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Abstract

Fault tolerant controllers based on the Continuous Twisting Algorithm (CTA)

of order two and three are designed for a three-degree-of-freedom (3-DoF) heli-

copter prototype. Detection and isolation of actuator’s faults (DC motors) are

carried out by means of residual-based equations and exploiting a third-order

sliding mode differentiator. Moreover, intermittent and persistent faults in the

actuation system are induced by software to verify the effectiveness of the pro-

posed procedure, which detects and isolates these failures. A comparison with

respect to a classic observer-based FDI procedure is given to highlight the perfor-

mance of the proposed method. Finally, simulations and real-time experiments

confirm that CTA-based controllers counteract additive faults. Filtering signals

obtained by residual equations is suggested in order to mitigate the effects of

noises and fast-parasitic dynamics on the FDI procedure.
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control.
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1. Introduction

In the last decade, for improving the safety of industrial and mechanical

process, researchers focused the attention on fault tolerant controllers (FTCs).

The main objective of this paper is to provide a robust controller, able to mit-

igate consequences of faults in the actuators of a 3-DoF helicopter prototype,5

manufactured by the Quanser Company [1]. As well known, sliding-mode con-

trollers (SMCs) drive the system trajectories to the equilibrium point even in

presence of matched perturbations [2]. Robust stabilization of the helicopter

dynamics were provided via discontinuous sliding-mode controllers in [3, 4, 5].

However, discontinuous inputs deteriorate the DC motors and power supplies10

used for control of the 3-DoF helicopter prototype.

Continuous sliding mode controllers were implemented in the 3-DoF helicopter

prototype to avoid the problems of discontinuous control signals mentioned

above. In [6], an adaptive Super-Twisting controller with growing gains was

used to mitigate the perturbations in simulations and real-time experiments.15

However, bi

when the perturbations are decreasing the controller gains are keeping big

values, causing high energy consumption due to the presence of unmodeled

dynamics, [7]. Robust tracking via continuous sliding-mode controllers was

achieved with real-time experiments in [8, 9]. However, taking into account20

second-order sliding mode controllers, they can not ensure the best possible

tracking and estimation accuracy, [10].

As proposed in [11], FDI techniques can be divided in three categories: (i)

knowledge-based approach, (ii) signal processing-based approach, and (iii) an-

alytical model-based approach. The first of these techniques strongly depends25

on the experience of the control operator. For example, the expert system can

use a combination of object-oriented modeling [12] or logic-based approach as

in [13]. The second approach is based on the idea of hardware redundancy, this

means that several sensors measuring the same data are installed on-board to

characterize the faults, as usually done off-line in power systems for instance.30
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Drawbacks of this approach are related to need of several measurements with-

out ensuring real-time detection of faults in some cases. To obtain measurement

redundancy, extra sensors are required but this causes an increase of the system

cost. The model-based methods of fault detection were developed by using input

and output signals and applying dynamic process models [14, 15]. The interest35

on this third approach is increased in the last years due to the improvement

on modeling techniques [16]. In details, as presented in [17], these methods are

based, e.g., on parameter estimation, parity equations or state observers. The

faults are also evaluated by means of tri-valued and fuzzy information system

approaches (see more details in [18, 19, 20, 21, 22]). Fault diagnosis is typically40

achieved by combining a residual generator and a residual evaluation strategy

to provide logical statements on whether faults have occurred. Marzat et al.

[23] presented a survey of model-based fault diagnosis, which summarizes on

those methods that are applicable to aerospace systems. The authors of [24]

show how SMCs can be exploited for fault detection (specifically fault signal45

estimation) and subsequently fault tolerant control, including an aerospace ap-

plication. Combinations of the SMCs and sliding-mode observers/differentiators

(SMDs) are considered in [25, 26, 27, 28, 29], these algorithms are designed to

detect on-line and reconstruct the faults, ensuring a tolerance to a wide class of

additive failures.50

Recently, FDI results for the 3-DoF helicopter prototype were reported in

[30] where the usage of residual-based equations is suggested. The scheme is

based on a linear observer and the reconstruction of the acceleration through a

sliding mode differentiator. The well-known Super-Twisting Algorithm (STA)

[31] is used to steer the system states to erroneously estimated trajectories (due55

to unknown inputs (faults) affecting observer’s error).

On the other hand, controllers based on the Super-Twisting Algorithm (STA)

[31] and the Continuous Twisting Algorithm (CTA) [32] are developed in [33] to

reach sliding surfaces of relative degree one and two. A FDI procedure based on

sliding-mode differentiators is given and tested by simulations only. Moreover,60

they can not ensure the best possible accuracy taking into account the dynamics
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of motors [7].

In this paper, FTCs based on the recently developed Continuous Twisting Al-

gorithm (CTA) [32, 34] are designed, ensuring acceptable performance of the

helicopter in presence of faults in the motors. Residual-based equations are65

constructed in order to detect and isolate the faults by using SMDs, [35]. A

comparison with respect a classic observer-based FDI procedure is given to

highlight the advantages of proposal. This paper is focused on fault detection

and isolation in the motors of a 3-DoF Helicopter prototype using residual equa-

tions, that are constructed from the systems model, the measurements of inputs70

and the outputs (and its time-derivatives). Sensor faults can be detected in sys-

tems with redundancy of measurements as proposed by [24]. However, there are

only one sensor installed in the helicopter prototype for each degree of freedom.

Then, it is not possible to construct residuals in order to detect sensors faults

with the available hardware, [25].75

1.1. Main contributions

In this paper, the CTA is used to ensure robust stabilization of a 3-DoF

helicopter prototype in presence of actuator faults. With this approach,

1. A residual-based FDI procedure is given using the available information,

i.e. the output, and some of its derivatives, which are provided in finite-80

time by a robust sliding-mode differentiator.

2. Tuning rules for thresholds allowing the adjustment of model’s parameters.

The effectiveness of our proposal is tested both with extensive simulations and

on the experimental setup.

1.2. Structure of the Paper85

In Section 2 the model of the 3-DoF helicopter prototype is presented. FTCs,

based on the Continuous Twisting algorithm, are developed in Section 3. The

high-order SMD and the residual-based equations are given in Section 4. Simu-

lation results are shown in Section 5. A comparison with a classic observer-based
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Figure 1: Free-body diagram of the 3-DoF helicopter prototype.

