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Information measure for financial time series:
quantifying short-term market heterogeneity
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Abstract

A well-interpretable measure of information has been recently proposed based on a partition ob-
tained by intersecting a random sequence with its moving average. The partition yields disjoint
sets of the sequence, which are then ranked according to their size to form a probability distribu-
tion function and finally fed in the expression of the Shannon entropy. In this work, such entropy
measure is implemented on the time series of prices and volatilities of six financial markets. The
analysis has been performed, on tick-by-tick data sampled every minute for six years of data
from 1999 to 2004, for a broad range of moving average windows and volatility horizons. The
study shows that the entropy of the volatility series depends on the individual market, while the
entropy of the price series is practically invariant for the six markets. Finally, a cumulative in-
formation measure - the Market Heterogeneity Index - derived from the integral of the entropy
measure, is introduced for obtaining the weights of an Efficient Portfolio. A comparison with the
weights obtained by using the Sharpe ratio - a traditional risk diversity measure - is also reported.

Keywords: Entropy; Long-range correlated time series, Market Heterogeneity, Portfolio
Selection

1. Introduction

Several connections between economics and statistical thermodynamics have been suggested
over the years. Marginal utility and disutility have been related respectively to force, energy and
work [1]. Differential pressure and volume in an ideal gas have been linked to price and volume
in financial systems [2], money utility has been linked to entropy [3] and temperature has been
linked to velocity of circulation of money [4]. As a result of the growing diversification and glob-
alization of economy, applications of entropy concepts to finance and economics are receiving
renewed attention as instruments to monitor and quantify market diversity [5–17]. Heterogene-
ity of private and institutional investments might result, among other effects, in imperfect and
asymmetric flow of information at a microscopic level, ultimately undermining the validity of
the efficient market theory with its assumption of a homogeneous random process underlying the
stock prices dynamics [18].

The interplay of noise and profitability with specific focus on volatility investment strate-
gies has therefore gained interest and is under intense scrutiny [19–22]. Volatility series exhibit
remarkable features suggesting the existence of some amount of ‘order’ out of the seemingly
random structure. The degree of ‘order’ is intrinsically linked to the information, embedded in
Preprint submitted to Elsevier April 28, 2020



the volatility patterns, whose extraction and quantification might shed light on microscopic finan-
cial phenomena [8–15]. The Volatility Index (VIX), defined as the near-term volatility conveyed
by S &P500 stock index option prices, has been suggested as a figure able to monitor investor
sentiment. VIX futures and options have been introduced as trading instruments. The Chicago
Board Options Exchange (http://www.cboe.com/) calculates and updates the values of more
than 25 indexes designed to measure the expected volatility of different securities.

New tools for portfolio optimization and asset pricing should be based on the expected
volatility over different horizons to evaluate market performances beyond the figures of risk
provided by the traditional static techniques [23–25]. Markowitz portfolio selection model (also
known as ‘mean-variance’ model) and its variants are based on the assumption that returns of as-
sets follow a normal distribution, a condition that has been extensively proved to be far from the
real behaviour of financial data. Portfolios highly concentrated on a limited number of assets are
provided by the Markowitz method, which therefore do not fulfil the purpose of optimally diver-
sifying the investment. Another drawback of the ‘mean-variance’ model is the poor resolution of
data outliers. For assets that are asymmetrically or non-normally distributed, improved measures
of uncertainty have been proposed: dynamic rather than static; based on moments higher than
the first/second (mean/variance); not relying on a specific distribution of prices/returns.

Entropy, as a quantitative estimate of diversity, might prove convenient for portfolio selec-
tion. The entropy concept, exploited for portfolio selection and compared to traditionally esti-
mates of optimal portfolios in [26–28], was found consistent with the Markowitz full-covariance
and the Sharpe single-index models. The incremental entropy approach has been proposed in
[29] where in particular the need of building an optimal portfolio for a given probability of return
was remarked. Entropy based optimal portfolios, where the asset risk are caused by random-
ness and fuzziness, have been put forward in [30–32]. The mean-variance-skewness-entropy
model, proved better than traditional portfolio for out-of-sample tests [33–35]. A possibilistic
mean-semivariance-entropy model for multi-period portfolio selection with transaction costs is
proposed in [36]. The portfolio weights by a rule-based inference mechanism under both maxi-
mum entropy and minimum relative entropy [37–42].

