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Abstract

This review article discusses the solution of population balance equa-

tions, for the simulation of disperse multiphase systems, tightly coupled

with computational fluid dynamics. Although several methods are dis-

cussed, the focus is on quadrature-based moments methods (QBMM)

with particular attention to the quadrature method of moments, the

conditional quadrature method of moments and the direct quadrature

method of moments. The relationship between the population balance

equation, in its generalized form, and the Euler-Euler multiphase flow

models, notably the two-fluid model, is thoroughly discussed. Then

the closure problem and the use of Gaussian quadratures to overcome

it is analyzed. The review concludes with the presentation of numerical

issues and guidelines for users of these modelling approaches.
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1. INTRODUCTION

Computational Fluid Dynamics (CFD) for simulation of disperse multiphase systems has

gained considerable importance in the last two decades due to its widespread application

in chemical, biochemical, pharmaceutical and aerospace industries. Disperse multiphase

systems are formed by separate entities, i.e. particles/crystals, drops and bubbles, being

dispersed in a continuous phase. The characteristic properties of the disperse phase elements

change in space and time due to numerous particulate processes, such as collisions, aggre-

gation/coalescence, breakage, nucleation, dissolution/evaporation, mass and heat transfer,

etc. As a result, disperse systems often feature distributions of elements with different

properties, a situation identified as polydispersity. A comprehensive simulation of disperse

systems must take into account polydispersity and therefore must include the description of

the above-mentioned processes. The most common computational approaches employed in

this field can be categorized in three main groups: fully-resolved interface-tracking models,

Lagrangian point-particle models and Eulerian-Eulerian models. This review focuses on the

last group of methods, which has the simplest level of detail in comparison to the other two

groups, however is suitable for CFD simulation of multiphase systems, particularly those of

industrial-scale.

Eulerian-Eulerian methods in their original formulation (in the 90s) required the speci-

fication of the mean size of disperse phase elements. Being this number fixed and constant,

it was simply impossible to account for polydispersity and for the effect of particulate pro-

cesses. It was only in 00s that their coupling with Population Balance Equations (PBEs)

was realized and the relationship between PBEs and Eulerian-Eulerian models was inves-

tigated and clarified. In this review, a critical discussion of these issues is reported. In

particular, it will be explained how the solution of the PBE provides a detailed level of

description of the disperse phase, which is not accessible from CFD models alone, leading

to a more accurate simulation of the entire system. To this purpose, a suitable method for

the solution of the PBE should be selected considering several factors such as the nature of

the system under study, the required level of description and the available computational

resources. The current review covers several methods for the solution of the PBE, which

belong to three main categories: the class or sectional method, the method of moments

and the quadrature-based moment method. Further, a separate section addresses the im-

plementation of PBE in CFD and discusses some numerical issues concerning the stability

of simulations. The review concludes by discussing the most popular implementations in

commercial and open-source CFD-PBE codes.

2. GOVERNING EQUATIONS

2.1. Population Balance Equation

The PBE is a continuity statement that governs the evolution of a number density function

(NDF), which is postulated to exist for a population of disperse phase elements. The NDF

defines the distribution of the disperse phase elements over the properties of interest at any

time instant and physical position. These properties, called internal coordinates, charac-

terize the disperse elements and can include velocity, size, composition, temperature, etc.

The choice of the internal coordinates, denoted here by the vector ξ, is system dependent.

The state of a generic element q at time t can be determined by its position vector x(q) and

internal coordinates ξ(q), jointly called the element state vector (x(q), ξ(q)). The state vector
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of a given element specifies the location of that element in the so-called phase-space, which

is a highly-dimensional space consisting of the physical domain of the system Ωx and the

domain of the internal coordinates Ωξ. Given an arbitrary point in the phase-space (x, ξ),

the NDF n(t,x, ξ) is defined as the expected number density of elements in the infinitesimal

volume dxdξ around such point at time t (1).

At first, let the velocity of the disperse phase elements be known and excluded from the

internal coordinate vector. Then the PBE takes the following form (2):

∂tn+ ∂x(Udn) + ∂ξ(Gn) = S, (1)

where Ud(ξ) is the velocity of the disperse phase elements and G(ξ) the rate of change

of the internal coordinates due to continuous molecular processes, such as mass and heat

transfer, growth and dissolution of elements, chemical reactions etc. The source term S(ξ)

describes the discontinuous changes in the internal coordinates of the elements due to dis-

crete events, which are generally categorized as second-order, first-order and zero-order

point processes. The mathematical form of S can be illustrated by the following example.

Second-order point
process: A discrete

event that involves

two disperse
elements, such as

collision and aggre-

gation/coalescence

First-order point
process: A discrete

event that involves a
single disperse

element, such as

breakage

Zero-order point
process: A discrete

event that does not
involve any existing

element, such as

nucleation
If the only internal coordinate is the mass (or the volume) of the disperse phase elements

which undergo aggregation/coalescence and breakage, then the source term becomes (space

and time dependency is omitted for brevity) (1):

S(ξ) =
1

2

∫ ξ

0

a(ξ − ξ′, ξ)n(ξ − ξ′)n(ξ) dξ′ − n(ξ)

∫ ∞
0

a(ξ, ξ′)n(ξ′) dξ′

+

∫ ∞
ξ

b(ξ′)β(ξ|ξ′)n(ξ′) dξ′ − b(ξ)n(ξ), (2)

where a(ξ, ξ′) denotes the rate of aggregation/coalescence between elements with internal

coordinates equal to ξ and ξ′ (i.e. aggregation kernel) and b(ξ) the rate of breakage of

elements with internal coordinate equal to ξ (i.e. breakage kernel). In addition, β(ξ|ξ′) is

the so-called daughter distribution and statistically defines the number of daughter elements

with internal coordinate equal to ξ formed due to the breakage of an element with internal

coordinate of ξ′. In the RHS of Equation 2, the first and third terms describe the birth of

new elements due to coalescence and breakage respectively, whereas the second and fourth

terms take into account the death of elements due to coalescence and breakage respectively.

Equation 1 is a highly-dimensional transport (or kinetic) equation which describes the

Kinetic equation:
NDF transport

equation which

includes the velocity
of the elements as

part of the internal

coordinate vector

evolution of the NDF not only in time and physical space but also in the domain of internal

coordinates. The velocity of the disperse phase in Equation 1 (Ud) is assumed to be a

known function of time, spatial position and internal coordinates (ξ). In addition, the flow

fields of the continuous phase, e.g. velocity (Uc), are generally required by the closure

relations for the description of both continuous and discontinuous processes, i.e. G and S.

For this purpose, the velocity of both phases (Ud and Uc) can be obtained by adopting an

Eulerian CFD approach, see Section 2.2.

The velocity of the disperse phase elements (u) must be included within the internal

coordinate vector when different elements (with or without the same properties) located at

the same position x and at the time instant t move with different velocities. In this cases,

the NDF f(t,x, ξ,u) is defined as the expected number density of elements in the infinites-

imal volume dx dξ du around the arbitrary point (x, ξ,u) at time t. The generalization of

Equation 1 to include velocity as an internal coordinate leads to the following Generalized

Population Balance Equation (GPBE) (2):

∂tf + ∂x(uf) + ∂ξ(Gf) + ∂u(Af) = S. (3)

www.annualreviews.org • Solution of PBE coupled with CFD 3



In Equation 3, A(ξ,u) is the acceleration of the elements due to external forces, e.g. forces

exerted from the continuous phase on the elements. The source term S(ξ,u) is similar to

that in the PBE except that it also describes the discontinuous change in the velocity of

the elements due to discrete events (e.g. collisions).