FDI procedure is proposed in Section 6. Experimental results are reported in90

Section 7. Finally, Section 8 summarizes the conclusions of the paper.

2. System Description and Problem Statement

2.1. Mathematical model of the 3-DoF helicopter prototype

The 3-DoF helicopter prototype consists of an arm with two DC motors,

mounted at one of the frame end. A counterweight mass is in the opposite

side of the frame. The DC motors provide the lift forces Ff and Fb (which

are assumed proportional to the voltage Vf and Vb, respectively). The system

can rotate freely about three axes: elevation angle ε, pitch angle ρ and travel

angle θ, as shown in Fig. 1. The model of the 3-DoF helicopter is given by the

second-order differential equations [1],

ε̈ =
1

Jε

(
KfLa cos(ρ)

(
Vf + Vb

)
+ g cos(ε)

(
MwLw −MhLa

))
, (1a)

ρ̈ =
KfLh
Jρ

(
Vf − Vb

)
, (1b)

θ̈ = −KfLa
Jθ

sin (ρ)
(
Vf + Vb

)
, (1c)
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where Jε, Jρ, Jθ are the moments of inertia about the elevation, pitch and travel

axes, respectively. La is the distance from the travel axis to the helicopter body,95

Lh is the distance from the pitch axis to any of the motors. Mh is the total mass

of the helicopter body, Mw is the mass of the counterweight, Lw is the distance

from the travel axis to the counterweight, and g is the gravity acceleration. Kf

represents the ratio between the lift forces Ff , Fb, and the voltages Vf , Vb. In

addition, friction and aerodynamics drag effects are neglected. The position of100

the helicopter body is given by the elevation ε, pitch ρ and travel θ angles. The

workspace1 is summarized in Table 1. Also, the operating voltage of the DC

motors in the propellers is included in Table 1. Values of the model parameters

are in Table 2. The states (ε,ρ,θ) are the only measurements of the system

available for control.105

2.2. Definition of Faults

Faults in motors of the 3-DoF helicopter can be caused by several factors,

such as overheating, short circuit, mechanical wear and discrepancies in power

supplies and control stages, to mention a few. In this paper a fault in the front

1The workspace of the 3-DoF helicopter prototype is the total volume swept out by the

helicopter body as the propellers execute all possible motions.

Table 1: Variables of the 3-DoF Helicopter

Variable Interval Unit Description

ε [−25, 25] ◦ Variation of the elevation angle

ρ [−90, 90] ◦ Variation of the pitch angle

θ (−∞,∞) ◦ Variation of the travel angle

Vf [−12, 12] V Operating voltage of the front motor

Vb [−12, 12] V Operating voltage of the back motor
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motor is modeled as a voltage drop,

V ∗f =

Vf if t < tf ,

γfVf if t ≥ tf ,
(2)

where tf is a time when the voltage drops in the front motor, and 0 < γf < 1

is a constant value which expresses the percentage of fault. In a similar way, a

fault in the back motor is defined by

V ∗b =

Vb if t < tb ,

γbVb if t ≥ tb ,
(3)

Remark 1. Definitions (2) and (3) are for abrupt faults, i.e. step-changes in

the voltage supplied to the motors, at times tf and tb, respectively. However,

intermittent, oscillatory and incipient faults can be considered as suggested in110

[29].

2.3. Problem Statement

The goal of the paper is to develop a fault-tolerant controller for the 3-DoF

helicopter prototype modeled by the Eqs. (1a)-(1b)-(1c), in order to drive the

Table 2: Model parameters

Parameter Value Unit Description

Jε 0.91 kgm2 Inertial moment around the elevation axis

Jρ 0.0364 kgm2 Inertial moment around the pitch axis

Jθ 0.91 kgm2 Inertial moment around the travel axis

Kp 0.686 N Flight constant

Kf 0.1188 N/V Force-Voltage propellers constant

Mh 1.15 kg Helicopter total mass

Mw 1.87 kg Counterweight mass

La 0.66 m Helicopter-travel axis length

Lh 0.177 m Propeller-pitch axis length

Lw 0.47 m Counterweight-travel axis length

g 9.81 m/s2 Gravity acceleration
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trajectories of the closed-loop system to the origin even in the presence of faults

(2)-(3). With this aim, a fault-tolerant control based on the recently developed

Continuous Twisting Algorithm (CTA) [32, 34] is implemented, able to mitigate

consequences of faults in the actuators of a 3-DoF helicopter prototype. Let a

sliding variable s ∈ R of relative degree r > 0, the CTA controller is defined as

u = −k1bse
1
r+1 − k2bṡe

1
r − . . .− krbs(r−1)e 1

2 + v ,

v̇ = −kr+1bse0 − kr+2bṡe0 − . . .− k2rbs(r−1)e0 ,
(4)

where ki > 0, i = 1, ..., 2r, are the gains of the controller. The nonlinear terms

are defined as b·ep = | · |psign(·) with power 0 < p < 1. The CTA has the

following advantages:115

• It is able to drive a disturbed SISO system of relative degree r > 0 from

the measurements of the outputs s ∈ R (sliding variable) and their r − 1

time derivatives.

• The CTA algorithm provides finite-time stabilization of the outputs s and

their r time derivatives to the origin, all at the same time.120

• It generates a continuous control signal.

• The CTA controller compensates (theoretically exactly) matched Lipschitz

perturbations.

• The output s has (r+1)-sliding accuracy in presence of parasitic dynamics,

i.e. |s| ≤ γ µr+1 for some γ > 0, after a transient process. The param-125

eter µ > 0 represents the time constant of some parasitic dynamics, e.g.

actuators, sensors, delays (see more details in [7]).

The use of CTA in FTCs provides robust stabilization of the system trajectories

to the sliding set s = ṡ = ... = s(r) = 0, by means of continuous control signals.