In this work, the information measure approach proposed in [43–45] is applied to prices
and volatilities of tick-by-tick data, recorded from 1999 to 2004, of six financial markets. The
method here proposed does not suffer of the ‘mean-variance’ model limitations as it does not
require a specific distribution of returns, i.e. in particular a symmetric Gaussian distribution.
The investigation is performed over a broad range of volatility horizons and moving average
windows. Interestingly, it is found that the entropy of the volatility series takes different values
for the different markets as opposed to the entropy of the prices, which is mostly constant and
consistent with a homogeneous random walk structure of the six market time series. In order
to provide a clear procedure for the practical use of the proposed approach, a synthetic figure
- Market Heterogeneity Index - is introduced, defined in terms of the integral of the entropy
functional. Hence, the Market Heterogeneity Index is calculated for prices and volatilities of the
six financial markets, over different volatility horizons and moving average windows. The values
of the index are finally compared with the results obtained by using the Sharpe ratio, a traditional
estimate of portfolio risk.

Different approaches have been proposed for the evaluation of the entropy of a random
sequence {xt}, whose preliminary fundamental step is the symbolic representation of the data,
through a partition suitable to map the continuous phase-space into disjoint sets [46–52]. The
method commonly adopted for partitioning a sequence is based on a uniform division in equal
size blocks. Then the entropy is estimated over subsequent partitions corresponding to different
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block sizes [46]. The construction of an optimal partition is not a trivial task, as it is crucial
to effectively discriminate between randomness/determinism of the encoded/decoded data (see
Section III of Ref.[53] for a short review of the partition methods).

Here, the partition is obtained by taking the intersection of {xt} with the moving average
{x̃t,n} for different moving average window n [43–45]. For each window n, the subsets {xt :
t = s, ...., s − n} between two consecutive intersections are ranked according to their size to
obtain the probability distribution function P. The elements of these subsets are the segments
between consecutive intersections and have been named clusters (see the illustration shown in
Fig. 1). The present approach directly yields either power-law or exponential distributed blocks
(clusters), thus enabling us to separate the sets of inherently correlated/uncorrelated blocks along
the sequence. Moreover, the clusters are exactly defined as the portions of the series between
death/golden crosses according to the technical trading rules. Therefore, the information content
has a straightforward connection with the trader’s perspective on the price and volatility series.
For the sake of clarity, the main relationships relevant to the investigation carried in this paper
will be shortly recalled in Section 2.

2. Cluster entropy

The approach adopted in the framework of this work [43–45], stem from the idea of Claude
Shannon to quantify the expected information contained in a message extracted from a sequence
xt [54] by using the entropy functional:

S [P] =
∑

j

p j log p j . (1)

with P a probability distribution function associated with the time sequence xt.
Consider the time series {xt} of length N and the moving average {x̃t,n} of length N − n with

n the moving average window. The function {x̃t,n} generates, for each n, a partition {C} of non-
overlapping clusters between two consecutive intersections of {xt} and {x̃t,n}. Each cluster j has
duration:

τ j ≡ ‖t j − t j−1‖ (2)

where the instance t j−1 and t j refer to two subsequent intersections as shown in Fig.1.
The probability distribution function P(τ, n) can be obtained by ranking the number of clus-

ters N(τ1, n),N(τ2, n), ...,N(τ j, n) according to their length τ1, τ2, ..., τ j for each n.
For a fractional Brownian motion, a stationary sequence of self-affine clusters C is generated

with probability distribution function varying as [43]:

P(τ, n) ∼ τ−αF (τ, n) , (3)

with the factor F (τ, n) taking the form exp(−τ/n), to account for the finite size effects when
τ � n, resulting in the drop-off of the power-law and the onset of the exponential decay.

By using Eq. (3), Eq. (1) writes (the details of the derivation can be found in [43, 45]):

S (τ, n) = S 0 + log τα +
τ

n
, (4)

where S 0 is a constant, log τα and τ/n are related respectively to the terms τ−α and F (τ, n).
3



The constant S 0 in Eq. (4) can be evaluated as follows: in the limit n ∼ τ → 1, S 0 → −1
consistently with the minimum value of the entropy S (τ, n) → 0 that corresponds to a fully
ordered (deterministic) set of clusters with same duration τ = 1. The maximum value of the
entropy S (τ, n) = log Nα is then obtained when n ∼ τ → N with N the maximum length of
the sequence. This condition corresponds to the maximum randomness (minimum information)
carried by the sequence, when a single cluster is obtained coinciding with the whole series.

