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1 Introduction1

In the elementary treatment of Classical Physics and Continuum Mechanics, several quanti-2

ties are referred to as pseudo-vectors, because the transformation laws they obey are differ-3

ent from those of vectors. Indeed, under any transformation other than a proper orthogonal4

transformation (proper means that the determinant is equal to 1), pseudo-vectors take a mul-5

tiplicative factor equal to the determinant of the transformation, contrary to what vectors do.6

For instance, under reflection of one of the axes (a particular case of improper orthogonal7

transformation, for which the determinant is −1), pseudo-vectors are not only reflected, but8

also see their sense reversed, unlike vectors, which are just reflected. The first examples9

that come in the study of elementary Mechanics are the moment of a force and the angular10

velocity. Pseudo-vectors also come into play in the calculation of the flux of an extensive11

physical quantity across a surface, which is the integral over the surface of the component12

of the pseudo-vector normal to the surface itself. Examples are the mass and charge density13

currents in Fluid Mechanics and Electromagnetism. Continuum Mechanics also presents us14

with objects that can be righteously called pseudo-scalars because, unlike scalars, which15

are invariant under any transformation, they transform with a multiplicative factor equal to16

the determinant of the transformation and, for instance, suffer a change in sign under an17

improper orthogonal transformation. Examples are the so-called “volume element” of the18

theory of integration, and the scalar product of a vector and a pseudo-vector.19

In the Continuum Mechanics of solids, it is most often necessary to transform the var-20

ious physical quantities from the spatial picture of Mechanics, in which the equations are21

naturally written, to the material picture, in which it is usually most convenient to build a22

constitutive framework. The original ideas on the transformation from spatial to material23

picture dates back to the Italian mathematical physicist Gabrio Piola (see [4], as well as24

[20]) and modern interpretations have been very often proposed in recent works in Contin-25

uum Mechanics (among many others, see, e.g., [3,2]). In the modern language of Continuum26

Mechanics, the transformation from the spatial to the material picture of Mechanics is called27

a pull-back, a terminology that is shared by Differential Geometry.28

In Continuum Mechanics one always works with a non-orthogonal transformation, i.e.,29

the deformation gradient. Therefore, the pull-back laws of pseudo-vectors and pseudo-scalars30

differ from those of vectors and scalars (the latter being invariant), respectively, by a multi-31

plicative factor equal to the determinant of the deformation gradient. In fact, in the custom-32

ary three-dimensional case, a pseudo-vector represents a second-order differential form (or33

two-form) and a pseudo-scalar represents a (non-vanishing) third-order differential form (or34

non-vanishing three-form, or volume form) [7,24]. Differential forms are skew-symmetric35

covariant tensors, and follow the regular transformation rules of tensors. The form of that36

these rules take in the representation in terms of pseudo-vectors and pseudo-scalars is that37

of a Piola transformation. In the case of pseudo-vectors and pseudo-scalars, the Piola trans-38

formation preserves the invariance of fluxes across deforming oriented surfaces and of the39

extent of physical quantities over volumes, respectively, when passing from the current con-40

figuration to the body manifold (or the reference configuration).41

In this work, we first briefly recall the tensor algebra notation, show the definitions of42

r-forms, the particular cases of n-forms and (n−1)-forms and the associated pseudo-vectors43

and pseudo-scalars (Section 2). Then, after introducing the basic definitions of Continuum44

Kinematics (Section 3), we introduce differential forms on general manifolds, their rela-45

tionship to the Theory of Integration, including how fluxes are calculated as integrals of46

(n− 1)-forms, and demonstrate how the pull-backs of pseudo-vectors and pseudo-scalars47

are obtained from those of the corresponding (n−1)- and n-forms (Section 4). Finally, we48
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apply this method to first-order transport laws such as Darcy’s law in the Theory of Porous49

Media and Ohm’s law in Electromagnetism, and show how the Piola transformation on the50

flux quantity induces another Piola transformation on the first leg of the tensor providing the51

constitutive relation between the flux and the generalised force density, e.g., on the first leg52

of the permeability tensor, which constitutively relates filtration velocity with the gradient53

of the pore pressure in a porous medium (Section 5).54

The purpose of this work is to move a step toward a unified formalism, which might55

help to account for phenomena characterised by a seemingly different Physics, which nev-56

ertheless is described by the very same Mathematics.57

Remark. Throughout this work, for the sake of generality, both the body B and the space58