CTA controllers for relative degree two (for the elevation subsystem) and rela-130

tive degree three (for the pitch-travel subsystem) are chosen in order to improve

accuracy of the sliding variable in presence of fast-parasitic dynamics, e.g. the

actuators of the system. A fault detection and isolation scheme is proposed
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through residual-based equations that require the availability of the system ac-

celeration information. In order to have a sensorless procedure, a third-order135

sliding mode differentiator [35] is used not only to obtain the accelerations, but

also to complete the state vector (the helicopter velocities). The effectiveness of

our proposal is tested both with extensive simulations and on the experimental

setup.

3. State Feedback Sliding Mode Control140

3.1. Linearized model of the 3-DoF helicopter dynamics

Given the state vector x = [ε, ρ, θ, ε̇, ρ̇, θ̇]>, an operation point of the system

is defined as any feasible trajectory such that X = [ε̄, 0, θ̄, 0, 0, 0]>, where (ε̄, θ̄)

are desired angles into the workspace (see Table 1). Considering the control

inputs

us = Vf + Vb , (5a)

ud = Vf − Vb , (5b)

the control vector u = [us, ud]
> at any operating point X is such that U =

[− τg cos(ε̄)
KfLa

, 0]> with τg = g(MwLw−MhLa) the gravitational torque around the

elevation axis. Then, the linearized model of the 3-DoF helicopter dynamics

(1a)-(1b)-(1c) around the operating point (X,U) has the form

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

− τg sin(ε̄)
Jε

0 0 0 0 0

0 0 0 0 0 0

0
τg cos(ε̄)

Jθ
0 0 0 0


x+



0 0

0 0

0 0

KfLa
Jε

0

0
KfLh
Jρ

0 0


u , (6)

with the measured output

y =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

x . (7)
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CTA-based controller for the Elevation dynamics

The linearized model (6) can be rewritten as two subsystems. Let the state

vector x1 = [ε, ε̇]>, the subsystem related to the elevation dynamics has the

form

ẋ1 =

 0 1

− τg sin(ε̄)
Jε

0


︸ ︷︷ ︸

A1

x1 +

 0

KfLa
Jε


︸ ︷︷ ︸

B1

us ,

y1 =
[
1 0

]
︸ ︷︷ ︸
C1

x1 .

(8)

The dynamical system (8) is of relative degree r1 = 2 from the output y1 = ε

to the control input us, i.e.

ε̈ =
KfLa
Jε

us −
τg sin(ε̄)

Jε
ε . (9)

Let the input

us =
Jε

KfLa

(
u1 +

τg sin(ε̄)

Jε
ε

)
+ useq , (10)

where the term u1 is based on CTA (4), then

u1 = −k11bεe
1
3 − k12bε̇e

1
2 + v1 , (11a)

v̇1 = −k13bεe0 − k14bε̇e0 , (11b)

the parameters of the controller k11, k12, k13, k14 > 0 are chosen to enforce third-

order sliding-modes, i.e. there exist a finite time tr1 such that ε(t) = ε̇(t) =

ε̈(t) = 0 for all t ≥ tr1 (see more details in [32]). Note that controller (10)145

contains the voltage at the equilibrium point useq = − τg cos(ε̄)
KfLa

, in order to

improve the transient process.
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CTA-based Controller for the Pitch-Travel Dynamics

The other subsystem is related to the pitch-travel dynamics. Consider the

state vector x2 = [ρ, θ, ρ̇, θ̇]>, then

ẋ2 =


0 0 1 0

0 0 0 1

0 0 0 0

τg cos(ε̄)
Jθ

0 0 0


︸ ︷︷ ︸

A2

x2 +


0

0

KfLh
Jρ

0


︸ ︷︷ ︸

B2

ud ,

y2 =

1 0 0 0

0 1 0 0


︸ ︷︷ ︸

C2

x2 .

(12)

The dynamical system (12) is of relative degree r2 = 3 from the output s = θ̇+c θ

to the control input ud, i.e.

ṡ = c θ̇ +
τg cos(ε̄)

Jθ
ρ , (13a)

s̈ =
cτg cos(ε̄)

Jθ
ρ+

τg cos(ε̄)

Jθ
ρ̇ , (13b)

s(3) =
cτg cos(ε̄)

Jθ
ρ̇+

(
τg cos(ε̄)

Jθ

)(
KfLh
Jρ

)
ud . (13c)

Let the input

ud =
JθJρ

τg cos(ε̄)KfLh

(
u2 −

cτg cos(ε̄)

Jθ
ρ̇

)
, (14)

where the term u2 is based on CTA (4), then

u2 = −k21bse
1
4 − k22bṡe

1
3 − k23bs̈e

1
2 + v2 , (15a)

v̇2 = −k24bse0 − k25bṡe0 − k26bs̈e0 , (15b)

the parameters of the controller k21, k22, k23, k24, k26, k26 > 0 are chosen to en-

force fourth-order sliding-modes, i.e. there exist a finite time tr2 such that

s(t) = ṡ(t) = s̈(t) = s(3)(t) = 0 for all t ≥ tr2 (see more details in [34]). Note

that into sliding modes the reduced order dynamics has the form

θ(t) = θ(0) e−ct , (16)
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with initial condition θ(0) ∈ R. Then, any c > 0 ensure exponentially stability

of the zero dynamics, nevertheless, an appropriate selection of c > 0 should150

avoid excessive tilt of the pitch angle (which could cause lost of altitude).

Remark 2. A saturated version of CTA controller [36, 37, 38] can be imple-

mented in order to avoid instability caused by the change of rotation of the

helicopter propellers and saturation of control signals due to the .

4. Residual-Based FDI Scheme155

Proposition 1. Consider the residual-based equations constructed by the mea-

surements of the accelerations and the control inputs,

Rε =
Jεε̈− τg cos(ε)

KfLa cos(ρ)
− us , (17a)

Rρ =
Jρ

KfLh
ρ̈− ud . (17b)

Table 3: Residual detectors (17a)-(17b) and FDI equations (18a)-(18b) in presence of the

faults (2)-(3).