The term log τα in Eq. (4) can be written as log τD, since the exponent α is equal to the fractal
dimension D = 2 − H with H the Hurst exponent of the time series. The term log τD can be thus
interpreted as a generalized form of the Boltzmann entropy S = log Ω, where Ω = τD can be
thought of the volume occupied by the fractional random walker.

The term τ/n in Eq. (4) represents an excess entropy (excess noise) added to the intrinsic
entropy term log τD by the partition process. It depends on n and is related to the finite size effect
discussed above. This aspect has been discussed for this specific measure in relation to the DNA
sequences in [43], while the general issue of the finite size effects on entropy measure has been
discussed in Refs. [55–58]

The method and Eqs. (1 - 4) have been applied for estimating the probability distribution
function P(`, n) and the entropy S (`, n) of the cluster length ` of the 24 nucleotide sequences of
the human chromosomes in [43]. It is worth noting that the characteristic sizes ` and τ (respec-
tively cluster length and duration) are equivalent from a statistical point of view. However, the
cluster duration τ is a variable more suitable and meaningful than the cluster length ` when deal-
ing with time series {xt}. Furthermore, the cluster duration τ is particularly relevant to financial
market series, due to its straightforward connection to the duration of the investment horizon via
the volatility window T and the moving average window n, entering as parameters in the above
calculation.

Before entering the details of the application to the six financial indexes, it is worthy to clar-
ify the implication of partitioning a random sequence either by using boxes having equal size or
by using the clusters obtained through the intersection with the moving average. For same size
boxes, the excess noise term τ/n vanishes, thus the entropy reduces to the logarithmic term (see
Eq. (8) in Ref. [46]) which corresponds to the intrinsic entropy of an ideal fractional random
walk of dimension D = 2 − H. When a moving average partition is used, an excess entropy term
τ/n emerges accounting for the additional heterogeneity introduced by the random partitioning
process operated by using the moving average intersections. This is particular relevant for finan-
cial applications as it represents a measure of the disorder introduced by the trading mechanism
based on moving averages.

3. Data

The information measure described in the previous section is here applied to financial prices
and volatilities of six market indices (BOBL, BUND, DAX, Euro Currency, Euro Stoxx and
FIB30). For each index, the data set includes tick-by-tick prices pt sampled every minute from
4 January 1999 to 24 March 2004. The length of the series is set for all the six markets equal to
517041, determined on the basis of the length of the shortest series which is the Eurocurrency.
The six time series are shown in Fig. 2.

Among other reasons, the main motivation for selecting the six markets mentioned above is
the fact that they operate in a very similar socio-economic context, being all traded within the
EU zone. This rules out that the diversity featured by the entropy measure might stem from ex-
ogenous drives rather than from the intrinsic dynamics of the market. A short description of the
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data and the markets is provided here below.

BUND is a debt security issued by Germany’s federal government, and it is the German
equivalent of a U.S. Treasury bond. The German government uses bunds to finance its spending,
and bonds with long-term durations are the most widely issued securities. Bunds are auctioned
only with original maturities of 10 and 30 years. Bunds represent long-term obligations of the
German federal government that are auctioned off in the primary market and traded in the sec-
ondary market. Bunds can be stripped, meaning their coupon payments can be separated from
their principal repayments and traded individually. Bunds pay interest and principal typically
once a year, and they represent an important source of financing for the German government.
The principal characteristics of bunds are that they are nominal bonds with fixed maturities and
fixed interest rates. All German government debt instruments, including bunds, are issued by
making a claim in the government debt register rather than producing paper certificates. A typ-
ical bund issue will state its issuance volume, maturity date, coupon rate, payable terms and
interest calculation standard used.

BOBL is a futures contract with medium term debt that is issued by the Federal Republic of
Germany as its underlying asset. The contract has a notional contract value of 100,000 euros,
with a term to maturity of 4.5 to five years. Unlike most other types of future contracts, BOBL
future contracts tend to be settled by delivery. In America, these futures contracts are traded
on the Chicago Board of Trade, under the symbol GBM. The Euro-Bobl future, along with the
Euro-Bund and Euro-Schatz futures, are the most heavily traded fixed-income securities in the
world. BOBL is an acronym for bundesobligationen. This translates to ’federal obligations’ in
English .