S are treated as differentiable manifolds or, when the metric structure is required, as Rie-59

mannian manifolds (differentiable manifolds are treated exhaustively, e.g., in the treatise60

by Epstein [7]). However, if one prefers, the physical space S can be regarded as a three-61

dimensional affine space, and the body B, or any arbitrary reference configuration BR, as an62

open subset of S. A very exhaustive introduction to affine spaces is out of the scope of this63

work (again, see [7]) but, roughly speaking, an affine space consists of a set A, called the64

point space, and a function that maps a pair (x,y) of points x,y of A into an element uuu= y−x65

of a vector space V, called the supporting or modelling space. In the affine space A one can66

thus attach a vector uuu = y− x at every point x. The vector space of all vectors emanating67

from a point x is called the tangent space, TxA, at x. The dual space of TxA, i.e., the set of al68

linear maps from TxA to the real numbers R, is called the cotangent space, T ?
x A, at x. The69

the disjoint unions of all tangent spaces and of all cotangent spaces for all points x ∈ A are70

the tangent bundle TA and the cotangent bundle T ?A, respectively. When the point space A71

and the supporting space V are both R3, one obtains the familiar affine space E3 of Classical72

Mechanics.73

2 Tensor Algebra74

In this section, we briefly illustrate the tensor algebra notation [13,10,11] employed in this75

work, then introduce r-forms in an n-dimensional vector space, and subsequently present76

the important cases of n-forms and (n−1)-forms. Note that, for the sake of a succinct, yet77

reasonably self-contained presentation of these concepts, we avoid introducing the wedge78

product ∧, skew-symmetrisation of the tensor product ⊗, and instead rely on use of the79

Ricci/Levi-Civita symbol (Equation (6)). Exhaustive introductions to r-forms and spaces of80

r-forms can be found, e.g., in the works by Epstein [7] and Segev [24].81

2.1 Tensors on a Vector Space82

Given a vector space V on the real numbers R, its dual space, i.e., the space of all linear83

forms πππ : V→ R, is denoted V?. The space of all multilinear forms84

A : V?× ...×V?︸ ︷︷ ︸
r times

×V× ...×V︸ ︷︷ ︸
s times

→ R, (1)

i.e., all tensors of order r + s with the first r legs being vectorial and the last s legs being85

covectorial, is denoted86

Vr
s = V⊗ ...⊗V︸ ︷︷ ︸

r times

⊗V?⊗ ...⊗V?︸ ︷︷ ︸
s times

. (2)
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Note that the identifications V0
0 ≡ R, V1

0 ≡ V, V0
1 ≡ V? hold, and that, if V has dimension n,87

the dimension of Vr
s is nr+s.88

If V has dimension n, considering a basis {eeei}n
i=1 of V, together with the associated89

basis {eeei}n
i=1 of V?, the components of a tensor A ∈ Vr

s with respect to the given bases are90

Ai1...ir j1... js , with the first r indices being contravariant and the last s indices being covariant,91

i.e.,92

A = Ai1...ir j1... jseeei1 ⊗ ...⊗eeeir ⊗eee j1 ⊗ ...⊗eee js , (3)

where the components Ai1...ir j1... js are, by definition,93

Ai1...ir j1... js = A(eeei1 , ...,eeeir ,eee j1 , ...,eee js). (4)

2.2 r-Forms on a Vector Space94

Given a vector space V of dimension n, and r ≤ n, an r-form (or form of order r, or multi-95

covector of order r) is a tensor βββ ∈ V0
r that is skew-symmetric, i.e., it is invariant for even96

permutations of the arguments and changes sign for odd permutations of the arguments.97

Therefore, for every set of r vectors {vvv1, ...,vvvr} ⊂ V,98

βββ (vvvi1 , ...,vvvir ) = εi1...ir βββ (vvv1, ...,vvvr), (5)

where εi1...ir is the Ricci/Levi-Civita permutation symbol, defined as99

εi1...ir =

{
+1 for {i1, ..., ir} even w.r.t. {1, ...,r},
−1 for {i1, ..., ir} odd w.r.t. {1, ...,r}. (6)

All r-forms in V0
r constitute a subspace denoted Λr(V), whose dimension can be shown100

to be equal to the binomial coefficient
(n

r

)
= n!