It is noteworthy that Equation 3 is closely related to Equation 1. In fact, as highlighted

in some specific applications (3–8), the GPBE can be simplified by presuming a specific form

for the NDF, f(t,x, ξ,u) = n(t,x, ξ) δ(u− 〈u|ξ〉), which is called the monokinetic assump-

tion. This is equivalent to assuming that the elements with the same internal coordinates

move with the same velocity (i.e. the mean velocity conditioned on the internal coordinates

〈u|ξ〉 (3)). Clearly this mean conditional velocity, defined as 〈u|ξ〉 =
∫
uf du / n(t,x, ξ) is

identical to Ud(ξ), where n(t,x, ξ) =
∫
f du is the marginal NDF. The conditional velocity

〈u|ξ〉 can be calculated in different ways, by assuming for example a continuous parametric

functional defined over the space of a chosen internal coordinate (2) or can be obtained by

adopting Eulerian CFD models explained in Section 2.2.

2.1.1. GPBE in Turbulent Flow. In turbulent flows, in which turbulence is caused by insta-

bilities in the continuous phase, the velocity of the continuous phase Uc(t,x) is a random

vector field characterized by fluctuations, that result in fluctuations of the NDF defined pre-

viously. The direct solution of the GPBE/PBE, which resolves all the relevant length and

time scales, is computationally expensive and cheaper solutions are often sought. One alter-

native is to define a Reynolds-averaged NDF 〈f〉(t,x, ξ,u) over an infinitely large number

of realizations of the continuous phase velocity Uc (2) and derive the following equation:

∂t〈f〉+ ∂x(u〈f〉) + ∂ξ(〈Gf〉) + ∂u(〈Af〉) = 〈S〉, (4)

leading to a Reynolds-averaged Navier-Stokes (RANS) multiphase formulation. The terms

〈Gf〉, 〈Af〉 and 〈S〉 are generally not closed because the relations describing the contin-

uous and discontinuous events depend on the continuous phase velocity, Uc. The above-

mentioned terms are usually expressed as the summation of a mean field contribution and

an additional contribution due to fluctuations, the latter of which needs a closure approx-

imation. For example, Drew used a kinetic equation describing the evolution of particles

in turbulent flows to derive the Eulerian momentum balance equation, which includes a

drag force due to the mean fields and an additional contribution, called turbulent disper-

sion force, due to turbulent fluctuations (9). It is noteworthy that spatial filtering (10)

and Large Eddy Simulation (LES) based on self-conditioned NDF (11) can be also used to

derive the GPBE of the same form of Equation 4.

2.2. Eulerian Computational Fluid Dynamics

This section describes three main Eulerian approaches for CFD simulation of multiphase

flows. Generally, the applicability of CFD approaches depends on the multiphase properties,

particularly those of disperse phase. As shown in Figure 1, two key factors in selection

of appropriate method are Stokes number and volume fraction of disperse phase elements.

Stokes number:
defined as the ratio
of the element
relaxation time

(τe =
ρed

2
e

18µc
) to the

characteristic time
of the continuous

phase (τc)

Another important factor is polydispersity index (PDI), as illustrated by Figure 2.

2.2.1. Dusty Gas Model. When disperse phase elements are sufficiently small, i.e. very

small Stokes number, their trajectories are perfectly dictated by the velocity field of the

continuous phase, Uc (12). Thus, it is valid to assume that the elements move with a velocity
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equal to Uc. In such cases, the multiphase system is represented with one single continuous

phase, whose properties, e.g. density and viscosity, are the same as the continuous phase for

dilute systems, otherwise are modified to consider the presence of disperse phase elements.

2.2.2. Mixture Model. As the Stokes number of elements increases, the elements move with

a velocity that may differ from the one of the continuous phase. Under equilibrium assump-

tion, the relative velocity between the disperse elements and the continuous phase can be

expressed as an algebraic relation obtained from a force balance on the elements (usually

drag and buoyancy forces). When the disperse system is dilute enough, one momentum

balance equation is solved for the velocity of the continuous phase, and then the algebraic

relation is used to calculate the velocity of the disperse phase. This model is referred to

as equilibrium Eulerian approach (13). Instead, when the number density of elements is

higher, the disperse system is represented as one mixture fluid, for which a momentum

balance equation is solved. This balance equation requires the knowledge of the relative

velocities, which are specified by using the algebraic relation. This approach is known as

the Mixture model (MM) (14, 15). An advantage of MM is the possibility of taking into

account the polydispersity of multiphase systems by dividing the disperse elements into

groups based on an internal coordinate, e.g. size of elements. Then, the relative velocity

between each group (fluid) and the continuous phase can be expressed separately, which

eventually depends on the selected internal coordinate of elements.

2.2.3. Two and Multi-fluid Models. The governing equations of Eulerian two-fluid model

(TFM) can be derived from the GPBE, see Figure 3. The derivation is omitted here and

it can be found elsewhere (2). For the sake of brevity, we report here only the mass and

momentum balance equations for the continuous and disperse phases (i = c,d):

∂t(ρiεi) + ∂x(ρiεiUi) = 0 (5)

∂t(ρiεiUi) + ∂x(ρiεiUiUi) = ∂x(εiτ i)− εi∂xp+ ρiεig + Mi (6)

where ρi, εi and τ i denote the density, volume fraction and stress tensor of the phase i

and p is the pressure (generally assumed the same for the continuous and disperse phases).

The term Mi represents the momentum exchange between the continuous and disperse

phases due to interfacial forces, such as drag and lift, and is generally modelled by closure

relationships. For the disperse phase, the stress tensor τ i represents the dispersion of the

element velocity (u) around the mean disperse phase velocity (Ud). If the Stokes number

of the elements is low enough, this stress tensor can be neglected, otherwise it is necessary

to solve transport equations for higher-order moments of the disperse elements velocity (2).

For the continuous phase, the stress tensor is modelled as for single-phase flows. When the

flow is turbulent, the stress tensor of the continuous phase is generally closed by replacing

the molecular viscosity with an effective one (16). The effective viscosity is the sum of the

molecular viscosity and the turbulent viscosity, the latter of which is usually estimated by

a two-equation model, e.g. k−ε model, adapted for multiphase flows (17–20).

The TFM can be extended to consider more than two phases, e.g. dividing the disperse

phase into several groups (fluids) based on the value of an internal coordinate (usually

size). This approach, called Multi-fluid model (MFM), is particularly useful when the

system under study is polydisperse, see Figure 2. The governing equations of MFM have

similar shape as those of the TFM and can be found elsewhere (3, 4, 6, 7).

www.annualreviews.org • Solution of PBE coupled with CFD 5



3. SOLUTION METHODS FOR PBE

Many methods are available in the literature for the numerical solution of PBEs, each has

been developed to address the challenges posed by the application of interest. Some notable

challenges include the number of internal coordinates, considering the element velocity as

an internal coordinate (i.e. solving GPBE), and the physical and chemical phenomena

involved. This section describes three principal categories of methods for the solution of

PBEs. Among the ones not covered in this review, we should cite Monte Carlo methods

(1, 2) that are currently too computationally expensive to be compatible with CFD coupling.

