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Nonlocal diffusion in porous media: a spatial fractional1

approach2

A. Sapora1,, P. Cornetti2,, B. Chiaia3,, E.K. Lenzi4,, L.R. Evangelista5,
3

Abstract4

One dimensional diffusion problems in bounded porous media characterized by

the presence of nonlocal interactions are investigated by a fractional calculus ap-

proach. Darcy’s constitutive equation is assumed of convolution integral type and

a power law attenuation function is implemented. Analogies and differences of the

flow rate-pressure law with respect to other nonlocal and fractal models are out-

lined. By means of the continuity relationship, the fractional diffusion equation is

then derived. It involves spatial Riemann-Liouville derivatives with non-integer

order comprised between 1 and 2. The solution is obtained numerically via frac-

tional finite differences and results are presented both in the transient and in the

steady-state regimes. Eventually, the physical meaning of fractional operators is

discussed and potential applications of the analysis are suggested.

Keywords: Nonlocal Darcy’s law, long-range interactions, fractional diffusion5

equation6

Introduction7

Understanding transport problems in porous media emerges nowadays as a8

primary concern, since it can have a fundamental impact on many different re-9

search fields, starting from the optimization of oil extraction to modeling scaffold10
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geometry in tissue engineering, up to pharmaceutical and food industries.11

The classical diffusion equation is obtained by combining Darcy’s constitutive12

law, stating the proportionality of the flux to the pressure gradient, with the equa-13

tion of continuity, describing the conservation of the mass. On the other hand,14

several discrepancies have been found between the related solution, which is gen-15

erally described by exponential type functions, and experimental data (Nielsen16

et al., 1962; Bell and Nur, 1978; Roeloffs, 1988). There are several reasons re-17

sponsible of these deviations: as a matter of fact, fluids can react chemically with18

the medium increasing or diminishing the pore size, or the can interact with the19

solid part by carrying some particles which may obstruct some channels (Caputo,20

2000). Eventually, the network of channels can result in a complicated intercon-21

nected hierarchical geometry.22

In order to overcome these drawbacks, different approaches have been pro-23

posed since the middle of the last century, mainly based on a modification of24

constitutive Darcy’s relationship. In the framework of soil-water flow theory, for25

instance, a diffusion coefficient dependent on the water content was firstly con-26

sidered, leading to a nonlinear partial differential equation known as Richards’27

equation (Van Dam and Feddes, 2000; Lewandowska and Auriault, 2002; Jacques28

et al., 2002). Boltzmanns transformation reduces the expression into an ordinary29

differential equation, allowing the possibility of getting analytical solutions. Nev-30

ertheless, in many cases significant deviations from the real behavior were still ob-31

served (Taylor et al., 1999; Kunt and Lavallee, 2001). Among different attempts32

to generalize Richard’s equation, let us cite those based on adding the dependence33

of the diffusion coefficient on time (Guerrini and Swartzendruber, 1992) or space34

(Pachepsky and Timlin, 1998).35
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More recent models involve the replacement of the first order time derivative36

with a fractional one in the final differential equation, to take memory effects into37

account (Pachepsky et al., 2003; Logvinova and Nel, 2004). A slightly differ-38

ent approach was followed by Gerolymatou et al. (2006), reformulating Richards’39

equation as a time integral relationship. On the other hand, (Caputo, 2000) applied40

fractional derivatives (with two different orders, each comprised between 0 and 1)41

to both members of Darcy’s law to consider the temporal variation of the perme-42

ability during the process (see also (Caputo and Plastino, 2004)). In the spirit43

of this approach, it was recently proved that assuming the physical properties of44

a porous solid varying with a power law is equivalent to consider a dependence45

of the flux on the time fractional derivative of the pressure with order comprised46

between 0 and 1 (Deseri and Zingales, 2015; Alaimo and Zingales, 2015).47

Regarding engineering applications, an important work to be mentioned is that48

of (Monteiro et al., 2012) where a mathematical model of the flow in nanoporous49

rocks was proposed. It is based on the hypothesis that the permeability of the50

inclusions depends substantially on the pressure gradient. The model, applied to51

