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Abstract

The aim of this article is to propose a simple way of describing a tumour as a linear elastic material from a reference
configuration that is continuously evolving in time due to growth and remodelling. The main assumption allowing
this simplification is that the tumour mass is a very ductile material, so that it can only sustain moderate stresses
while the deformation induced by growth, that can actually be quite big, mainly induces a plastic reorganisation of
malignant cells. In mathematical terms this means that the deformation gradient can be split into a volumetric growth
term, a term describing the reorganisation of cells, and a term that can be approximated by means of the linear strain
tensor. A dimensional analysis of the importance of the different terms also allows to introduce a second simplification
consisting of decoupling the equations describing the growth of the tumour mass from those describing the flow of
the interstitial fluid.

Keywords: Growth, Elastoplasticity, Remodelling, Tumour, Natural Configurations.

1. Introduction1

In order to describe growth and mechanical behaviour of tumour masses, several multiphase models have been2

developed under the observation that tumours are made of several constituents, including at least a cellular population3

(that can be classified as belonging either to the tumour or to the host tissue), the interstitial fluid, and the fibrous4

environment constituted by the extracellular matrix (ECM) with all its components, such as collagen, elastin and5

proteoglycans. Such models are capable not only of describing the variation of mass density within the tumour and6

the host tissue, but also of evaluating the evolution of stresses and interstitial pressure, linking the mechanics of7

tumours to their growth and selected interactions with the outer environment. For more details the reader is referred8

to the following reviews [1, 2, 3, 4, 5, 6].9

Most of the models describe the tumour mass as a fluid, which is of course a strong simplification. On the other10

hand, in some cases, it is fundamental to be able to describe it as a solid-like material. The generalisation is not trivial11

at all. In fact, in dealing with the mechanics of tumour growth, one has to take into account that cells duplicate and12

die, the ECM and the external environment are continuously remodelled, and tumour cells are subjected to an internal13

re-organisation and to changes in the adhesion properties, which might also be related to the detachment of metastases.14

All this implies that it is impossible to define a unique natural configuration for the growing mass, leading to difficulties15

in the development of an elasticity theory in standard terms. After some early immature attempts [7, 8, 9, 10], this16

problem was tackled in [11, 12, 13, 14] by applying the concept of evolving natural configurations, which consists17

of splitting the evolution in growth, plastic remodelling, and elastic deformation. However, the application of the full18

theory might result rather cumbersome.19
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The aim of this work is to outline a simplified mathematical setting, derived from the theory of evolving natural20

configurations, that can be used in several biologically relevant problems. The analysis is based on the fact that tumour21

masses, and the soft tissues they live in, are very ductile materials, so that they can only sustain moderate stresses,22

while the deformations induced by growth (that can actually be quite big) mainly induce a plastic reorganisation of23

cells. In mathematical terms, this means that the deformation gradient can be split into a volumetric growth term, a24

term describing the plastic behaviour, and a term that can be approximated by means of the linear strain tensor. This25

leads to a strong simplification of the theory of evolving natural configurations, so that it is possible to describe the26

tumour as a linear elastic material that uses a natural configuration that is continuously changing in time due to growth27

and remodelling.28

Another simplification is made possible by the evaluation of the relative importance of the different terms appear-29

ing in the equations. In fact, since the pressure drops are sufficiently smaller than the Young modulus of the tumour,30

and the characteristic velocity of the interstitial fluid is much larger than the one related to cell duplication, the growth31

problem decouples from the interstitial flow problem in many practical cases, leading to a strong simplification of the32

mathematical models usually employed to describe growing systems.33

2. A Multiphase Model34

For the purposes of this article, a medium comprising three distinct phases is considered and treated as a mixture.35

The three phases represent the cell population, the extracellular matrix (ECM), and the interstitial (or extra-cellular)36

fluid. These are labelled by the subscripts “c”, “m”, and “`”, respectively. The presence of blood and lymphatic37

vessels may be included in the ECM because they can be considered as cross-linked with it.38

The multiphase approach proposed in [15, 16] to describe tumour and tissue growth consists of a set of mass and39

momentum balance equations. Within a purely mechanical framework, and under the assumptions that all phases are40

intrinsically incompressible and external body forces (such as the gravitational force) are negligible, the balance laws41

write42

∂tφα + div(φαvα) = Γα, (1)

∂t(φαvα) + div(φαvα ⊗ vα) =
1
ρα

div
(
T̃α

)
+

1
ρα

(
m̃α + ραΓαvα

)
. (2)

In (1) and (2), and with reference to the αth phase, φα is the volumetric fraction, vα is the velocity, ρα is the true43

volumetric mass density, T̃α is the partial stress tensor, and, finally, Γα and m̃α represent, respectively, the rates at44

which the αth phase exchanges mass and momentum with the other phases. Recently, the action of body forces on45

tumour growth has been investigated in [17].46

In the case of a saturated medium, the constraint
∑
α=c,`,m φα = 1 has to hold. Consequently, summing Eq. (1) over47

all phases yields48

div

 ∑
α=c,`,m

(φαvα)

 =
∑

α=c,`,m

Γα . (3)

As a first step, the early avascular stage of tumour growth is considered. In this case, mass exchange is assumed to49

occur only among the constituents taken into account, the mixture is said to be closed with respect to mass, and one50

can write51

ρcΓc + ρ`Γ` + ρmΓm = 0 . (4)

Note that, if the true mass densities are assumed to be approximately equal to each other, e.g., to the density of water,52

Eq. (4) becomes
∑
α=c,`,m Γα = 0.53

The term m̃α in Eq. (2) contains all forces acting on the αth phase due to its interactions with the other phases. On54

the basis of thermodynamic arguments, it can be shown that it is given by the sum m̃α = m̃α
(d) + p∇φα, where p is the55

pressure of the interstitial fluid, and the summands m̃α
(d) and p∇φα represent the dissipative and the non-dissipative56
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contribution to m̃α, respectively [18]. If the mixture is required to be closed also with respect to momentum, the57

interaction terms m̃α (with α = c, `,m) are constrained to satisfy the condition58 ∑
α=c,`,m

