POLITECNICO DI TORINO

Repository ISTITUZIONALE

Material Description of Fluxes in Terms of Differential Forms

Original
Material Description of Fluxes in Terms of Differential Forms / S., Federico; Grillo, Alfio; R., Segev. - In: CONTINUUM MECHANICS AND THERMODYNAMICS. - ISSN 0935-1175. - 28:(2016), pp. 379-390. [10.1007/s00161-015-0437-2]

Availability:

This version is available at: 11583/2604356 since: 2020-06-02T17:29:03Z

Publisher:
Springer Verlag Germany:Tiergartenstrasse 17, D 69121 Heidelberg Germany:011 496221 3450, EMAIL:

Published
DOI:10.1007/s00161-015-0437-2

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright
Springer postprint/Author's Accepted Manuscript
This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s00161-015-0437-2
(Article begins on next page)

Material Description of Fluxes in Terms of Differential Forms
 Dedicated to Prof. David Steigmann in Recognition of His Contributions

Salvatore Federico • Alfio Grillo • Reuven Segev

Received: date / Accepted: date

DOI: 10.1007/s00161-015-0437-2. Available online: June 13, 2015.
Journal: Continuum Mechanics and Thermodynamics (Springer)

Abstract

The flux of a certain extensive physical quantity across a surface is often represented by the integral over the surface of the component of a pseudo-vector normal to the surface. A pseudo-vector is in fact a possible representation of a second-order differential form, i.e., a skew-symmetric second-order covariant tensor, which follows the regular transformation laws of tensors. However, because of the skew-symmetry of differential forms, the associated pseudo-vector follows a transformation law that is different from that of proper vectors, and is named after the Italian mathematical physicist Gabrio Piola (1794-1850). In this work, we employ the methods of Differential Geometry and the representation in terms of differential forms to demonstrate how the flux of an extensive quantity transforms from the spatial to the material point of view. After an introduction to the theory of differential forms, their transformation laws, and their role in Integration Theory, we apply them to the case of first-order transport laws such as Darcy's law and Ohm's law.

Keywords Differential Geometry • Differential Form • Flux • Material • Spatial • Darcy's Law • Ohm's Law

PACS 46.05.+b • 46.25.Cc • 02.40.-k • 02.40.Yy
Mathematics Subject Classification (2000) 53A45 • 74A05

[^0]R. Segev

Dept Mechanical Engineering
Ben Gurion University
P.O. Box 653, Beer-Sheva, 84105, Israel

1 Introduction

In the elementary treatment of Classical Physics and Continuum Mechanics, several quantities are referred to as pseudo-vectors, because the transformation laws they obey are different from those of vectors. Indeed, under any transformation other than a proper orthogonal transformation (proper means that the determinant is equal to 1), pseudo-vectors take a multiplicative factor equal to the determinant of the transformation, contrary to what vectors do. For instance, under reflection of one of the axes (a particular case of improper orthogonal transformation, for which the determinant is -1), pseudo-vectors are not only reflected, but also see their sense reversed, unlike vectors, which are just reflected. The first examples that come in the study of elementary Mechanics are the moment of a force and the angular velocity. Pseudo-vectors also come into play in the calculation of the flux of an extensive physical quantity across a surface, which is the integral over the surface of the component of the pseudo-vector normal to the surface itself. Examples are the mass and charge density currents in Fluid Mechanics and Electromagnetism. Continuum Mechanics also presents us with objects that can be righteously called pseudo-scalars because, unlike scalars, which are invariant under any transformation, they transform with a multiplicative factor equal to the determinant of the transformation and, for instance, suffer a change in sign under an improper orthogonal transformation. Examples are the so-called "volume element" of the theory of integration, and the scalar product of a vector and a pseudo-vector.

In the Continuum Mechanics of solids, it is most often necessary to transform the various physical quantities from the spatial picture of Mechanics, in which the equations are naturally written, to the material picture, in which it is usually most convenient to build a constitutive framework. The original ideas on the transformation from spatial to material picture dates back to the Italian mathematical physicist Gabrio Piola (see [4], as well as [20]) and modern interpretations have been very often proposed in recent works in Continuum Mechanics (among many others, see, e.g., [3,2]). In the modern language of Continuum Mechanics, the transformation from the spatial to the material picture of Mechanics is called a pull-back, a terminology that is shared by Differential Geometry.

In Continuum Mechanics one always works with a non-orthogonal transformation, i.e., the deformation gradient. Therefore, the pull-back laws of pseudo-vectors and pseudo-scalars differ from those of vectors and scalars (the latter being invariant), respectively, by a multiplicative factor equal to the determinant of the deformation gradient. In fact, in the customary three-dimensional case, a pseudo-vector represents a second-order differential form (or two-form) and a pseudo-scalar represents a (non-vanishing) third-order differential form (or non-vanishing three-form, or volume form) [7,24]. Differential forms are skew-symmetric covariant tensors, and follow the regular transformation rules of tensors. The form of that these rules take in the representation in terms of pseudo-vectors and pseudo-scalars is that of a Piola transformation. In the case of pseudo-vectors and pseudo-scalars, the Piola transformation preserves the invariance of fluxes across deforming oriented surfaces and of the extent of physical quantities over volumes, respectively, when passing from the current configuration to the body manifold (or the reference configuration).

In this work, we first briefly recall the tensor algebra notation, show the definitions of r-forms, the particular cases of n-forms and $(n-1)$-forms and the associated pseudo-vectors and pseudo-scalars (Section 2). Then, after introducing the basic definitions of Continuum Kinematics (Section 3), we introduce differential forms on general manifolds, their relationship to the Theory of Integration, including how fluxes are calculated as integrals of ($n-1$)-forms, and demonstrate how the pull-backs of pseudo-vectors and pseudo-scalars are obtained from those of the corresponding $(n-1)$ - and n-forms (Section 4). Finally, we

$$
\begin{equation*}
\mathbb{A}: \underbrace{\mathcal{V}^{\star} \times \ldots \times \mathcal{V}^{\star}}_{r \text { times }} \times \underbrace{\mathcal{V} \times \ldots \times \mathcal{V}}_{s \text { times }} \rightarrow \mathbb{R} \tag{1}
\end{equation*}
$$

85 i.e., all tensors of order $r+s$ with the first r legs being vectorial and the last s legs being

$$
\begin{equation*}
\mathcal{V}^{r}{ }_{s}=\underbrace{\mathcal{V} \otimes \ldots \otimes \mathcal{V}}_{r \text { times }} \otimes \underbrace{\mathcal{V}^{\star} \otimes \ldots \otimes \mathcal{V}^{\star}}_{s \text { times }} \tag{2}
\end{equation*}
$$

Note that the identifications $\mathcal{V}_{0}^{0} \equiv \mathbb{R}, \mathcal{V}_{0}^{1} \equiv \mathcal{V}, \mathcal{V}_{1}^{0} \equiv \mathcal{V}^{\star}$ hold, and that, if \mathcal{V} has dimension n, the dimension of $\mathcal{V}^{r}{ }_{s}$ is n^{r+s}.