(n−r)!r! , where n = dimV [7,24]. With the help101

of the Tartaglia-Pascal triangle, the scheme below reports the dimension of Λr(V) for every102

order r and for every dimension n of the “mother” space V.103

dimV:
1 0

1 1 1
1 2 1 2

1 3 3 1 3
1 4 6 4 1 4

... ... ... ... ... ...
dimΛr(V): 1 n

(n
r

)
n 1 n

order r: 0 1 r n−1 n

104

For a given n, the spaces Λr(V) of r-forms constitute a “fusiform” structure [7], with r = n105

being the maximum possible order for an r-form, and with the pairs of spaces of the forms106

of order r and n− r having the same dimension. It is immediate to make the conventional107

identifications Λ0(V) ≡ R between zero-forms and scalars, and Λ1(V) ≡ V? between one-108

forms and covectors. The spaces Λn(V) and Λn−1(V) “look a lot” like R and V, respectively,109

but they do not quite coincide with these. Indeed, we shall show that n-forms and (n−110

1)-forms obey transformation laws that are different from those which scalars (which are111

invariant) and vectors obey. For this reason, they are often referred to as pseudo-scalars and112

pseudo-vectors.113
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We close this section with an important definition that will be employed later. Given a114

vector uuu ∈ V and an r-form βββ ∈ Λr(V), their interior product ιιιuuuβββ ∈ Λr−1(V) is the (r−1)-115

form given by the contraction of uuu with the first leg of βββ , i.e., for every system of r− 1116

vectors {vvv2, ...,vvvr} ⊂ V,117

(ιιιuuuβββ )(vvv2, ...,vvvr) = βββ (uuu,vvv2, ...,vvvr). (7)

2.3 n-Forms and Their Transformation Laws118

In a vector space V of dimension n, the space Λn(V) has dimension one, and thus an n-form119

has only one independent component with respect to a given basis {eeei}n
i=1, as it can be seen120

by using the definition of skew-symmetry, which implies121

µµµ(eeei1 , ...,eeein) = εi1...in µµµ(eee1, ...,eeen) = h εi1...in , (8)

where the well-defined scalar h = µµµ(eee1, ...,eeen) is the only independent component of µµµ . The122

n-form µµµ can therefore be expressed, in components, as123

µµµ = h εi1...in eeei1 ⊗ ...⊗eeein . (9)

Given the basis {eeei}n
i=1 of V, the unique n-form with independent component equal to124

one is called determinant with respect to {eeei}n
i=1 and is denoted by det, i.e.,125

det(eeei1 , ...,eeein) = εi1...in ⇒ det(eee1, ...,eeen) = 1, (10)

and, via the definitions of multi linearity and skew-symmetry, defines the determinant of the126

system of vectors {vvv1, ...,vvvn} with respect to the basis {eeei}n
i=1 as the scalar127

det(vvv1, ...,vvvn) = det(vi1
1 eeei1 , ...,v

in
n eeein)

= vi1
1 ...v

in
n det(eeei1 , ...,eeein)

= εi1...in vi1
1 ...v

in
n . (11)

The determinant of a matrix Jai
jK is defined as the determinant of the system of vectors128

{vvv1, ...,vvvn} such that Jai
jK = Jvi

jK. A discussion on the definition of determinant for the case129

of second-order tensors belonging to V1
1 (“mixed” tensors), V2

0 (“contravariant” tensors)130

and V0
2 (“covariant” tensors) is given in [12].131

As mentioned before, both spaces Λ0(V)≡R and Λn(V) have dimension one. However,132

whereas a scalar of R is invariant under a change of basis in V, an n-form is not. Indeed, if133

{eeei}n
i=1 and {eee′j}n

j=1 are two bases of V related by134

eee′j = ai
jeeei, eeei = b j

ieee′j, (12)

where the matrices Jai
jK and Jb j

iK are one the inverse of the other, then the component of an135

n-form µµµ transforms according to136

h′ = µµµ(eee′1, ...,eee
′
n) = µµµ(ai1 1eeei1 , ...,a

in
neeein)

= ai1 1...ai1 n µµµ(eeei1 , ...,eeein)

= ai1 1...ain
n εi1...inµµµ(eee1, ...,eeen) = detJai

jKh. (13)

Therefore, the component of an n-form transforms with a coefficient equal to the determinant137

of the change of basis, and this is why it is often called a pseudo-scalar. Note that, under a138

change of basis for which the determinant is equal to one (e.g. a proper orthogonal change of139

basis), an n-form remains invariant, i.e., the difference between the component of an n-form140

and the corresponding scalar is unnoticeable.141
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2.4 (n−1)-Forms and Axial Vectors142

In a vector space V of dimension n, the space Λn−1(V) has dimension n, like V? and V itself.143

