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Chapter 1

Experimental Modelling of a Web Winding
Machine: LPV Approaches

Jose Vuelvas 1 Fredy Ruiz2 and Carlo Novara 3

This chapter presents the identification of a web winding system as an LPV system
with the reel radius as the time-varying parameter. This system is non-linear, time-
varying and input-output unstable. Two identification methods are considered: In the
first one, an LPV model is estimated in a single step using a novel approach based
on sparse identification and Set Membership optimality evaluation. In the second
one, several local LTI models are identified using classical identification algorithms
and the overall LPV model is constructed as a weighted sum of the local models.
The two methods are applied to experimental data measured on a real web winding
machine.

Keywords—LPV models; Web Winding System; Sparse Identification; Model
interpolation.

1.1 Introduction

Web winding systems are very common in industry, for example, in the production
of materials such as paper, cloth, plastic, wire, sheets and steel. In order to guarantee
integrity and quality standards, automatic control systems are implemented to regu-
late the tension and speed of the material as it is transported from one reel to another,
so that the process is run at the desired time, ensuring that the final product does not
suffer deformations or breaks that may block the process line. One characteristic of
these systems is their time-varying behavior, due to the accumulation of material that
causes variations in the reel radius, resulting in changes in the moment of inertia of
the motor load. That is, these systems have the reel radius as time-varying parameter.

Several approaches to modeling of web winding systems can be found in the
literature. White-box models, based on first principles, are presented in [1–4]. These
models are non-linear, time-varying and input-output unstable. Black-box approaches
have also been proposed, based on different identification techniques. In [5] and [6],
MIMO (multi-input multi-output) LTI (linear time-invariant) models are estimated
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3Politecnico di Torino, Turin, Italy
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by sub-spaces techniques. In [7] a set of MISO (multiple input single output) mod-
els are estimated by instrumental variables methods. Grey-box models, which are a
combination of the two previous types, are developed in [8, 9], where the friction in
each motor is estimated using least squares with data acquired with constant speed.
The moment of inertia of the motors and the gain of the torques are identified using
model fitting techniques.

Due to the nonlinear and time-varying nature of the web winding system, lin-
ear time-invariant control systems do not give in general adequate performances in
terms of disturbance rejection, while gain-scheduling controllers are expected to pro-
vide high performances, since these controllers can effectively deal with nonlinear-
ities and time-varying parameters. This motivates the need of accurate LPV (linear
parameter-varying) models of the web winding system, which may allow the design
of efficient gain-scheduling controllers. Note that, because of the intrinsic system
instability, model identification and validation are quite challenging tasks.

In the literature, several LPV identification techniques have been proposed,
e.g., [10,11]. In parametric approaches, fixed basis of transfer functions are weighted
by non-linear functions of the time-varying parameter. The works [12,13] claim that
the critical step is how to select a priori the basis functions to describe the system
dynamics. An improper selection causes a structural bias. LPV state space-model
identification methods have been proposed in [14, 15]. They allow the estimation
of low-order models but maintain the inconvenient of basis selection. On the other
hand, nonparametric techniques have been proposed in [16–18]. They yield an al-
ternative way to face the bias problem by obtaining nonparametric models directly
from data. For instance, in [19, 20] kernel-based LPV state-space models are identi-
fied. Nevertheless, this method requires an appropriate choice of a kernel in order to
provide a suitable model that explains the nonlinearity of the physical system.

In this chapter, two techniques are employed to estimate LPV models for a lab-
oratory scale web winding machine, extending the results presented in [21]. First,
a unique LPV model is estimated for the complete range of variation of the reel ra-
dius. This model is estimated by means of the Set Membership state-space method
recently proposed in [22], where the matrix coefficients are described by a linear
combination of basis functions. Relevant features of this method are that the ob-
tained model is almost-optimal (in a worst-case sense) and sparse (i.e. the vector
of linear combination coefficients has only a few non-zero elements). Then, a set
of local LTI models are estimated applying Predictor-Based Subspace methods that
allow us to handle closed-loop data, see [23]. Then, an LPV model is obtained as
a weighted sum of local models employing radial basis functions with fixed cen-
ters. The weighting functions depend on the reel radius and the models are selected
minimizing a quadratic criterion solving a convex optimization problem.