If \mathcal{V} has dimension n, considering a basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ of \mathcal{V}, together with the associated basis $\left\{\boldsymbol{e}^{i}\right\}_{i=1}^{n}$ of \mathcal{V}^{\star}, the components of a tensor $\mathbb{A} \in \mathcal{V}^{r}{ }_{s}$ with respect to the given bases are $\mathrm{A}^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}}$, with the first r indices being contravariant and the last s indices being covariant, i.e.,

$$
\begin{equation*}
\mathbb{A}=\mathrm{A}^{i_{1} \ldots i_{r_{1}} \ldots j_{1} \ldots \boldsymbol{e}_{s}} \boldsymbol{i}_{i_{1}} \otimes \ldots \otimes \boldsymbol{e}_{i_{r}} \otimes \boldsymbol{e}^{j_{1}} \otimes \ldots \otimes \boldsymbol{e}^{j_{s}}, \tag{3}
\end{equation*}
$$

where the components $\mathrm{A}^{i_{1} \ldots i_{r}}{ }_{j_{1} \ldots j_{s}}$ are, by definition,

$$
\begin{equation*}
\mathrm{A}^{i_{1} \ldots i_{r}{ }_{j_{1}} \ldots j_{s}}=\mathbb{A}\left(\boldsymbol{e}^{i_{1}}, \ldots, \boldsymbol{e}^{i_{r}}, \boldsymbol{e}_{j_{1}}, \ldots, \boldsymbol{e}_{j_{s}}\right) . \tag{4}
\end{equation*}
$$

$2.2 r$-Forms on a Vector Space

Given a vector space \mathcal{V} of dimension n, and $r \leq n$, an r-form (or form of order r, or multicovector of order r) is a tensor $\boldsymbol{\beta} \in \mathcal{V}_{r}^{0}$ that is skew-symmetric, i.e., it is invariant for even permutations of the arguments and changes sign for odd permutations of the arguments. Therefore, for every set of r vectors $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\} \subset \mathcal{V}$,

$$
\begin{equation*}
\boldsymbol{\beta}\left(\boldsymbol{v}_{i_{1}}, \ldots, \boldsymbol{v}_{i_{r}}\right)=\varepsilon_{i_{1} \ldots i_{r}} \boldsymbol{\beta}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right), \tag{5}
\end{equation*}
$$

where $\varepsilon_{i_{1} \ldots i_{r}}$ is the Ricci/Levi-Civita permutation symbol, defined as

$$
\varepsilon_{i_{1} \ldots i_{r}}=\left\{\begin{array}{l}
+1 \text { for }\left\{i_{1}, \ldots, i_{r}\right\} \text { even w.r.t. }\{1, \ldots, r\}, \tag{6}\\
-1 \text { for }\left\{i_{1}, \ldots, i_{r}\right\} \text { odd w.r.t. }\{1, \ldots, r\} .
\end{array}\right.
$$

All r-forms in \mathcal{V}_{r}^{0} constitute a subspace denoted $\Lambda_{r}(\mathcal{V})$, whose dimension can be shown to be equal to the binomial coefficient $\binom{n}{r}=\frac{n!}{(n-r)!r!}$, where $n=\operatorname{dim} \mathcal{V}$ [7,24]. With the help of the Tartaglia-Pascal triangle, the scheme below reports the dimension of $\Lambda_{r}(\mathcal{V})$ for every order r and for every dimension n of the "mother" space \mathcal{V}.

For a given n, the spaces $\Lambda_{r}(\mathcal{V})$ of r-forms constitute a "fusiform" structure [7], with $r=n$ being the maximum possible order for an r-form, and with the pairs of spaces of the forms of order r and $n-r$ having the same dimension. It is immediate to make the conventional identifications $\Lambda_{0}(\mathcal{V}) \equiv \mathbb{R}$ between zero-forms and scalars, and $\Lambda_{1}(\mathcal{V}) \equiv \mathcal{V}^{\star}$ between oneforms and covectors. The spaces $\Lambda_{n}(\mathcal{V})$ and $\Lambda_{n-1}(\mathcal{V})$ "look a lot" like \mathbb{R} and \mathcal{V}, respectively, but they do not quite coincide with these. Indeed, we shall show that n-forms and ($n-$ 1)-forms obey transformation laws that are different from those which scalars (which are invariant) and vectors obey. For this reason, they are often referred to as pseudo-scalars and pseudo-vectors.

We close this section with an important definition that will be employed later. Given a vector $\boldsymbol{u} \in \mathcal{V}$ and an r-form $\boldsymbol{\beta} \in \Lambda_{r}(\mathcal{V})$, their interior product $\boldsymbol{\imath}_{\boldsymbol{u}} \boldsymbol{\beta} \in \Lambda_{r-1}(\mathcal{V})$ is the $(r-1)$ form given by the contraction of \boldsymbol{u} with the first leg of $\boldsymbol{\beta}$, i.e., for every system of $r-1$ vectors $\left\{\boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right\} \subset \mathcal{V}$,

$$
\begin{equation*}
\left(\boldsymbol{l}_{\boldsymbol{u}} \boldsymbol{\beta}\right)\left(\boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right)=\boldsymbol{\beta}\left(\boldsymbol{u}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right) . \tag{7}
\end{equation*}
$$

2.3 n-Forms and Their Transformation Laws

In a vector space \mathcal{V} of dimension n, the space $\Lambda_{n}(\mathcal{V})$ has dimension one, and thus an n-form has only one independent component with respect to a given basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$, as it can be seen by using the definition of skew-symmetry, which implies

$$
\begin{equation*}
\boldsymbol{\mu}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{n}}\right)=\varepsilon_{i_{1} \ldots i_{n}} \boldsymbol{\mu}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=h \varepsilon_{i_{1} \ldots i_{n}}, \tag{8}
\end{equation*}
$$

where the well-defined scalar $h=\boldsymbol{\mu}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)$ is the only independent component of $\boldsymbol{\mu}$. The n-form $\boldsymbol{\mu}$ can therefore be expressed, in components, as

$$
\begin{equation*}
\boldsymbol{\mu}=h \varepsilon_{i_{1} \ldots i_{n}} \boldsymbol{e}^{i_{1}} \otimes \ldots \otimes \boldsymbol{e}^{i_{n}} . \tag{9}
\end{equation*}
$$