Fault in Front (V ∗
f ) Fault in Back (V ∗

b ) Simultanuous Faults (V ∗
f , V

∗
b )

Rε −
(

1− 1
γf

)
Vf −

(
1− 1

γb

)
Vb −

(
1− 1

γf

)
Vf −

(
1− 1

γb

)
Vb

Rρ −
(

1− 1
γf

)
Vf

(
1− 1

γb

)
Vb −

(
1− 1

γf

)
Vf +

(
1− 1

γb

)
Vb

Rf −2
(

1− 1
γf

)
Vf 0 −2

(
1− 1

γf

)
Vf

Rb 0 −2
(

1− 1
γb

)
Vb −2

(
1− 1

γb

)
Vb

12



The isolation procedure consists of operating with the residual-based equations

(17a) and (17b), in order to know in which motor the fault occurred and in

what time, even if the faults occur at the same time. The fault detector of the

front motor is constructed with the sum between the residual-based equations

(17a) and (17b). The fault detector of the back motor is constructed with the

difference between the residual-based equations (17a) and (17b). Then, the FDI

equations are

Rf = Rε +Rρ , (18a)

Rb = Rε −Rρ , (18b)

for the front motor (18a) and for the back motor (18b).

More details about the Proposition 1 are in the Appendix section. Table 3

summarizes the logical states established in presence of faults: second column

of isolated faults in the front motor, third column of isolated faults in the back

motor, and fourth column of simultaneous faults in both motors.160

4.1. High-Order Sliding Mode Differentiator

To implement the controllers and to detect and isolate the faults, the angular

position, velocity and acceleration around the elevation, pitch and travel axes

are required. A third-order sliding mode differentiator is designed for robust

differentiation of angular positions in presence of measurement noises. The

structure of differentiator is as follows [35],

ż0 = −λ3L
1
4 bz0 − ye

3
4 + z1 ,

ż1 = −λ2L
1
3 bz1 − ż0e

2
3 + z2 ,

ż2 = −λ1L
1
2 bz2 − ż1e

1
2 + z3 ,

ż3 = −λ0Lbz3 − ż2e0 ,

(19)

with the parameters λ0 = 1.1, λ1 = 1.5, λ2 = 3, λ3 = 5, and the scaling

matrix L = diag{Lε, Lρ, Lθ} > 0. Thus, the velocity vector z1 = [ε̇ ρ̇ θ̇]>

and the acceleration vector z2 = [ε̈ ρ̈ θ̈]> are computed in finite-time from the

measurements of the angles y = [ε ρ θ]>.165
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Figure 2: Angular positions of the 3-DoF helicopter prototype with CTA control laws (10)

and (14): simulation results.

5. Simulation Results

The simulation framework consists of a Matlab/Simulink environment in

which the differential equations (1a)-(1b)-(1c) are solved by using the Euler’s

integration method (ODE1) with fixed step τ = 1 × 10−4 seconds. The initial

conditions are x(0) = [3, 5,−2, 0, 0, 0]> degrees. The faults are induced by

software after the settling time from the initial conditions. An intermittent fault

is forced in the front motor at time tf1 = 30 seconds which stops at time tf2 = 60

seconds. On the back motor a persistent fault appears at time tb = 30 seconds

and it remains throughout the simulation. In both cases, 30% of drop voltage

due to failures are considered, i.e. γf = γb = 0.7. In addition, bounded white

noise of magnitude 3× 10−4 is added to all the position measurements in order

to emulate conditions similar to a real measurement environment. Parasitic

dynamics are all dynamical components that are not considered in the model

of the system used for control designing. In this paper, the actuators dynamics

are not considered in the design-step of CTA controllers. They are considered

14



0 10 20 30 40 50 60 70 80 90

Time [s]

-12

-9

-6

-3

0

0 10 20 30 40 50 60 70 80 90

Time [s]

-12

-9

-6

-3

0

Figure 3: Voltage in motors with CTA control laws (10) and (14): simulation results.

the main reason of chattering [7]. The actuators (DC motors with attached

propellers) are modeled as first-order differential equations

µḞf + Ff = KfVf and µḞb + Fb = KfVb , (20)

with time constant µ = 0.2, about twenty times the inertia of the rotor Pittman

9234S004 without load.

The gains of the controller defined by Eqn. (10) were taken from the Eqn.

(8) in paper [32]. The gains of the controller in Eqn. (14) were taken from170

the Table 1 in paper [34]. Both sets of gains were adjusted in order to have

a desired closed-loop performance. Thus, the gains of the controller (10) are

chosen k11 = 1.2, k12 = 2.2, k13 = 0.1 and k14 = 0. On the other hand, the

gains of the controller (14) are selected k21 = 3, k22 = 5, k23 = 8, k24 = 0.3,

k25 = 0 and k26 = 0. Also, the parameter of the sliding variable is fixed c = 0.5.175

Fig. 2 shows the angular positions of the 3-DoF helicopter prototype, it can

be seen that CTA controllers are able to drive the trajectories to a vicinity of

the origin, even in presence of faults. The voltage of the motors that mitigates

consequences of faults in the actuators of a 3-DoF helicopter prototype are

in Fig. 3. The residual based equations of the front (18a) and the back (18b)180

15
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Figure 4: FDI signals (18a) and (18b) measured from the experimental setup with CTA control

laws (10) and (14): simulation results.

motors are shown in Fig. 4. An intermittent fault in the front motor of duration

T = tf2 − tf1 = 30 seconds is detected by the residual (18a), a persistent fault

in the back motor is detected by the residual (18b) from time tb = 30 seconds,

until the end of the simulation.

5.1. Thresholds Adjustment185

Lack of knowledge of some parameters in the model given by the equations

(1a)-(1b)-(1c) cause offset levels in the residual-based detectors (18a)-(18b) in

absence of faults. However, some of those parameters are easy to measure as

the masses, lengths and inertial moments. On the other hand, the ratio between

the lifting forces and the voltage in motors (Kf parameter) is hardly-dependent190

on deteriorating conditions of the DC motors and propellers. Considering for

example, Kf = 0.2 N/V as the true parameter of the system, but the controllers

(10), (14), and the residual-based generators (18a)-(18b), are designed taking

into account: (i) Kf = 0.4 N/V; (ii) Kf = 0.3 N/V; (iii) Kf = 0.2 N/V (the true

parameter). Figure 5 shows the residual-based equations (18a)-(18b) obtained195

by simulations: (left) Kf = 0.4 N/V; (center) Kf = 0.3 N/V; (right) Kf = 0.2
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Figure 5: Tuning of thresholds for residual-based detection and isolation of faults: simulation

results.