Because of this, with every (n−1)-form ωωω ∈ Λn−1(V), it is possible to univocally associate144

a vector uuu ∈ V with respect to a non-vanishing n-form µµµ ∈ Λn(V), via the interior product145

ιιιuuuµµµ =ωωω. (14)

The vector uuu is called the axial vector of ωωω with respect to µµµ and, in elementary Algebra146

and Mechanics, is called a pseudo-vector as it follows a transformation law that is different147

from that of vectors, and it is obtained via the transformation followed by the corresponding148

(n−1)-form ωωω , which will be shown later in Section 4.149

3 Kinematics of the Deformation150

Here we report some definitions about the kinematics of deformation in Continuum Me-151

chanics. The notation follows generally that of the treatise by Marsden and Hughes [18] and152

that used in some previous works [12,11]. The presentation is fairly standard, except for153

the fact that, in order to illustrate the transformations in a more general case, we keep the154

dimension n rather than going to the customary dimension 3.155

3.1 Deformation and Configuration Map156

We work on two n-dimensional manifolds: the body B and the physical space S. The con-157

figuration map describing the deformation is, for the moment, assumed time-independent,158

and is defined as an embedding (i.e., a differentiable map on whose image the inverse map159

is defined and differentiable; with a subtle abuse of terminology, the configuration map is160

often said to be a diffeomorphism)161

χ : B→ S : X 7→ x = χ(X). (15)

Note that, if one wishes, it is possible to choose a reference configuration χR : B→BR ⊂ S162

and then refer to the map χ ◦ χ
−1
R : BR → S, which differs from (15) by a mere change of163

coordinates [8]. Here, we prefer to follow the modern approach to Continuum Mechanics,164

in which no particular reference configuration is chosen.165

3.2 Physical Quantities166

Material and spatial physical quantities are tensor fields of the type167

A : B → [TB]rs : X 7→ A(X), (16)

A : χ(B)→ [TS]rs : x 7→ A(x), (17)

respectively, where TB and TS are the tangent bundles of B and S, disjoint union of all168

tangent spaces TXB and TxS at all points X ∈ B and x ∈ S, respectively. We also recall that169

the dual spaces of the tangent spaces TXB and TxS are the cotangent spaces T ?
X B and T ?

x S,170

the disjoint unions of which are the cotangent bundles T ?B and T ?S.171
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3.3 Deformation Gradient, Push-Forward, Pull-Back172

The deformation gradient FFF is defined as the tangent map of χ ,173

T χ =FFF : TB→ TS, (18)

such that, at each point X ∈B, the two-point tensor174

(T χ)(X) =FFF(X) : TXB→ TxS, (19)

is the the Frechét differential of χ at X . Thus, in the coordinate charts {X̂A} in B and {x̂a}175

in S, we have176

Fa
A(X) = χ

a
,A(X). (20)

Note that, as two-point tensor fields, the deformation gradient, its inverse, its transpose and177

its inverse transpose are defined as178

FFF : B → TS⊗T ?B, (21)

FFF−1 : χ(B)→ TB⊗T ?S, (22)

FFFT : χ(B)→ T ?B⊗TS, (23)

FFF−T : B → T ?S⊗TB, (24)

respectively.179

Given a material vector field UUU : B→ TB, its push-forward is the spatial vector field180

uuu = χ∗UUU : χ(B)→ TS, defined as181

uuu = χ∗UUU = (FFFUUU)◦χ
−1. (25)

The inverse operation is called pull-back:182

UUU = χ
∗uuu = (FFF−1uuu)◦χ. (26)

The push-forward of a material covector field (i.e., a one-form) ΠΠΠ : B→ T ?B is the spatial183

covector field πππ = χ∗ΠΠΠ : χ(B)→ T ?S, defined via the pull-back of vector fields of Equation184

(26),185

(χ∗ΠΠΠ)uuu = [ΠΠΠ (χ∗uuu)]◦χ
−1⇒

(ΠΠΠ ◦χ
−1)(FFF−1uuu) = [(FFF−T

ΠΠΠ)◦χ
−1]uuu, (27)

from which the push-forward rule is186

πππ = χ∗ΠΠΠ = (FFF−T
ΠΠΠ)◦χ

−1, (28)

and therefore the pull-back rule is187

ΠΠΠ = χ
∗
πππ = (FFFT

πππ)◦χ. (29)