3.1. Class or Sectional Method (CM)

The class or sectional method is based on the discretization of the internal coordinate

space into intervals (classes or sections), such that the PBE is transformed into a set of

macroscopic balance equations in the physical domain (1). This method has been widely

applied to polydisperse systems governed by a univariate PBE. Let the space of the generic

internal coordinate ξ be divided into M intervals using M+1 grid points (ξ1, ξ2, . . . , ξM+1),

therefore, the ith interval is defined as Ii = [ξi, ξi+1). The number density of elements

in the interval Ii is given by Ni(t,x) =
∫ ξi+1

ξi
n(t,x, ξ) dξ, where n(t,x, ξ) is the NDF in

Equation 1. Then, the discretized formulation of Equation 1 for the generic ith interval is:

∂tNi + ∂x(UiNi) +

∫ ξi+1

ξi

∂ξ(Gn) dξ =

∫ ξi+1

ξi

S dξ (7)

where Ui is the velocity by which the elements of the ith interval are transported in the

physical space. The integrals in Equation 7 are not closed since they generally depend on

the NDF and cannot be expressed in terms of Ni (1). A closed form of Equation 7 can be

achieved by assuming a functional form for the NDF. Kumar and Ramkrishna (21) proposed

a general procedure in which the NDF is approximated with the following form:

n(t,x, ξ) =

M∑
i=1

Ni δ(ξ − ζi). (8)

The above approximation implies that all the elements belonging to the interval i are

concentrated at a pivotal point ζi inside the interval. Another common approximation

assumes a constant number density in each interval, i.e. n(t,x, ξ) = Ni for ξi < ξ < ξi+1

(22). In the following, the procedure proposed by Kumar and Ramkrishna (21) is introduced

without going into the full detail. For the sake of simplicity, the system is assumed to be

homogeneous, i.e. no dependency on the physical space. Moreover, the contribution due

the continuous changes is neglected at this stage and will be touched upon later.

In the case of aggregation and breakage, the RHS of Equation 7 can be written in the

following closed form by assuming ξ to be a conserved property (1):

∫ ξi+1

ξi

S dξ =
1

2

i−1∑
j=1

Nj
∑
k

(ζj+ζk)∈Ii

a(ζj , ζk)Nk −Ni
M∑
j=1

a(ζi, ζj)Nj

+

M∑
j=i

b(ζj)Nj

∫ ξi+1

ξi

β(ξ|ζj) dξ − b(ξi)Ni.

(9)
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Kumar and Ramkrishna (21) explained in detail that the above formulation is not internally

consistent, i.e. it does not generally preserve the integral properties of the NDF such as

its moments. It is noteworthy that low-order moments of the NDF are associated to the

conserved properties of the disperse phase. The cause of this internal inconsistency lies in

the assignment of a pivotal point to the born elements, produced by the birth (first and

third) terms in Equation 9. For instance, let two elements belonging to the intervals Ij and

Ik with pivotal points ζj and ζk coalesce to form a new element i with ξi = ζj + ζk. Then,

the value ξi determines which interval the element i belongs to. However, in an arbitrarily

discretized space, ξi may not necessarily coincide with the pivotal point of the assigned

interval. The same issue may arise when an element breaks into two daughter elements,

which should be assigned to two intervals. Kumar and Ramkrishna (21) proposed to assign

the born elements to the nearby pivotal points, such that two integral properties of the

NDF are preserved. This approach, known as the fixed-pivot approach, is quite general and

is internally consistent, as far as two integral properties of the NDF are concerned (21). It

is noteworthy that the number of conserved moments can be increased by distributing the

born elements to more than two pivotal points as formulated by Alopaeus et al. (23).

Despite the competitive advantages of the fixed-pivot approach over previously devel-

oped approaches (24), Kumar and Ramkrishna (21) illustrated that the fixed-pivot approach

overpredicts the NDF, particularly in case of aggregation/coalescence. They stated that the

over-prediction issue arises due to the fixed pivotal points and proposed a new approach

based on moving pivotal points. This method involves the solution for the number density

(or a property of the NDF) at moving pivotal points, the location of which is governed by

a differential equation. The locations of pivotal points change in such a way as to ensure

preservation of the targeted properties. In another attempt to improve the predictions, a

new technique was developed, called the cell-averaging technique, which assigns the born

elements to the pivotal points on the basis of the average value of their internal coordi-

nate (25). Numerical tests showed that the cell-averaging technique improves the results

considerably (25). More details on this technique can be found elsewhere (25).

Concerning the continuous change of the internal coordinate, the third term on the LHS

of Equation 7 can be written as follows:∫ ξi+1

ξi

∂ξ(Gn) dξ = (Gn)|ξi+1 − (Gn)|ξi , (10)

and it can be interpreted as the net flux of elements to/from the interval Ii, which is equal

to the difference between the fluxes at the bounds of Ii. However, the NDF at the bounds

of intervals is not known and must be approximated by interpolating the values at two

neighbouring pivotal points. The upwind scheme is the simplest interpolation approach.

Consider a generic bound ξi at which the number density n(ξi) is needed. If the rate of

continuous process at the bound G(ξi) is positive, then n(ξi) = Ni−1, otherwise n(ξi) =

Ni. The upwind scheme is first-order and therefore it suffers from numerical diffusion (2).

Numerical diffusion can be avoided by integration over the characteristic curves (26), but

this method is not suited for being incorporated in CFD codes. A more viable alternative

is employing high-order schemes (27–29) which, however, do not guarantee the positivity

of the Ni (26). To overcome this issue numerous methods have been proposed (1, 26)

Lastly, class or sectional methods can be extended to bi- and multi-variate PBE (30, 31).

However, these extensions are not covered here as they are currently not compatible with

CFD implementations because of their exceedingly large computational cost (16, 32, 33).

www.annualreviews.org • Solution of PBE coupled with CFD 7



3.2. Method of Moments

The previous section mentioned several difficulties in tracking the evolution of the NDF

through the direct solution of the PBE, which mainly arise due to the discretization of

the internal coordinate space. In a pioneering work, Hulburt and Katz argued that the

NDF contains too much information for many engineering applications and proposed an

approximate system of description which tracks evolution of moments of the NDF instead

of the NFD itself (34). In the most general form, the moments of the NDF are defined as:

mk1,k2,...,kd,kd+1,kd+2,kd+3(t,x) = 〈ξk11 ξk22 . . . ξ
kd
d u

kd+1
1 u

kd+2
2 u

kd+3
3 〉

=

∫
Ωξ

∫
Ωu

ξk11 ξk22 . . . ξ
kd
d u

kd+1
1 u

kd+2
2 u

kd+3
3 f(t,x, ξ,u) dξ du,

(11)

where k = (k1, k2, . . . , kd, kd+1, kd+2, kd+3) is the exponent vector. Each element of k is

the order of the moment with respect to the corresponding internal coordinate or velocity

component. The moments offer two key advantages which make the method of moments

(MOM) attractive. Firstly, the moments are function of only time and space, i.e. they are

Eulerian fields, and therefore an approach based on the moments is perfectly compatible

to the solution methods readily available in CFD codes. The second advantage is that

the low-order moments are related to some macroscopic properties of the disperse phase,

which are physically meaningful and generally measurable. It is noteworthy that, in many

applications, the ultimate aim of solving the PBE is to predict these macroscopic properties

of the disperse phase.

A simplified example helps to elaborate on the subject without loss of generality. Let

the internal coordinates comprise of the mass of the elements ξ = M and the velocity. Then,

the MOM involves the solution of a number of transport equations written in terms of the

moments of the NDF. The moments 〈ξ0u0
1u

0
2u

0
3〉, 〈ξ1u0

1u
0
2u

0
3〉, and 〈ξ0u1

1u
0
2u

0
3〉, 〈ξ0u0

1u
1
2u

0
3〉

and 〈ξ0u0
1u

0
2u

1
3〉 exemplify the importance of low-order moments since, they represent re-

spectively: the total particle number density, the average particle mass density and the

three components of the total particle momentum density.