(
m̃α + ραΓα(vα − v)

)
=

∑
α=c,`,m

(
m̃α

(d) + ραΓα(vα − v)
)

= 0 , (5)

where v = ρ−1 ∑
α=c,`,m (φαραvα) is referred to as the mixture velocity, and ρ =

∑
α=c,`,m φαρα is the mass density of59

the mixture as a whole [19]. In Eq. (5), the first equality follows from the saturation condition, which implies that the60

sum over all phases of the non-dissipative terms p∇φα vanishes identically. The dissipative terms m̃α
(d) (α = c, `,m)61

can be expressed as62

m̃α
(d) = −

φαρα
ρ

∑
γ=c,`,m

ργΓγ(vγ − v) + mα , (6)

with
∑
α=c,`,m mα = 0, and mα =

∑
β,α mαβ [19]. Each term mαβ represents the force acting on the αth phase63

due to the βth phase, with α , β. By invoking the action-reaction principle for each interaction pair, it holds that64

mαβ = −mβα.65

In particular, the interaction of the fluid with the other constituents can be given by the following expression:66

m`β = −φ`φβµ
[
K(φ`)

]−1 v`β , β = c,m , (7)

where v`β := v` − vβ is the velocity of the fluid relative to that of the βth constituent (β , `), µ is the viscosity of the67

extra-cellular fluid and K(φ`) is related to the permeability tensor. The classical Kozeny-Carman relation [19, 20, 21]68

for K(φ`) can be recovered by assuming K(φ`) =
[
φ2
`/(1 − φ`)

]
K0, with K0 independent of φ`. However, in many69

practical situations, φ` does not significantly vary, thereby allowing to take K independent of φ`.70

The interaction between the cellular phase and the extracellular matrix is generally more complex than that of the71

fluid with the other constituents. The higher complexity is due, for instance, to the presence of the adhesion forces72

that the cells exchange with the ECM and to the high heterogeneity of this extracellular structure. However, when the73

dissipative nature of cell-matrix interactions can be assumed to be exclusively due to the dynamic friction between74

the two phases, then, within an approximation of the first order in the relative velocity vcm := vc − vm, one can write75

mcm = −Mcmvcm, where the second-order tensor Mcm is taken to be symmetric, positive semi-definite, and such that76

Mcm = Mmc [21]. In general, the tensor Mcm is a function of physical quantities that need not vanish when the relative77

velocity vcm is null.78

The remainder of this article is based on the hypothesis that inertial forces are negligible in the momentum balance79

law of each phase. Therefore, Eq. (2) becomes80

div
(
T̃α

)
+ m̃α = 0 , α = c, `,m. (8)

Moreover, also the contribution
∑
α=c,`,m ραΓα(vα−v) shall be neglected both in (5) and in the expression of m̃α

(d) given81

in (6). Consequently, m̃α
(d) is set approximately equal to mα, i.e., m̃α

(d) ≈ mα, and the closure condition (5) reduces to82 ∑
α=c,`,m mα = 0.83

2.1. Momentum Balance Laws for the Saturated Case84

In a saturated mixture, the partial Cauchy stress associated with the αth phase of the mixture can be written as85

T̃α = −φαpI + Tα, where Tα is referred to as effective (or extra-) stress, and the purely hydrostatic contribution −φαpI86

indicates the amount of pressure sustained by the αth phase (note that, in the present theory, p is a Lagrange multiplier87

rather than a constitutively determined quantity). Using the definitions of T̃α and m̃α given above, Eq. (2) can be88

specialised as:89

− φc∇p + div (Tc) + mcm − φcφ`µ
[
K(φ`)

]−1 vc` = 0, (9a)

− φm∇p + div (Tm) −mcm − φmφ`µ
[
K(φ`)

]−1 vm` = 0, (9b)

− φ`∇p − φ`φcµ
[
K(φ`)

]−1 v`c − φ`φmµ
[
K(φ`)

]−1 v`m = 0, (9c)

with vαβ := vα − vβ = −vβα, for all α, β = c, `,m such that α , β.90
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Coherently with the hypotheses usually made to deduce Darcy’s law, Eq. (9c) is obtained by requiring that the91

extra-stress T` is negligible with respect to the pressure gradient and the interaction forces. It is possible to include92

vessels among the extracellular constituents, which implies a constrained mixture assumption, meaning that the fibre93

network of elastin, collagen and proteoglycans is strongly connected to the vessel network, so that they move together94

with the same velocity. This also implies that the stress tensor Tm includes a further contribution due to the response95

of the vessels to deformations.96

Computing v` explicitly from Eq. (9c), and substituting the result into (9a) and (9b), one obtains97

−
φc

1 − φ`
∇p + div (Tc) + mcm +

φcφ`φm

1 − φ`
µ[K(φ`)]−1vmc = 0, (10a)

−
φm

1 − φ`
∇p + div (Tm) −mcm +

φcφ`φm

1 − φ`
µ[K(φ`)]−1vcm = 0, (10b)

v` =
1

φc + φm

(
φcvc + φmvm −

K(φ`)
µ
∇p

)
, (10c)

where φ` = 1− (φc +φm). Equation (1), written once for α = c and once for α = m, is used to determine the volumetric98

fractions φc and φm, i.e.,99

∂tφc + div(φcvc) = Γc , (11a)
∂tφm + div(φmvm) = Γm , (11b)

whereas Eq. (3) is used to determine the pressure p, and can be rewritten as100

div
(

φ`
1 − φ`

K(φ`)
µ
∇p

)
= div

(
φcvc + φmvm

φc + φm

)
−

∑
α=c,`,m

Γα . (12)

The last term on the right-hand-side of (12) can be dropped if the mass densities of all the phases are equal to each101

other (e.g., to the mass density of water) and the mixture is closed (cf. Eq. (4)).102