The chapter is organized as follows. First, Section 1.2 describes the Sparse
Set Membership Identification method of state-stace LPV systems. Then, the inter-
polated identification of state-space LPV systems is described in Section 1.3. The
experimental setup and a comparison of the results obtained with the two identifica-
tion methods are presented in Section 1.4. Finally, the conclusions of the work are
presented in Section 1.5.
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1.2 Sparse Set Membership identification of state-space LPV
systems

In this section, a variant of the Sparse Set Membership (SSM) approach proposed
in [22] for state-space LPV system identification is described.

Consider a discrete-time LPV system in the following state-space observability
form:

x(k+1) = A(p(k))x(k)+B(p(k))u(k)+Bww(k)
y(k) = Cx(k)+ v(k) (1.1)

A(p(k)) =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

fnx (p(k)) fnx−1 (p(k)) · · · f1 (p(k))


B(p(k)) =

[
fnx+1 (p(k)) · · · f2nx (p(k))

]T
Bw =

[
0 · · · 0 1

]T
C =

[
1 0 · · · 0

]
where x(k) ∈Rnx is the state, u(k) ∈Rnu is the input, y(k) ∈R is the output, p(k) ∈
P⊂Rnp is the time-varying parameter, P is a compact set, w(k) ∈R accounts for all
the process noises acting on the system, v(k) ∈R is a measurement noise, A(p(k)) ,
B(p(k)), Bw and C are matrices/vectors of suitable dimensions, and

fi : Rnp →
{

R, 1≤ i≤ nx,
R1×nu , nx < i≤ 2nx.

We consider here the multi-input-single-output (MISO) case for simplicity of nota-
tion. The generalization to the multi-input-multi-output (MIMO) case is straightfor-
ward, see [22].

Suppose that this system is not known, but a set of input-output data

DS = {u(k) ,y(k) ,p(k)}L
k=1−nx

(1.2)

is available. Then, assume that the noise

d(k) .
= w(k−nx)+ v(k)−

nx

∑
i=1

fi (p(k−nx))v(k− i), (1.3)

accounting for both the noises w(k) and v(k), is unknown but bounded as

‖d‖h ≤ µ (1.4)

where ‖·‖h is a vector `h norm.
In this section, the problem of identifying the system (1.1) from the data set (1.2)

is considered. Note that bound (1.4) on the noise affecting the measurements of y(t)
does not assume any statistical property on d(t), then the method presented here is
valid for data generated in open-loop or in closed-loop.
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Since system (1.1) is univocally defined by the vector-valued function f = [ f1

· · · fn]
T , n .

= (1+nu)nx, its identification can be performed by finding an estimate f̂
of f giving a “small” identification error

E
(

f , f̂
)

.
=
∥∥∥ξ

(
f , f̂
)∥∥∥

q
(1.5)

where

ξ

(
f , f̂
)

.
=
[
ξ

(
f1, f̂1

)
· · · ξ

(
fn, f̂n

)]T

ξ

(
fi, f̂i

)
.
=
∥∥∥ fi− f̂i

∥∥∥
s
,

‖·‖q is a vector `q norm and ‖·‖s is a functional Ls norm evaluated over the set
P⊂ Rnp .

An algorithm for deriving such an estimate is now presented. For simplicity, we
consider here the case where the first nx−1 elements fnx+1, . . . , f2nx−1 of the matrix
B(p(k)) are null. The general case can be treated in a similar way, at the expense of
a more complicated notation. It can be noted that, even supposing null these nx−1
elements, the LPV model structure (1.1) is general enough to capture quite complex
systems, as demonstrated in Section 1.4.1, where identification of a real web winding
machine is carried out.

Let BF .
= {β j : R→ R, j = 1, . . . ,m} be a set of basis functions (guidelines for

the choice of these functions are given in [22]). Define the following quantities:

Y .
= [y(1) · · · y(L)]T

Λi
.
=

 β1 (ρi(1)) · · · βm (ρi(1))
...

