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ABSTRACT This paper presents an innovative modeling strategy for the construction of efficient and
compact surrogate models for the uncertainty quantification of time-domain responses of digital links. The
proposed approach relies on a two-step methodology. First, the initial dataset of available training responses
is compressed via principal component analysis (PCA). Then, the compressed dataset is used to train compact
surrogatemodels for the reduced PCA variables using advanced techniques for uncertainty quantification and
parametric macromodeling. Specifically, in this work sparse polynomial chaos expansion and least-square
support-vector machine regression are used, although the proposed methodology is general and applicable to
any surrogate modeling strategy. The preliminary compression allows limiting the number and complexity
of the surrogate models, thus leading to a substantial improvement in the efficiency. The feasibility and
performance of the proposed approach are investigated by means of two digital link designs with 54 and
115 uncertain parameters, respectively.

INDEX TERMS High-speed link, least-squares support-vector machine, machine learning, polynomial
chaos expansion, principal component analysis, signal integrity, uncertainty quantification.

I. INTRODUCTION
The ever-growing demand for higher data rates in high-speed
links, along with the increasing complexity and miniaturiza-
tion, is making the effect of uncontrolled variations of design
parameters (e.g., geometry, material parameters, and com-
ponents tolerances) on system performance far from being
negligible.

Among the several available approaches for uncertainty
quantification, Monte Carlo (MC) simulation is undoubt-
edly the most straightforward method for assessing link
performance with respect to parameter uncertainty. Indeed,
MC allows predicting statistical quantities of the outputs
of interests (e.g., voltage/current overshoots, eye digram
opening, maximum dissipated power, etc.) using a set of
deterministic simulations computed for some suitable ran-
dom samples of the uncertain input parameters, drawn
according to their probability distribution. While being
straightforward to implement and virtually available in any
design environment, an accurate statistical assessment via
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MC analysis typically requires an exorbitant number of sim-
ulations, thus becoming impractical for real-life scenarios.

To overcome this computational limitation, stochastic
macromodeling techniques based on the framework of poly-
nomial chaos expansion (PCE) [1] or machine learning
(ML) [2], [3] were extensively investigated in recent years
for electrical and electronic engineering applications, see for
example [4]–[16], respectively. The common underlying idea
is to use a small set of simulation results, exploring the
parameter space as much as possible, to ‘‘train’’ a closed-
form surrogate model of the expensive ‘‘full-computational’’
model. This surrogate model is then used to inexpensively
predict the system performance for any possible configura-
tion of the uncertain input parameters, thus allowing for the
rapid calculation of statistical information.

In the most versatile implementations, the surrogate model
parameters are calculated, and possibly tuned, via suitable
regression techniques [4], [5], [11]. However, while in stan-
dard PCE implementations a common set of basis functions
is used for any sweep point and any output of interest, non-
parametric regression-based ML tools and advanced PCE
techniques require to tune the hyper-parameters and/or the
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basis functions, and therefore to solve a different optimization
problem for each output of interest and sweep point (e.g., [8],
[9], [14], [15]). This makes the abovementioned approaches
prohibitive for problems with multiple and possibly time- or
frequency-dependent outputs.

Examples include sparse PCE approaches, such as those
based on tensor recovery [17] or other adaptive schemes [18],
[19], and non-parametric ML regression techniques like
support-vectormachine (SVM) [20], [21], least-squares SVM
(LS-SVM) [22], andGaussian process regression (GPR) [23].
All these techniques help mitigate the ‘‘curse of dimension-
ality’’, i.e., the efficiency reduction when the number of
uncertain input parameters increases. Therefore, advanced
stochastic surrogate models are the winning choice when
applied to a limited set of outputs of interest. Otherwise,
their direct application to the modeling of multiple transient
responses turns out to be rather cumbersome, because a large
number of time points should be considered to capture highly
nonlinear dynamics.

Usually, there are two different approaches to tackle the
above issue. One solution is to include the effect of both sys-
tem parameters and transient dynamics into a single recursive
model [24], for example via a neural network [3], [25], [26].
Such models also include the realizations at previous time
points as additional input parameters. Despite its compact-
ness, the resulting model is so highly complex that a very
large number of training samples (in the order of thousands)
is needed, since a huge number of model parameters must be
simultaneously tuned. This approach might be a viable solu-
tion for low-order linear systems, but the model complexity
grows exponentially for higher-order nonlinear systems.