2.2. Dimensional Analysis of the Momentum Balance Laws103

To identify the dominant contributions in the momentum equations (10a)–(10c), it is convenient to convert them104

in the non-dimensional form. For this purpose, a generic physical quantity q shall be compared with a reference value105

q̂, which is taken as a positive constant, and its dimensionless counterpart shall be denoted by q∗, so that q = q̂q∗. In106

particular, the lengths are scaled with the typical intercapillary distance d, the mass exchange terms Γα (α = c, `,m)107

with the cell duplication rate Γ̂c ∼ 1 day−1, the permeability K with the constant value K̂, which is compatible with108

experimental data taken from the literature (see Table 1), and pressure with p̂ = ∆p, which is identified with the109

pressure drop between the arterial and the venous/lymphatic system within the tissue. The stress tensors Tc and110

Tm are scaled with the tissue’s Young elastic modulus E (i.e., for instance, one can define the non-dimensional stress111

T∗c = Tc/E). Moreover, the true mass densities of all the phases are taken equal to the reference value ρw = 103 kg/m3,112

which approximately corresponds to the mass density of water, the fluid velocity is scaled with v̂` ∼ 10−7 ÷ 10−6 m/s,113

i.e., the velocity of the interstitial fluid in a porous medium measured in [22], and the velocities of the cell population114

and extracellular matrix are scaled through the cell duplication rate, so that v̂m = v̂c = Γ̂cD, where D is the mean115

cell diameter (all scaling factors used in this paper are reported in Table 1). Note that, setting v̂` = ((K̂/µ)∆p)/d, and116

assigning v̂`, ∆p and d as independent scaling factors, it is possible to estimate the ratio K̂/µ (cf. Table 1). Finally,117

the scaling factor m̂cm, which is associated with the momentum exchange term mcm, is assumed to be equal to the118

ratio E/d. Thus, if mcm is expressed as mcm = −Mcmvcm, the scaling factor associated with Mcm must be equal to119

M̂cm = E/(dΓ̂cD).120

Considering that mcm and the mass exchange rates, say, Γc and Γm, can be assigned constitutively (recall that Γ`121

can be determined univocally by means of Eq. (4) once Γc and Γm are known), Eqs. (10a)–(12) result in a set of twelve122

independent equations in the twenty-four unknowns given (in three dimensions) by the motion of the cell population,123

the motion of the ECM, the fluid velocity v`, the volumetric fractions φc and φm, the pressure p, and the stress tensors124

Tc and Tm. Thus, in order to close the mathematical problem under study, additional information is required to125
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determine the symmetric second-order tensors Tc and Tm. Before addressing this issue, however, it is shown in the126

following how the dimensional analysis of the investigated set of equations leads to a considerable simplification of127

the problem at hand. From here on, it is hypothesised for simplicity that the permeability tensor is spherical, i.e.,128

K = KI, with I being the identity tensor, which means that the tissue’s hydraulic response is isotropic.129

Although there are situations in which pressure and (constitutive) stress are naturally made non-dimensional by130

the same scaling factor, in the case studied in this manuscript, as in other well-established circumstances [23], the most131

natural non-dimensionalisation procedure calls for the introduction of different scaling factors (one for the pressure132

and one for the stress). Therefore, the dimensionless form of (10a)–(10c) can be written as133

div∗
(
T∗c

)
+ m ∗

cm +
∆p
E

[
−

φc

1 − φ`
∇∗p∗ + V

φcφ`φm

1 − φ`

µ∗

K∗(φ`)
v∗mc

]
= 0 , (13a)

div∗
(
T∗m

)
−m ∗

cm +
∆p
E

[
−

φm

1 − φ`
∇∗p∗ + V

φcφ`φm

1 − φ`

µ∗

K∗(φ`)
v∗cm

]
= 0 , (13b)

v∗` = V
φcv∗c + φmv∗m

1 − φ`
−

1
(1 − φ`)

K∗(φ`)
µ∗
∇∗p∗ , (13c)

with V = v̂c/v̂` = (µΓ̂cdD)/(K̂∆p). By substituting the parameters in Table 1, one obtains V = 10−4 ÷ 10−3, meaning134

that the first term on the right-hand-side of (13c) can be regarded as negligible compared to the second one. Further-135

more, in most cases, the ratio ∆p/E has order of magnitude between 10−2 and 10−1. Indeed, ∆p ∼ 1 kPa for normal136

tissues, while, for example, E ∼ 10 kPa for softer fatty regions of the breast and E ∼ 40 kPa for prostatic tissues [24].137

In the case of tumour tissues, ∆p increases up to one order of magnitude because of the leakiness of the capillaries and138

the lack of efficacy of the lymphatic system. However, also the stiffness of the tumour tissue increases of one order139

of magnitude, which means that ∆p usually remains at least one order of magnitude smaller than E. This confirms140

that, also for tumours, ∆p/E ranges approximately between 10−2 and 10−1. Thus, in the case of both tumour and141

healthy tissues, one can try to look for approximate solutions to the set of equations (13a)–(13c) by dropping all terms142

coupling the dynamics of the fluid with the dynamics of the cell population and the ECM. Hence, in dimensional143

form, the simplified set of equations to study becomes144

div(Tc) + mcm = 0 , (14a)
div(Tm) −mcm = 0 , (14b)

v` = −
1

(1 − φ`)
K(φ`)
µ
∇p . (14c)

Equations (14a) and (14b) depend neither on the interstitial pressure nor on the fluid velocity. Therefore, they can be145

solved without taking into account (12) and (14c), whose study is only required for the description of the evolution146

of the interstitial pressure and the fluid velocity, respectively. Consequently, the set of equations (10a)–(12) splits into147

two parts. The first part comprises Eqs. (14a), (14b), (11a) and (11b), with (14a) and (14b) replacing (10a) and (10b),148

respectively. The second part, instead, comprises Eqs. (12) and (14c), which can be solved a posteriori.149