The transport equation for a generic moment, 〈ξk1uk21 uk32 uk43 〉, is derived by multiplying

the GPBE, Equation 3, with the function g(ξ,u) = ξk1uk21 uk32 uk43 , and by integrating over

the internal coordinate phase space:

∂t

(∫
R+

dξ

∫
R3

gf du

)
+ ∂x

(∫
R+

dξ

∫
R3

ugf du

)
+

∫
R+

dξ

∫
R3

g ∂ξ(Gf) du +

∫
R+

dξ

∫
R3

g ∂u(Af) du =

∫
R+

dξ

∫
R3

gS du

(12)

The first term is the derivative of the moment with respect to time, ∂t〈ξk1uk21 uk32 uk43 〉. The

second term is the moment transport in the physical space, which appears as the spatial

derivative of a higher-order moment

∂x

(∫
R+

dξ

∫
R3

ugf du

)
= ∂x1〈ξ

k1uk2+1
1 uk32 uk43 〉+ ∂x2〈ξ

k1uk21 uk3+1
2 uk43 〉

+ ∂x3〈ξ
k1uk21 uk32 uk4+1

3 〉, (13)

giving rise to the closure problem described in Section 3.2.1. The third term of the LHS of

8 Shiea et al.



Equation 12 can be simplified further by integration by part (2):∫
R+

dξ

∫
R3

g ∂ξ(Gf) du = −
∫
R3

(gGf)|ξ=0 du −
∫
R+

dξ

∫
R3

∂ξ(g)Gf du. (14)

The first term on the RHS takes into account the appearance/disappearance of the disperse

phase elements at the origin, which may be nonzero depending on the sign of G, i.e. if g(ξ)

is not zero and negative at the origin (2, 35). Likewise, the integration by part simplifies

the fourth term of the LHS of Equation 12:∫
R+

dξ

∫
R3

g ∂u(Af) du = −
∫
R+

dξ

∫
R3

Af ∂u(g) du. (15)

3.2.1. Closure Problem in MOM. The moment transport equations, i.e. Equation 12, are

not in closed form, except few simple cases (2). One reason is that a set of transport

equations written for a number of moments may contain terms which depend on higher-

order moments. The addition of new moment transport equations for the higher-order

moments would not solve the problem because the new equations give rise to new higher-

order moments. On the other hand, the higher-order moments could be readily calculated

if the NDF was known. In general, the knowledge of the NDF is also needed to calculate

the source term and transport terms in the space of internal coordinate and velocity, see

Equation 12. This is the main issue raised by the MOM, which is known as the closure

problem. Several methods have been developed to close the moment transport equations,

such as: interpolative closures (36), reconstruction of NDF with an assumed functional form

(37–39) and approximating the NDF using a quadrature formula (40–42). The reader can

find more details on developed closures in (2, 43). This work focuses on the closures based

on the quadrature formula, known as Quadrature-based Moment Methods (QBMM), which

has more general applicability in comparison to other proposed closures.

3.3. Quadrature-Based Moment Methods

In Quadrature-Based Moment Methods (QBMM) the NDF is approximated with an N -node

quadrature formula, i.e. a summation of N weighted kernel density functions, each centered

on a node/abscissa of a Gaussian quadrature approximation. The most commonly employed

kernel density function is the Dirac delta function. The idea originated with McGraw

(40), who employed an N -node Gaussian quadrature to approximate the integrals in the

moment transport equations for the solution of a univariate PBE and named the approach

quadrature method of moments (QMOM). The algorithm calculates the N abscissas and N

weights of the quadrature from the 2N transported moments. In another work, Marchisio

and Fox (42) developed a similar method, named direct quadrature method of moments

(DQMOM), by which the quadrature approximation is transported in space and time such

that the moments evolve according to the proper transport equations. In the following

sections, both approaches are explained in detail. Moreover, the extension of QMOM to

bi- and multi-variate PBE (i.e. conditional quadrature method of moments, CQMOM)

will be also discussed. Lastly, an introduction will be given on the extended quadrature

method of moments (EQMOM), which is useful in applications that require a continuous

reconstruction of the NDF.

3.3.1. Quadrature Method of Moments. McGraw (40) proposed that the unclosed inte-

grals of the moment transport equations can be approximated by employing an N -node
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Gaussian quadrature formula. It is equivalent to assuming the following functional form to

approximate the NDF (for a univariate problem):

n(t,x, ξ) ≈
N∑
p=1

wp(t,x) δ[ξ − ξp(t,x)] (16)

where wp(t,x) and ξp(t,x) are the weight and abscissa of the node p. In the above expres-

sion, δ denotes the Dirac delta function. The moment of order k of the approximated NDF

can be expressed as follows:

mk =

∫
R+

ξkn(ξ) dξ ≈
N∑
p=1

wp ξ
k
p (17)

where mk is an alternative notation for 〈ξk〉. The above relationship implies that knowledge

about the first 2N moments enables us to determine the N weights and N abscissas of the

quadrature approximation in Equation 16 by solving the following set of nonlinear equations:

m0 =

N∑
p=1

wp , m1 =

N∑
p=1

wp ξ
1
p , . . . m2N−1 =

N∑
p=1

wp ξ
2N−1
p . (18)

The above set of nonlinear equations are usually solved by employing well-conditioned

recursive inversion algorithms such as the product-difference (PD) algorithm (44) and the

Wheeler algorithm (45). The latter has the advantage of being applicable to distributions

with zero mean value, i.e. m1 = 0 in contrast to the PD algorithm (2). It is noteworthy

that the weights and abscissas obtained from the solution of Equation 18 reproduce exactly

the moments up to order 2N − 1.

QMOM employs an N -node quadrature approximation to solve the transport equations

for a set of moments of a PBE. The procedure of QMOM can be explained by writing the

transport equation of a generic moment of order k derived from the PBE (Equation 1):

∂t(mk) + ∂x(Ud,kmk) = δk,0 G(0)n(0) + k

∫
R+

ξk−1 Gndξ +

∫
R+

ξkS dξ, (19)

where δk,0 is the Kronecker delta and Ud,k denotes the transport velocity of the k-order

moment defined by:

Ud,k =
1

mk

∫
R+

ξkUd(ξ)ndξ. (20)

The first term on the RHS of Equation 19 appears only in the transport equation of

the zeroth-order moment. This term is particularly challenging in the case of negative

G, or in other words when the disperse phase elements are shrinking and disappearing.

More detailed discussion on the subject can be found in (6, 46). In the latter reference,

a method is suggested to reconstruct a continuous NDF by using the maximum entropy

maximization, which enables the evaluation of the NDF at the origin (i.e. ξ = 0). In

addition, a robust and efficient quadrature-based method was developed by Yuan and co-

workers (47) to reconstruct a continuous NDF, see Section 3.3.4. The second term on the

RHS of Equation 19 can be approximated using the N -node Gaussian quadrature formula:

k

∫
R+

ξk−1 G(ξ)n(ξ) dξ ≈ k
N∑
p=1

wpξ
k−1
p G(ξp). (21)
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The source term in the case of aggregation/coalescence and breakage is approximated

likewise (assuming that ξ is a conserved property such as mass or volume of elements) (2):

∫
R+

ξkS dξ ≈ 1

2

N∑
p=1

wp

N∑
q=1

(ξp + ξq)
ka(ξp, ξq)wq −

N∑
p=1

ξkp a(ξp, ξq)wp

+

N∑
p=1

(∫
R+

ξkβ(ξ|ξp) dξ

)
b(ξp)wp −

N∑
p=1

ξkp b(ξp)wp.