A reasonable alternative is to build a different surrogate
model for each output variable and time instant of interest
(see, e.g., [9]). While this reduces the complexity of the
single model, the overall number of models to be created is
potentially huge, especially if a large number of time points
is required, like for example when simulating eye diagrams.

This paper proposes an alternative solution to overcome the
shortcomings of this second approach. Specifically, principal
component analysis (PCA) [27] is used to remove redun-
dant information from input data samples, which are there-
fore reduced to a minimum subset [28]. Briefly speaking,
the underlying idea is to exploit and remove the inherent
correlation existing among several realizations of various
responses of the system evaluated at different time points. A
compression rate of several orders of magnitude is usually
achieved, thus making the application of advanced stochas-
tic surrogate models feasible for this reduced dataset. The
implementation through singular value decomposition (SVD)
allows controlling the accuracy of the compression.

The feasibility and strength of the proposed technique are
assessed by means of two high-speed links: a 16-bit Flash
memory bus operating at 66 MHz (≈1 Gbps) and affected
by 54 uncertain design parameters, and a single electronic
link affected by 155 stochastic variables and driven by a
DDR buffer transmitting at 133 Mbps. For both test cases,

PCA is applied to obtain a compressed representation of
the training data. Then, two types of surrogate models are
considered, namely a sparse PCE in combination with least-
angle regression (LAR) [19] and a LS-SVM regression [22].

The paper is organized as follows. The problem and
the goals addressed in this work are stated in Section II.
Section III outlines the proposed compression scheme based
on PCA. The performance of the proposed methodology
is investigated in Section IV by means of two digital link
designs. Finally, Section V concludes the paper. Throughout
the paper, X , x, x, X, X denote a set, a scalar, a vector,
a matrix, and a tensor, respectively.

II. PROBLEM STATEMENT
This section briefly introduces the problem under considera-
tion. We consider a generic dynamic nonlinear system

y(t) =M(t; x), (1)

where x = [x1, . . . , xd ]T ∈ Rd is a set of (uncertain) input
design parameters, y(t) = [y1(t), . . . , yM (t)]T ∈ RM are
the system outputs, and t is an independent sweep variable
which the outputs depend on.1 Without loss of generality,
we do assume that all d uncertain parameters in x are inde-
pendent and equally significant. Techniques are available to
possibly reduce the set of input parameters when they are
correlated [29].

Let us introduce the following set of training pairs:

D = {(xl, yl(tk ))}L,Kl,k=1 (2)

where yl(tk ) are vectors collecting the M system outputs,
computed from (1) for a specific configuration xl of the input
parameters at K distinct and increasing time points {tk}Kk=1.
For the sake of notation compactness, the set of training pairs
is rewritten as a union of subsets

D =
K ,M⋃
k,m=1

Dk,m (3)

where each subset is defined as

Dk,m = {(xl, yl,k,m)}Ll=1, (4)

and yl,k,m denotes the mth output evaluated at the kth time
instant for the lth configuration of the input parameters,
i.e., yl,k,m = Mm(tk ; xl), with subscript m denoting the
specific system output considered.

Starting from a set of training pairs Dk,m, we seek for the
best configurations of parameters {wk,m}

K ,M
k,m=1, each defining

a surrogate model M̃m(tk ; x,wk,m) that minimizes the empir-
ical risk functional

R(wk,m) =
1
L

L∑
l=1

`(M̃m(tk ; xl,wk,m), yl,k,m) (5)

1In the context of this paper, t denotes time; however, it could also be any
other sweep variable like frequency, input power, temperature, etc.
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where ` is the so-called loss-function. For example,
the squared difference

`(M̃(t; x,w), y) = (M̃(t; x,w)− y)2 (6)

is the loss function used by the ordinary least-squares regres-
sion. Specifically, we are looking for the best set of model
parameters w∗ that minimize the model error (5) on the
available set of training samples D, i.e.,

w∗ = argmin
w
R(w). (7)

In the framework of uncertainty quantification, the train-
ing set D is obtained by drawing samples xl of the input
variables randomly or pseudo-randomly, and computing the
corresponding system responses yl . In this paper, we use
a Latin hypercube strategy to randomly sample the design
space with good exploration properties.