Depending on the actual value of ∆p/E, replacing Eqs. (10a)–(10b) with Eqs. (14a)–(14b) may be quite a strong150

approximation in some cases. More rigorously, one should expand Eqs. (13a)–(13b) in asymptotic series of ∆p/E151

and show that Eqs. (14a) and (14b) supply the conditions that must be satisfied by the terms of the lowest order in152

∆p/E. Thus, the solution to Eqs. (14a)–(14c) may need to be corrected by adding higher order terms, when the ratio153

∆p/E does not fully justify the asymptotic limit. For this reason, in order to evaluate the reliability of the solution154

to Eqs. (14a)–(14c), an a posteriori estimate of the results becomes necessary. This will be done in Section 4 by155

comparing the results obtained by solving (10a)–(12) with those obtained by solving (14a)–(14c) and (11a)–(12).156

3. Stress Tensor157

The scope of this section is to determine a self-consistent evolution law for the Cauchy stress tensor Tc associated158

with the cellular population. For this purpose, it is recalled that a tissue undergoing growth and reorganisation of159
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Table 1: Characteristic biological scaling factors
d [m] ∆p [N/m2] E [N/m2] Γ̂c [s−1] D [m] ρw [kg/m3] v̂` [m/s] v̂c [m/s] K̂/µ [m4/(Ns)]
3 · 10−4 103 ÷ 104 104 ÷ 105 10−5 10−5 103 10−7 ÷ 10−6 10−10 10−15 ÷ 10−13

[25] [26, 27] [24] [28] [28] [22] (10−15 ÷10−12)
[29]

its internal structure generally experiences inelastic distortions. It is possible to keep track of them by decomposing160

multiplicatively the deformation gradient of the cellular population, Fc, as161

Fc = FeFpFg. (15)

In Eq. (15), Fe is the purely elastic contribution to the overall deformation gradient, whereas Fg and Fp represent the162

inelastic distortions related to growth and to the “plastic” reorganisation of the tissue’s internal structure. Note that163

each tensor introduced in (15) is non-singular.164

Equation (15) is known as Bilby-Kröner-Lee decomposition and was firstly introduced in the context of the theory165

of dislocations in finite-strain elastoplasticity. Skalak [30] proposed the idea that growth is accompanied by incom-166

patible deformations and residual stresses. Rodriguez et al. [31] suggested to decompose the deformation gradient167

into an elastic (accommodating) and a growth (inelastic) part. According to the picture put forward by Rajagopal [32],168

the tensors Fg and Fp determine the evolving natural (i.e., stress-free) configurations of a body undergoing inelastic169

processes.170

A consequence of Eq. (15) is that the determinant of the deformation gradient, Jc = det(Fc), can be written as171

Jc = JeJpJg, with Je = det(Fe), Jp = det(Fp) and Jg = det(Fg). In the following, it is assumed that plastic distortions172

are isochoric, i.e., Jp = 1, and that Fg has the form Fg = gI, with I being the identity tensor. Thus, it holds that173

FpFg = gFp, and Jg = g3 [11, 12].174

Due to (15), the velocity gradient associated with the motion of the cells is given by the sum of three contributions:175

Lc = ḞcFc
−1 = Le + Lp + (ġ/g)I. (16)

In Eq. (16), and in the following, a superimposed dot denotes the time derivative following the motion of the cell176

population. Moreover, Le = ḞeFe
−1 and Lp = FeΛpFe

−1, with Λp = ḞpFp
−1, represent, respectively, the elastic and177

plastic part of the velocity gradient, whereas the purely volumetric term (ġ/g)I is the contribution due to growth.178

Since Fp is has unitary determinant, both Lp and Λp are deviatoric.179

Considering the cell population as a quasi-incompressible elastic material [33] exhibiting isotropic behaviour from180

its natural state, and assuming that the strain energy density function Wn, expressed per unit volume of the natural181

state, is of Neo-Hookean type, one can write182

Wn(Be) = 1
2κ0

( √
det(Be) − 1

)2
+ 1

2µ0

(
tr

(
Be

)
− 3

)
. (17)

In (17), Be = FeFe
T is said to be the elastic left Cauchy-Green deformation tensor, and Be = Je

−2/3Be is the modified183

left Cauchy-Green deformation tensor [34], while κ0 and µ0 are, respectively, the bulk and shear modulus measured184

with respect to the natural state of the cell population. The Cauchy stress tensor Tc can be expressed constitutively as185

follows:186

Tc = T̂c(Be) = κ0

( √
det(Be) − 1

)
I + µ0[det(Be)]−5/6dev(Be), (18)

where the operator dev( · ) extracts the deviatoric part of the second-order symmetric tensor to which it is applied, i.e.187

dev(A) = A − 1
3 tr(A)I, for all A ∈ Lin (here, Lin is the space of all linear applications from the three-dimensional188

Euclidean vector space into itself).189

Since Eq. (15) implies that Be = g−2Fc(Fp
−1Fp

−T )Fc
T , the constitutive expressions of the Cauchy stress tensor Tc,190

the elasticity tensor C, and the strain energy density function Wn must be accompanied by equations determining Fc,191

Fp and g. However, the tensor Fc, which is entirely defined by the motion of the cell population, is not an additional192

unknown for the model. Tensors Fp and Fg, instead, must be determined by solving proper evolution equations.193
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The equation determining g can be obtained self-consistently by working out Eq. (11a), see for instance [35, 36].194

Firstly, Eq. (11a) is multiplied by Jc and written in the form ˙Jcφc = JcΓc. Secondly, recalling the equality Jc = JeJg195

(which applies because Jp = 1), one obtains196

(Jeφc)J̇g + Jg
˙(Jeφc) = JcΓc. (19)

Furthermore, since it holds that J̇g = Jgtr(Lg), with Lg = ḞgF−1
g , Eq. (19) becomes197

Jcφctr(Lg) + Jg
˙(Jeφc) = JcΓc. (20)