. . .
...

β1 (ρi(L)) · · · βm (ρi(L))

 ∈ RL×m

Ψ
.
=

[
φ 1Λ1 · · · φnΛn

]
∈ RL×N

(1.6)

where i = 1, . . . ,n, N .
= nm,

ρi (k)
.
=

{
p(k−nx) , 1≤ i≤ nx
p(k+nx +1− i) , nx < i≤ n

ϕ (k) .
= [y(k−1) · · · y(k−nx) · · ·

u(k−1) · · · u(k−nx)]
T

φi
.
= diag([ϕi (1) · · ·ϕi (L)]),

(1.7)

and ϕi denotes the ith component of the regressor ϕ (k). Note that, while the set BF
consists of m functions, the total number of basis functions actually used for identifi-
cation is N .

= nm. Indeed, in the matrix Ψ, each function of BF is multiplied by each
component of the regressor ϕ (k), and the total number of regressor components is
n = (1+nu)nx.
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SSM algorithm

1. Solve the optimization problem

θ 1 = arg min
θ∈RN

‖θ‖1

subject to ‖Y−Ψ‘θ‖h ≤ µ.
(1.8)

2. Consider the set of indices

ζ
(
θ

1) .
=
{

i ∈ {1,2, . . . ,N} : θ
1
i = 0

}
where θ 1

i are the components of the vector θ 1.
Obtain the coefficient vector θ ∗ as the solution of the following optimization
problem:

θ ∗ = arg min
θ∈RN

‖Y−Ψθ‖h

subject to θi = 0, i ∈ ζ
(
θ 1
)
.

(1.9)

3. Define the coefficients α∗i, j
.
= θ ∗(i−1)m+ j. An estimate of the unknown function f

is given by f ∗ = [ f ∗1 · · · f ∗n ]
T , where

f ∗i (ρ) =
m

∑
j=1

α
∗
i, jβ j (ρ) . (1.10)

4. The resulting LPV model is a system of the form (1.1) with f = f ∗. �

Remark 1: In [22] it is shown that, assuming a Lipschitz continuous residue func-
tions ∆i

.
= fi− f ∗i , i = 1, . . . ,n, the estimate f ∗ is almost-optimal (in a worst-case

sense) for any `q and `h vector norms, and any Ls functional norm. That is,

EW ( f ∗)≤ 2inf
f̂

EW
(

f̂
)

where EW is the worst-case identification error, defined as

EW
(

f̂
)

.
= sup

g∈FFS
E
(

g, f̂
)

and FFS is the Feasible Function Set, i.e. the set of all functions consistent with
prior assumptions and measured data. This shows that the worst-case identification
error of f ∗ is at most twice the lowest achievable one. See [22] for more details and
for a rigorous proof of this result. �

In the reminder of this section, the sparsity properties of the SSM algorithm
and of the resulting estimate f ∗ are briefly discussed. A sparse function is a linear
combination of many basis functions, where the vector of linear combination coef-
ficients is sparse, i.e. it has only a few non-zero elements. The sparsity of a vector
θ is typically measured by the `0 quasi-norm, defined as the number of its non-zero
elements. Sparse identification can thus be performed by looking for a coefficient
vector of the basis function linear combination with a small `0 quasi-norm. How-
ever, the `0 quasi-norm is a non-convex function and its minimization is in general
an NP-hard problem. Two main approaches are commonly adopted to deal with this
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issue: convex relaxation and greedy algorithms. In convex relaxation, a suitable con-
vex function, e.g. the `1 norm, is minimized instead of the `0 quasi-norm [24–26].
Indeed, the `1 norm is the convex envelope of the `0 quasi-norm, and its minimiza-
tion yields a sparse vector. In greedy algorithms, the sparse solution is obtained
iteratively [27].

The above SSM algorithm is essentially an improved `1 algorithm: In step 1, an
optimization problem is solved, where the `0 quasi-norm is replaced by the `1 norm.
The vector θ 1 derived in step 1 is thus sparse and guarantees a bounded prediction
error

∥∥Y−Ψθ 1
∥∥

h. However, θ 1 is not ensured to give the minimum prediction error
among all vectors with the same sparsity. Then, a vector θ ∗ is obtained in step 2,
having the same sparsity of θ 1 and giving minimum prediction error. In [28], a
condition is provided, under which θ ∗ is maximally sparse (i.e. with minimum `0
quasi-norm).