Given the basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ of \mathcal{V}, the unique n-form with independent component equal to one is called determinant with respect to $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ and is denoted by det, i.e.,

$$
\begin{equation*}
\operatorname{det}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{n}}\right)=\boldsymbol{\varepsilon}_{i_{1} \ldots i_{n}} \Rightarrow \operatorname{det}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=1 \tag{10}
\end{equation*}
$$

and, via the definitions of multi linearity and skew-symmetry, defines the determinant of the system of vectors $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ with respect to the basis $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ as the scalar

$$
\begin{align*}
\operatorname{det}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right) & =\operatorname{det}\left(v_{1}^{i_{1}} \boldsymbol{e}_{i_{1}}, \ldots, v_{n}^{i_{n}} \boldsymbol{e}_{i_{n}}\right) \\
& =v_{1}^{i_{1}} \ldots v_{n}^{i_{n}} \operatorname{det}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{n}}\right) \\
& =\varepsilon_{i_{1} \ldots i_{n}} v_{1}^{i_{1}} \ldots v_{n}^{i_{n}} . \tag{11}
\end{align*}
$$

The determinant of a matrix $\llbracket a^{i}{ }_{j} \rrbracket$ is defined as the determinant of the system of vectors $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$ such that $\llbracket a^{i}{ }_{j} \rrbracket=\llbracket v_{j}^{i} \rrbracket$. A discussion on the definition of determinant for the case of second-order tensors belonging to $\mathcal{V}^{1}{ }_{1}$ ("mixed" tensors), \mathcal{V}_{0}^{2} ("contravariant" tensors) and ν_{2}^{0} ("covariant" tensors) is given in [12].

As mentioned before, both spaces $\Lambda_{0}(\mathcal{V}) \equiv \mathbb{R}$ and $\Lambda_{n}(\mathcal{V})$ have dimension one. However, whereas a scalar of \mathbb{R} is invariant under a change of basis in \mathcal{V}, an n-form is not. Indeed, if $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{n}$ and $\left\{\boldsymbol{e}_{j}^{\prime}\right\}_{j=1}^{n}$ are two bases of \mathcal{V} related by

$$
\begin{equation*}
\boldsymbol{e}_{j}^{\prime}=a^{i}{ }_{j} \boldsymbol{e}_{i}, \quad \boldsymbol{e}_{i}=b^{j}{ }_{i} \boldsymbol{e}_{j}^{\prime}, \tag{12}
\end{equation*}
$$

where the matrices $\llbracket a^{i}{ }_{j} \rrbracket$ and $\llbracket b^{j}{ }_{i} \rrbracket$ are one the inverse of the other, then the component of an n-form $\boldsymbol{\mu}$ transforms according to

$$
\begin{align*}
h^{\prime} & =\boldsymbol{\mu}\left(\boldsymbol{e}_{1}^{\prime}, \ldots, \boldsymbol{e}_{n}^{\prime}\right)=\boldsymbol{\mu}\left(a^{i_{1}}{ }_{1} \boldsymbol{e}_{i_{1}}, \ldots, a^{i_{n}}{ }_{n} \boldsymbol{e}_{i_{n}}\right) \\
& =a^{i_{1}} \ldots a_{1}^{i_{1}}{ }_{n} \boldsymbol{\mu}\left(\boldsymbol{e}_{i_{1}}, \ldots, \boldsymbol{e}_{i_{n}}\right) \\
& =a^{i_{1}}{ }_{1} \ldots a^{i_{n}}{ }_{n} \varepsilon_{i_{1} \ldots i_{n}} \boldsymbol{\mu}\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{n}\right)=\operatorname{det} \llbracket a^{i}{ }_{j} \rrbracket h . \tag{13}
\end{align*}
$$

Therefore, the component of an n-form transforms with a coefficient equal to the determinant of the change of basis, and this is why it is often called a pseudo-scalar. Note that, under a change of basis for which the determinant is equal to one (e.g. a proper orthogonal change of basis), an n-form remains invariant, i.e., the difference between the component of an n-form and the corresponding scalar is unnoticeable.

2.4 ($n-1$)-Forms and Axial Vectors

In a vector space \mathcal{V} of dimension n, the space $\Lambda_{n-1}(\mathcal{V})$ has dimension n, like \mathcal{V}^{\star} and \mathcal{V} itself. Because of this, with every $(n-1)$-form $\boldsymbol{\omega} \in \Lambda_{n-1}(\mathcal{V})$, it is possible to univocally associate a vector $\boldsymbol{u} \in \mathcal{V}$ with respect to a non-vanishing n-form $\boldsymbol{\mu} \in \Lambda_{n}(\mathcal{V})$, via the interior product

$$
\begin{equation*}
\boldsymbol{\imath}_{\boldsymbol{u}} \boldsymbol{\mu}=\boldsymbol{\omega} . \tag{14}
\end{equation*}
$$

The vector \boldsymbol{u} is called the axial vector of $\boldsymbol{\omega}$ with respect to $\boldsymbol{\mu}$ and, in elementary Algebra and Mechanics, is called a pseudo-vector as it follows a transformation law that is different from that of vectors, and it is obtained via the transformation followed by the corresponding ($n-1$)-form $\boldsymbol{\omega}$, which will be shown later in Section 4.

3 Kinematics of the Deformation

Here we report some definitions about the kinematics of deformation in Continuum Mechanics. The notation follows generally that of the treatise by Marsden and Hughes [18] and that used in some previous works [12,11]. The presentation is fairly standard, except for the fact that, in order to illustrate the transformations in a more general case, we keep the dimension n rather than going to the customary dimension 3 .

3.1 Deformation and Configuration Map

We work on two n-dimensional manifolds: the body \mathcal{B} and the physical space \mathcal{S}. The configuration map describing the deformation is, for the moment, assumed time-independent, and is defined as an embedding (i.e., a differentiable map on whose image the inverse map is defined and differentiable; with a subtle abuse of terminology, the configuration map is often said to be a diffeomorphism)

$$
\begin{equation*}
\chi: \mathcal{B} \rightarrow \mathcal{S}: X \mapsto x=\chi(X) . \tag{15}
\end{equation*}
$$

Note that, if one wishes, it is possible to choose a reference configuration $\chi_{R}: \mathcal{B} \rightarrow \mathcal{B}_{R} \subset \mathcal{S}$ and then refer to the map $\chi \circ \chi_{R}^{-1}: \mathcal{B}_{R} \rightarrow \mathcal{S}$, which differs from (15) by a mere change of coordinates [8]. Here, we prefer to follow the modern approach to Continuum Mechanics, in which no particular reference configuration is chosen.