DAX, the “Deutscher Aktien indeX”, is the derivative of the main German stock index con-
sisting of the 30 major German companies trading on the Frankfurt Stock Exchange. Just like
the FTSE 100 and S&P500, DAX is a capitalization-weighted index so it essentially measures
the performance of the 30 largest, publicly traded companies in Germany. It is therefore a strong
indicator of the strength of the German economy and investor sentiment towards German equi-
ties. The DAX has been a relatively stable index with 16 companies of the original 30 remaining
in the index since its inception in 1988. The index began with a base date of 30 December 1987
and a base value of 1,000. Over the years the DAX has seen a large amount of takeovers, merg-
ers, bankruptcies, and restructurings. Since 1 January 2006, the index is calculated after every
seconds. It is computed daily between 09:00 and 17:30 CET.

Euro Stoxx is an index of the Eurozone stocks designed by STOXX, a provider owned by
Deutsche Brse Group. The Euro Stoxx 50 provides a blue-chip representation of Supersector
leaders in the Eurozone. It is made up of fifty of the largest and most liquid stocks. The Euro
Stoxx 50 was introduced on 26 February 1998. Its composition is reviewed annually in Septem-
ber. The index is available in several currency (EUR, USD, CAD, GBP, JPY) and return (Price,
Net Return, Gross Return) variant combinations. Calculation takes place every 15 seconds be-
tween 09:00 CET and 18:00 CET for the EUR and USD variants of any return type, while the
CAD, GBP and JPY variants are available as end-of-day calculation only (18:00 CET). The Euro
Stoxx 50 Index is derived from the 19 Euro Stoxx regional Supersector indices and represents
the largest super-sector leaders in the Eurozone in terms of free-float market capitalization. The
index captures about 60% of the free-float market capitalization of the Euro Stoxx Total Market
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Index (TMI), which in turn covers about 95% of the free-float market capitalizaion of the repre-
sented countries. It is one of the most liquid indices for the Eurozone: an ideal underlying for
financial products or for benchmarking purposes. Additionally, the index serves as an underly-
ing for many strategy indices, such as the Euro Stoxx 50 Risk Control Indices. Buffers are used
to achieve the fixed number of components and to maintain stability of the indices by reducing
index composition changes. Selection methodology ensures a stable and up-to-date index com-
position. Fast-entry and fast-exit rules ensure the index accurately represents the performance of
only the biggest and most liquid stocks.

Euro Currency Index (EURI) represents the arithmetic ratio of four major currencies against
the Euro: US-Dollar, British Pound, Japanese Yen and Swiss Franc. All currencies are expressed
in units of currency per Euro. The index was launched in 2004 by the exchange portal Stooq.com.
Underlying are 100 points on 4 January 1971. Based on the progression, Euro Currency Index
can show the strength or weakness of the Euro. A rising index indicates an appreciation of the
Euro against the currencies in the currency basket, a falling index in contrast, a devaluation.
Relationships to commodity indices are recognizable. A rising Euro Currency Index means a
tendency of falling commodity prices. This is especially true for agricultural commodities and
the price of oil. Even the prices of precious metals (gold and silver) are correlated with the index.
Arithmetically weighted Euro Currency Index is comparable to the trade-weighted Euro Effec-
tive exchange rate index of the European Central Bank (ECB). The index of ECB measures much
more accurately the value of the Euro, compared to the Euro Currency Index, since the competi-
tiveness of European goods in comparison to other countries and trading partners is included in it.

FIB30 is the derivative of the MIB 30 stock market index consisting of the 30 major Italian
companies trading on the Borsa Italiana until the 2003. In fact in 2003 it is substituted by the
S&P/MIB, and in the 2009 by the FTSE-MIB index based on the 40 major company traded in
the Italian market. The FTSE MIB index is the major benchmark index of the Italian stock mar-
kets. This index, which accounts for about 80% of the domestic market capitalization, consists
of companies of primary importance and high liquidity in the various ICB sectors in Italy. The
FTSE MIB Index measures the performance of 40 Italian securities and intends to reproduce the
weights of the expanded Italian equity market. The Index is derived from the trading universe
of securities on the main stock market of Borsa Italiana (BIt). Each title is analyzed by size and
liquidity, and the Index provides a representation of sectors. The FTSE MIB is a weighted index
based on market capitalization. It is computed daily between 9:00 and 17:50 CET.