Note that the sparsity property is of high practical interest. Indeed, if θ ∗ is
sparse, the evaluation of f ∗i (ρ) is very “fast” and can be performed in on-line appli-
cations where “small” sampling periods are utilized (e.g. model predictive control,
gain scheduling).

1.3 Interpolated identification of state-space LPV systems

A classic approach to the identification of systems of the form (1.1), is to perform
local experiments guaranteeing constant values of the parameter p(k) = p̄ ∈ R and
then to build an interpolated LPV model. The combination of local models to build
a LPV system is not a trivial task. If common basis are employed in the local iden-
tification step, the structure proposed in [29] can be employed. When state-space
models are estimated, similarity transformations that allow the combination of local
models must be pursuit, see e.g. [30]. The complexity of the aforementioned meth-
ods stems from the fact that a common state vector is required for the local models to
build the interpolation. To avoid this limitation, in this paper, the interpolated model
is constructed as the sum (parallel connection) of local models.

For a given constant value p̄i, the system (1.1) can be expressed as

x(k+1) = A(p̄i)x(k)+B(p̄i)u(k)+Bww(k)
yi(k) = C(p̄i)x(k)+ v(k)

and thus it can be identified using standard estimation techniques for LTI systems.
When it is not possible to maintain a constant parameter p during the experiment,
but fi are smooth functions of p, it can be assumed that the system dynamics remain
almost constant when p belongs to an interval [p, p], where the width of the interval
depends on the smoothness of the functions fi.

The interpolated model generates an output formed by a weighted sum of the
outputs predicted by the local models,

ŷLPV (k) =
l

∑
i=1

αiσi(p(k))yi(k), (1.11)
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where l is the number of local models, αi is a fixed weigthing parameter and σi(p(k))
is an activation function of the time varying parameter p(k).

The concept behind (1.11) is a gain-scheduling structure. The activation func-
tions σi(p(k)) select as global output ŷLPV (k), the output of the local system i, whose
dynamcis behave as system (1.1) for the current parameter p(k).

Given a set of input-output data

DS = {u(k) ,y(k) , p(k)}L
k=1−nx

,

the aim of the procedure presented here is to estimate several local LTI models for
different intervals of the parameter p(k), and then to combine them in order to con-
struct an Interpolated LPV Model (ILM). The algorithm consists of two main parts,
as shown in the following.

ILM algorithm
1) Local model estimation algorithm

• Group the samples in l identification data set as:

DSi =
{

u(k),y(k), p(k) : pi ≤ p(k)< pi

}
, i = 1,2, ...l.

where l is the number of local models.
• Estimate an appropriate order of the local model for each data set DSi and ob-

tain the model matrices Âi, B̂i, Ĉi and noise variances var(w) and var(v). Note
that different orders can be selected for local models as no state combination is
performed in the interpolation. Diverse LTI identification methods can be em-
ployed to estimate local models. For example, when the system is operated in
open-loop, robust subspace algorithms, such as N4SID [31], can be applied.
When closed-loop data are employed, recursive identification techniques can be
exploited [32, 33].

• Obtain the simulated output ŷi(k) for the estimated model as:

ŷi(k) =
k−1

∑
r=0

ĈiÂk−r−1
i B̂iu(r), k = 1, . . . ,L.

2) Interpolation function estimation

• Compute the vector α = [α1 · · · αl ]
T by means of the following quadratic opti-

mization problem:

α∗ = argmin
α∈Rl

∥∥Y− ŶLPV
∥∥

2
subject to 0≤ αi ≤ 1.

where ŶLPV
.
= [ŷLPV (1) · · · ŷLPV (L)]T and

ŷLPV (k) =
l

∑
i=1

αiσi(p(k))ŷi(k)

with

σi(p) = e−βi(p−pc
i )

2
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where pc
i = 0.5(pi + pi) and βi is a fixed parameter. Radial basis functions with

Gaussian form are selected to interpolate the models output, however any radial
basis set can be employed.