N/V. The residual detectors (18a)-(18b) are shifted over zero due to lack of

knowledge on Kf parameter (see Fig. 5 at left and center), which imply false-

positives in the FDI procedure. However, it is possible to adjust these offset

levels tuning the Kf parameter (there are no offset in Fig. 5 at right when Kf200

parameter is well known). Note that sliding-mode controllers drive the system

trajectories to zero despite the lack of knowledge of Kf parameter, only the

transient response is affected by the variation of it.

5.2. Analysis of simulation results

• The controllers based on CTA drive the trajectories to zero even in pres-205

ence of faults, modeled as (2)-(3), in the motors of the 3-DoF helicopter

prototype.

• The residual-based equations in Fig. (4) allow to detect and to isolate

faults in the motors of the 3-DoF helicopter prototype, even if they occur

at the same time.210

• The offset levels in the residual equations (18a)-(18b) can be mitigated

by tuning the Kf parameter in the model (1a)-(1b)-(1c). The CTA con-
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trollers drive to zero the states of the helicopter, even with the parametric

uncertainty of Kf .

• It can be seen fast-oscillations (chattering) in a vicinity of the origin caused215

by the presence of unmodeled dynamics, in this case, due to the the actu-

ator dynamics modeled by (20).

• The noise in the measurements strongly affects the residual detectors

(18a)-(18b) as can be seen in Fig. 4. However, filtering of such resid-

uals is suggested in order to mitigate the consequences of the noise.220

6. Comparison with respect to a classic observer-based FDI scheme

A fair comparison of the proposed method with other robust FDI procedures

should be considered to develop a dynamical system, in order to detect the

faults and also to complete the states required by the feedback controllers. The

usage of sliding mode observers for FDI has been strongly studied due to its225

capability to reconstruct (online) unmeasurable signals by filtering of the so-

called equivalent output error injection [39, 25, 24]. By way of comparison, a

classical FDI scheme based on sliding-mode observers is developed combined

with the previously designed CTA controllers. The observer-based FDI scheme

is able to drive the trajectories of the system to zero, even in presence of faults230

in the actuators of the 3-DoF helicopter prototype. The operations proposed in

Section 4 are used to isolate the faults in the actuation system.

6.1. Observer-based FD scheme for the elevation dynamics

Considering the subsystem (8) related to the elevation dynamics, for a given

output matrix C1, the pair (B1, C1) must satisfy the condition rank(C1B1) = 1

to build an unknown input observer [25]. Then, the following output matrix is

suggested

C1 =
[
1 1

]
, (21)
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note that output matrix (21) implies the measurement of ε̇. Using an algorithm

similar to the one proposed in [39], it can be shown that the transformation

matrix

T1 =

2 0

1 1

 ,
allows to rewrite the model (8) in canonical form, i.e.

Ā = T1A1T
−1
1 =

 −1 2

− 1
2 (
τg sin(ε̄)
Jε

+ 1) 1

 ,
B̄ = T1B1 =

 0

KfLa
Jε

 ; C̄ = C1T
−1
1 =

[
0 1

]
.

In this case, Ā11 = −1, Ā12 = 2, Ā21 = − 1
2 (
τg sin(ε̄)
Jε

+ 1), Ā22 = 1, B̄2 =
KfLa
Jε

and C̄2 = 1. The objective is to design an observer to estimate the state x̂1

such that a sliding mode is attained in which the output error ey1 = C1x̂1 − y1

is driven to zero in finite time, even in the presence of the faults (2)-(3). The

particular observer that will be considered has the form

˙̂x1 = A1x̂1 +B1(us + useq )−Gl1ey1 +Gn1ν1 , (22)

with error injection matrices

Gl1 = T−1
1

 Ā12

Ā22 − Ās22

 ; Gn1 = T−1
1

0

1

 .
where Ās22 is selected such that P1Ā

s
22 + Ā>22P1 = −1 with P1 > 0. The non-

linear error injection is defined as

ν1 = −ρ1 sign(P1ey1) , (23)

with ρ1 > 0. Note that ey1 = ėy1 = 0, then the error dynamics has the form

ė1 = Ā11e1 ,

0 = Ā21e1 + B̄2fs + ν1eq ,

where fs is an unknown input and ν1eq is the so-called equivalent output injec-

tion signal and represents the average behaviour of the discontinuous component
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necessary to maintain the motion on the sliding surface [2]. Since Ā11 is stable

and e1 → 0, it follows that ν1eq → −B̄2fs asymptotically. Also rank(B̄2) = 1,

it implies

fs = −(B̄>2 B̄2)−1B̄>2 ν1eq = − Jε
KfLa

ν1eq . (24)

The right-hand side of the equation above can be computed on-line since it only

depends on the output estimation error ey1 . It is possible to obtain ν1eq by235

filtering the discontinuous term ν1 in (23) and then to detect the fault fs.

6.2. Observer-based FD scheme for the pitch-travel dynamics

Considering the subsystem (12) related to the pitch-travel dynamics, for a

given output matrix C2, the pair (B2, C2) must satisfy the condition rank(C2B2) =

1, to build an unknown input observer [25]. Then, the following output matrix

is suggested

C2 =

1 0 1 0

0 1 0 0

 . (25)

Note that the output matrix (21) implies the measurement of ρ̇. Using an algo-

rithm similar to that proposed in [39], it can be shown that the transformation

matrix

T2 =


2 2 0 0

−2 11 0 −1

1 0 1 0

0 1 0 0

 ,
allows to rewrite the model (12) in canonical form, i.e.

Ā = T2A2T
−1
2 =


−3 −2 2 28

−(
τg cos(ε̄)

2Jθ
+ 10) −11 −2

τg cos(ε̄)
Jθ

+ 141

−0.5 0 1 1

−1 −1 0 13

 ,

B̄ = T2B2 =


0

0

KfLh
Jρ

0

 ; C̄ = C2T
−1
2 =

 0 0 1 0

0 0 0 1

 .
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In this case, Ā11 =

 −3 −2

−(
τg cos(ε̄)

2Jθ
+ 10) −11

, Ā12 =

 2 28

−2
τg cos(ε̄)

Jθ
+ 141

,

Ā21 =

−0.5 0

−1 −1

, Ā22 =

1 1

0 13

, B̄2 =

KfLhJρ

0

 and C̄2 = I2 =

1 0

0 1

.