3.2 Physical Quantities

Material and spatial physical quantities are tensor fields of the type

$$
\begin{align*}
& \mathbb{A}: \mathcal{B} \quad \rightarrow[T \mathcal{B}]_{s}^{r}: X \mapsto \mathbb{A}(X), \tag{16}\\
& \mathbb{A}: \chi(\mathcal{B}) \rightarrow[T \mathcal{S}]_{s}^{r}: x \mapsto \mathbb{A}(x), \tag{17}
\end{align*}
$$

respectively, where $T \mathcal{B}$ and $T \mathcal{S}$ are the tangent bundles of \mathcal{B} and \mathcal{S}, disjoint union of all tangent spaces $T_{X} \mathcal{B}$ and $T_{x} \mathcal{S}$ at all points $X \in \mathcal{B}$ and $x \in \mathcal{S}$, respectively. We also recall that the dual spaces of the tangent spaces $T_{X} \mathcal{B}$ and $T_{x} \mathcal{S}$ are the cotangent spaces $T_{X}^{\star} \mathcal{B}$ and $T_{x}^{\star} \mathcal{S}$, the disjoint unions of which are the cotangent bundles $T^{\star} \mathcal{B}$ and $T^{\star} \mathcal{S}$.

3.3 Deformation Gradient, Push-Forward, Pull-Back

The deformation gradient \boldsymbol{F} is defined as the tangent map of χ,

$$
\begin{equation*}
T \chi=\boldsymbol{F}: T \mathcal{B} \rightarrow T \mathcal{S}, \tag{18}
\end{equation*}
$$

such that, at each point $X \in \mathcal{B}$, the two-point tensor

$$
\begin{equation*}
(T \chi)(X)=\boldsymbol{F}(X): T_{X} \mathcal{B} \rightarrow T_{x} \mathcal{S}, \tag{19}
\end{equation*}
$$

is the the Frechét differential of χ at X. Thus, in the coordinate charts $\left\{\hat{X}^{A}\right\}$ in \mathcal{B} and $\left\{\hat{x}^{a}\right\}$ in \mathcal{S}, we have

$$
\begin{equation*}
F_{A}^{a}(X)=\chi_{, A}^{a}(X) . \tag{20}
\end{equation*}
$$

Note that, as two-point tensor fields, the deformation gradient, its inverse, its transpose and its inverse transpose are defined as

$$
\begin{align*}
& \boldsymbol{F}: \mathcal{B} \quad \rightarrow T \mathcal{S} \otimes T^{\star} \mathcal{B}, \tag{21}\\
& \boldsymbol{F}^{-1}: \chi(\mathcal{B}) \rightarrow T \mathcal{B} \otimes T^{\star} \mathcal{S}, \tag{22}\\
& \boldsymbol{F}^{T}: \chi(\mathcal{B}) \rightarrow T^{\star} \mathcal{B} \otimes T \mathcal{S}, \tag{23}\\
& \boldsymbol{F}^{-T}: \mathcal{B} \quad \rightarrow T^{\star} \mathcal{S} \otimes T \mathcal{B}, \tag{24}
\end{align*}
$$

respectively.
Given a material vector field $\boldsymbol{U}: \mathcal{B} \rightarrow T \mathcal{B}$, its push-forward is the spatial vector field $\boldsymbol{u}=\chi_{*} \boldsymbol{U}: \chi(\mathcal{B}) \rightarrow T \mathcal{S}$, defined as

$$
\begin{equation*}
\boldsymbol{u}=\chi_{*} \boldsymbol{U}=(\boldsymbol{F} \boldsymbol{U}) \circ \chi^{-1} \tag{25}
\end{equation*}
$$

The inverse operation is called pull-back:

$$
\begin{equation*}
\boldsymbol{U}=\chi^{*} \boldsymbol{u}=\left(\boldsymbol{F}^{-1} \boldsymbol{u}\right) \circ \chi \tag{26}
\end{equation*}
$$

The push-forward of a material covector field (i.e., a one-form) $\Pi: \mathcal{B} \rightarrow T^{\star} \mathcal{B}$ is the spatial covector field $\boldsymbol{\pi}=\chi_{*} \boldsymbol{\Pi}: \chi(\mathcal{B}) \rightarrow T^{\star} \mathcal{S}$, defined via the pull-back of vector fields of Equation (26),

$$
\begin{align*}
\left(\chi_{*} \boldsymbol{\Pi}\right) \boldsymbol{u} & =\left[\boldsymbol{\Pi}\left(\chi^{*} \boldsymbol{u}\right)\right] \circ \chi^{-1} \Rightarrow \\
\left(\boldsymbol{\Pi} \circ \chi^{-1}\right)\left(\boldsymbol{F}^{-1} \boldsymbol{u}\right) & =\left[\left(\boldsymbol{F}^{-T} \boldsymbol{\Pi}\right) \circ \chi^{-1}\right] \boldsymbol{u} \tag{27}
\end{align*}
$$

from which the push-forward rule is

$$
\begin{equation*}
\boldsymbol{\pi}=\chi_{*} \boldsymbol{\Pi}=\left(\boldsymbol{F}^{-T} \boldsymbol{\Pi}\right) \circ \chi^{-1} \tag{28}
\end{equation*}
$$

and therefore the pull-back rule is

$$
\begin{equation*}
\boldsymbol{\Pi}=\chi^{*} \boldsymbol{\pi}=\left(\boldsymbol{F}^{T} \boldsymbol{\pi}\right) \circ \chi \tag{29}
\end{equation*}
$$

The push-forward of tensor fields valued in $[T \mathcal{B}]^{r}$ and the pull-back of tensors in $[T S]^{r}{ }_{s}$ are obtained by performing pull-backs and push-forwards of each vector or covector leg of the tensor. The next section specialises the pull-back transformation laws to differential forms, i.e., fields valued in spaces of r-forms and, in particular, to the cases of differential n-forms and $(n-1)$-forms in the context of the Theory of Integration.

4 Differential Forms on Manifolds

A spatial differential form of order $r \leq n$ in the n-dimensional manifold \mathcal{S} is an r-form-valued field on \mathcal{S}, i.e., a mapping

$$
\begin{equation*}
\boldsymbol{\beta}: \mathcal{S} \rightarrow \Lambda_{r}(T \mathcal{S}): x \mapsto \boldsymbol{\beta}(x) \tag{30}
\end{equation*}
$$

The definition of material forms (on \mathcal{B}) is analogous. An r-differential form can be called, with a slight abuse of terminology, an r-form, whenever there is no danger of confusion between the field $\boldsymbol{\beta}$ and its value $\boldsymbol{\beta}(x)$.