• The LPV model is built as a weighted sum of the local models output:

ŷLPV (k) =
l

∑
r=1

α
∗
i σi(p(k))ŷi(k).

�

Remark 2: The order of the complete system is

nILM =
l

∑
r=1

nr.

That is, the sum of the orders (state dimension) of the local LTI models. �

1.4 Web Winding System Identification

1.4.1 The Web Winding System
The considered web winding system is a laboratory scale plant (see Fig. 1.1), where
it is required to transport material at a desired tension and speed, ensuring that the
web (in this case magnetic tape) is not broken or deteriorated. This system includes
the following components:

• Two DC motors with optical encoder (and with angular speeds ω1, ω2) drive the
material, each one connected to a reel.

• An optical encoder coupled to one of the pulleys that guides the web measures
the web transport speed (angular speed ω3),

• A dancer arm system measures the web tension. Its rotation axis is connected to
a linear potentiometer.

• A radius meter for one of the reels (the radius is denoted by r2).

Fig. 1.2 shows a scheme of the plant operation when the web is rolled around
the reel connected to motor 2. The difference between tensions T1 and T2 causes the
transport of the material with a web speed ω3 and a variation of the height h.

The voltages applied to motors 1 (V1) and 2 (V2) are the system input, the ma-
terial transport speed (ω3) is the output of interest, the radius r2 is the time-varying
parameter.

Assuming that the motors 1 and 2 have equal electromechanical characteristics,
that the slip between the tape and bearings is negligible, that the dancer arm moves
vertically only, and that all the fixed axes of the plant have null moment of inertia,



“WWS˙chapter”
2018/11/26
page 9

Running head recto chapter title 9

Figure 1.1 A picture of the web winding system

the system dynamics can be described by the following set of equations:

Ji(t)ω̇i(t) = −Biωi(t)+
kT

Ra
(Vi(t)− kV ωi(t))+ ri(t)Ti(t); i = 1,2 (1.12)

ṙi(t) =
s

2π
ωi(t); i = 1,2 (1.13)

ω̇3(t) =
r3

J3
(T2(t)−T1(t)) (1.14)

Ṫ1(t) = kE(r3ω3(t)− r1(t)ω1(t))+D(r3ω̇3(t)− r1(t)ω̇1(t)− ṙ1(t)ω1(t))(1.15)

Ṫ2(t) = kE(r2(t)ω2(t)− r3ω3(t))+D(r2(t)ω̇2(t)+ ṙ2(t)ω2(t)− r3(t)ω̇3(t))(1.16)

where ωi are the motors speed, Ji are the time-varying moments of inertia of each
motor axis, ri are time-varying radius of the motor loads. The model constant param-

Figure 1.2 A scheme of the web winding system
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eters are the following: Bi are the axis friction coefficients, kT is the motor torque
constant, kV is the motor voltage constant, Ra is the armature resistance, s is the tape
thickness, r3 is the dancer arm radius, J3 is the dancer arm moment of inertia, kE is
the tape elastic constant, D is the tape damping constant.

From (1.12)-(1.16), it can be seen that the web winding system is a quite com-
plex plant, approximately described by a set of 7 non-linear and time-varying dif-
ferential equations. Moreover, the web winding system, by nature, is input-output
unstable [1–4]. Due to these features, linear control systems do not give in general
adequate performances in terms of disturbance rejection. On the contrary, gain-
scheduling controllers are expected to provide high performances, since these con-
trollers can effectively deal with nonlinearities and time-varying parameters. This
motivates the need of accurate LPV models, which can be used to design efficient
gain-scheduling controllers. Note that obtaining an LPV model from equations
(1.12)-(1.16) is not practicable, since these equations involve several uncertain pa-
rameters, which are in general difficult to measure or estimate. Note also that, be-
cause of the intrinsic instability of the system, model identification and validation
are in general quite difficult tasks.