(22)

The weights and abscissas of the quadrature formula in Equations 21 and 22 are deter-

mined by inverting the first 2N moments. Therefore, it is necessary to track the evolution

of the first 2N moments by solving the corresponding transport equations. At each time

step, the quadrature formula is determined by means of an inversion algorithm, which uses

the 2N transported moments available from the previous time step or the initial conditions.

It is noteworthy that the inversion algorithm fails if the moments are not realizable, i.e.

the moment set is not inside the moments space (see the side bar Moment Space). The

realizability issue mainly occurs due to the numerical methods that deal with the discretized

moment transport equations, which are not the same as the exact equations. This fact ne-

cessitates employing numerical methods that are designed to prevent the realizability issue

(48–52).

In general, a quadrature formula with more nodes yields more accurate approximation

of integrals in the moment transport equations and an approximation of higher quality

for the NDF. On the other hand, a quadrature with more nodes means more moments to

be tracked, hence the need for more computational resources. In addition, the recursive

algorithms for the calculation of the weights and abscissas become less stable as the number

of nodes increases, and convergence is difficult to be achieved for typically N > 10 (2).

However, Marchisio and Fox (41, 53) showed that satisfactory predictions can be achieved

by employing a quadrature approximation with 2 ≤ N ≤ 4 for simple aggregation and

breakage problems. Moreover, QMOM predictions have acceptably small overall error not

only for the tracked moments but also for higher-order moments (41).

Concerning the bi- and multi-variate PBE, the main challenge is the determination of

the weights and (multi-dimensional) abscissas of the quadrature from the mixed moments,

since the PD or Wheeler algorithms are applicable only to univariate quadratures. The next

section focuses on the extension of QMOM to such cases by using conditional moments.

3.3.2. Conditional Quadrature Method of Moments. This section deals with the appli-

cation of QBMM to the solution of bi- and multi-variate PBE. Let the NDF be defined

over the space (Ωξ) of d internal coordinates, ξ = (ξ1, ξ2, . . . , ξd). Then, the NDF can be

approximated with the following functional form:

n(t,x, ξ) ≈
N∑
p=1

wp(t,x) δ[ξ − ξp(t,x)] , δ[ξ − ξp(t,x)] =

d∏
α=1

δ[ξα − ξα;p(t,x)] (23)

where wp(t,x) is the weight of the node p with abscissas ξp = (ξ1;p, ξ2;p, . . . , ξd;p) located

in the joint space of the internal coordinates. The reader should bear in mind that the

above quadrature is not a Gaussian quadrature. Moreover, univariate inversion methods

such as PD or Wheeler algorithms are not applicable to multi-variate density functions.
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The moments of the above approximation can be expressed as follows:

〈ξk11 ξk22 . . . ξ
kd
d 〉 = mk1,k2,...,kd =

N∑
p=1

wp

d∏
α=1

ξkαα;p. (24)

The closure problem can be overcome by determining the quadrature approximation of order

N , defined by N weights and N d-dimensional abscissas/nodes. The weights and abscissas

of the quadrature nodes can be found by using a set of N(d + 1) moments. The inversion

approach is desired to have some main properties of univariate inversion algorithms (2).

Firstly, it should be non-iterative otherwise its application to practical CFD simula-

tions will be computationally expensive. Secondly, it should construct a mathematically

and physically meaningful quadrature approximation – in other words, abscissas located

in the support of the internal coordinates and non-negative weights. Lastly, the weights

and abscissas obtained from the moments of an N -point density function should represent

exactly the same N -point density function. Several methods have been developed to de-

termine the high-dimensional quadrature points, such as the brute-force algorithm (54),

the tensor-product algorithm (55–58) and the conditional quadrature method of moments

(CQMOM) (59, 60), just to cite the most popular. Only the last method is discussed here

since it is generally more stable and accurate.

For the sake of brevity, the explanation focuses on bi-variate NDF. The extension of the

following procedure to more than two internal coordinates can be found in (2). In addition,

the application of CQMOM to the kinetic equations, i.e. three velocity components as

the internal coordinates, is discussed by Yuan and Fox (60). In CQMOM, the NDF is

approximated by the following functional form:

n(t,x, ξ) ≈
N1∑
p1=1

N2∑
p2=1

wp1(t,x)wp2,p1(t,x) δ[ξ1 − ξ1;p1(t,x)] δ[ξ2 − ξ2;p2,p1(t,x)], (25)

where wp1 and ξ1;p1 are the weights and abscissas calculated from the pure moments with re-

spect to the first internal coordinate (ξ1) by using a univariate inversion algorithm. Instead,

wp2,p1 and ξ2;p2,p1 are the conditional weights and abscissas to be obtained by conditioning

the second internal coordinate (ξ2) on each abscissa of the first one (ξ1;p1). The calcula-

tion of the conditional weights and abscissas exploits the relationship between the mixed

moments and the conditional NDF (n2|1). First, the conditional NDF is defined by:

n2|1(ξ2|ξ1) =
n(ξ1, ξ2)

n1(ξ1)
, (26)

where n1(ξ1) =
∫

Ωξ2
n(ξ1, ξ2) dξ2 is the marginal NDF of ξ1. The moments of n1(ξ1) are

the same as the pure moments of n(ξ1, ξ2) with respect to ξ1 and therefore can be expressed

in terms of wp1 and ξ1;p1 . Then, the mixed moments can be written as follows:

mk1,k2 =

∫
Ωξ1

ξk11 n1(ξ1) dξ1

∫
Ωξ2

ξk22 n2|1(ξ2|ξ1) dξ2

=

N1∑
p1=1

wp1ξ
k1
1;p1

∫
Ωξ2

ξk22 n2|1(ξ2|ξk11;p1
) dξ2 =

N1∑
p1=1

wp1ξ
k1
1;p1
〈ξk22 〉(ξ1;p1),

(27)

where 〈ξk22 〉(ξ1;p1) denotes the conditional moments. Using the above relationship, the

N1(2N2 − 1) conditional moments can be obtained from the solution of the linear systems
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of the following form written for k2 = 0, ..., 2N2 − 1:
1 . . . 1

ξ1;1 . . . ξ1;N1

...
. . .

...

ξN1−1
1;1 . . . ξN1−1

1;N1



w1

w2

. . .

wN1



〈ξk22 〉(ξ1;1)

〈ξk22 〉(ξ1;2)
...

〈ξk22 〉(ξ1;N1)

 =


m0,k2

m1,k2

...

mN1−1,k2

 . (28)

The above linear system of equations, known as Vandermonde linear system, is non-singular

as long as the abscissas ξ1;p1 are distinct. The reader is referred to (61) for an efficient

algorithm to solve the linear systems of the Vandermonde form. Finally, for each ξ1;p1 a

univariate inversion algorithm is applied to the corresponding set of conditional moments

to find the corresponding conditional weights (wp2,p1) and abscissas (ξ2;p2,p1). Although

the pure moments can be kept realizable by employing an appropriate numerical scheme,

the realizability of the conditional moments is not guaranteed. In this case, the realizability

issue can be overcome by applying the 1-D adaptive quadrature technique proposed by

Yuan and Fox (60). With this technique, the maximum number of conditional moments

belonging to the moment space is determined and consequently, the number of nodes for

the second internal coordinate (at each ξ1;p1) is adjusted accordingly.