Thirdly, it is imposed that the rate of mass change of the cell population, Γc, is entirely compensated for by the volume198

change due to growth. This requirement leads to the condition Jcφctr(Lg) = JcΓc, which can be rewritten as199

ġ
g

=
1
3

Γc

φc
, (21)

as well as it constrains the product Jeφc to be constant in time. Thus, by introducing the constant auxiliary quantity200

φcn := Jeφc, which measures the volumetric fraction of the cell population per unit volume of the natural state and is201

assumed to be known from the outset, φc is determined by202

φc = Je
−1φcn = g3 (det(Fc))−1 φcn. (22)

Equation (21), equipped with an initial condition, determines g univocally, provided that Γc is given constitutively. An203

alternative form of the evolution equation for g can be obtained by substituting (22) into (21).204

Following the standard theory of isotropic elasto-plastic materials, it can be shown that sym(Λp) can be related to205

stress by means of an expression of the type206

sym(Λp) = λFe
T dev(Tc)Fe

−T , (23)

where λ is a non-negative scalar function, see, e.g., [37]. It should be remarked that the constitutive form of Tc207

guarantees that the right-hand-side of Eq. (23) is a symmetric second-order tensor. Furthermore, it can be proven that,208

if the plastic spin, skew(Λp), is assumed to vanish identically, Eq. (23) can be equivalently rewritten as209

Lp = sym(Lp) = λ dev(Tc). (24)

By exploiting the kinematic relation Λp = ḞpFp
−1, and using the result (23) and the assumption skew(Λp) = 0, the210

following evolution equation for Fp can be written:211

Ḟp = λ
[
Fp
−T

(
Fc

T dev(Tc)Fc
−T

)
Fp

T
]

Fp. (25)

In Eqs. (23)–(25), the function λ is defined as in [39, 40]212

λ(φc,T′c) =
1

2η(φc)

[
1 −

τ(φc)
f (T′c)

]
+

, (26)

where T′c ≡ dev(Tc) denotes the deviatoric part of the Cauchy stress tensor Tc, τ(φc) is the maximum stress that can be213

sustained by the cell aggregate (this stress is referred to as yield stress), f (T′c) defines a proper measure of equivalent214

stress, and η(φc) (with units [η(φc)] = (Ns)/m2) is a function assigned phenomenologically.215

By means of some algebraic calculations [34, 38], a given constitutive law Tc = T̂c(Be) can be rewritten in differ-216

ential form as follows217

Ṫc − LcTc − TcLc
T + tr(Lc)Tc = C : (Dc − Dd) − LdTc − TcLd

T + tr(Ld)Tc, (27)

with Dc = sym(Lc), Ld = Lp + ġg−1I, and Dd = sym(Ld). The left-hand-side of Eq. (27) is referred to as the Truesdell218

rate of the Cauchy stress [34], and it is defined by Jc
−1Lvc (JcTc), where Lvc is the Lie-derivative operator following219
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vc (given a second-order tensor A, Lvc A can be computed as Lvc A = Fc
˙(Fc

−1AFc
−T )Fc

T ). The fourth-order tensor C220

is the spatial elasticity tensor, i.e., the push-forward of the elasticity tensor Cn = 4(∂2Wn/∂C2
e) associated with the221

natural configuration, and is defined by JeC = Fe ⊗Fe :Cn : FT
e ⊗FT

e . For any pair of second-order tensors A and B,222

the product A⊗B has components (A⊗B)abcd = AacBbd. Note that, to compute Cn, the strain energy density Wn has223

been reformulated as a function of the elastic right Cauchy-Green deformation tensor Ce = Fe
T Fe. For the specific224

form of Wn given in (17), C becomes225

C = − 2
3µ0Je

−5/3[Be ⊗ I + I ⊗ Be] +
(
κ0 + 8

9µ0Je
−5/3tr(Be)

)
I ⊗ I (28)

+
(
2κ0(Je − 1) − 2

3µ0Je
−5/3tr(Be)

)
(I ⊗ I − I⊗ I),

where the symbol ⊗ denotes the standard tensor product, and the fourth-order tensor I⊗ I, which has components226

(I⊗ I)abcd = 1
2 (IacIbd + IadIbc), is such that (I⊗ I) : A = sym(A), for all second-order tensors A ∈ Lin, with sym( · )227

being the operator that extracts the symmetric part of the second-order tensor to which it is applied.228

By using the constitutive expression of C given in Eq. (28), taking the deviatoric part of both sides of Eq. (27),229

and performing some algebraic manipulations that involve the relation reported in Eq. (21), one obtains230

Ṫ′c +

(
5
3

div(vc) −
Γc

φc

)
T′c + 2µ0

(
φc

φcn

)5/3

devsym
(
LpBe

)
= 2µ0

(
φc

φcn

)5/3

devsym((∇vc)Be) . (29)

Equivalently, substituting Lp with the right-hand-side of Eq. (24) leads to231

Ṫ′c +

(
5
3

div(vc) −
Γc

φc

)
T′c + 2µ0λ(φcT′c)

(
φc

φcn

)5/3

devsym
(
T′cBe

)
= 2µ0

(
φc

φcn

)5/3

devsym((∇vc)Be) . (30)

In (29) and (30), the operator devsym( · ) extracts the deviatoric part of the symmetric part of the second-order tensor232

to which it is applied.233

Equation (30) can be simplified considerably by assuming that the elastic part of the overall deformation gradient234

is small enough throughout the evolution of the system. The experiments reported in [41] give an indication of the235

order of magnitude of the yield stress, that depends on φc, and is below 1 Pa (for φc = 0.6, the maximum volume ratio236

tested).237

In the limit of small elastic deformations, i.e., Be ≈ I, Eq. (30) acquires the simplified form238

Ṫ′c +

(
5
3

div(vc) −
Γc

φc

)
T′c + 2µ0λ(φcT′c)