1.4.2 Experiment Description
The web winding system previously described is input-output unstable in open loop,
therefore the identification experiments have been performed in closed-loop. Two
decoupled PID controllers have been used to regulate the web transport speed ω3
and web tension T1 by controlling the dancer arm position θ , see fig. 1.3. These con-
trollers have been tuned experimentally in order to stabilize the plant in the complete
operation range.

Figure 1.3 Control system employed for generating the data sets.

For the system identification process, the signals V1, V2 and ω3 were recorded
with a sample time of 40 ms. It has been observed that the system bandwidth does
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not exceed 10 Hz. Each experiment started with no material on the reel attached to
motor 2 and finished when it reached its maximum capacity. The duration of each
experiment was about 90 seconds (2250 samples).

The input signals for each experiment is formed by a sequence of set-point com-
mands for the two PID loops. Five experiments have been carried out, where differ-
ent set-point signals have been used:

• Pseudorandom binary sequence (PRBS). This signal has a peak amplitude of
3.5 degrees around the set-point for the dancer arm control loop and 21 rad/s for
the web speed control loop. Two experiments, called PRBS1 and PRBS2, have
been performed using a PRBS input signal generated as a 4095-steps random
sequence, the only difference between these two experiments is the realization
of measurement noise and uncontrollable disturbances.

• Random binary sequence (RBS). This signal has a peak amplitude of 5 degrees
around the set-point for the dancer arm control loop and 20 rad/s for the web
speed control loop. The switching time is 10 sample instants, with switching
probability 0.2.

• Sum of sinusoids (SINE). This signal is formed by 20 sinusoids and has a max-
imum amplitude of 8 degrees to the dancer arm control loop and 48 rad/s to the
speed control loop.

• Random Gaussian sequence (RGS): This signal has a peak amplitude of 10 de-
grees around the set-point for the dancer arm control loop and 40 rad/s for the
web speed control loop. It is generated as a white Gaussian sequence filtered by
a low-pass filter with cut-off frequency 1 Hz.

The data set has been partitioned as follows:

• Estimation data set: Data generated in the PRBS1 and RBS experiments.
• Validation data set: Data generated in all the five experiments.

1.4.3 Sparse Set Membership LPV model
Identification of the web winding system has been performed by means of the Sparse
Set Membership (SSM) approach summarized in Section 1.2. The optimization
problems in the SSM algorithm have been solved using the CVX package [34].

The following set of m = 8 basis functions has been used:

BF .
= {1,ρ,ρ2,ρ3,ρ4,ρ−1,ρ−2,ρ−3}.

Model orders nx in the range [1,15] have been considered. For each order, a model
has been identified on the estimation data set by means of the SSM algorithm. The
value of µ has been taken slightly larger than the minimum value for which the
optimization problem (1.8) was feasible (see [22] for more details). The chosen
values of µ resulted to range in the interval [30,40].

The identified models have been compared in simulation on the estimation data
set, and the one with order nx = 13 provided the best results. Note that, while the
set BF consists of m = 8 functions, the total number of basis functions actually used
for the identification of this model is N .

= nm = (1+ nu)nxm = 312. Indeed, each
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function of BF has been multiplied by each regressor to build the matrix Ψ in (1.6),
and the total number of regressors is n = (1+ nu)nx = 39. Among these 312 basis
functions, the SSM algorithm selected 37 functions. A model of order nx = 13, has
thus been chosen and called SSM.

1.4.4 Interpolated LPV model
Identification of the web winding system has been performed by means of the interpolation-
based approach described in Section 1.3. In the case of the web winding machine, it
is not possible to maintain a constant reel radius, but it is known that the web moves
always from motor 1 to motor 2, then r1 and r2 are monotonically decreasing and
increasing functions of time, respectively.

The estimation set DS has been split into l subsets DSi. Each one containing
input and output data corresponding to a radius interval r2 ∈ [pi, pi], forming equally
spaced intervals of the reel radius range. The ILM algorithm has been applied for
several amounts of subsystems in the range [2, . . . ,15]. Note that for l = 15, each
local data set has 150 samples on average.