The push-forward of tensor fields valued in [TB]rs and the pull-back of tensors in [TS]rs are188

obtained by performing pull-backs and push-forwards of each vector or covector leg of the189

tensor. The next section specialises the pull-back transformation laws to differential forms,190

i.e., fields valued in spaces of r-forms and, in particular, to the cases of differential n-forms191

and (n−1)-forms in the context of the Theory of Integration.192
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4 Differential Forms on Manifolds193

A spatial differential form of order r≤ n in the n-dimensional manifold S is an r-form-valued194

field on S, i.e., a mapping195

βββ : S→ Λr(TS) : x 7→ βββ (x). (30)

The definition of material forms (on B) is analogous. An r-differential form can be called,196

with a slight abuse of terminology, an r-form, whenever there is no danger of confusion197

between the field βββ and its value βββ (x).198

In this section we describe the role of r-forms in the Theory of Integration on manifolds199

and enunciate the theorem of the change of variables in integrals, before going to the crucial200

point of this work: the transformation rules of integrals of n-forms and (n−1)-forms.201

4.1 Differential Forms and Integration202

Differential r-forms on an n-dimensional manifold S are intimately connected with the the-203

ory of integration in that they induce a measure on sub-manifolds (i.e., subsets of S possess-204

ing the structure of manifold by themselves) of the same order r. Here we are interested in205

the case of n-forms and (n−1)-forms on an n-dimensional manifold.206

A non-vanishing n-form θθθ : S→ Λn(TS), also called a volume form, is a volume in-207

tegrand on the manifold itself and represents the density of a certain extensive quantity q.208

Therefore, the integral of θθθ is the extent of q over an n-dimensional submanifold C⊂ S:209

Extent(q,C) =
∫
C

θθθ . (31)

In a given chart, an n-form is uniquely determined by its single scalar component. Therefore,210

often, one takes a suitable volume form µµµ to calculate the physical volume of C, and then211

derives any other volume form via multiplication by a non-vanishing function ρ , exactly212

like in measure theory (see, e.g., [22]), so that213

Volume(C) =
∫
C

µµµ, Extent(q,C) =
∫
C

ρ µµµ, (32)

which would read
∫
C dυ and

∫
C ρ dυ in the traditional formalism.214

Similarly, an (n− 1)-form ωωω : s→ Λn−1(TS) is an integrand on a hypersurface s ⊂ S215

and its integral represents the flux of an extensive quantity q across the hypersurface s:216

Flux(q,s) =
∫

s
ωωω. (33)

When a metric tensor ggg (i.e., a symmetric and positive-definite tensor field valued in217

[TS]02) is available in S, the integral of an (n− 1)-form ωωω on a surface s can be expressed218

in terms of the axial vector field www of ωωω with respect to the volume form µµµ , i.e., www is such219

that ιιιwwwµµµ = ωωω . Indeed, the metric ggg allows for the definition of the normal covector nnn to s220

(such that its squared norm is ‖nnn‖2 = nnn.nnn = 〈nnn,nnn〉 = na gab nb = 1) and of the associated221

normal vector nnn] = ggg−1nnn (with components na = gabnb). Exploiting the identity iiiT = nnnnnn] (in222

components, nanb = δa
b, which are the components of the transpose of the spatial identity223

tensor iii), the (n−1)-form ωωω can be written224

ωωω = ιιιwww µµµ = ιιι [wwwiiiT ]µµµ = ιιι [wwwnnnnnn]]µµµ

= (wwwnnn)ιιιnnn] µµµ = (wwwnnn)ααα (34)
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where wwwnnn≡ 〈www|nnn〉= wana is the contraction of the vector www and the covector nnn, and225

ααα = ιιιnnn] µµµ (35)

is the (n− 1)-form induced by the volume form µµµ and the metric ggg on the hypersurface226

s. With this definition, the flux of an extensive quantity q across s can be expressed in the227

alternative notation228

Flux(q,s) =
∫

s
(wwwnnn)ααα ≡

∫
s
wwwnnn. (36)

In the traditional notation, the flux reads
∫

s wwwnnnda or
∫

s wwwdaaa, where daaa is the “element of229

area” inclusive of the normal nnn.230

4.2 Theorem of the Change of Variables231

In the context of Continuum Mechanics, the theorem of the change of variables in integrals232

is used to transform integrals from the spatial to the material picture. If χ : B→ S is a233

configuration, D is an r-dimensional sub-manifold of the n-dimensional body manifold B,234

and χ(D) is its image through χ , the spatial integral of the r-form βββ transforms according235

to236 ∫
χ(D)