III. PCA-COMPRESSED SURROGATE MODELING
Since the system outputs are time-dependent, it is virtually
impossible that a single surrogate model can accurately pre-
dict the entire system dynamics at each time point, for each
output, and for any configuration of the input parameters x.
Therefore, the conventional, practical approach is to build a
different surrogate model for each time point tk and output
variable ym for which data are available, with k = 1, . . . ,K
and m = 1, . . . ,M . In turn, the set of model parameters
changes with time and output variable, and therefore we
denote it as wk,m. These parameters are obtained by suitable
regression techniques using L training responses {yl,k,m}Ll=1
for each of these variables.

The complete dataset of training responses in D, let us
denote it with Y = {yl,k,m}L,K ,Ml,k,m=1, can be interpreted as a
L × K × M three-way tensor. The data in tensor Y exhibit
some inherent correlation, since they come from the same
system. Specifically, data for different responses, at different
time points, are not completely unrelated to each other, but
rather exhibit a large amount of interdependency. If tensor Y
is reshaped by stacking data for all outputs and time points
rowwise, a matrix Y ∈ RKM×L is obtained. This new
dataset Y can be interpreted as a columnwise collection of
L realizations {ζ l}

L
l=1 of a KM -variate stochastic variable ζ .

We calculate the experimental covariance matrix of ζ , i.e.,

6ζ =
ỸỸT

L − 1
, (8)

where 6ζ ∈ RKM×KM and

Ỹ = Y− µζ (9)

is the dataset with the samples epurated from the mean

µζ =
1
L

L∑
l=1

ζ l, (10)

which is subtracted columnwise.

Each of the ζ -realizations can be expressed as [28]

ζ l = µζ +

KM∑
n=1

Zl,nun, (11)

for l = 1, . . . ,L, where

Zl,n = uT
n (ζ l − µζ ) (12)

and {un}KMn=1 are the left singular vectors, obtained by calcu-
lating the SVD

Ỹ = USVT (13)

and taking the columns of U.
We can now truncate (11) to retain only the n̄ ‘‘principal

components’’:

ζ l ≈ ζ̂ l = µζ +

n̄∑
n=1

Zl,nun, (14)

which can be identified by setting a threshold ε on the relative
magnitude of the singular values of Ỹ, collected in descend-
ing order into the diagonal matrix S. The singular values of
Ỹ are proportional to the square root of the eigenvalues of
its covariance matrix 6ζ . If we define 6ζ̂ as the covariance
matrix of the approximated data (14), using matrix properties
we can conclude that

‖6ζ̂ −6ζ‖2

‖6ζ‖2
=

(
σn̄+1

σ1

)2

≤ ε2 (15)

where σ1 is the first singular value of Ỹ and σn̄+1 is the
first singular value that is discarded by the PCA truncation.
Hence, setting a threshold on the singular values allows a
rigorous control on the approximation in terms of variance.
In this paper, we truncate when the magnitude falls below 1%
of the first singular value (i.e., ε = 10−2).

The key achievement is that the set {Zl,n}
L,n̄
l,n=1 of PCA coef-

ficients (12) can be interpreted as a collection of L samples
of n̄ new output system variables Zn(x), with Zl,n = Zn(xl),
describing the information pertaining to the entire set of orig-
inal time-dependent outputs y(t). Since typically n̄ ≪ KM ,
the PCA truncation leads to a substantial compression of the
number of variables to be modeled. Each of these reduced
variables can be approximated using any surrogate model.
Once a model is available for the compressed variables Zn,
new samples for the original time-dependent output variables
can be recovered via (14). It is important to remark that no
specific assumption on the nature of the correlation among
the available data is required by the PCA algorithm.