In this section we describe the role of r-forms in the Theory of Integration on manifolds and enunciate the theorem of the change of variables in integrals, before going to the crucial point of this work: the transformation rules of integrals of n-forms and $(n-1)$-forms.

4.1 Differential Forms and Integration

Differential r-forms on an n-dimensional manifold \mathcal{S} are intimately connected with the theory of integration in that they induce a measure on sub-manifolds (i.e., subsets of \mathcal{S} possessing the structure of manifold by themselves) of the same order r. Here we are interested in the case of n-forms and $(n-1)$-forms on an n-dimensional manifold.

A non-vanishing n-form $\boldsymbol{\theta}: \mathcal{S} \rightarrow \Lambda_{n}(T S)$, also called a volume form, is a volume integrand on the manifold itself and represents the density of a certain extensive quantity q. Therefore, the integral of $\boldsymbol{\theta}$ is the extent of q over an n-dimensional submanifold $\mathcal{C} \subset \mathcal{S}$:

$$
\begin{equation*}
\operatorname{Extent}(q, \mathcal{C})=\int_{\mathcal{C}} \boldsymbol{\theta} \tag{31}
\end{equation*}
$$

In a given chart, an n-form is uniquely determined by its single scalar component. Therefore, often, one takes a suitable volume form $\boldsymbol{\mu}$ to calculate the physical volume of \mathcal{C}, and then derives any other volume form via multiplication by a non-vanishing function ρ, exactly like in measure theory (see, e.g., [22]), so that

$$
\begin{equation*}
\operatorname{Volume}(\mathcal{C})=\int_{\mathcal{C}} \boldsymbol{\mu}, \quad \operatorname{Extent}(q, \mathcal{C})=\int_{\mathcal{C}} \rho \boldsymbol{\mu}, \tag{32}
\end{equation*}
$$

which would read $\int_{\mathfrak{C}} \mathrm{d} v$ and $\int_{\mathfrak{C}} \rho \mathrm{d} v$ in the traditional formalism.
Similarly, an ($n-1$)-form $\boldsymbol{\omega}: s \rightarrow \Lambda_{n-1}(T \mathcal{S})$ is an integrand on a hypersurface $s \subset \mathcal{S}$ and its integral represents the flux of an extensive quantity q across the hypersurface s :

$$
\begin{equation*}
\operatorname{Flux}(q, s)=\int_{s} \boldsymbol{\omega} \tag{33}
\end{equation*}
$$

When a metric tensor \boldsymbol{g} (i.e., a symmetric and positive-definite tensor field valued in $\left.[T \mathcal{S}]_{2}^{0}\right)$ is available in \mathcal{S}, the integral of an $(n-1)$-form $\boldsymbol{\omega}$ on a surface s can be expressed in terms of the axial vector field \boldsymbol{w} of $\boldsymbol{\omega}$ with respect to the volume form $\boldsymbol{\mu}$, i.e., \boldsymbol{w} is such that $\boldsymbol{v}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{\omega}$. Indeed, the metric \boldsymbol{g} allows for the definition of the normal covector \boldsymbol{n} to s (such that its squared norm is $\|\boldsymbol{n}\|^{2}=\boldsymbol{n} . \boldsymbol{n}=\langle\boldsymbol{n}, \boldsymbol{n}\rangle=n_{a} g^{a b} n_{b}=1$) and of the associated normal vector $\boldsymbol{n}^{\sharp}=\boldsymbol{g}^{-1} \boldsymbol{n}$ (with components $n^{a}=g^{a b} n_{b}$). Exploiting the identity $\boldsymbol{i}^{T}=\boldsymbol{n} \boldsymbol{n}^{\sharp}$ (in components, $n_{a} n^{b}=\delta_{a}{ }^{b}$, which are the components of the transpose of the spatial identity tensor \boldsymbol{i}), the ($n-1$)-form $\boldsymbol{\omega}$ can be written

$$
\begin{align*}
\boldsymbol{\omega} & =\boldsymbol{l}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{l}_{\left[\boldsymbol{w} i^{T}\right]} \boldsymbol{\mu}=\boldsymbol{l}_{\left[\boldsymbol{w n} \boldsymbol{n}^{\sharp}\right]} \boldsymbol{\mu} \\
& =(\boldsymbol{w n}) \boldsymbol{l}_{\boldsymbol{n}^{\sharp}} \boldsymbol{\mu}=(\boldsymbol{w n} \boldsymbol{n}) \boldsymbol{\alpha} \tag{34}
\end{align*}
$$

$$
\begin{equation*}
\int_{\chi(\mathcal{D})} \boldsymbol{\beta}=\int_{\mathcal{D}} \chi^{*} \boldsymbol{\beta}, \tag{37}
\end{equation*}
$$

where the "change of variables" is precisely the configuration χ. Therefore, the need arises

$$
\begin{gather*}
\boldsymbol{\mu}=h \varepsilon_{a_{1} \ldots a_{n}} \boldsymbol{e}^{a_{1}} \otimes \ldots \otimes \boldsymbol{e}^{a_{n}}, \tag{38}\\
\boldsymbol{\mathcal { M }}=H \varepsilon_{A_{1} \ldots A_{n}} \boldsymbol{E}^{A_{1}} \otimes \ldots \otimes \boldsymbol{E}^{A_{n}} . \tag{39}
\end{gather*}
$$

The pull-back $\boldsymbol{\chi}^{*} \boldsymbol{\mu}$ can be calculated explicitly, as

$$
\begin{align*}
\chi^{*} \boldsymbol{\mu} & =(h \circ \chi) \varepsilon_{a_{1} \ldots a_{n}}\left(\boldsymbol{F}^{T} \boldsymbol{e}^{a_{1}}\right) \circ \chi \otimes \ldots \otimes\left(\boldsymbol{F}^{T} \boldsymbol{e}^{a_{n}}\right) \circ \chi \\
& =(h \circ \chi) \varepsilon_{a_{1} \ldots a_{n}} F^{a_{1}}{ }_{A_{1}} \ldots F^{a_{n}}{ }_{A_{n}} \boldsymbol{E}^{A_{1}} \otimes \ldots \otimes \boldsymbol{E}^{A_{n}} \\
& =(h \circ \chi) \operatorname{det} \llbracket F^{a}{ }_{A} \rrbracket \varepsilon_{A_{1} \ldots A_{n}} \boldsymbol{E}^{A_{1}} \otimes \ldots \otimes \boldsymbol{E}^{A_{n}}, \tag{40}
\end{align*}
$$