βββ =
∫
D

χ
∗
βββ , (37)

where the “change of variables” is precisely the configuration χ . Therefore, the need arises237

to calculate the pull-backs of differential forms. In the jargon of Continuum Mechanics,238

the pull-backs of volume forms and (n− 1)-forms are called Piola transformations, a ter-239

minology that actually refers to the pseudo-scalar and the pseudo-vector quantities they are240

associated with, respectively.241

4.3 Change of Variables: Volume Forms242

Let µµµ : S→ Λn(TS) and MMM : B→ Λn(TB) be a spatial and a material volume form. If243

{eeea}n
a=1 and {EEEA}n

A=1 are the bases induced by the coordinate charts {x̂a} and {X̂a}, re-244

spectively, the component forms of µµµ and MMM read245

µµµ = h εa1...an eeea1 ⊗ ...⊗eeean , (38)

MMM= H εA1...An EEEA1 ⊗ ...⊗EEEAn . (39)

The pull-back χ∗µµµ can be calculated explicitly, as246

χ
∗
µµµ = (h◦χ)εa1...an(FFF

Teeea1)◦χ⊗ ...⊗ (FFFTeeean)◦χ

= (h◦χ)εa1...an Fa1 A1 ...F
an

An EEEA1 ⊗ ...⊗EEEAn

= (h◦χ)detJFa
AKεA1...AnEEEA1 ⊗ ...⊗EEEAn , (40)

i.e., χ∗µµµ is the volume form on B with independent component (h◦χ)detJFa
AK. We remark247

that the determinant detJFa
AK is not a scalar invariant of the deformation gradient FFF [18], as248
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it depends on the choice of the coordinate charts {x̂a} and {X̂a}. Therefore, it is convenient249

to express the pull-back χ∗µµµ in terms of the material volume form MMM [12], as250

χ
∗
µµµ = (h◦χ) detJFa

AK
1
H

H εA1...An EEEA1 ⊗ ...⊗EEEAn

= (h◦χ) detJFa
AK

1
H
MMM

= J MMM, (41)

where251

J = detFFF ≡ (h◦χ) detJFa
AK

1
H

(42)

is indeed a scalar invariant, which is defined as the determinant of the two-point tensor FFF252

with respect to the volume form µµµ on S and the volume form MMM on B (see [12], which also253

reports an expression of Equation (42) for the case in which metric tensors are available254

and the corresponding induced volume forms are employed). In practice, it can be fairly255

easily shown that, since h and H transform according to Equation (13), the factor (h◦χ)/H256

makes J an invariant. Therefore, for the case of volume forms, the theorem of the change of257

variables can be expressed as258 ∫
χ(B)

µµµ =
∫
B

χ
∗
µµµ =

∫
B

JMMM, (43)

which in the traditional notation reads dυ = J dV .259

4.4 Change of Variables: (n−1)-Forms260

Let µµµ and MMM be a spatial and a material volume form as above, S a hypersurface in B,261

s = χ(S) its image in S through the configuration χ , and ωωω : s→Λn−1(TS) a spatial (n−1)-262

form, with axial vector www with respect to the volume form µµµ , i.e., www is such that ιιιwwwµµµ = ωωω .263

The pull-back of ωωω is obtained in terms of its axial vector www, by exploiting the distributivity264

of the pull-back operation and the fact that the interior product of a vector and an r-form is265

merely the contraction of the vector with the first leg of the r-form. Indeed,266

χ
∗
ωωω = χ

∗[ιιιwww µµµ] = ιιι [χ∗www] χ
∗
µµµ = ιιι [(FFF−1www)◦χ] JMMM

= ιιι [J (www◦χ)FFF−T ]MMM= ιιιWWW MMM=ΩΩΩ , (44)

where267

WWW = J (www◦χ)FFF−T = J (FFF−1www)◦χ (45)

is called the Piola transform of www, and is the axial vector of the pulled-back (n− 1)-form268

ΩΩΩ = χ∗ωωω : S→ Λn−1(TB) with respect to the material volume form MMM.269

If metric tensors ggg and GGG are available in S and B, the normal covectors nnn and NNN and270

the associated normal vectors nnn] and NNN] can be defined on s and S. Therefore, following271

Equation (35), it is possible to define the (n− 1)-forms ααα = ιιιnnn] µµµ and AAA = ιιιNNN]MMM induced272

on s by µµµ and on S by MMM. Therefore, using the pull-back rules for (n−1)-forms in Equation273
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(44) and for their axial vectors in Equation (45), the theorem of the change of variables (37)274

takes the form275 ∫
χ(S)