In the appendices, we introduce the two surrogate models
that are used in the application examples in conjunction PCA
compression, namely the sparse PCE [18] and the LS-SVM
regression [22]. However, the proposed compression strategy
outlined in this section is general and applies to any generic
surrogate model.
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IV. APPLICATION EXAMPLES
In this section, the feasibility and performance of the pro-
posed methodology are assessed based on two application
examples: a 16-bit channel with 54 uncertain parameters
driven by Flashmemory chips and a single-channel electronic
link with 115 uncertain parameters [8] and driven by a DDR
buffer. For the drivers, we use behavioral macromodels con-
structed using the method in [32], [33], but any other model,
either behavioral or transistor-level, may be used.

We use the UQLab toolbox [30] for calculating sparse
PCE surrogate models and the LS-SVMlab toolbox [31] to
carry out LS-SVM regressions. Specifically, we use third-
order polynomials and RBF kernels for the two methods,
respectively. This provides a satisfactory trade-off in terms
of accuracy and training cost for the considered application
examples.

All circuit simulations are performed using HSPICE on a
Dell Precision 5820 workstation with an Intel(R) Core(TM)
i9-7900X, CPU running at 3.30 GHz, and 32 GB of RAM.
The time step of the transient simulation is set to one half
of the risetime of the digital signals to ensure satisfactory
accuracy and resolution of the waveforms.

A. EXAMPLE 1: 16-BIT FLASH-MEMORY BUS
As a first application test case, the proposed methodology is
applied to the link depicted in Fig. 1, which represents a 16-bit
transmission channel of a memory chip. For the I/O buffers,
we use behavioral macromodels compatible with the drivers
of a Flash technology operating at 66 MHz. The structure
includes a resistive rail for the power supply of the buffers,
a RLC network with package parasitics, and a transmission
channel consisting of 16 coupled microstrip traces. The far-
end terminations are floating to mimic connection to high-
impedance receivers. The even-bit drivers transmit slightly
asynchronous pulses with a duration of 15 ns and rise/fall
times of 0.1 ns, whereas odd-bit drivers remain quiet in the
‘‘low’’ state.

FIGURE 1. Illustration of the 16-bit digital channel for the Flash memory
chip.

There are d = 54 uncertain design parameters, each with
an independent Gaussian distribution and a 10% standard
deviation from the nominal value. Namely: the resistance of
the power rail (nominal value: r = 1.14 �), the package par-
asitics (nominal values: resistance R = 50 m�, inductance
L = 2 nH, capacitance C = 5.5 pF), the width and thickness
of each microstrip trace (nominal values: w = 150 µm
and t = 30 µm, respectively), the gap between the traces
(nominal value: g = 150 µm), and the substrate parameters
(nominal values: thickness h = 460 µm, relative dielectric
permittivity εr = 4.1, loss tangent tan δ = 0.02). The values
of package parasitics are here assumed to be independent,
even though some correlation usually exists between them.
The power supply voltage is VDD = 1.8 V and the microstrip
trace resistivity is ρ = 1.72 � ·m. The bus is 18-cm long.

The outputs of interest are the terminal voltages at the
receiver side of each line and the supply voltages of each
driver. These M = 32 outputs are evaluated at K =

901 equally-spaced time points between 0 and 45 ns. A
naive application of advanced surrogate modeling techniques
would require the construction of KM = 28832 models.
On the other hand, the use of a standard, non-sparse PCE
implementation with order p = 3 would require the deter-
mination of the coefficients for |K| = 29260 basis functions,
and hence the use of an exorbitant number of training samples
to solve the corresponding regression problem.

We consider instead L = 300 training configurations
of the uncertain parameters, generated according to a Latin
hypercube scheme. The corresponding responses are eval-
uated by means of HSPICE simulations. Figure 2 shows
the normalized singular values of the training dataset. The
singular values drop below the 1% threshold at n̄ = 51.
Therefore, we retain the first 51 terms in the PCA (11), with a
compression rate amounting to less than 0.2% of the original
variables. It should be noted that lowering the simulation time
step only adds redundant information to the data, which is
then cut off by the PCA compression. For example, if the time
step is reduced to one tenth of the risetime, the data contains
K = 4501 time points, but the PCA compression still retains
the same number of n̄ = 51 terms. Moreover, if the PCA is

FIGURE 2. Normalized singular value plot of the 16-bit bus dataset
(blue line). The horizontal line indicates the 1% threshold for the
PCA truncation.
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applied separately to each of the 32 outputs (thus only exploit-
ing the correlation of data over time), the overall number
of models to be computed becomes 624. This demonstrates
that modeling all outputs concurrently allows to effectively
take advantage of their interdependency and leads to further
compression.