(
φc

φcn

)5/3
T′c = 2µ0

(
φc

φcn

)5/3
devsym(∇vc) , (31)

with Ṫ′c = ∂tT′c + (∇T′c)vc. Equation (31), equipped with appropriate initial and boundary conditions, determines239

completely the evolution of T′c within the approximation of small elastic deformations. Working with (31) permits240

to regard T′c as an independent (tensorial) unknown, whose determination involves the knowledge of the velocity241

vc (rather than the motion of the cellular phase) and the volumetric fractions φc and φm, which can be found by242

solving (11a) and (11b). In particular, there are two main advantages of expressing the constitutive law for the Cauchy243

stress in differential form. The first one is that the whole system of equations can be formulated and solved in Eulerian244

formalism, i.e., without having to define a reference configuration. The second advantage is that, by formulating the245

constitutive law for the stress in differential form, the evolution equations (21) and (25) are already included in (31).246

Thus, (21) and (25) need not be explicitly considered in the global system of equations, and can be used a posteriori247

to determine g and Fp, if required. Moreover, the partial differential equation (31) offers a formal analogy between the248

elasto-plastic model presented in this paper and some viscoelastic constitutive models available in the literature, such249

as the Maxwell’s model. In principle, a result analogue to Eq. (31) can be obtained for T′m.250

The function λ in Eq. (31) plays the role of a stress relaxation term, which is activated as soon as the stress is251

above the yield stress τ(φc). In principle, the limit in which
[
λ(φc,T′c)

]−1 is much larger than the characteristic time252

of the process of interest would lead to the models used in [7, 8, 9, 10]. However, in this case, the procedure is253

incompatible with the small deformation assumption because the stress relaxes very slowly and, thus, large stresses254

and deformations can build up.255
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4. The Case of Rigid and Inert ECM and Small Elastic Deformations of the Cellular Phase256

Several simplifications can be obtained by assuming that mcm can be expressed as mcm = −Mcm(vc − vm), with257

Mcm = McmI being a spherical tensor, and studying the case in which the ECM is assumed to be rigid and at rest258

(i.e., vm = 0), and inert. Requiring the ECM to be inert means that the ECM does not exchange mass with the other259

constituents, so that the condition Γm = 0 applies. The first consequence of this condition is that Eq. (4) reduces260

to Γ` = −(ρc/ρ`)Γc, this implying that, in a closed system, the mass exchange rate of the fluid phase Γ` is entirely261

determined by Γc and the (constant) ratio ρc/ρ`. The second consequence is that the volumetric fraction of the ECM,262

φm, is constant in time. Indeed, setting Γm = 0, and recalling the condition vm = 0, the mass balance law associated263

with the ECM becomes ∂tφm = 0 (cf. (11b)), which yields φm(x, t) = φm0(x), with φm0(x) being known from the264

outset. The third consequence is that the volumetric fraction of the fluid phase can be expressed as φ` = 1− (φc +φm0).265

Furthermore, the momentum balance law (10a), the mass balance law (11a), and Eqs. (12) and (10c) can be put in the266

following form:267

vc = −
φc

Q(φc)
∇p +

φc + φm0

Q(φc)
div(Tc) , (32a)

∂tφc + div(φcvc) = Γc , (32b)

div
(

1 − (φc + φm0)
φc + φm0

K
µ
∇p

)
= div

(
φc

φc + φm0
vc

)
−

(
1 −

ρc

ρ`

)
Γc, (32c)

v` = −
1

φc + φm0

(
φ2

c

Q(φc)
+

K
µ

)
∇p +

φc

Q(φc)
div(Tc) , (32d)

where the auxiliary function Q(φc) is defined by268

Q(φc) := (φc + φm0)Mcm + φcφm0(1 − φc − φm0)
µ

K
, (33)

and, for consistency with Eq. (7), Mcm is taken as Mcm = φcφm0M(0)
cm, with M(0)

cm being a given constant. Note that, if269

the mass densities of the cellular phase, ρc, and of the fluid, ρ`, are approximately equal to each other, the last term on270

the right-hand-side of Eq. (32c) can be neglected.271

Since the ECM is rigid in the present formulation, the stress tensor Tm becomes constitutively indeterminate, and272

only its divergence, div(Tm), is determined univocally by the force balance273

div(Tm) = ∇p − div(Tc) , (34)

which is obtained by adding together Eqs. (10a) and (10b). This means that (34) is decoupled from (32a)–(32d),274

and div(Tm) can be computed a posteriori once ∇p and div(Tc) are known. Finally, since v` features only on the275

left-hand-side of (32d), it is decoupled from Eqs. (32a)–(32c), and can thus be determined a posteriori too.276

To close the mathematical problem, Tc has to be expressed constitutively, as done, e.g., in (18). This requires,277

however, to consider also the evolution equations for g and Fp, given by (21) and (25), respectively, in addition to278

the already introduced model equations. Consequently, the effective unknowns of the problem are fourteen (in three279

dimensions) and are given by the three components of the motion of the cellular phase, the volumetric fraction φc, the280

pressure p, the scalar field g, and the unimodular tensor field Fp (recall that, due to the constraint det(Fp) = 1, only281

eight of the nine components of Fp can be independent).282

4.1. The reduced and the unreduced model283

In conclusion, the conditions of rigid, immobile, and inert ECM lead to a highly non-linear, closed mathematical284

model based on Eqs. (32a)–(32c), (18), (21) and (25). Such a model can be further drastically simplified, if the285

hypothesis of small elastic deformations is invoked. Indeed, by expressing the Cauchy stress Tc as286

Tc = κ0tr(Ee)I + T′c , (35)

where Ee is the elastic strain tensor, the deviatoric part T′c plays the role of an independent tensorial variable involving287

(in three dimensions, and due to the condition tr(T′c) = 0) only five independent scalar unknowns, and the spherical288
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contribution κ0tr(Ee)I is determined by κ0tr(Ee)I = κ0(φcn/φc − 1)I. The latter equality is obtained by recalling that,289

from (22), the ratio φcn/φc is equal to Je, and that Je can be approximated as Je ∼ 1 + tr(Ee) in the limit Ee → 0.290