i.e., $\chi^{*} \boldsymbol{\mu}$ is the volume form on \mathcal{B} with independent component $(h \circ \chi) \operatorname{det} \llbracket F^{a}{ }_{A} \rrbracket$. We remark
it depends on the choice of the coordinate charts $\left\{\hat{x}^{a}\right\}$ and $\left\{\hat{X}^{a}\right\}$. Therefore, it is convenient to express the pull-back $\boldsymbol{\chi}^{*} \boldsymbol{\mu}$ in terms of the material volume form \mathcal{M} [12], as

$$
\begin{align*}
\chi^{*} \boldsymbol{\mu} & =(h \circ \chi) \operatorname{det} \llbracket F^{a}{ }_{A} \rrbracket \frac{1}{H} H \varepsilon_{A_{1} \ldots A_{n}} \boldsymbol{E}^{A_{1}} \otimes \ldots \otimes \boldsymbol{E}^{A_{n}} \\
& =(h \circ \chi) \operatorname{det} \llbracket F^{a}{ }_{A} \rrbracket \frac{1}{H} \mathcal{M} \\
& =J \mathcal{M}, \tag{41}
\end{align*}
$$

where

$$
\begin{equation*}
J=\operatorname{det} \boldsymbol{F} \equiv(h \circ \chi) \operatorname{det} \llbracket F^{a}{ }_{A} \rrbracket \frac{1}{H} \tag{42}
\end{equation*}
$$

is indeed a scalar invariant, which is defined as the determinant of the two-point tensor \boldsymbol{F} with respect to the volume form $\boldsymbol{\mu}$ on \mathcal{S} and the volume form \mathcal{M} on \mathcal{B} (see [12], which also reports an expression of Equation (42) for the case in which metric tensors are available and the corresponding induced volume forms are employed). In practice, it can be fairly easily shown that, since h and H transform according to Equation (13), the factor $(h \circ \chi) / H$ makes J an invariant. Therefore, for the case of volume forms, the theorem of the change of variables can be expressed as

$$
\begin{equation*}
\int_{\chi(\mathcal{B})} \boldsymbol{\mu}=\int_{\mathcal{B}} \chi^{*} \boldsymbol{\mu}=\int_{\mathcal{B}} J \mathcal{M}, \tag{43}
\end{equation*}
$$

which in the traditional notation reads $d v=J d V$.

4.4 Change of Variables: $(n-1)$-Forms

Let $\boldsymbol{\mu}$ and \mathcal{M} be a spatial and a material volume form as above, S a hypersurface in \mathcal{B}, $s=\chi(S)$ its image in \mathcal{S} through the configuration χ, and $\boldsymbol{\omega}: s \rightarrow \Lambda_{n-1}(T \mathcal{S})$ a spatial ($n-1$)form, with axial vector \boldsymbol{w} with respect to the volume form $\boldsymbol{\mu}$, i.e., \boldsymbol{w} is such that $\boldsymbol{\imath}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{\omega}$. The pull-back of $\boldsymbol{\omega}$ is obtained in terms of its axial vector \boldsymbol{w}, by exploiting the distributivity of the pull-back operation and the fact that the interior product of a vector and an r-form is merely the contraction of the vector with the first leg of the r-form. Indeed,

$$
\begin{align*}
\chi^{*} \boldsymbol{\omega} & =\chi^{*}\left[\boldsymbol{l}_{\boldsymbol{w}} \boldsymbol{\mu}\right]=\boldsymbol{i}_{\left[\chi^{*} \boldsymbol{w}\right]} \chi^{*} \boldsymbol{\mu}=\boldsymbol{l}_{\left[\left(\boldsymbol{F}^{-1} \boldsymbol{w}\right) \circ \chi\right]} J \mathcal{M} \\
& =\boldsymbol{i}_{\left[J(\boldsymbol{w} \circ \chi) \boldsymbol{F}^{-T}\right]} \mathcal{M}=\boldsymbol{l}_{W} \mathcal{M}=\boldsymbol{\Omega}, \tag{44}
\end{align*}
$$

where

$$
\begin{equation*}
\boldsymbol{W}=J(\boldsymbol{w} \circ \chi) \boldsymbol{F}^{-T}=J\left(\boldsymbol{F}^{-1} \boldsymbol{w}\right) \circ \chi \tag{45}
\end{equation*}
$$

is called the Piola transform of \boldsymbol{w}, and is the axial vector of the pulled-back $(n-1)$-form $\boldsymbol{\Omega}=\chi^{*} \boldsymbol{\omega}: S \rightarrow \Lambda_{n-1}(T \mathcal{B})$ with respect to the material volume form \mathcal{M}.

If metric tensors \boldsymbol{g} and \boldsymbol{G} are available in \mathcal{S} and \mathcal{B}, the normal covectors \boldsymbol{n} and \boldsymbol{N} and the associated normal vectors \boldsymbol{n}^{\sharp} and \boldsymbol{N}^{\sharp} can be defined on s and S. Therefore, following Equation (35), it is possible to define the ($n-1$)-forms $\boldsymbol{\alpha}=\boldsymbol{i}_{\boldsymbol{n}^{\sharp}} \boldsymbol{\mu}$ and $\mathcal{A}=\boldsymbol{v}_{\boldsymbol{N}^{\sharp}} \mathcal{M}$ induced on s by $\boldsymbol{\mu}$ and on S by \mathcal{M}. Therefore, using the pull-back rules for $(n-1)$-forms in Equation

In components, if $\boldsymbol{k}=k^{a b} \boldsymbol{e}_{a} \otimes \boldsymbol{e}_{b}$ and $\boldsymbol{h}=h_{b} \boldsymbol{e}^{b}$,

$$
\begin{equation*}
\boldsymbol{\omega}=\boldsymbol{i}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{i}_{[k h]} \boldsymbol{\mu}=\boldsymbol{i}_{\left[k^{a b} h_{b} \boldsymbol{e}_{a}\right]} \boldsymbol{\mu}=k^{a b}\left(\boldsymbol{v}_{\boldsymbol{e}_{a}} \boldsymbol{\mu}\right) h_{b}=k^{a b}\left(\boldsymbol{v}_{\boldsymbol{e}_{a}} \boldsymbol{\mu}\right) \boldsymbol{e}_{b}(\boldsymbol{h})=\left[k^{a b}\left(\boldsymbol{v}_{\boldsymbol{e}_{a}} \boldsymbol{\mu}\right) \otimes \boldsymbol{e}_{b}\right] \boldsymbol{h}, \tag{51}
\end{equation*}
$$

from which

$$
\begin{equation*}
\mathbf{k}=k^{a b}\left(\boldsymbol{l}_{\boldsymbol{e}_{a}} \boldsymbol{\mu}\right) \otimes \boldsymbol{e}_{b} . \tag{52}
\end{equation*}
$$