4. Results

In this work, the continuously compounded return:

rt = pt − pt−h , (5)

and the log-return:
rt = log pt − log pt−h , (6)

have been considered, with 0 < h < t < N and N the maximum length of the time series. The
plots of the prices, the linear return and logarithmic return for the six markets are shown in Fig. 2,
Fig. 3 and Fig. 4 respectively.
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The volatility vt,T has been taken as:

vt,T =

√∑T
t=1 (rt − µT )2

T − 1
, (7)

where rt are the above defined return, T the volatility window, µT =
∑T

t=1 rt/(T − 1) the average
value of the return taken over the window T . It is well known that the volatility definition is not
univocal, however this work has been performed by using the definition of Eq. (7).

The series of the prices of the six markets, shown in Fig. 2, are used to calculate the prob-
ability distribution functions P(τ, n) and the entropy S (τ, n) according to the above described
procedure. The probability P(τ, n) for the six price series is shown in Fig. 5. The analysis has
been performed for n ranging between 5 min and 1500 min, however for the clarity of visual-
ization, only the curves corresponding to moving average windows n = 30 min, n = 50 min,
n = 100 min, n = 150 min, n = 200 min are plotted. The curves exhibit a power law behaviour
for τ < n, and an exponential decay, for τ > n, respectively. The power-law exponents agree
with the theoretical prediction α = 2 − H expected for fractional Brownian motions. The curves
shown in Fig. 5 are thus consistent with Eq. (3) over the whole range of investigated values.

Fig. 6 shows the entropy S (τ, n) calculated by using the probability distribution functions
plotted in Fig. 5. The curves correspond to moving average values n = 30 min, n = 50 min,
n = 100 min, n = 150 min, n = 200 min. The range of investigated moving average windows
is much broader (from n = 5 min to n = 1500 min) but it is not shown for visualization clarity.
The behavior of the curves is quite carefully reproduced by Eq. (4): the first part increases as a
logarithmic function, then for τ ≈ n a sharp increase is observed corresponding to the onset of
the linear term τ/n. One can note that S (τ, n) is n-invariant for small values of τ, while its slope
decreases as 1/n at larger τ, as expected according to Eq. (4), meaning that clusters with duration
τ > n are not power-law correlated, due to the finite-size effects introduced by the partition with
window n. Hence, they are characterized by a value of the entropy exceeding the curve log τD,
which corresponds to power-law correlated clusters. It is worthy to remark that clusters with
same duration τ can be generated by different values of the moving average window n. For
constant τ, larger entropy values are obtained as n increases.

The probability distribution function P(τ, n) and the entropy S (τ, n) have been calculated for
a large set of volatility series with (i) linear and (ii) logarithmic return with volatility window
T ranging from half a trading day to 20 trading days (namely T = 330 min, T = 660 min,
T = 1320 min, T = 1980 min, T = 2640 min, T = 3300 min, T = 3960 min, T = 4620min,
T = 5280 min, T = 5940 min, T = 6600 min, T = 13200 min). The entropy S (τ, n) for the
volatility of logreturn series with T = 660 min is shown in Fig. 7 for the six markets.

By comparing the results shown in Fig. 6 and in Fig. 7, one can note a general increase of the
entropy of the volatilities compared to prices. Such an increase has been systematically found in
all the analysed series, both for linear and logarithmic return with diverse volatilities windows T .
Preliminary results can be found in [59] where the invariance of the entropy curves for the prices
is shown. The volatility entropy behaviour is related to a deviation of the probability distribution
function of real-world time series due to the reduced randomness and data redundancy compared
to the ideal one predicted on the basis of Eq. (3) deduced for fractional Brownian motions. These
issues are further enphasized when the data are fed in the volatility relationship Eq. (7) which,
being a variance, enhances the variability compared to that of the prices.
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5. Portfolio Selection

On the basis of the findings reported in the previous section, we put forward a procedure to
estimate an information heterogeneity index from the entropy of the volatility series. Then we
also show how to use this index for estimating the weights of portfolio assets. Before discussing
the market heterogeneity indexes obtained from the cluster entropy data, the main steps of the
Markowitz approach are briefly recalled for the sake of completeness.