One should pay attention to the selected order of internal coordinates conditioning as

it changes the set of controlled moments (i.e. moments used in the reconstruction of the

NDF). Nevertheless, all the moments controlled in CQMOM belong to the optimal moment

set; see Section 3.3.3 for the definition and importance of such set.

3.3.3. Direct Quadrature Method of Moments. The direct quadrature method of moments

(DQMOM) was first introduced by Marchisio and Fox (42) to avoid the need for an inversion

algorithm, particularly in the case of bi/multi-variate problems. Although the inversion

of moments in bi/multi-variate problems was later overcome by CQMOM, DQMOM has

received considerable attention from the scientific community. Furthermore, DQMOM can

be applied to univariate problems.

In contrast to QMOM and CQMOM, DQMOM employs transport equations written in

terms of the weights wp and weighted abscissas ςα;p = wpξα;p. Therefore, there is no need

to employ an inversion algorithm except for the initialization of the weights and abscissas

according to the initial conditions of the moments. Let the NDF be defined over the space

of two internal coordinates and governed by the following bi-variate PBE:

∂tn+ ∂x(〈u|ξ1, ξ2〉n) + ∂ξ1(G1n) + ∂ξ2(G2n) =

∫
S du. (29)

DQMOM approximates the NDF with the functional form in Equation 23. Then, the

following transport equations can be written for the weights and weighted abscissas (42):

∂twp + ∂x(〈u〉pwp) = swp

∂t(ς1;p) + ∂x(〈u〉pς1;p) = sς1,p

∂t(ς2;p) + ∂x(〈u〉pς2;p) = sς2,p

(30)

where 〈u〉p = 〈u|ξ1,p, ξ2,p〉 denotes the velocity of the quadrature node p, and swp , sς1,p
and sς1,p are the source terms of the transport equations to be determined. The unknown

source terms can be found by first replacing the NDF in Equation 29 with the functional
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form in Equation 23 specialized for a bi-variate problem and then by applying the moment

transformation of a generic order k = (k1, k2) (42):

N∑
p=1

(1− k1 − k2)ξk11,pξ
k2
2,ps

w
p −

N∑
p=1

k1ξ
k1−1
1,p ξk22,ps

ς
1,p +

N∑
p=1

k2ξ
k1
1,pξ

k2−1
2,p sς2,p = h̄k1,k2 , (31)

where h̄k1,k2 takes into account the change of the moment due to the continuous and

discontinuous events and therefore is problem dependent. A system of 3N linear equations

(equal to the number of unknowns) can be formed by writing Equation 31 for 3N moments

of different order. The solution of the linear system can be expressed in the matrix form s =

A−1h, where s = [sw1 . . . s
w
N sς1,1 . . . s

ς
1,N sς2,1 . . . s

ς
2,N ]T and A is the coefficient matrix. The

matrix A should be non-singular and therefore requires some considerations. Firstly, the

abscissas must remain distinct in order to prevent singularity. Thus, using too many nodes

is not recommended since the probability of two nodes approaching each other increases by

adding more nodes (2). Another important point is the choice of the moment set, which is

studied by Fox in detail (62). Fox established a methodology to choose a set of moments,

called optimal moment set, that results in a non-singular coefficient matrix A. Eventually,

the optimal moment sets for problems with 1 ≤ d ≤ 3 were reported. The concept was

developed by using N = rd nodes for r ∈ Z>0, which treats all the internal coordinates

equally. It is noteworthy to mention the possibility of choosing other moments, which result

yet in a valid but not optimal set. However, one should try to use a moment set that covers

the important moments, i.e. those with physical significance, and that includes enough

mixed moments to avoid losing the correlation between the internal coordinates. For more

details, the reader is referred to the discussion of choosing the moment set in (2).

3.3.4. Extended Quadrature Method of Moments. The previous QBMM approximate the

NDF with an N -point discontinuous distribution, i.e. a summation of N weighted Dirac

delta functions. However, some applications require a continuous reconstructed NDF to

correctly model the phenomena involved, e.g. evaporating sprays (46). Yuan et al. (47)

suggested a method, called extended quadrature method of moments (EQMOM), which

employs a parametric continuous kernel density function (KDF) instead of the Dirac delta

function:

n(t,x, ξ) ≈
N∑
p=1

wp(t,x) δσ[ξ; ξp(t,x)], (32)

where δσ(ξ; ξp) is a chosen KDF, which depends on the parameter σ. The weights and

abscissas associated to the KDF are denoted by wp and ξp. The determination of the pa-

rameter σ requires that one additional moment should be tracked, in comparison to the

2N moments tracked in QMOM. The KDF is required to reduce smoothly to the Dirac

delta function in the limit of σ → 0, meaning that the quadrature can be reconstructed

from the first 2N moments when σ = 0. The choice of the KDF is problem dependent, i.e.

the support of the KDF should be consistent with the support of the internal coordinate.

Common KDF are Gaussian distribution with infinite support (−∞,∞), gamma and log-

normal distributions with semi-infinite positive support [0,∞) and beta distribution with

finite support [0, 1]. Moreover, it is practically important that the selected KDF can be

defined in terms of the weight function w(θ) for a known family of orthogonal polynomi-

als. In the following, the algorithm for the calculation of the weights and abscissas of the

quadrature approximation as well as the parameter σ will be explained for a univariate
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NDF with semi-infinite positive support. The application of EQMOM to problems with

infinite or finite supports is similar and can be found elsewhere (2, 47). In addition, the

reader is referred to (2) for the extension of the EQMOM to multi-variate problems.

As mentioned previously, a suitable choice of KDF for problems with support of [0,∞)

is the gamma distribution. Then, the NDF is approximated by the following summation of

N weighted parameterized gamma distributions:

n(ξ) ≈
N∑
p=1

wp
ξλp−1e−ξ/σ

Γ(λp)σλp
and λp(t,x) =

ξp
σ
, (33)

where Γ is the gamma function. The moments of the NDF can be expressed as:

mk(t,x) =

N∑
p=1

wp
Γ(λp + k)

Γ(λp)
σk =

N∑
p=1

wpξ
k
p +

N∑
p=1

wpPk−1(ξp, σ), (34)

where Pk−1(ξp, σ) is a homogeneous polynomial of order k − 1 with respect to ξp and

σ. The summation
∑N
p=1 wpξ

k
p is indeed the kth-order moment of the quadrature in the

limit σ = 0, and here is denoted by m∗k. Equation 34 can be written for the first 2N + 1

moments to calculate the weights and abscissas as well as the parameter σ of the quadrature.

An important observation is that the RHS of Equation 34 can be rewritten in terms of

only m∗k and σ. Subsequently, the two sets of moments m = (m0,m1, . . . ,m2N ) and

m∗ = (m∗0,m
∗
1, . . . ,m

∗
2N ) can be related through the matrix form m = B(σ)m∗. The

matrix B(σ) is a lower-triangular matrix, which allows to calculate the moment m∗k from

the moments (m0,m1, . . . ,mk) for a given value of σ. Eventually, the following iterative

approach can be used to determine the quadrature approximation (47):

1. Guess the parameter σ and calculate the first 2N moments (m∗0,m
∗
1, . . . ,m

∗
2N−1)

using m∗ = B−1(σ)m

2. Find the weights wp and abscissas ξp from the moments (m∗0,m
∗
1, . . . ,m

∗
2N−1) by

employing the adaptive quadrature algorithm,

3. Use the weights and abscissas to calculate m∗2N =
∑N
p=1 wpξ

2N
p ,

4. Calculate the scalar function J(σ) = m2N −m∗2N −
∑N
p=1 wpP2N−1(ξp, σ)

5. Guess a new σ until the convergence J(σ) = 0 is achieved for the smallest σ.

In the above approach, the adaptive quadrature algorithm allows to cope with the non-

realizable set of moments. Once the quadrature is determined, it can be used to close the

terms appearing in the moment transport equations, i.e. Equation 32. For this purpose, a

general integral of the NDF is considered:

∫
Ωξ

g(ξ)n(ξ) dξ =

N∑
p=1

wp

∫
Ωξ

g(ξ)δσ(ξ; ξp) dξ =

N∑
p=1

N′∑
q=1

wpw
(p)
q g(ξ(p)

q ), (35)

where g(ξ) is a generic function of the internal coordinate. In Equation 35, the integral of

the KDF δσ(ξ; ξp) is approximated by a quadrature formula, for which the weights w
(p)
q and

abscissas ξ
(p)
q can be calculated from the recursion coefficients that are known in advance.