Therefore, not only $\boldsymbol{\omega}$, but also the first leg of the tensor \mathbf{k} transforms like a two-form. In the corresponding vectorial equation (48), the Piola transformation reads

$$
\begin{equation*}
J(\boldsymbol{w} \circ \chi) \boldsymbol{F}^{-T}=\left[J\left(\boldsymbol{F}^{-1} \boldsymbol{k}\right) \circ \chi\right] \boldsymbol{F}^{-T}\left(\boldsymbol{F}^{T} \boldsymbol{h}\right) \circ \chi, \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
\boldsymbol{W}=J(\boldsymbol{w} \circ \chi) \boldsymbol{F}^{-T}, \quad \boldsymbol{K}=\left[J\left(\boldsymbol{F}^{-1} \boldsymbol{k}\right) \circ \chi\right] \boldsymbol{F}^{-T}, \quad \boldsymbol{H}=\left(\boldsymbol{F}^{T} \boldsymbol{h}\right) \circ \chi, \tag{54}
\end{equation*}
$$

are the material flux density (Piola transform of the spatial flux density), the material permittivity (Piola transform on the first leg and pull-back on the second leg of the spatial permittivity) and the material generalised force density (pull-back of the spatial generalised force density). The material equations (54) have been shown for the case of Darcy's law [23, $17,3,15,1,16,25,11]$, as well as for the analogous case of the polarisation of a dielectric [9, $27,26,5,19,6]$, in the traditional manner, without the use of differential forms.

In some cases, the flux density pseudo-vector \boldsymbol{w} may be given as the product of a pseudoscalar density ρ times a proper vector field \boldsymbol{v}, i.e.,

$$
\begin{equation*}
w=\rho v \tag{55}
\end{equation*}
$$

which, in terms of the associated two- and three-forms, reads

$$
\begin{equation*}
\omega=\boldsymbol{\imath}_{\boldsymbol{w}} \boldsymbol{\mu}=\boldsymbol{l}_{[\rho \boldsymbol{v}]} \boldsymbol{\mu}=\boldsymbol{i}_{\boldsymbol{v}}(\rho \boldsymbol{\mu}) . \tag{56}
\end{equation*}
$$

Therefore, if the volume form $\boldsymbol{\mu}$ is thought to be associated with a measure of physical volume, the new three-form $\rho \boldsymbol{\mu}$ is the density of a certain extensive quantity q. The extent of the quantity q in the body \mathcal{B} is, thus,

$$
\begin{equation*}
\operatorname{Extent}(q, \chi(\mathcal{B}))=\int_{\chi(\mathcal{B})} \rho \boldsymbol{\mu}=\int_{\mathcal{B}} \chi^{*}[\rho \boldsymbol{\mu}]=\int_{\mathcal{B}}(\rho \circ \chi)(J \mathcal{M})=\int_{\mathcal{B}} J(\rho \circ \chi) \mathcal{M} \tag{57}
\end{equation*}
$$

which, in the traditional notation, reads $\int_{\chi(\mathcal{B})} \rho d v=\int_{\mathcal{B}} J(\rho \circ \chi) d V$. Furthermore, the flux of the extensive quantity q across a material surface S, with image $s=\chi(S)$, can be written in terms of the two-form $\boldsymbol{\omega}$, as in the standard case described by Equation (33), with the pull-back shown in Equation (46),

$$
\begin{equation*}
\operatorname{Flux}(q, \chi(S))=\int_{\chi(S)} \boldsymbol{\omega}=\int_{S} \chi^{*} \boldsymbol{\omega}=\int_{S} \boldsymbol{\Omega}, \tag{58}
\end{equation*}
$$

or, whenever metric tensors \boldsymbol{G} and \boldsymbol{g} are available in \mathcal{B} and \mathcal{S}, and the normal covectors to S and $s=\chi(S)$ can be defined, the flux can be written in terms of pseudo-vectors as in Equation (46), i.e.,

$$
\begin{equation*}
\operatorname{Flux}(q, \chi(S))=\int_{\chi(S)} \boldsymbol{w} \boldsymbol{n}=\int_{S} J(\boldsymbol{w} \circ \chi) \boldsymbol{F}^{-T} \boldsymbol{N}=\int_{S} \boldsymbol{W} \boldsymbol{N} \tag{59}
\end{equation*}
$$

where we have omitted writing the two-forms \mathcal{A} and $\boldsymbol{\alpha}$, induced by \boldsymbol{G} and \boldsymbol{g} on S and $s=\chi(S)$.

The two cases that we report as an example are Darcy's law for fluid filtration in a porous medium and Ohm's law for the conduction of charges in an electrical conductor. We chose these two cases because their flux densities both have pseudo-vectors expressible as the product of a pseudo-scalar density and a proper vector. Because of this analogy, and of the fact that it is well-established to study electromagnetism in terms of forms (see, e.g., [14, $18,24]$), it is interesting to report a treatment of Darcy's law too in this geometric formalism.

In Darcy's law,

$$
\begin{equation*}
\boldsymbol{w}=\phi_{f}\left(\boldsymbol{v}_{f}-\boldsymbol{v}_{s}\right)=\boldsymbol{k} \boldsymbol{h}=-\boldsymbol{k}\left(\operatorname{grad} p-\rho_{f T} \boldsymbol{f}\right), \tag{60}
\end{equation*}
$$

the flux density $\boldsymbol{w}=\phi_{f}\left(\boldsymbol{v}_{f}-\boldsymbol{v}_{s}\right)$ is the filtration velocity, obtained as the product of the fluid volumetric fraction ϕ_{f} (pseudo-scalar density) and the velocity $\boldsymbol{v}_{f}-\boldsymbol{v}_{s}$ of the fluid relative to the solid (proper vector), \boldsymbol{k} is the permeability tensor (function of fluid viscosity and fluid volumetric fraction), and the generalised force density $\boldsymbol{h}=-\left(\operatorname{grad} p-\rho_{f T} \boldsymbol{f}\right)$ is comprised of the negative of the gradient of the pore pressure p and the body force term (usually gravity).

In Ohm's law,

$$
\begin{equation*}
\boldsymbol{j}=\rho \boldsymbol{v}=\boldsymbol{\kappa} \boldsymbol{e}=-\boldsymbol{\kappa} \operatorname{grad} \varphi, \tag{61}
\end{equation*}
$$

the flux density $\boldsymbol{w} \equiv \boldsymbol{j}=\rho \boldsymbol{v}$ is the current density, obtained as the product of the charge density ρ (pseudo-scalar density) and the velocity \boldsymbol{v} of the charges, $\boldsymbol{k} \equiv \boldsymbol{\kappa}$ is the conductivity tensor, and the generalised force density $\boldsymbol{h} \equiv \boldsymbol{e}$ is the electric field, given by the negative of the gradient of the scalar potential φ.