When a rational investor should compare two stocks with the same return, the choice goes
to the one with the smaller variance (lower risk). A generalized reasoning was pioneered by
Markowitz to portfolio selection with more than two stocks. The expected return for an portfolio
is defined by Markowitz as:

rP = E

 M∑
k=1

wkrk,t

 =

M∑
k=1

wkµk , (8)

where rk,t are the return defined by Eqs. (5,6) and wk is the percentage of the investment for each
stock k. The portfolio variance is defined as:

σ2
P =

M∑
k=1

M∑
l=1

wkσk,lwl , (9)

where:
σk,l = E

[
(rk,t − µk,t)(rl,t − µl,t)

]
, (10)

with k and l any two out of the M stocks.
The goal of the portfolio choice problem is to seek minimum risk for a given level of return

and to seek maximum return for a given level of risk. In formulas, the portfolio optimization
problem minimizes:

1
2
σ2

P −
1
λ

rP , (11)

with the basic portfolio constraints:

1. wk ≥ 0 (the portfolio weights are set to be nonnegative by using the lower-bound con-
straint);

2.
∑M

k=1 wk = 1 (the portfolio weights sum is set to 1 by using the budget constraint).

Portfolios satisfying these criteria are called efficient and the graph of the risks and returns of
these portfolios forms a curve called the efficient frontier [23]. The portfolio that maximizes the
Sharpe ratio is among the various optimal portfolios on the efficient frontier, the one identified
by the intersection between the tangent line from the risk-free rate to the efficient frontier and
the efficient frontier. The Sharpe ratio is defined as the average return earned in excess of the
risk-free rate r f per unit of volatility or total risk [24, 25]:

RS =
rP − r f

σP
, (12)

where rp is the expected portfolio return and σp the portfolio standard deviation, and r f is the
risk free rate defined as:

r f = E

 M∑
k=1

rk,t

 =

M∑
k=1

µk . (13)
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Generally, the greater the value of the Sharpe ratio, the more attractive the risk-adjusted return.
As extensively reported in the literature, the Markowitz approach suffers from many draw-

backs: (1) it is based on the unrealistic assumption of Gaussian distributed returns; (2) it provides
portfolios that are highly concentrated on few highly concentrated assets, which does not corre-
spond to the maximal diversification. In order to reduce the effects of this limitation, the entropy
concept has been applied to the vector of weights wk. The portfolio weights are maximally diver-
sified when the entropy is maximal, i.e. when all the states are equally likely {wk = 1/M}k=1,...,M .
The entropy is minimal in the deterministic case {wk = 1}k=k′ otherwise {wk = 0}k,k′ . In practice,
first the weights are estimated by using the above equations and then the entropy of the weights
wk is maximized by using the Shannon entropy [12, 16, 37, 38].

The approach proposed in this work takes a different perspective as discussed in the following
paragraphs. Here, the entropy estimate is straightaway obtained from the financial market data
without using the mean-variance hypothesis of Gaussian returns.

To univocally quantify the entropy behaviour of volatilities of each single market, we intro-
duce a cumulative information measure defined as follows:

Ik,C(n) = −

∫ τmax

0
S k(τ, n)dτ . (14)

where the index k refers to each single market. The function Ik,C(n) has been plotted in Fig. 8 for
the prices (a) and the volatilities with linear (b) and logarithmic return (c). The function Ik,C(n)
is almost constant for the prices of the six markets (a), conversely it takes different values for the
volatilities (b,c).

The quantity Ik,C(n) is further integrated over n:

Ik,C =

∫ nmax

nmin

Ik,C(n)dn . (15)

The quantity Ik,C given by Eq. (15) is a cumulative figure of heterogeneity, a number suitable
to quantify the reduced information content (excess entropy) and make a comparison across the
different markets. The absolute value of the Market Heterogeneity Index Ik,C has been plotted in
Fig. 9 for the six markets.

For each market k and volatility windows T , the value of Ik,C calculated according to Eq. (15)
has been rescaled between 0 and 1 using:

Ik,C =

Ik,C∑M
k=1 Ik,C

−min
[
Ik,C

]
max

[
Ik,C

]
−min

[
Ik,C

] (16)

where M is the set of all markets, in the present work M = 6. In particular the data in Fig. 9 (a)
correspond to the integrals under the curves shown in Fig. 8 (a) for the prices. The data of Fig. 9
(b) correspond to the integrals of the volatility curves with linear return shown in Fig. 8 (b). The
data of Fig. 9 (c) correspond to the integrals of the volatility curves with the logarithmic return
shown in Fig. 8 (c). Different symbols corresponds to the different volatility windows, namely
T = 1320 min (circles), T = 1980 min (squares), T = 2640 min (up triangles), T = 3300 min
(down triangles). Consistently with the results shown in Fig. 8, a strong variability is observed
in the volatility curves (b,c) compared to prices (a). Finally , the fraction of investments in each
market (portfolio weights) normalized to 1 can be obtained by taking the following quantities:

wk = 1 − Ik,C . (17)
9



In order to reduce the spurious fluctuations due to the different markets opening/closing and
improve the quality of the estimate, an average value of Ik,C might be taken over the set of
volatility windows T . The values of the weights are shown in Fig. 10 (up triangles) estimated
by using the data plotted Fig. 9 (b). The weights of the efficient portfolio that maximizes the
Sharpe Ratio are shown for comparison in Fig. 10 (circles). The portfolio weights obtained via
the market heterogeneity strategy and the Sharpe ratio are also shown in Table 1.