We construct surrogate models for the PCA coefficients
using both a sparse third-order PCE and a LS-SVM regression
with RBF kernel. In the former case, the cardinality of the
subsets K̆ for the sparse models of the various PCA coeffi-
cients varies between 29 and 132, meaning that the number
of non-negligible PCE coefficients is between 0.1% and 0.5%
of the total. On the other hand, the hyper-parameters of the
LS-SVM regression, such as γk,m in (24) and θk,m in (26), are
tuned based on the available set of training samples using the
leave-one-out cross-validation score [31].

Figure 3 shows the variability and the standard deviation of
a selection of four outputs, namely the terminal voltages on
channels #0, #1, and #11, and the supply voltage of the buffer
of channel #15. The green lines are a set of 500 responses
from a reference MC analysis, which help visualize the volt-
age variation due to the parameter uncertainty. It should be
noted that the second and the third plot refer to crosstalk
voltages, as the drivers of channels #1 and #11 are not
transmitting. Moreover, from the fourth plot, a large fluctu-
ation of the supply voltage is observed, resulting from the
commutation of the buffers. The solid blue, dashed red, and
dotted yellow curves are the standard deviation estimated
from 10000 MC samples, with the sparse PCE, and with the
LS-SVM regression, respectively. The results provided by the
two surrogate models compare well, and they are also in fairly
good agreement with the reference MC results. An exception
is the case of the crosstalk voltage on channel #1, for which
a rather large discrepancy is observed. The reason could be
ascribed to the large amount of ‘‘outlying’’ responses that
can be observed in Fig. 3, which particularly affects the
estimation of the standard deviation, especially around 20 ns.

FIGURE 3. Collection of four out of the 32 output voltages for the 16-bit
bus of Fig. 1. Green lines: MC samples; solid blue, dashed red, and dotted
yellow lines: standard deviation computed with MC, sparse PCE, and
LS-SVM regression methods, respectively.

FIGURE 4. PDFs of the output variables in Fig. 3 computed at selected
time points of large variability using the MC samples (blue histograms),
the sparse PCE (solid red line), and the LS-SVM model (dashed
yellow line).

To further assess the accuracy, we calculate the probability
density function (PDF) of the quantities in Fig. 3 at time
points exhibiting large variability. The results are shown
in Fig. 4. A remarkable accuracy is established for both
the PCE and the LS-SVM models, even for the crosstalk
on channel #1. Similar or better results are found for the
remaining outputs.

Table 1 provides the main figures concerning the accuracy
and efficiency of the sparse PCE and LS-SVM regression
methods in conjunction with PCA compression. The accu-
racy is assessed in terms of the root-mean-squared (RMS)
error over the 10000 samples of the reference MC analysis.
The minimum, average, and maximum error over the time
points and the various outputs are provided. As far as the
computational times are concerned, the table lists the time
required by the HSPICE simulation of the training samples,
by the PCA compression, for building and evaluating the
surrogatemodels of the PCA coefficients, and by the recovery
of the corresponding samples of the orginal variables, from
which the statistical information is eventually extracted. For
comparison, the HSPICE simulation of the reference MC
responses takes about 160000 s (1 day 20 h 27 min). The pro-
cessing time of both the sparse PCE and LS-SVM regression

TABLE 1. Performance of the sparse PCE and LS-SVM surrogate models in
conjunction with PCA compression for the 16-bit bus of Fig. 1.
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is minor compared to the simulation of the training samples,
and the two techinques exhibit similar performance in terms
of accuracy and computational efficiency for this test case.