Moreover, if Γc is assumed to be independent on g and Fp, neither the growth term g, nor the remodelling tensor291

Fp, appear explicitly in (31), so that Eqs. (21) and (25) can be solved a posteriori. By virtue of this reasoning, and292

within the range of validity of the hypotheses introduced so far, the mathematical model requires the solution of the293

ten coupled equations (32a)–(32c) and (31), which are needed to determine the ten independent unknowns vc, φc, p294

and T′c. An important consequence of this approach is that vc is used as an independent vector variable, in place of295

the three components of the motion of the cellular phase.296

In view of the Finite Element (FE) analysis of Eqs. (32a)–(32c) and (31), it should be remarked that, since the297

independent components of T′c are regarded as degrees of freedom in the present dissertation, suitable FE functional298

spaces have to be introduced to interpolate T′c over a given computational domain. Furthermore, in contrast to standard299

FE methods, in which the stress is usually evaluated at the integration points of the finite elements, T′c is computed at300

the nodes of the elements in the present formulation.301

It is worth to mention that, by taking κ0 and φcn as model constants and Γc as a function of φc, and rewriting vc as302

vc = −D(φc)∇φc + wc = −

(
κ0φcn

φ2
c

φc + φm0

Q(φc)

)
︸               ︷︷               ︸

:=D(φc)

∇φc +

(
−

φc

Q(φc)
∇p +

φc + φm0

Q(φc)
div(T′c)

)
︸                                     ︷︷                                     ︸

:=wc

, (36)

the mass balance law (32b) can be recast in the form of a non-linear advection-diffusion-reaction equation in the303

variable φc:304

∂tφc = div
(
κ0φcn

φc

φc + φm0

Q(φc)
∇φc

)
+ div

[
φc

(
φc

Q(φc)
∇p −

φc + φm0

Q(φc)
div(T′c)

)]
+ Γc(φc). (37)

Indeed, since κ0 and Q(φc) are positive, and also so are also φc, φcn and φm0, the coefficient D(φc) is positive definite305

and can be identified with a non-linear diffusion coefficient. The auxiliary velocity wc is instead responsible for306

advection, and Γc(φc) is a non-linear reaction term.307

Finally, by performing the dimensional analysis discussed in Section 2.2 to Eqs. (32a)–(32c) and (31), and noticing308

that only Eq. (32a) involves the ratio ∆p/E, one can conclude that, when the ratio ∆p/E is sufficiently small, the309

expression of vc simplifies as follows310

vc =
1

Mcm

(
∇

(
κ0
φcn

φc

)
+ div(T′c)

)
, (38)

and the mathematical model further reduces to Eqs. (38), (32b), and (31), whereas the equations pertaining to the311

fluid phase, i.e. (32c) and (32d), become decoupled from the former ones and can thus be solved independently a312

posteriori.313

In the following, the set of equations (32a)–(32c) and (31) shall be referred to as the unreduced model, whereas314

Eqs. (32b), (31) and (38) (with the latter one replacing Eq. (32a)) as reduced model.315

4.2. A Benchmark Problem: The Uniaxial Expansion Test316

To test the mathematical model introduced in the previous sections and, above all, to compare the results obtained317

by the reduced model with those of the unreduced one, a benchmark problem is studied hereafter. The problem318

considers the evolution of a biological portion of tissue confined in a fixed region of space Ω = [−h/2, h/2]2 × [0, L],319

with h > 0 and L > 0. The boundary of Ω, ∂Ω, is assumed to be rigid. Moreover, only ∂Ωper = [−h/2, h/2]2 × {L}320

allows exudation of the interstitial fluid, while ∂Ω\∂Ωper is impermeable. Cancer cells, which undergo abnormal321

growth, occupy at time t ∈ R+
0 the time-dependent region ωt ⊂ Ω defined by ωt = {x ∈ Ω | H (ζ(x, t)) > 0},322

where H( · ) is a mollified Heaviside function, and ζ is a level set function introduced to instantaneously separate the323

subregion of tissue in which growth occurs from the rest of the tissue.324

As stated in Section 3, growth is described by purely volumetric inelastic distortions, while the distortions due325

to remodelling are taken to be isochoric, so that Eqs. (21) and (24) hold. The mass exchange rate Γc is chosen as326
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Γc(φc) = γcφc
[
φmax − φc

]
+ H(ζ), where γc is a phenomenological coefficient, φmax ≤ 1 is the maximal volumetric327

fraction attainable by the cell population, and [f]+ returns f, if f is positive, and zero otherwise.328

Consistently with what prescribed by Eq. (26), remodelling is triggered only in those regions of the tissue in which329

f (T′c) exceeds the yield stress, i.e., f (T′c) > τ(φc). In the case of theories based on von Mises’ equivalent stress, f is330

chosen as f (T′c) =
√

(3/2)‖T′c‖ =
√

(3/2)tr(T′cT′c) [42], whereas f is defined by331

2 f (T′c) = max {|σ1 − σ2|, |σ1 − σ3|, |σ2 − σ3|} , (39)

with {σi}
3
i=1 being the principal stresses, in the case of theories based on Tresca’s equivalent stress. In the present332

treatment, however, the function f is simply given by f (T′c) = |T ′cxx|, where T ′cxx is the axial component of the333

deviatoric part of Tc. Although |T ′cxx| does not necessarily represent an equivalent stress, setting f (T′c) = |T ′cxx| has the334

advantage that the yield criterium, i.e., the condition |T ′cxx| > τ(φc), to be met for triggering plastic (i.e., remodelling)335

distortions, does not require the knowledge of the transversal components of the stress.336

As previously discussed, by considering the case in which the extracellular matrix is inert (Γm = 0), homogeneous337