The Sharpe ratio values reported in Table 1 have been obtained by using the portfolio op-
timization tool provided by MATLAB financial toolbox [60]. The main steps of the portfolio
optimization tool are the following:

• Create a portfolio object by using the ‘Portfolio’ function.

• Estimate mean and covariance of the return. By using the ‘setAssetMoments’ function and
its properties ‘AssetMean’ (for the mean) and ‘AssetCovar’ (for the covariance) are then
assigned to the ‘Portfolio’ object.

• Specify the ‘Portfolio’ constraints. The basic constraints for the optimization, given by
Eqs. (11), are set. Additional constraints such as linear equality and inequality, bound,
budget, group, group ratio, turnover, and tracking error might also be considered.

• Validate the ‘Portfolio’ for identifying errors by using specialized validation functions.

• Estimate the efficient portfolios and efficient frontier. The ‘estimateFrontier’ function com-
putes efficient portfolios spaced evenly according to the return proxy from the minimum
to maximum return efficient portfolios. The number of portfolios estimated is controlled
by the hidden property ‘defaultNumPorts’ which is set to 10 in the present analysis.

• Choose the portfolio that maximizes the Sharpe ratio. By using the ‘estimateMaxSharpeR-
atio’ function, the optimal portfolio that maximizes the Sharpe ratio among the portfolios
on the efficient frontier is identified. This function implements Eq. (12), where the ex-
pected portfolio return is given by Eq. (8), the portfolio variance by Eq. (9) and the risk
free rate, if not exogenously given, is set by default equal to zero.

Looking at Table 1 there is a very good correspondence between the weights obtained with
the two strategies. It is worth noting that the portfolio that maximizes the Sharpe ratio correspond
to a strategy limited to only three out of the six markets, as opposed to the cluster entropy strategy
that has a smoother and better distributed variation of the weights. It is worthy of note that the
investment horizon of the cluster entropy measure is defined by the range of the duration τ, then it
is of the order or smaller than the maximum value of the moving average window n. Conversely,
the optimization based on the Sharpe ratio refers to the whole duration of the financial data series.
Therefore the time scale of the proposed measure refers to a short term investment horizon (day-
by-day trading).

Conclusion

The implementation of the moving average algorithm to estimate the Shannon entropy of a
long-range correlated sequence has been illustrated to analyse the tick-by-tick data of six markets
BOBL, BUND, DAX, Euro Currency, Euro Stoxx and FIB30 from 1999 to 2004. By considering
several runs of the algorithm for the different parameters (mainly moving average n and volatility
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Table 1
Portfolio weights obtained by using the Sharpe ratio (1st row) and the Cluster Entropy (2nd row) for the six
markets. The weights have been obtained from the market heterogeneity indexes shown in Fig. 9 (b).
Similar values are obtained by using the market heterogeneity indexes with logreturn shown Fig. 9 (c). It is
worthy of note that the investment horizon of the current entropy measure is defined by the range of the
cluster duration τ i.e. of the order or smaller than the maximum moving average window n. Conversely,
the optimization based on the Sharpe ratio refers to the whole duration of the financial data series.
Therefore the comparison between the two strategies makes sense only at a qualitative level.

Portfolio weights BOBL BUND DAX Euro Stoxx Euro Currency FIB30
wk (Sharpe ratio) 0.6189 0.3566 0 0 0.0245 0