B. EXAMPLE 2: EYE DIAGRAM OF A DDR LINK
As a second application example, we consider the elec-
tronic link investigated in [8]. However, differently from [8],
we consider a time-domain simulation in which a behavioral
macromodel of a DDR driver operating at 133 Mbps trans-
mits a pseudo-random bit sequence and the uncertainty is
provided by d = 115 parameters, again following a Gaussian
distribution with a 10% relative standard deviation. These
parameters include the rail resistance of the driver power
supply (nominal value: r ≈ 0.866 �), the package parasitics
(same nominal values as in the previous test case), as well
as the values of all lumped elements and of all geometrical
and material parameters of the microstrip lines along the link
(we refer to [8] for the numerical values). Both training and
validation samples from the full-computational model are
again generated by simulating the link using HSPICE.

In this case, we analyze a single output variable, i.e., the
voltage at the receiver side (hence, M = 1). However,
because we consider a sequence of about 1000 bits, each data
consist of K = 150001 time points, leading to an even larger
dataset compared to the previous test case. Different datasets
are used to train the surrogate models, with increasing sam-
ples sizes of L = {50, 100, 200, 300}. It should be noted that
the number of basis functions for a full PCE would be in this
case |K| = 266916.

Figure 5 shows the normalized singular values of the var-
ious training datasets. For the smallest dataset with L =
50 responses, only the last singular value drops below the
1%-threshold. It is important to mention that the last singular
value is always zero because one degree of freedom is lost in
removing the mean from the dataset in (9). Therefore, we can
conclude that this dataset is not large enough to sufficiently
exploit the correlation between the various responses. For
the datasets with L = 100, L = 200, and L = 300
training responses instead, the singular values drop below the
threshold after index 90, 83, and 76, respectively, leading to a
PCA compression between 0.05% and 0.06% of the original
variables. It is interesting to note that larger datasets lead to
a more effective PCA compression, as a result of the higher

FIGURE 5. Normalized singular value plot of the single-link datasets.

FIGURE 6. Eye diagram of the received voltage in the link of [8] with a
DDR transmitter. Green lines: superposition of a subset of bit sequences
from the MC analysis; solid blue, dashed red, and dotted yellow lines:
mask of the eye opening based on the 95%-quantiles of the high- and
low-level voltage distributions.

FIGURE 7. PDF of the eye height. The distribution of the MC samples
(blue histogram) is compared in the four panels to the PDFs estimated
with the sparse PCE (solid red lines) and LS-SVM regression (dashed
yellow lines) using different training set sizes.

amount of information contained. For the sparse PCE trained
with the largest dataset (L = 300 samples), the size of the
reduced sets of basis functions ranges from 47 to 147, with a
sparsity well below 0.06%.

Figure 6 shows the eye diagram resulting from the super-
position of the received bit sequences for a small number
of stochastic link realizations. The colored lines represents
the eye masks obtained by considering the 95%-quantiles of
the distributions of the high and low voltage levels based
on 1000 link realizations. The solid blue line is the result
obtained with the reference full-computational HSPICE sim-
ulations. The dashed red and dotted yellow lines are the eye
masks based on the the sparse PCE and LS-SVM surrogate
models, respectively, both trained with L = 300 responses.
Excellent agreement between these techniques is again
established.

Furthermore, the four panels of Fig. 7 compare the PDFs
of the eye height (maximum opening) obtained with dif-
ferent training set sizes and the reference distribution esti-
mated from the MC analysis (blue histogram). The standard
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TABLE 2. Performance of the sparse PCE and LS-SVM surrogate models in conjunction with PCA compression with different training set sizes for the
electronic link in [8] driven by a DDR buffer.

deviation of the eye height estimated from the MC samples
is 49.0 mV. The values obtained with the sparse PCE and
LS-SVM models are reported in Table 2. It is important to
remark at this point that the proposed technique allows for the
uncertainty quantification of the entire received bit sequence,
and not of just a single synthetic output quantity like the
eye height, and hence the determination of more complex
information such as the probabilistic eye mask of Fig. 6.