Moreover, the number of nodes of the second quadrature (N ′) does not depend on N and

can be increased independently to improve the accuracy.
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3.4. Selection of the Solution Method

A key factor in selection of the solution method is the number of internal coordinates. For

univariate problems, CM and QMOM are regarded as the first candidates. The CM is more

suitable for simulation of systems in which the NDF can be measured directly. On the other

hand, QMOM provides information about some (usually measurable) integral properties of

the NDF. From the computational point of view, QMOM is normally less demanding than

CM. In fact, achieving a reasonable accuracy by the CM generally requires a large number

of intervals/classes which is computationally expensive, particularly when disperse phase

elements span over a wide region of the phase space (41). Therefore, QMOM is the preferred

method for the CFD simulation of spatially heterogeneous systems, specifically those of

large-scale (5). Furthermore, the CM should use high-order schemes when the system under

study involves continuous events, in particular if the number of intervals cannot be increased

sufficiently. However, employing high-order schemes usually lead to instabilities. On the

other hand, QBMM handle continuous events easily, if the growth rate is positive. In case

of negative growth rates, i.e. evaporation/dissolution, EQMOM can be used to estimate

the value of the NDF at the origin of the relevant internal coordinate. Moreover, EQMOM

should be generally used when the particulate processes of interest are highly localized in

the phase space (63). In fact, with other QBMM, some phenomena may be ignored if

there is no node/abscissa in the region where they are active. Furthermore, the addition of

nodes does not necessarily improve the situation as QMOM shows unpredictable behaviour

in response to the increase in the number of nodes, when highly localized phenomena are

present (63). In such cases, the CM or EQMOM are more appropriate.

In the case of bi- and multi-variate PBE, QBMM are generally the preferred methods.

Both DQMOM and CQMOM were developed to overcome the difficulties of moment in-

version in bi- and multi-variate problems. However, CQMOM has some advantages over

DQMOM. Firstly, the equivalence between DQMOM and QMOM/CQMOM is lost in pure

hyperbolic PBE (2), in contrast to spatially homogeneous systems. Moreover, DQMOM is

not valid for purely hyperbolic PBE in the presence of (spatial or time) discontinuity in

the weights and abscissas, because the transport equations in Equation 30 are derived on

the assumption that the weights and abscissas are continuous function of time and space

(2). Another point is that DQMOM does not guarantee the conservation of the moments

except for the moment of order zero and one, and needs corrective terms to respect the

conservation of the moments of higher-order (2). Lastly, when a continuous NDF is needed,

CQMOM can be extended to use a KDF other than the Dirac delta function, i.e. the

extended conditional quadrature method of moments (2).

4. Implementation in CFD

As mentioned previously, the solution of the GPBE/PBE provides detailed information

about the disperse phase, which can result in a more accurate solution. For instance, a

more accurate estimation of the drag force can be obtained by using the instantaneous size

distribution of the disperse phase elements instead of a fixed constant element size. At the

same time, the solution of the GPBE/PBE requires knowledge of the flow fields. Therefore,

it is necessary to adopt a suitable approach to couple CFD and GPBE/PBE, as explained

in the following section.
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4.1. Monokinetic Models

Monokinetic models, e.g. TFM and MFM, assume zero velocity dispersion around the

mean velocity (or mean velocities) of elements located at the same spatial coordinates at

a given time and characterized by the same internal coordinate values. This assumption

is valid for elements with small Stokes numbers (St < 1) (13). Within this context, the

simplest approach assigns one velocity, Ud(t,x), to all elements of the disperse phase, which

depends only on the spatial coordinates and time and not on the internal coordinates. The

common methods for obtaining the velocity of the disperse phase, required to solve the

PBE, include MM and TFM (5, 32, 64–71), although the dusty gas approach (72) and the

equilibrium Eulerian approach (13) can be used for sufficiently small elements (12). At the

same time, the polydispersity of the elements will be described through the solution of the

PBE, Equation 1, by using a suitable method described in the previous section. When the

CM is used to solve the PBE, the coupling terms are evaluated using the properties of each

class of disperse elements. On the other hand, in case of adopting QMOM, it is possible to

calculate the coupling terms by using either the average properties of the disperse elements,

which are associated to the moments, or the quadrature nodes separately (16).

The assumption of identical element velocity can be relaxed partially by employing

a multi-fluid approach, where the elements are grouped into several phases based on the

value of an internal coordinate (usually size). When the CM is chosen to solve the PBM

(3, 65, 73–75), each class is assumed to move with its own velocity. In the case of QMOM

or DQMOM (5, 8, 76, 77), each node of the quadrature moves with a unique velocity. The

velocity of each class (or node in case of QMOM or DQMOM) is obtained either by solving

a momentum balance equation written for the corresponding class (or node) or by adopting

the MM, see Section 2.2.

The monokinetic assumption is not valid in case of elements with large Stokes numbers,

since large elements do not adapt quickly to the surrounding fluid velocity and therefore

the effect of their initial conditions lasts for a long time (13). For instance, this assumption

may lead to nonphysical predictions in dilute systems comprises of particles characterized

with large Stokes number, where particle trajectory crossing (PTC) can occur (48, 57). A

Particle trajectory
crossing (PTC): In
dilute systems,

particles of different

velocity (regardless
of their properties)

can cross each other

without collision

possible approach to describing such systems is adoption of a polykinetic model.

4.2. Polykinetic Models

It is necessary to include the element velocity as an internal coordinate, when dealing with

disperse systems far from equilibrium or comprised of elements characterized by very large

Stokes numbers. In such cases, the evolution of the disperse phase in space and time is

entirely governed by the GPBE, Equation 3, while the continuous phase is described by

Equations 5 and 6. The interaction between the phases is taken into account through the

exchange terms in the governing equations of both phases. The quadrature-based methods

are preferred to solve the GPBE since the application of the CM to this equation is not

tractable. In this regard, the QMOM, DQMOM and specifically CQMOM are promising

tools to solve the GPBE (2, 6, 48, 57–60).

When the disperse system is very dilute, the effect of the disperse phase on the flow

field of the continuous phase can be assumed negligible (2, 78). Thus, one-way coupling

suffices to consider the effect of the continuous phase on the evolution of the disperse phase

elements. The flow fields of the continuous phase are predicted by the solution of the

single-phase Navier-Stokes equations. At each time-step, the governing equations of the
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continuous phase are solved to predict the flow fields of the continuous phase, which will be

eventually used to estimate the closure relations in the GPBE. It is possible to advance the

GPBE with several smaller time-steps within each time-step of the CFD solver, if the time-

scale of the phenomena affecting the elements is comparably smaller than the characteristic

time-scale of the continuous phase (78).