wk (Cluster entropy) 0.2007 0.2218 0.1913 0.1689 0.1471 0.0702

T windows) this study has systematically shown, the entropy measured on the price is practically
market invariant, whereas the entropy of the volatilities is market dependent. A cumulative mar-
ket heterogeneity index, defined by Eqs. (15 -17) has been built and its values compared with
those of a standard risk measure (the Sharpe ratio). Compared to the Sharpe ratio, the market het-
erogeneity index provides a more accurate and smooth evaluation of the portfolio composition,
that might be an advantage for practical applications of the entropy measure. The novelty of the
present approach resides in the method used for partitioning the sequence which allows one to
separate the sets of inherently informative/uninformative clusters along the sequence. Moreover,
the clusters are exactly defined as the portions of the series between death/golden crosses accord-
ing to the technical traders rules. Therefore, the information content quantified by this approach
is intimately linked to technical trader’s viewpoint on the analysed markets. The six markets used
in this study have been chosen because they operate in close socio-economic contexts within the
EU. The similarity of the ambient context permits to rule out external causes as the source of
the market heterogeneity, while ensuring that the diversity is due to endogenous processes. The
current work will be extended to evaluate portfolios including markets beyond Europe and other
more volatile assets.
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Figure 1
The sketch illustrates the partition obtained by the intersection of the time series {xt} and the moving
average {x̃t,n}. Top panel is for moving average window n = 5min, bottom panel is for moving average
window n = 10min. The clusters j, j + 1, j + 2, j + 3 are shown.
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Figure 2
Prices series for the BOBL, BUND, DAX, EuroCurrency, EuroStoxx and FIB30 indexes. The tick-by-tick
data series are sampled every minute from 4 January 1999 to 24 March 2004. The total length of the series
is 517041.
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Figure 3
Linear return for the BOBL, BUND, DAX, Euro Currency, Euro Stoxx and FIB30 indexes. The
tick-by-tick data series are sampled every minute from 4 January 1999 to 24 March 2004. The total length
of the series is 517041.

16



0 1 2 3 4 5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0 1 2 3 4 5

-0.5

0.0

0.5

0 1 2 3 4 5

-0.5

0.0

0.5

0 1 2 3 4 5

-0.5

0.0

0.5

0 1 2 3 4 5

-0.05

0.00

0.05

0 1 2 3 4 5

-0.05

0.00

0.05

FIB 30

time 105

Euro Stoxx

time 105

Euro Currency

lo
g-

re
tu

rn

time 105

DAXBUND

 lo
g-

re
tu

rn

 

Figure 4
Logarithmic return for the BOBL, BUND, DAX, Euro Currency, Euro Stoxx and FIB30 indexes. The
tick-by-tick data series are sampled every minute from 4 January 1999 to 24 March 2004. The total length
of the series is 517041.
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Figure 5
Probability distribution function P(τ, n) for the prices series of the BOBL, BUND, DAX, Euro Currency,
Euro Stoxx and FIB30 markets. The different plots refer to different values of the moving average window
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Entropy S (τ, n) for the time series of the prices of the BOBL, BUND, DAX, Euro Currency, Euro Stoxx
and FIB30 markets. The different plots refer to different values of the moving average window n (namely
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Figure 7
Entropy for the volatility series. The function S (τ, n) is shown for the volatilities of the log return time
series of the BOBL, BUND, DAX, Euro Currency, Euro Stoxx and FIB30 markets. The volatility window
T = 660 min for all the six graphs. The different plots refer to different values of the moving average
window n (namely n = 30 min, n = 50 min, n = 100 min, n = 150 min and n = 200 min).

20



0 500 1000 1500

 I k,
C
(n

)

 

 

n

(a)

0 500 1000 1500

 

 

 

 n

(b)

0 500 1000 1500

 
Figure 8
Plot of the function Ik,C(n) against n calculated according to Eq. (14) for the prices (a), the volatilities with
linear return (b) and with log return (c) for the six indexes. Consistently with the results shown in Fig. (6)
the plots exhibit an increasing behaviour with an inversion at small values of n. A strong variability is
observed for the volatilities (graphs (b) and (c)) as opposed to the prices series (a).
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Figure 9
Market Heterogeneity Index Ik,C calculated according to Eq. (16) for the the six indexes. The volatility
window is T = 1320 min (circles), T = 1980 min (squares), T = 2640 min (up triangles) and
T = 3300 min (down triangles). A strong variability of the Ik,C is observed for the volatility series (b) and
(c), as opposed to the price series exhibiting a constant value of the index (a). The plotted data have been
obtained by rescaling Ik,C between 0 and 1.
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Figure 10
Portfolio weights wk obtained by using respectively the Sharpe ratio Eq. (12) (circles) and the Market
Heterogeneity Index (up triangles) defined by Eq. (17) for the six indexes. One can notice that the triangles
are much more diversified that the circles. Furthermore the values of cluster entropy weights are much
closer to the maximal entropy weights corresponding to equally distributed assets with wk = 1/M = 1/6.
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