ωωω =
∫

χ(S)
ιιιwwwµµµ =

∫
χ(S)

(wwwnnn)ααα =
∫

S
(WWWNNN)AAA

=
∫

S
[J (www◦χ)FFF−TNNN]AAA=

∫
S
ιιιWWWMMM=

∫
S
ΩΩΩ =

∫
S

χ
∗
ωωω (46)

from which, omitting the (n−1)-forms ααα and AAA, as in Equation (36),276 ∫
χ(S)

wwwnnn =
∫

S
J (www◦χ)FFF−TNNN =

∫
S
WWWNNN. (47)

In the traditional notation, this becomes Nanson’s formula, which can be alternatively writ-277

ten nnnda = JFFF−TNNN dA or, by including the normal corresponding to each “area element”,278

daaa = JFFF−T dAAA.279

5 Application to First-Order Transport Laws280

A first-order transport law is most often used in Physics and Mechanics to formalise a con-281

stitutive relation between a flux density and a generalised force density. Naturally, higher-282

order laws are always possible in principle, and sometimes necessary to represent certain283

phenomena. However, a first-order law is sufficient for a vast range of phenomena, and has284

the objective advantage of a simpler mathematical structure. The general structure of a first-285

order linear transport law is usually written286

www = kkkhhh, (48)

where the spatial vector field www, valued in TS, is the flux density or current density of a287

certain extensive quantity q, the second-order tensor field kkk, valued in [TS]20 (i.e., a “con-288

travariant” tensor) is a permittivity, and the covector field hhh, valued in T ?S, is a generalised289

force density. The flux density www may, or may not, be given by the product of a (pseudo-290

scalar) density and a vector field.291

As seen in Section 4.1, in the three-dimensional space S, the flux density www is nothing292

but the axial vector of a two-form ωωω with respect to a volume form µµµ , via the interior product293

ωωω = ιιιwwwµµµ . Therefore, in terms of forms, Equation (48) reads294

ωωω = kkkhhh, (49)

where the [TS]20-valued tensor field kkk has been replaced by the tensor field kkk, valued in295

Λ2(TS)⊗TS, i.e., the first vector leg of kkk has been replaced by a two-form in the definition of296

kkk. If we define the third-order tensor field ιιιµµµ , valued in Λ2(TS)⊗T ?S, via the isomorphism297

ιιιµµµwww = ιιιwwwµµµ , then kkk is given by contracting the last leg (the covector leg) of ιιιµµµ with the first298

leg of kkk, i.e.,299

kkk= ιιιµµµkkk. (50)

In components, if kkk = kabeeea⊗eeeb and hhh = hb eeeb,300

ωωω = ιιιwwwµµµ = ιιι [kkkhhh]µµµ = ιιι [kabhb eeea]
µµµ = kab (ιιιeeeaµµµ)hb = kab (ιιιeeeaµµµ)eeeb(hhh) = [kab (ιιιeeeaµµµ)⊗eeeb]hhh,

(51)
from which301

kkk= kab (ιιιeeeaµµµ)⊗eeeb. (52)



12 S. Federico, A. Grillo, R. Segev

Therefore, not only ωωω , but also the first leg of the tensor kkk transforms like a two-form.302

In the corresponding vectorial equation (48), the Piola transformation reads303

J (www◦χ)FFF−T = [J (FFF−1kkk)◦χ]FFF−T (FFFThhh)◦χ, (53)

where304

WWW = J (www◦χ)FFF−T , KKK = [J (FFF−1kkk)◦χ]FFF−T , HHH = (FFFThhh)◦χ, (54)

are the material flux density (Piola transform of the spatial flux density), the material per-305

mittivity (Piola transform on the first leg and pull-back on the second leg of the spatial306

permittivity) and the material generalised force density (pull-back of the spatial generalised307

force density). The material equations (54) have been shown for the case of Darcy’s law [23,308

17,3,15,1,16,25,11], as well as for the analogous case of the polarisation of a dielectric [9,309

27,26,5,19,6], in the traditional manner, without the use of differential forms.310

In some cases, the flux density pseudo-vector www may be given as the product of a pseudo-311

scalar density ρ times a proper vector field vvv, i.e.,312

www = ρ vvv, (55)

which, in terms of the associated two- and three-forms, reads313

ωωω = ιιιwwwµµµ = ιιι [ρ vvv]µµµ = ιιιvvv(ρ µµµ). (56)

