation
of postural stability would be of fundamental importance from the patient, caregiver and clinical point
of view. Such automated evaluation may be devised for a home monitoring of PD subjects, employing
a simple device such as a smartphone, which is nowadays the most widespread. Future developments
will be in the direction of acquiring more data, in order to enlarge the dataset and achieve more sound
statistical significance. Furthermore, we plan to collect more clinical information related to freezing of
gait (e.g., New Freezing of Gait Questionnaire) and to fall risk (e.g., Fall Risk Questionnaire), along with
a more detailed evaluation of balance (e.g., Berg Balance Scale). Finally, test–retest reliability of measure
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outcomes will be investigated, and differential analysis will be performed to assess postural control
in different pharmacological conditions. We plan to implement this algorithm in a sort of electronic
diary, meant to collect and process data from each patient, and send the most significant information to
a cloud, accessible by clinicians. This represent an urgent need, given that the outpatient visits are
usually carried out once or twice a year. Thus, a large tele-monitoring system would provide objective,
accurate and continuous information capable of provide a global picture of patient clinical condition.
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The following abbreviations are used in this manuscript:

MDS Movement Disorder Society
UPDRS Unified Parkinson’s Disease Rating Scale
PS Postural Stability
ML Machine Learning
SVM SUpport Vector Machine
DT Decision Tree
kNN k-Nearest Neighbor
PD Parkinson’s Disease
COM Center of Mass
CSV Comma Separated Values
PSD Power Spectral Density
DTW Dynamic Time Warping
PCA Principal Component Analysis
H&Y Hoehn and Yahr
RF Random Forest
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