The objective is to design an observer to estimate the state x̂2 such that a sliding

mode is attained in which the output error ey2 = C2x̂2 − y2 is driven to zero

in finite time, even in the presence of the faults (2)-(3). The observer has the

form

˙̂x2 = A2x̂2 +B2ud −Gl2ey2 +Gn2ν2 , (26)

with error injection matrices

Gl2 = T−1
2

 Ā12

Ā22 − Ās22

 ; Gn2 = T−1
2

 0

I2

 .
where Ās22 is chosen such that P2Ā

s
22 + Ās>22 P2 = −I2 with P2 = P>2 > 0. The

non-linear error injection is defined as

ν2 =
[
−ρ21 sign(P211

ey21 + P212
ey22) −ρ22 sign(P221

ey21 + P222
ey22)

]>
, (27)

with ρ21, ρ22 > 0. Note that ey2 = ėy2 = 0̄, then the error dynamics has the

form

ė1 = Ā11e1 ,

0 = Ā21e1 + B̄2fd + ν2eq ,

where fs is an unknown input and ν2eq is the so-called equivalent output in-

jection signal. Since Ā11 is stable, e1 → 0, it follows that ν2eq → −B̄2fd

asymptotically. Also rank(B̄2) = 1, it implies

fd = −(B̄>2 B̄2)−1B̄>2 ν2eq = −
[

Jρ
KfLh

0
]
ν2eq . (28)

The right-hand side of the equation above can be computed on-line since it only

depends on the output estimation error ey2 . It is possible to compute ν2eq by

filtering the discontinuous term ν2 in (27) and then to detect the fault fd.240
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Figure 6: Angular positions of the 3-DoF helicopter prototype with the observers (22) and

(26): simulation results.

6.3. Isolation of faults with the observer FDI procedure

Once the unknown input observers are able to detect the faults, this infor-

mation can be used to isolate the faults, i.e. to know which one of the two

motors is under failure conditions and at what time, even if the faults occur at

the same time. In a similar way as presented in Section 4, the residual equations

that allow detecting and isolating the presence of faults in any of the motors

are in this case

Rf = fs + fd , (29a)

Rb = fs − fd , (29b)

for the front motor (29a) and for the back motor (29b).

6.4. Simulation results

The same conditions of simulation as in Section 5 are considered, both for

initial conditions and for the gains of CTA controllers (10) and (14), respectively.

Observer (22) was developed with parameters Ās22 = −10 ⇒ P1 = 0.05 and
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Figure 7: Voltage in motors with the observers (22) and (26): simulation results.

ρ1 = 20. Observer (26) was developed with Ās22 = diag{−10,−12} ⇒ P2 =

diag{0.05, 0.0417}, ρ21 = 20 and ρ22 = 2. Fig. 6 shows the angular positions

of the 3-DoF helicopter prototype, it can be seen that combination of unknown

inputs observers and CTA controllers are able to drive the trajectories to a

vicinity of the origin even in presence of faults. The voltage of the motors that

mitigate consequences of faults in the actuators of a 3-DoF helicopter prototype

are plotted in Fig. 7. The residuals (24) and (28) are shown in Fig. 8. In

addition, linear filters are used to construct the unknown inputs (24) and (28),

µf
˙̄fs + f̄s = fs and µf

˙̄fd + f̄d = fd . (30)

with constant µf = 0.001. An intermittent fault in the front motor of duration

T = tf2 − tf1 = 30 seconds is detected by the residual (29a). A persistent245

fault in the back motor is detected by the residual (29b) from time tb = 30

seconds, until the end of the simulation. Nevertheless, the observer-based FDI

scheme is “vulnerable” to the lack of knowledge of Kf parameter, for example,

which variation causes steady-state error in the angles of the 3-DoF helicopter

prototype.250
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Figure 8: FDI signals (18a) and (18b) measured from the experimental setup with the ob-

servers (22) and (26): simulation results.

6.5. Comparison of Real-Time Implementability

Computational effort of the proposed controller is verified by the use of the

tic/toc command in Matlab. The tic starts a stopwatch timer to measure perfor-

mance, the function records the internal time at execution of the tic command.

The computational effort of controllers can be validated analyzing the related255

Elapsed Real Time (ERT) exploiting the Real-Time Pacer MATLAB/Simulink

Toolbox, which measures the real time elapsed to implement the algorithms.

The elapsed time computation includes the nonlinear model in closed-loop with

the fault tolerant controller and the FDI scheme based on differentiators or based

on observers, respectively. Twenty simulations of each procedure are performed260

for the evaluation of the computational cost. The simulations were performed

with AMD A6-1450 CPU @1.00 GHz Processor. A fixed sample frequency of

1000 Hz, with ode1 Solver. Fig. 9 shows the ERT with expected differences on

the order of 1-1.3 seconds from the reference value, i.e. 100 seconds, it means

that both control schemes provide (quasi) real-time performance. The computa-265

tional effort required to implement the CTA controllers based on differentiator
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Figure 9: Elapsed Time for CTA algorithm with differentiator (proposed scheme) and with

observer.

is almost the same as it is required for CTA controllers based on observer.

6.6. Analysis of comparison results

1. The observer based approach needs two extra sensors (physical or by soft-

ware) to measure the velocities around the elevation and pitch axes, in270

order to satisfy relative degree condition, i.e. rank(CB) = 1, to construct

the observers.

2. A combination of unknown inputs observers and CTA controllers mitigate

the consequences of faults in the motors of the 3-DoF helicopter prototype.

Nevertheless, the lack of knowledge of any parameter in the model, eg. Kf275

parameter, cause deviations respect to zero in the states of the closed-loop

system response (see Fig. 11). The proposed methodology is robust with

respect to parametric uncertainties (see Fig. 10), only the residuals need

to be tuned in order to avoid a false detection of faults (see Fig. 5). For

this reason, we use differentiators instead of observers, in which the exact280

model of the system is not needed.

3. The residual-based equations allow to detect and to isolate faults in the
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Figure 10: Angular positions and control inputs in presence of parametric uncertainties with

CTA-based controllers and differentiator.

motors of the 3-DoF helicopter prototype, even if they occur at the same

time.