shale oil extraction, showed that the production rate of the oil deposits decays52

with time following a power law whose exponent lies between −1/2 and −1, in53

agreement with experimental data.54

On the contrary, the approach performed by Sen and Ramos (2012) is com-55

pletely different, since it assumes the flux to be proportional to the pore pressure56

by means of a spatial convolution integral. By considering the attenuation function57

of power-law type, nonlocal Darcy’s law was rewritten by means of spatial frac-58

tional operators. The problem was limited to infinite domains and an interesting59

interpretation of the entire porous medium as a network of channels with short-,60
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medium-, and long-distance connections was furnished. However, the resulting61

fractional diffusion equation was not given.62

In the present work, the model proposed in (Sen and Ramos, 2012) is revisited63

and generalized to investigate the diffusion process on finite porous domains. The64

approach represents somehow an extension of the well-established method pro-65

posed in the framework of nonlocal elasticity (Carpinteri et al., 2011, 2014) (see66

also (Di Paola and Zingales, 2008; Drapaca and Sivaloganathan, 2012)) and later67

implemented also to study wave propagation in nonlocal media (Atanackovic and68

Stankovic, 2009; Sapora et al., 2013; Challamel et al., 2013; Aksoy , 2016).69

Before proceeding, it is worth observing that: i) the present analysis does not70

involve an explicit connection between the order of the fractional derivative and71

the fractal geometry (if any) of the medium where diffusion takes place; indeed,72

some potential connections are suggested on the basis of some recent advances73

(Carpinteri and Sapora, 2010; Balankin an Elizarraraz , 2012; Zingales, 2014); ii)74

fractional diffusion equations are strictly related to continuous random walk ap-75

proaches. They generalize the standard Brownian motion by taking waiting times76

(which accounts for non-Markovian effects) and anomalous long particle displace-77

ments (known as Levy flights, which consider non-Gaussian displacements) into78

account (Gorenflo et al., 2002; Zoia et al., 2007; Berkowitz et al., 2006); iii) non-79

local diffusion constitutes a broad class of problems of interest in mathematics80

suited to wide variety of applications, including biological contexts, image pro-81

cessing, particle systems, coagulation models, nonlocal anisotropic approaches82

for phase transition and mathematical finance using optimal control theory, among83

others (Andreu-Vaillo et al., 2010). In this context, fractional calculus has proved84

to be a synthetic and efficient tool to model both memory effects and nonlocal85
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interactions (Scalas et al., 2000; Metzler and Nonnenmacher, 2002; del-Castillo-86

Negrete, 2006; Magin et al., 2008; Lenzi et al., 2008; Gorenflo and Mainardi,87

2009; Evangelista et al., 2011; Tarasov and Trujillo, 2013; Atanackovic et al.,88

2014; Zingales, 2014; Sobolev, 2014).89

Nonlocal Darcy’s equation90

Let us consider a diffusion process in a one-dimensional porous bar of length91

l. Assume that the volumetric flow rate per unit area q [m/s] in one point depends92

on the gradient of the pore pressure p [N/m2] all over the domain by means of a93

convolution integral:94

q(x) =− k
µ

∫ l

0
g(y− x)∇p(y)dy, (1)

being k the permeability [m2], µ the fluid viscosity [Ns/m2], and g an attenuation95

function. It describes the relationship between non-adjacent points of the medium96

and it must be a decaying function in space. Equation (1) represents the spatial97

nonlocal form of Darcy’s constitutive equation, and it was firstly proposed in (Sen98

and Ramos, 2012). Indeed, similar expressions had been put forward even before99

to investigate Eringen’s nonlocal elasticity and nondiffusive transport in magnet-100

ically confined plasma (see (Lazar et al., 2006; del-Castillo-Negrete, 2006) an101

related references).102

Different attenuation functions g can be inserted into Eq. (1), leading to dif-103

ferent nonlocal models. The attention is focused here on: i) a cone function, as104

an example of standard nonlocal models (of course other choices, such as bell-105

shaped or Gaussian functions are possible); ii) a power law expression, leading to106

a fractional approach.107
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Let us start by considering the following cone function g:108

g(ξ ) =


1

lch

(
1− |ξ |

lch

)
for |ξ |< lch

0 for |ξ |> lch

(2)

where lch is a parameter characteristic of the material and ξ = y− x. Of course, if109

lch tends to zero the attenuation function (2) tends to Dirac function δ (x): in this110

case, the nonlocal constitutive law (1) tends to the local one, q = −k/µ∇p(x) .111