Finally, Table 2 also provides other relevant figures about
the accuracy and efficiency of the two surrogate models
for this second test case. It is observed that the calculation
of the PCA compression, i.e., of the SVD (13) and the
subsequent projection (12), has a negligible impact on the
overall computational cost, even for this large-size example.
Moreover, the sparse PCE achieves slightly lower average
and maximum RMS error compared to LS-SVM regression.
However, for this application, the latter is muchmore efficient
in the model building phase. This is readily explained by the
fact that, as opposed to PCE, the LS-SVM model complexity
depends on the training set size rather than on the number of
uncertain parameters, as discussed in Appendix B. The time
required by the HSPICE simulation of the 1000 referenceMC
samples is 68934 s (19 h 9 min). This analysis was limited to
a smaller number of samples due to the difficulty in handling
larger datasets.

V. CONCLUSIONS
This paper presented an uncertainty quantification frame-
work for large time-domain datasets. The proposed approach
consists of combining a PCA compression with advanced
surrogate modeling strategies such as those based on PCE
or ML. The PCA allows reducing the amount of output data
to be modeled to a minimum set of variables by exploiting
the inherent correlation between the various responses at
different time points.

The advocated technique allows the straightforward appli-
cation of advanced surrogate modeling techniques to the
uncertainty quantification of systems with multiple and time-
dependent outputs. Two application examples concerning the
signal integrity assessment of digital links affected by 54 and
115 uncertain parameters illustrate the strength and feasibility
of the proposed approach.

APPENDIX A
SPARSE PCE
Given a set of training pairs Dk,m, computed for the time
point tk and output ym, the corresponding PCE surrogate
model has the form

M̃PCE
m (tk ; x,wk,m) =

∑
κ∈K

βk,mκ ϕκ (x), (16)

where the functions ϕκ form a basis of orthonormal multi-
variate polynomials in the input design parameters x. They
are typically built as the product combination of univariate
polynomials, i.e.,

ϕκ (x) =
d∏
i=1

ϕκi (xi), (17)

and K is a set of multi-indices κ = [κ1, . . . , κd ] indicating
the degrees of the polynomials in each variable. In this case,
the model parameters are the PCE coefficients, i.e., wk,m =

{β
k,m
κ }κ∈K.
It is important to point out that in standard and naive PCE

implementations [4], [5], the set K is formed by the multi-
indices up to a given total degree p, i.e.,

K =
{
κ :

∑d
i=1 κi ≤ p

}
, (18)

leading to a cardinality of |K| = (p + d)!/(p!d !). The same
set K is used for each time point and output variable, which
implies that also the basis functions ϕκ do not change. This
makes the calculation of the model parameters relatively
simple.

Indeed, given a set of training samples Dk,m =

{(xl, yl,k,m)}Ll=1, with yl,k,m = Mm(tk ; xl), the risk func-
tional (5) reads

R(wk,m) =
L∑
l=1

(∑
κ∈A

βk,mκ ϕκ (xl)− yl,k,m

)2

= ‖8wk,m − qk,m‖2 (19)

where qk,m = [y1,k,m, . . . , yL,k,m]T ∈ RL and 8 ∈ RL×|K|

is a Vandermonde-like matrix with entries ϕκ (xl), ∀κ ∈ K,
∀xl ∈ Dk,m. The optimal parameter set, minimazing the risk-
functional, is readily found as

w∗k,m = 8
+qk,m, (20)
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where 8+ = (8T8)−18T is the Moore-Penrose pseudo-
inverse of 8.
Since the regression matrix 8 is the same ∀k,m, its

pseudo-inverse 8+ is computed only once and the above
calculation is readily vectorized by stacking data for different
datasets Dk,m columnwise, thus obtaining the parameter set
for all time points and port variables simultaneously. On the
other hand, such a simple model structure may hinder the
applicability of this method to high-dimensional problems.
Since the regression problem needs to be overdetermined
w.r.t. to the number of unknowns |K|, typically at least
L = 2|K| training samples are used, thus rapidly causing
the well-known ‘‘curse of dimensionality’’ as the expansion
order and/or the number of uncertain design parameters is
increased.