The Predictor-Based Subspace Identification Toolbox [35] has been employed
for local models estimation. For each data set DSi, an order 4 has been suggested
by the Predictor-Based Subspace Identification Toolbox. For the construction of the
weighting functions, the value of β has been adjusted according to the number of
local models. Centers pc

i of the radial basis functions have been set to the interval
centers (pi + pi)/2. The QP problem has been solved using the CVX package [34].

The identified models have been compared in simulation on the estimation data
set, and the one with l = 3 sub-models provided the best results. Then, an interpo-
lated model of order nILM = 12 has been selected and called ILM.

Finally, a single LTI model has been identified from the estimation set employ-
ing the Predictor-Based Subspace Identification Toolbox [35]. Several orders have
been tried and the model that showed better performance on the estimation set was a
model with n = 6. Thsi model is named LTI in the following.

1.4.5 Model validation and results
The three models identified in the previous subsections have been simulated in open-
loop using as inputs the measured voltages on the validation data sets. Then, the
outputs provided by the models have been compared to the measured output signals.
The FIT index and the relative maximum error (RM) have been used to evaluate the
model quality. These indexes have been computed as

FIT = 100

1−

∥∥∥Ỹ−Ys

∥∥∥
2∥∥∥Ỹ−mean(Ỹ)
∥∥∥

2

 (1.17)

RM = 100

∥∥∥Ỹ−Ys

∥∥∥
∞∥∥∥Ỹ−mean(Ỹ)
∥∥∥

∞

(1.18)
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where Ỹ = [y(1) . . . y(Le)]
T and Ys = [ys(1) . . . ys(Le)]

T are the measured and
simulated output signals, respectively, and Le is the experiment length.

The obtained results are shown in Tables 1.1 and 1.2 for all the five experiments
in the validation set. A comparison between the measured and simulated outputs is
shown in Figs. 1.4, 1.5, 1.6 and 1.7 for four experiments of the validation set. From
these tables and figures, it can be seen that both the LPV models are able to explain
quite accurately data not employed for identification.

Note that the ILM model is formed by three LTI models of the third order,
yielding an overall model of order 12, whereas the SSM model is of order 13. It
is important to remark that some of the 37 basis functions selected by the SSM
algorithm during the identification of the SSM model involve regressors of order 12
and 13, confirming that such orders are necessary to obtain accurate results.

Model PRBS1 PRBS2 RBS1 SINE1 RGS1
SSM 95 93 92 90 90
ILM 86 85 89 83 90
LTI 86 85 89 83 90

Table 1.1 Model FIT indexes on the validation data set.

Model PRBS1 PRBS2 RBS1 SINE1 RGS1
SSM 5 5 6 8 6
ILM 15 15 18 17 8
LTI 86 85 89 83 90

Table 1.2 Model RM errors on the validation data set.

0 10 20 30 40 50 60 70 80
−9

−8

−7

−6

−5

−4

−3

−2

−1

Time [s]

ω
3
 [

ra
d
/s

]

 

 

measured

SSM model

ILM model

Figure 1.4 Experiment PRBS2: comparison between measured and simulated
outputs.
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Figure 1.5 Experiment RBS1: comparison between measured and simulated
outputs.
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Figure 1.6 Experiment SINE1: comparison between measured and simulated
outputs.

1.5 Conclusion

Two methods for the identification of LPV models have been applied to a laboratory
scale web winding machine, describing the web speed dynamics and employing the
reel radius as the time-varying parameter. A unique LPV model in state-space form
has been estimated, where the matrix coefficients are described by a linear combina-
tion of basis functions. The coefficients of the basis expansion have been selected in
order to maximize the model sparsity and to guarantee at the same time its almost-
optimality (in a Set Membership framework). A second model was constructed as
an interpolation of local LTI models, estimated by sub-space methods. Three time-
invariant models have been identified for equally spaced reel radius intervals and a
weighted sum of the LTI models outputs has been formed minimizing a quadratic
criterion. Both the models are able to explain fresh data, not used in the identifica-
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Figure 1.7 Experiment RGS1: comparison between measured and simulated
outputs.

tion phase. Better results have been obtained with the unique LPV model in terms of
FIT coefficient and maximum error, while the interpolated model required a simpler
identification process.
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