Remark. We observe that, in the work of Noll (e.g., [21]), a body is viewed as a differentiable manifold, the physical space is modelled as a Euclidean space (i.e., an affine space with a metric), and configurations are viewed as charts of the body manifold. Thus, there is no preferred reference configuration for the body in space. In this context, the flux field is represented by a single $(n-1)$-form on the body manifold independently of any configuration, and the various spatial fields associated with that form are simply different representations of a single geometric object.

6 Summary

In this work, we gave an overview of the tools of Differential Geometry needed for the description of those quantities that, in elementary Physics and Mechanics, are called pseudovectors and pseudo-scalars. The nature of these objects and the transformation laws they obey is completely unveiled if they are described as two-forms and three-forms, respectively, in the three-dimensional space of Classical Mechanics. In particular, we studied the case in which the integration of a two-form over a surface represents the flux of a certain extensive physical quantity across that surface. As an example of application to first-order transport laws, we reported Darcy's law for fluid filtration in a porous medium and Ohm's law for the conduction of a current in a conductor. This work contributes to the path towards a unified geometrical formalism in Continuum Mechanics, within which it is possible to represent different physical phenomena sharing the same mathematical structure, and to rigorously describe the transformation laws which the various physical quantities at play must obey.

[^1]
References

1. Ateshian, G.A., Weiss, J.A.: Anisotropic hydraulic permeability under finite deformation. J. Biomech. Eng. 132, 111,004 (2010)
2. Auffray, N., dell'Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuum mechanics à la Hamilton-Piola: least action principle for second gradient continua and capillary fluids. Math. Mech. Solids 20, 375-417 (2015)
3. dell'Isola, F., Madeo, A., Seppecher, P.: Boundary conditions at fluid-permeable interfaces in porous media: A variational approach. Int. J. Solids Struct. 46, 3150-3164 (2009)
4. dell'Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S. (eds.): The Complete Works of Gabrio Piola: Volume I. Springer, Berlin, Germany (2014)
5. Dorfmann, A., Ogden, R.W.: Nonlinear electroelasticity. Acta Mech. 174, 167-183 (2005)
6. Edmiston, J., Steigmann, D.J.: Analysis of nonlinear electroelastic membranes. In: R.W. Ogden, D.J. Steigmann (eds.) Mechanics and Electrodynamics of Magneto- and Electro-Elastic Materials, pp. 153180. Springer, Berlin (2011). CISM Courses and Lectures No. 527, International Centre for Mechanical Sciences
7. Epstein, M.: The Geometrical Language of Continuum Mechanics. Cambridge University Press, Cambridge, UK (2010)
8. Epstein, M., Elżanowski, M.: Material Inhomogeneities and Their Evolution. Springer, Berlin, Germany (2007)
9. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I. Springer, Berlin, Germany (1990)
10. Federico, S.: Covariant formulation of the tensor algebra of non-linear elasticity. Int. J. Non-Linear Mech. 47, 273-284 (2012)
11. Federico, S.: Porous materials with statistically oriented reinforcing fibres. In: L. Dorfmann, R.W. Ogden (eds.) Nonlinear Mechanics of Soft Fibrous Materials, pp. 49-120. Springer, Berlin (2015). CISM Courses and Lectures No. 559, International Centre for Mechanical Sciences
12. Federico, S.: Some remarks on metric and deformation. Math. Mech. Solids 20, 522-539 (2015)
13. Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large deformations. Mech. Mat. 44, 58-71 (2012)
14. Felsager, B.: Geometry, Particles and Fields. Springer, Berlin, Germany (1989)
15. Grillo, A., Zingali, G., Borrello, G., Federico, S., Herzog, W., Giaquinta, G.: A multiscale description of growth and transport in biological tissues. Theor. Appl. Mech. 34, 51-87 (2007)
16. Grillo, A., Federico, S., Wittum, G.: Growth, mass transfer, and remodeling in fiber-reinforced, multiconstituent materials. Int. J. Non-Linear Mech. 47, 388-401 (2012)
17. Madeo, A., dell'Isola, F., Ianiro, N., Sciarra, G.: A variational deduction of second gradient poroelasticity II: an application to the consolidation problem. J. Mech. Mater. Struct. 3, 607-625 (2008)
18. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliff, NJ, USA (1983)
19. Maugin, G.A.: Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics. CRC Press, Boca Raton, FL, USA (2011)
20. Maugin, G.A.: Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective. Springer, Berlin, Germany (2013)
21. Noll, W.: Materially uniform simple bodies with inhomogeneities. Arch. Rat. Mech. Anal. 27, 1-32 (1967)
22. Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York, USA (1976)
23. Sciarra, G., dell'Isola, F., Ianiro, N., Madeo, A.: A variational deduction of second gradient poroelasticity I: General theory, journal of mechanics of materials and structures. J. Mech. Mater. Struct. 3, 507-526 (2008)
24. Segev, R.: Notes on metric independent analysis of classical fields. Math. Meth. Appl. Sci. 36, 497-566 (2013)
25. Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres - numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027-1059 (2014)
26. Trimarco, C.: A Lagrangian approach to electromagnetic bodies. Tech. Mech. 22, 175-180 (2002)
27. Trimarco, C., Maugin, G.A.: Material mechanics of electromagnetic bodies. In: R. Kienzler, G.A. Maugin (eds.) Configurational Mechanics of Materials, pp. 129-172. Springer, Berlin (2001). CISM Courses and Lectures No. 427, International Centre for Mechanical Sciences

[^0]: S. Federico (corresponding author)

 Dept Mechanical and Manufacturing Engineering
 The University of Calgary
 2500 University Drive NW, Calgary, AB, T2N1N4, Canada
 Tel.: +1-403-220-5790, Fax: +1-403-282-8406
 E-mail: salvatore.federico@ucalgary.ca
 A. Grillo

 DISMA - Dept Mathematical Sciences "G.L. Lagrange"
 Politecnico di Torino
 Corso Duca degli Abruzzi 24, 10124, Torino, Italy

[^1]: Acknowledgements This work was supported in part by Alberta Innovates - Technology Futures (Canada), through the AITF New Faculty Programme [SF], Alberta Innovates - Health Solutions (Canada), through the Sustainability Programme [SF], and the Natural Sciences and Engineering Research Council of Canada, through the NSERC Discovery Programme [SF].