In order to mitigate the above limitation, sparse PCEs
have been proposed [17], [19]. These techniques exploit
the ‘‘sparsity-of-effects principle’’, meaning that most of
the coefficients βk,mκ in (16) are actually negligible [18].
This suggests the adaptive identification of a small subset
K̆ ⊂ K of basis functions and corresponding coefficients,
with |K̆| � |K|. However, the subset K̆ typically differs
for each output variable and time point. Hence, a separate
regression problem must be set up and solved for each
of these variables, with a detrimental impact on the effi-
ciency when dealing with multiple and/or time-dependent
outputs.

APPENDIX B
LS-SVM REGRESSION
Given again a set of training samples Dk,m, we now look for
the best set of parameters wk,m of the LS-SVM regression in
the primal space [22], which reads:

M̃LS-SVM
m (tk ; x,wk,m) = 〈wk,m,φ(x)〉 + bk,m (21)

where wk,m = [w1
k,m, . . . ,w

D
k,m]

T is a vector collecting the
regression coefficients and φ(x) = [φ1(x), . . . , φD(x)]T is a
vector collecting the set of basis functions, such that φ(x) :
Rd
→ RD.
The risk function minimization problem in (5) for the

LS-SVM regression reads

min
wk,m,γk,m,e

1
2
‖wk,m‖

2
+
γk,m

2

L∑
l=1

e2l

subject to: yl,k,m = 〈wk,m,φ(x)〉 + bk,m + el, (22)

where the loss-function ` combines the least-squares error e2l
with a Tikhonov regularization. The parameter γk,m pro-
vides a trade-off between model flatness and accuracy on
the available training samples, thus reducing the overfitting.
The above formulation of the LS-SVM in the primal space is
equivalent to ridge regression.

By using the Lagrangian, the solution of the optimization
problem (22) can be recast in terms of the following linear
systems of equations:



∑L

l=1
αl,k,m = 0

y1,k,m −
∑L

l=1
αl,k,mK (x1, xl)−

α1,k,m

γk,m
− bk,m = 0

...

yL,k,m −
∑L

i=1
αl,k,mK (xL , xl)−

αL,k,m

γk,m
− bk,m = 0,

(23)

where the coefficients αl,k,m, for l = 1, . . . ,L, are the
Lagrangian multipliers associated to the LS-SVM model for
the output ym at the time instant tk , whereas K (x, x′) =
〈φ(x),φ(x′)〉 is the so-called ‘‘kernel function’’, such that
K (·, ·) : Rd×d

→ R.
By introducing the kernel function K (x, x′), the linear

system (23) can be recast in matrix form:[
0 1T

1 �k,m
+ I/γk,m

] [
bk,m
αk,m

]
=

[
0

yk,m

]
(24)

where αk,m = [α1,k,m, . . . , αL,k,m]T ∈ RL , yk,m =

[y1,k,m, . . . , yL,k,m]T ∈ RL , 1T = [1, . . . , 1] ∈ RL , I ∈
RL×L is the identity matrix, and �k,m

∈ RL×L is the kernel
matrix with elements �m,k

ij = K (xi, xj; θk,m), ∀xi, xj ∈ Dk,m
with i, j = 1, . . . ,L, and in which θk,m is a set of hyper-
parameters characterizing the kernel function.

By solving (24), we can write the LS-SVM formulation in
the dual space:

M̃LS-SVM
k,m (x) =

L∑
l=1

αl,k,mK (x, xl; θk,m)+ bk,m, (25)

where the regression coefficients αl,k,m, the bias term bk,m,
and the kernel hyper-parameters θk,m, need to be computed
for each set of training pairsDk,m, i.e., for each output ym and
time point tk .

As opposed to the PCE, the LS-SVM regression in the
dual form is a non-parametric technique in which the number
of coefficients αl,k,m to be estimated equals the number L
of training samples, and it is completely independent from
the number d of uncertain design parameters. Thanks to the
kernel function K (·, ·), the dual space formulation does not
require an explicit definition of the basis functions φ(x). This
is the so-called ‘‘kernel trick’’.

In this paper, we use the Gaussian radial basis func-
tion (RBF) kernel:

K (x, x′; θk,m) = exp

(
−
‖x− x′‖2

2σ 2
k,m

)
, (26)

where θk,m = σk,m is a single hyper-parameter tuned accord-
ing to the training samples.
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