(φm0(x) = φm0, with φm0 being a model constant), rigid and immobile (vm(x, t) = 0), and assuming that the elastic338

deformations of the cellular phase are small, the evolution of the system is represented by Eqs. (32a)–(32c), (31), and339

a proper equation representing the evolution of the level set function ζ, i.e.,340

∂tζ + ∇ζ · vc = 0 , (40a)
ζ(x, 0) = ζ0(x). (40b)

The problem can be strongly simplified by assuming ζ0(x) = ζ0(x) and vc(x, t) = vcx(x, t)ex, with x ∈ [0, L], and341

ex being the unit vector along the axial direction of Ω (normal to its cross section), and exploiting the fact that T′c342

is diagonal. Therefore, the effective unknowns characterising the unreduced model are six and are given by vcx, φc,343

p, T ′cxx, T ′cyy, and the level set function ζ. Moreover, the particularly simple choice of the function f (T′c) = |T ′cxx|344

decouples Eq. (31), written for T ′cyy, from the rest of the system of equations. This allows to eliminate T ′cyy from the345

list of the effective unknowns of the unreduced model.346

By invoking the same hypotheses as above also for the case of the reduced model, the effective unknowns become347

vcx, φc and T ′cxx, while p, together with all other quantities pertaining to the fluid phase, can be computed a posteriori.348

In order to solve the problem, proper boundary conditions should be provided. In particular, the velocity of the349

solid phase should vanish at both x = 0 and x = L, since the border of the domain is rigid. This leads to the constraints350

∂xT ′cxx|x=0,L = 0 and ∂xφc|x=0,L = 0. On the other hand, for what concerns the calculation of the pressure, the boundary351

conditions ∂x p|x=0 = 0 (impermeable wall) and p|x=L = 0 (permeable wall) are imposed.352

Fig. 1 shows a comparison between the results obtained for the cell volume fraction, φc, the component T ′cxx of353

the deviatoric part of the cellular stress tensor, the constitutive part of the normal stress along the x-direction, Tcxx,354

and the pressure p, obtained by employing both the reduced model (solid lines) and the unreduced model (dots). The355

results almost overlap in the first instant of time. However, some slight differences are perceivable only for very long356

times, mostly in the pressure field (see Fig. 1-d), and mainly due to its smallness.357

From Fig. 1-a, it is clear that the tumour mass located in the right-region of the tissue grows and expands, so that358

the healthy tissue, that does not experience growth, is compressed (see Fig. 1-c). For the particular case shown in359

Fig. 1, remodelling is not triggered for the chosen value of τ(φc), since |T ′cxx| is always smaller than the yield stress.360

Moreover, it is possible to see from Fig. 1-d that the pressure drop in the tissue is very small compared with the elastic361

modulus of the tissue (E = 0.02 MPa): indeed, the assumptions needed for decoupling the model are satisfied.362

The reduced model proposed in this paper also allows to study the effects of remodelling on the tissue. In particular363

the results obtained for φc and T ′cxx using the reduced model are reported in Fig. 2, where the solid blue line refers364

to the case in which remodelling occurs (τ(φc) = τ0 = 0.0025 MPa), and the red dashed lines to the case in which365

remodelling is not triggered, with τ(φc) = τ0 unrealistically set to 25 MPa. The unreduced model leads to similar366

results. As it is possible to see in Fig. 2, remodelling starts when |T ′cxx| > τ0 and it has the effect of limiting the367

magnitude of |T ′cxx| to a value slightly bigger than τ0 (because of the particular chosen remodelling criterion), see368

Fig. 2-b. Moreover, as it is possible to notice in Fig. 2-a, the effect of remodelling is also to redistribute the volumetric369

fraction of the cellular phase in the whole region, reducing the amplitude of the discontinuity in φc between the370

proliferative and the non-proliferative region.371
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Figure 1: Comparison of the results obtained in terms of (a) φc, (b) T ′cxx, (c) Tcxx and (d) p for the uniaxial expansion test, solving the unreduced
problem (dots) and the reduced problem (solid lines) when remodelling does not occur. Simulation parameter setting: κ0 = 0.667 MPa, µ0 =

0.019 MPa, φcn = 0.5, φmax = 0.65, γc = 1/24 h−1, χ = µ0/η = 0.1 h−1, τ(φc) = τ0 = 25 MPa, µ = 1 cP, K/µ = 10−12 m4/(Ns) and M(0)
cm =

104 (MPa s)/mm2. At time t = 0, the initial configuration of the tumour is given by ω0 = {x ∈ Ω | H (xT − x) > 0}, with xT = 2.5 mm.

5. Conclusions372

In this work, a reduced model has been proposed, which has been derived from the theory of evolving natural373

configurations. Such reduced model is applicable whenever the assumptions discussed in Sections 2.2, 3 and 4.1 hold.374

The two principal facts, on which the reduced model relies, are: (i) that many living tissues can sustain only moderate375

elastic deformations, so that the elastic part of the deformation gradient can be approximated by means of the linear376

strain tensor; (ii) that, as shown by some experimental results, the typical pressure drops ∆p are smaller than the377

Young modulus of the tumour, and the characteristic velocity related to cell duplication is much smaller than the one378

of the interstitial fluid. These biological observations allow to decouple the growth problem from the interstitial flow379

one, and lead to a strong simplification of the mathematical description. The analytical speculation is confirmed by380

the numerical simulations.381

In conclusion, this work demonstrates that, in many relevant biological problems, the equations describing the382

theory of evolving natural configurations strongly simplifies, becoming easily manageable without much loss of ac-383

curacy.384
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Figure 2: Comparison at different time instants of time, between (a) φc and (b) T ′cxx in the absence of remodelling (red dashed lines) and in the
presence of remodelling (blue solid lines). The results are obtained solving the reduced problem. Solving the unreduced problem leads to similar
results. The yield stress is equal to τ(φc) = τ0 = 25 MPa in the case in which no remodelling occurs, whereas it is τ(φc) = τ0 = 0.0025 MPa in the
simulations with remodelling. All the other parameters are the same as in Fig. 1.
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