4. Some oscillations (chattering) close to the origin should be caused by the285

presence of unmodeled dynamics (due to the actuator dynamics). How-

ever, the observer based approach causes fast oscillations of lower ampli-

tude than those one caused by the differentiator based scheme.

5. The noise in the measurements strongly affects the residual detectors

(18a)-(18b) as can be seen in Fig. 8. However, filtering of such resid-290

uals through (30) mitigate the consequences of the noise.

6. The computational effort required to implement the CTA controllers based

on differentiator is almost the same as required for the classical observer

based strategy, which makes the proposed algorithm suitable to be imple-

mented.295

7. Experimental Results

The 3-DoF helicopter prototype developed by Quanser is shown in Fig. 12.

It is instrumented by three quadrature encoders with resolution 4096 pulse/rev
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Figure 11: Angular positions and control inputs in presence of parametric uncertainties with

CTA-based controllers and robust observer.

for the measurements of elevation ε and pitch ρ angles, and 8192 pulse/rev for

the travel angle θ. The actuation system is composed by a pair of DC-motors300

(Pittman 9234S004 series). Measurements and signal processing are done by

using a DSpace 1103 controller board composed by a high-speed Digital Signal

Processor (DSP) PPC750GX of Texas Instruments developer. The Simulink

scheme is exported to the EPROM memory of the board in which the Euler’s

integration method was used to solve the dynamical system of differentiator with305

fixed step τ = 10−4 seconds. The 3-DoF helicopter system is moved from the

“home” position and the CTA controllers are activated to stabilize the system.

The faults are induced by software after the settling time: an intermittent fault

is forced in the front motor at time tf1 = 30 seconds which stops at time tf2 = 60

seconds. On the back motor a persistent fault appears at time tb = 30 seconds310

and it remains throughout the experiment time. In both cases, 30% of drop

voltage due to the faults is considered, i.e. γf = γb = 0.7.

The gains of the controller (10) are chosen k11 = 4, k12 = 14, k13 = 0.2,

k14 = 0. On the other hand, the gains of the controller (14) are selected k21 = 10,

k22 = 14, k23 = 28, k24 = 0.2, k25 = 0 and k26 = 0. The parameter of the sliding
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Figure 12: 3-DoF Helicopter Experimental Prototype

variable is fixed c = 0.5. The scaling parameters of the 3rd-order differentiator

(19) are fixed Lε, Lρ, Lθ = 300 as in simulations. Fig. 13 shows the angular

positions of the 3-DoF helicopter prototype. It can be seen that CTA controllers

are able to drive the trajectories to a vicinity of the origin, even in presence of

faults. The voltage of the motors, that mitigate the consequences of faults,

are in Fig. 14. The residual based equations of the front (18a) and the back

(18b) motors are shown in Fig. 15. Although the effect of the faults can be

appreciated, we opted to apply (online) first-order filters of the form

µF
˙̄Rf + R̄f = Rf and µF

˙̄Rb + R̄b = Rb . (31)

The filtered residual-based equations are in Fig. 16, in which the presence of an

intermittent fault in the front motor of duration T = tf2 − tf1 = 30 seconds. A

persistent fault in the back motor from the time tb = 30 seconds can be clearly315

seen. The parameter of the filters is µF = 0.2.

7.1. Thresholds Adjustment

Figure 17 shows the residual-based equations (18a)-(18b) obtained by exper-

iments: (left) Kf = 0.4 N/V; (center) Kf = 0.3 N/V; (right) Kf = 0.2 N/V.

The residual equations (18a)-(18b) are mounted on offset levels due to lack of320

knowledge of Kf parameter (see residual offsets in Fig. 17 at left and center),
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Figure 13: Angular positions of the 3-DoF helicopter prototype with CTA control laws (10)-

(14): experimental results.
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Figure 14: Voltage in motors with CTA control law: experimental results.

which imply false-positives in the FDI procedure. However, it is possible to

adjust these offsets by tuning the Kf parameter (there are no residual offsets
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Figure 15: FDI signals (18a) and (18b) measured from the experimental setup with CTA

control laws (10)-(14): experimental results.

in Fig. 17 at right). Note that proposed FDI scheme allows to determine the

Kf parameter by experiments, provided that the controller is able to drive the325

system trajectories to a vicinity of the origin.

7.2. Analysis of experimental results

• The controllers based on CTA drive the trajectories to zero even in pres-

ence of faults, modeled as (2)-(3), in the motors of the 3-DoF helicopter

prototype.330

• The effects of noises and parasitic dynamics (actuators) strongly affect the

FDI procedure. However, the faults can be clearly seen by filtering the

residuals such as (31).

• The offset levels in the residual equations (18a)-(18b) can be mitigated by

tuning the Kf parameter in the model (1a)-(1b)-(1c).335

• The usege of accelerometers in Unmanned Aerial Vehicles (UAVs) is com-

mon. Then, it is feasible to implement FDI schemes based on residual
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Figure 16: Filtered FDI signals (31) of the front (18a) and back (18b) motors with CTA

control law: experimental results.

equations with the information of the accelerations following the ideas

proposed in this paper.

8. Conclusions340

In this paper, controllers based on the sliding mode Continuous Twisting

Algorithm (CTA) are developed to steer the trajectories of a 3-DoF helicopter

prototype to the origin, by means of continuous control signals. A fault de-

tection and isolation scheme is provided through residual-based equations, that

require the availability of the system accelerations. In order to propose a sen-345

sorless procedure, third-order sliding mode differentiators are used not only

to obtain the accelerations, but also to know the state (the helicopter veloci-

ties), starting from the angular positions of the helicopter. A comparison with

respect to a classic observer-based FDI procedure is given to highlight the ad-

vantages of the proposed method. Simulations and experimental results show350

that CTA-based controllers can be used for tolerance of matched faults, en-

suring robust stabilization of the equilibrium point, using a simplest model of
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Figure 17: Tuning of thresholds for residual-based detection and isolation of faults: experi-

mental results.

the helicopter dynamics and the information of angular positions and velocities.