On the other hand, the effect of disperse elements on flow fields of the continuous phase

becomes significant as the number density of elements increases. Thus, governing equations

of the continuous phase should include exchange terms due to the presence of the disperse

phase elements, e.g. Equations 5 and 6 (79, 80). Convergence issues may arise in the

two-way coupling due to the explicit exchange terms included in the governing equations.

For instance, the drag force generally depends on the relative velocity of the phases and, if

handled explicitly, hinders convergence. The convergence rate can be improved by adopting

the partial elimination algorithm (81). The application of partial elimination algorithm to

CFD-QMOM simulations is explained by Passalacqua and co-workers (78, 79).

4.3. Numerical Issues of QBMM

Efficient numerical methods for solving the PBE must provide sufficiently accurate solutions

as well as ensure the stability of the simulation. A major reason of simulation instabilities

is the appearance of non-physical solutions during the simulation, i.e. the realizability

issue associated to the QBMM. The realizability issue appears mostly when standard high-

order schemes are employed for the independent advection of the moments (82). These

schemes aim mainly at achieving high-order and oscillation-free solutions for transported

variables. However, the moments are linked variables which belong to the moment space,

therefore, a selected numerical scheme must additionally ensure that the moment space is

preserved. Unfortunately, only 1st-order schemes, e.g. upwind scheme, are guaranteed to

yield realizable moment sets provided that the Courant–Friedrichs–Lewy (CFL) condition

is satisfied (48). It is noteworthy that the CFL condition generally serves as the criterion

for the stability of the CFD simulations. The 1st-order schemes, albeit being very stable,

generally produce diffused solutions for computationally affordable grid sizes. Therefore, if

high-order solutions are required, one must employ high-order schemes which are specifically

designed to overcome the realizability issue.

In a pioneer work, Vikas and coworkers proposed the quasi-high-order realizable

schemes, which interpolates separately the weights and abscissas of the quadrature (instead

of the moments) from the cell centers to the faces (49). In this approach, the quadrature

weights on the faces are obtained with a high-resolution (HR) total variation diminishing

(TVD) scheme whereas the quadrature abscissas on the faces are obtained by using the 1st-

High-resolution (HR)
TVD schemes:
interpolation
schemes that employ

a flux limiter to

prevent oscillations
in the solution of

hyperbolic problems

(83, 84)

order upwind scheme. With this technique, the realizability issue is avoided if a criterion

for the time-step is fulfilled (49). This approach can be applied for the solution of both

PBE and GPBE. Moreover, it can be simply implemented in CFD codes, regardless of the

spatial dimensionality and mesh type. Another notable approach preserves the moment

space by advecting a sequence of positive variables, called ζ-variable, which are connected

to the moments (51). The application of the original version of this approach to arbitrary

unstructured grids is not straightforward. Nevertheless, Passalacqua and coworker extended

the applicability of this approach to unstructured meshes (85).

In addition to the realizability issue, the boundedness of the solution is another im-

portant numerical aspect because the low-order moments are associated to some average
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physical properties of the elements, which are bounded in nature (86). This aspect should

be considered in the selection of the numerical solution method if bounded solution for the

moments is desired. For instance, Shiea and coworkers observed oscillations in the solution

for the advection of moments in a one-dimensional Riemann problem obtained by using

a quasi-high-order realizable scheme (52). They argued that oscillation-free solution for

the moments is not necessarily guaranteed when the HR TVD schemes are not applied

directly to the moments. Eventually, they suggested that it is possible to apply the HR

TVD schemes directly to the moments without encountering the realizability issue by using

an identical limiter (equal-limiter) for all the transported moments (52). They additionally

showed that the boundedness of the moments is guaranteed if the equal-limiter is set to the

smallest limiter among those calculated independently for the transported moments.

5. CFD-PBE CODES

Apart from the numerous in-house codes reported in the literature, there are several com-

mercial and open-source CFD codes, which incorporate the PBE. Table 1 summarizes some

available CFD-PBE codes along with their main features and related references.

SUMMARY POINTS

1. The governing equations for the Eulerian CFD-PBE simulation of disperse multi-

phase systems are described.

2. The common solution methods for the solution of the PBE are explained and a

guideline is presented to select a suitable one.

3. When the Stokes number of elements is sufficiently small (St < 1), the monokinetic

assumption is valid and the velocity of the disperse phase is predicted by a multi-

phase CFD solver. Otherwise, the GPBE governs the evolution of the distribution

of the elements over the space of the internal properties, including the velocity.

4. In QBMM, the realizability issue is the main cause of simulation instability and

can be addressed by adopting the numerical schemes mentioned in this review. In

addition, particular attention should be paid to the boundedness of the solution of

the moment transport equations, when realizable schemes are employed.

5. Some discussed approaches for the simulation of disperse multiphase systems are

accessible through several available commercial and open-source CFD-PBE codes,

from which the leading ones are reported in the paper.

FUTURE ISSUES

1. Despite the existing advances, the development of more robust numerical methods

which increase simultaneously the accuracy and the stability of simulations, e.g.

the realizable numerical schemes, continues to be an interesting subject.

2. It is fruitful to develop efficient CFD-PBE codes or contribute to improve the

existing ones, particularly the open-source codes such as OpenQBMM project

(https://www.openqbmm.org) (85). These codes expand the application of the

PBE to vast relevant subjects spanning a broad scientific and industrial communi-

ties, which ultimately lead to rapid advances in different aspects of the PBE.
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Table 1 Commercial and open-source CFD codes with the implementation of PBE

CFD code Governing Solution Notes

equation methods

OpenFOAMa Equation 1 CM - Multi-fluid approach is available

Equation 3 QMOMb - Possibility of solving several population balances

CQMOMb - Realizable advection schemes are implemented

EQMOMb

Ansys Fluent Equation 1 CM - Multi-fluid approach is available

QMOM

DQMOM

Ansys CFX Equation 1 CM - Multi-fluid approach is available

- PBE is written in terms of mass-based NDF

- Continuous events and nucleation are not available

StarCCM Equation 1 CM - Multi-fluid approach is available

- Adaptive discretization

aopen-source; bas part of the OpenQBMM project (https://www.openqbmm.org) (85)

Moment Space

Any number density function n(ξ) defined on a support Ωξ can be associated to a positive measure (µ)

such that dµ = n(ξ)dξ. One can consider all the possible measures defined on the same support Ωξ, which

together form a space of measures, denoted by P. Then, each possible measure µ ∈ P determines a possible

vector of k moments (from order 0 to k): mk = (m0,m1, . . . ,mk). Eventually, the kth-order moment space

(Mk) on the support Ωξ is defined as the space formed by all the possible mk, each corresponds to a µ ∈ P
or mathematically: Mk = {mk =

∫
Ωξ

(ξ0, ξ1, . . . , ξk) dµ | µ ∈ P}. A set of moments (m0,m1, . . . ,mk)

should belong to the moment space Mk to be realizable, otherwise no positive measure can be found

with such a set of moments. The characterization of the moment space Mk for three common supports

Ωξ = (−∞,∞), Ωξ = (0,∞) and Ωξ = (0, 1) is found in (87).
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Applicability of the Eulerian CFD models for the simulation of multiphase flows
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Polydispersity index indicates how wide is the distribution of disperse phase elements over the

space of the internal coordinate. The gray arrows in above plots can be thought of as the nodes of

the quadrature which approximates the underlying NDF (shown by the solid line) or as the
number of element groups required to consider the polydispersity appropriately.
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The relationship between the GPBE, PBE, moments and Eulerian CFD models
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