Therefore, if the volume form µµµ is thought to be associated with a measure of physical314

volume, the new three-form ρµµµ is the density of a certain extensive quantity q. The extent315

of the quantity q in the body B is, thus,316

Extent(q,χ(B)) =
∫

χ(B)
ρ µµµ =

∫
B

χ
∗[ρ µµµ] =

∫
B
(ρ ◦χ)(JMMM) =

∫
B

J (ρ ◦χ)MMM, (57)

which, in the traditional notation, reads
∫

χ(B) ρ dυ =
∫
B J (ρ ◦χ)dV . Furthermore, the flux317

of the extensive quantity q across a material surface S, with image s = χ(S), can be written318

in terms of the two-form ωωω , as in the standard case described by Equation (33), with the319

pull-back shown in Equation (46),320

Flux(q,χ(S)) =
∫

χ(S)
ωωω =

∫
S

χ
∗
ωωω =

∫
S
ΩΩΩ , (58)

or, whenever metric tensors GGG and ggg are available in B and S, and the normal covectors321

to S and s = χ(S) can be defined, the flux can be written in terms of pseudo-vectors as in322

Equation (46), i.e.,323

Flux(q,χ(S)) =
∫

χ(S)
wwwnnn =

∫
S

J (www◦χ)FFF−T NNN =
∫

S
WWW NNN, (59)

where we have omitted writing the two-forms AAA and ααα , induced by GGG and ggg on S and324

s = χ(S).325

The two cases that we report as an example are Darcy’s law for fluid filtration in a326

porous medium and Ohm’s law for the conduction of charges in an electrical conductor. We327

chose these two cases because their flux densities both have pseudo-vectors expressible as328

the product of a pseudo-scalar density and a proper vector. Because of this analogy, and of329

the fact that it is well-established to study electromagnetism in terms of forms (see, e.g., [14,330

18,24]), it is interesting to report a treatment of Darcy’s law too in this geometric formalism.331
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In Darcy’s law,332

www = φ f (vvv f −vvvs) = kkkhhh =−kkk (grad p−ρ f T fff ), (60)

the flux density www = φ f (vvv f −vvvs) is the filtration velocity, obtained as the product of the fluid333

volumetric fraction φ f (pseudo-scalar density) and the velocity vvv f −vvvs of the fluid relative334

to the solid (proper vector), kkk is the permeability tensor (function of fluid viscosity and fluid335

volumetric fraction), and the generalised force density hhh = −(grad p−ρ f T fff ) is comprised336

of the negative of the gradient of the pore pressure p and the body force term (usually337

gravity).338

In Ohm’s law,339

jjj = ρ vvv = κκκ eee =−κκκ gradϕ, (61)

the flux density www ≡ jjj = ρ vvv is the current density, obtained as the product of the charge340

density ρ (pseudo-scalar density) and the velocity vvv of the charges, kkk≡κκκ is the conductivity341

tensor, and the generalised force density hhh ≡ eee is the electric field, given by the negative of342

the gradient of the scalar potential ϕ .343

Remark. We observe that, in the work of Noll (e.g., [21]), a body is viewed as a differen-344

tiable manifold, the physical space is modelled as a Euclidean space (i.e., an affine space345

with a metric), and configurations are viewed as charts of the body manifold. Thus, there is346

no preferred reference configuration for the body in space. In this context, the flux field is347

represented by a single (n−1)-form on the body manifold independently of any configura-348

tion, and the various spatial fields associated with that form are simply different representa-349

tions of a single geometric object.350

6 Summary351

In this work, we gave an overview of the tools of Differential Geometry needed for the352

description of those quantities that, in elementary Physics and Mechanics, are called pseudo-353

vectors and pseudo-scalars. The nature of these objects and the transformation laws they354

obey is completely unveiled if they are described as two-forms and three-forms, respectively,355

in the three-dimensional space of Classical Mechanics. In particular, we studied the case in356

which the integration of a two-form over a surface represents the flux of a certain extensive357

physical quantity across that surface. As an example of application to first-order transport358

laws, we reported Darcy’s law for fluid filtration in a porous medium and Ohm’s law for the359

conduction of a current in a conductor. This work contributes to the path towards a unified360

geometrical formalism in Continuum Mechanics, within which it is possible to represent361

different physical phenomena sharing the same mathematical structure, and to rigorously362

describe the transformation laws which the various physical quantities at play must obey.363
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