The differentiator-based FDI method shows better performance compared to

the observer-based FDI method, in presence of parametric uncertainties in the355

model. Filtering signals obtained by residual equations is suggested in order to

mitigate the effects of noises and fast-parasitic dynamics on the FDI procedure.

Appendix

Proposition 1 is based on the equivalent control concept [35]. Note that at

the equilibrium point X = [ε̄, 0, θ̄, 0, 0, 0]>, the control inputs are

useq = −τg cos(ε̄)

KfLa
, udeq = 0 ,

which implies the motor voltages

Vfeq = Vbeq = −τg cos(ε̄)

2KfLa
. (32)

8.1. Detection of Faults in the Front Motor

When a fault occurs in the front motor, the elevation dynamics (1a) is such

that

ε̈ =
KfLa
Jε

cos(ρ)
(
γfVf + Vb

)
+
τg cos(ε)

Jε
.
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On the other hand, the pitch dynamics (1b) is

ρ̈ =
KfLh
Jρ

(
γfVf − Vb

)
.

After a transient time, the sliding-mode controller compensates theoretically

exactly the fault and the trajectories reach the equilibrium point X. Then, the

control inputs are

useq = −
(

1 +
1

γf

)
τg cos(ε̄)

2KfLa
, (33a)

udeq =

(
1− 1

γf

)
τg cos(ε̄)

2KfLa
, (33b)

by substituting the control inputs (33a) and (33b) into the residual states (17a)

and (17b), respectively,

Rεeq = −
(

1− 1

γf

)
τg cos(ε̄)

2KfLa
,

Rρeq = −
(

1− 1

γf

)
τg cos(ε̄)

2KfLa
.

Finally, the motor voltages (32) are obtained as reported in Table 3 (column 2).360

8.2. Detection of Faults in the Back Motor

In a similar way, when a fault occurs in the back motor, the elevation dy-

namics (1a) is such that

ε̈ =
KfLa
Jε

cos(ρ)
(
Vf + γbVb

)
+
τg cos(ε)

Jε
,

and the pitch dynamics (1b) is

ρ̈ =
KfLh
Jρ

(
Vf − γbVb

)
.

After a transient time, the sliding-mode controller compensates theoretically

exactly the fault and the control inputs are of form

useq = −
(

1 +
1

γb

)
τg cos(ε̄)

2KfLa
, (35a)

udeq = −
(

1− 1

γb

)
τg cos(ε̄)

2KfLa
, (35b)
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by substituting the control inputs (35a) and (35b) into the residual states (17a)

and (17b), respectively,

Rεeq = −
(

1− 1

γb

)
τg cos(ε̄)

2KfLa
,

Rρeq =

(
1− 1

γb

)
τg cos(ε̄)

2KfLa
.

Finally, the motor voltages (32) are obtained as reported in Table 3 (column 3).

8.3. Detection of Simultaneous Faults

When faults occur in both motors, the elevation dynamics (1a) is such that

ε̈ =
KfLa
Jε

cos(ρ)
(
γfVf + γbVb

)
+
τg cos(ε)

Jε
,

and the pitch dynamics (1b) is

ρ̈ =
KfLh
Jρ

(
γfVf − γbVb

)
,

After a transient time, the sliding-mode controller compensates theoretically

exactly the fault and the control inputs are of form

useq = −
(
γf + γb
γfγb

)
τg cos(ε̄)

2KfLa
, (37a)

udeq =

(
γf − γb
γfγb

)
τg cos(ε̄)

2KfLa
, (37b)

then by substituting the control inputs (37a) and (37b) into the residual states

(17a) and (17b), respectively,

Rεeq = −
(

2− γf + γb
γfγb

)
τg cos(ε̄)

2KfLa
, (38a)

Rρeq = −
(
γf − γb
γfγb

)
τg cos(ε̄)

2KfLa
. (38b)

Finally, the motor voltages (32) are obtained as reported in Table 3 (column 4).

Remark 3. The fault detection and isolation scheme is based on the fact that365

the voltages Vf and Vb are not zero at any time. This effect is mainly due to

the gravitational torque τg = g(MhLa −MwLw) around the elevation axis.
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Remark 4. In presence of simultaneous faults of the same magnitude, i.e.

γf = γb, the logical state (17b) related to the pitch dynamics will be zero (see

expression (38b)), which means that faults are hidden. However the logical state370

(17a) related to the elevation dynamics will be different from zero, which allows

to isolate the faults.
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[8] A. Ferreira de Loza, H. Ŕıos, A. Rosales, Robust regulation for a 3-dof

helicopter via sliding-mode observation and identification, Journal of the

Kranklin Institute 349 (2) (2012) 700–718.

[9] E. Vázquez, U. P. Ventura, D. Hernández, Continuous sliding-mode con-

trollers for a 3-dof helicopter, in: 2017 14th International Conference on410

Electrical Engineering, Computing Science and Automatic Control (CCE),

IEEE, 2017, pp. 1–6.

[10] L. Fridman, J. A. Moreno, B. Bandyopadhyay, S. Kamal, A. Chalanga,

Continuous nested algorithms: The fifth generation of sliding mode con-

trollers, Recent Advances in Sliding Modes: From Control to Intelligent415

Mechatronics 24 (2015) 5–35.

[11] X. Qi, D. Theilliol, J. Qi, Y. Zhang, J. Han, A literature review on fault

diagnosis methods for manned and unmanned helicopters, in: 2013 Inter-

national Conference on Unmanned Aircraft Systems (ICUAS), IEEE, 2013,

pp. 1114–1118.420

36

DOI: 10.1002/rnc.4347
DOI: 10.1002/rnc.4347
DOI: 10.1002/rnc.4347
DOI: 10.1002/rnc.4347
DOI: 10.1002/rnc.4347
DOI: 10.1002/rnc.4347


[12] J. C. da Silva, A. Saxena, E. Balaban, K. Goebel, A knowledge-based sys-

tem approach for sensor fault modeling, detection and mitigation, Expert

Systems with Applications 39 (12) (2012) 10977–10989.

[13] D. Yang, Y. Ren, Z. Wang, L. Liu, B. Sun, A novel logic-based approach for

failure modes mitigation control and quantitative system reliability analy-425

ses, Eksploatacja i Niezawodność 17.
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