Furthermore, the particular form of (2) has been chosen according to the fact that,112

if the gradient of the pressure is constant, no differences should be observed from113

the local model. In other words, the following relationship has to be satisfied:114 ∫ +∞

−∞
g(ξ )dξ = 1. (3)

The computation of the flow rate generating a constant pressure gradient ∇ p̄ is115

just a matter of integration. By inserting Eq. (2) into Eq. (1), simple analytical116

manipulations yield:117

q(x) =



−k∇p̄
2µ

[
1+2

(
x

lch

)
−
(

x
lch

)2
]

for 0 < x < lch

−k∇p̄
µ

for lch < x < l − lch

−k∇p̄
2µ

[
1+2

(
l − x
lch

)
−
(

l − x
lch

)2
]

for l − lch < x < l

(4)

The dimensionless flow q∗ = qµ/(k∇p̄) versus the dimensionless space x∗ = x/l118

is plotted in Fig.1 for different l∗ch = lch/l values: the flow decreases (in modulus)119

at the edges, whereas it matches the local solution (q∗ = −1) on the the central120

core of the bar. The size of the domain affected by nonlocality depends clearly on121

the value of l∗ch.122
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Let us assume now the following power-law expression for function g (Tarasov123

and Zaslavky, 2006; Atanackovic and Stankovic, 2009; Carpinteri et al., 2011):124

g(ξ ) =
1

2Γ(2−α)|ξ |α−1 , (5)

with 1 < α < 2. In this case α is the material parameter governing the transition125

from a smooth behavior (lower α) to a sharp one (higher α), and it accounts for126

non-Gaussian displacements of the particles inside the media. Relation (1) takes127

thus the following form:128

q(x) =−kα
µ

I2−α
0,l (∇p). (6)

The operator Iβ
0,l represents the fractional Riesz integral (β > 0, Samko et al.129

(1993))130

Iβ
0,l f (x) =

1
2

[
Iβ
0+ f (x)+ Iβ

l− f (x)
]
=

1
2Γ(β )

∫ l

0

f (y)
|x− y|1−β dy, (7)

where Iβ
0+ and Iβ

l− are the left and right Riemann-Liouville fractional integrals,131

respectively:132

Iβ
0+ f (x) =

1
Γ(β )

∫ x

0

f (y)
(x− y)1−β dy, (8)

133

Iβ
l− f (x) =

1
Γ(β )

∫ l

x

f (y)
(y− x)1−β dy. (9)

According to choice (5), the fractional permeability kα possesses anomalous134

physical dimensions [m]α . An intriguing possibility, as will be outlined later,135

would be that of linking them with the fractal features of the medium where dif-136

fusion takes place (Chang and Yortos, 1990; Carpinteri and Mainardi , 1997; Yao137

et al., 2012; Carpinteri et al., 2009). Hereinafter, the following condition will138
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be supposed to hold, for the sake of completeness: kα = k for α = 2. Thus, in139

this case, Eq. (6) reverts consistently to local Darcy’s relationship q = −k/µ∇p.140

Eventually, observe that also in the present fractional approach we can normalize141

the coordinate r with respect to an intrinsic length lch, as done in Eq. (2). On the142

other hand, handling two parameters (α and lch) governing the transition from a143

nonlocal behavior to a local behavior would represent a not trivial task, at least at144

this preliminary stage. For a first attempt in this framework, the reader can refer145

to (Sumelka and Blaszczyk, 2014).146

As done before, let us now consider the flow q associated to a constant pressure147

gradient ∇p̄:148

q(x) =− kα l2−α

2µΓ(3−α)
∇p̄

[(x
l

)2−α
−
(

1− x
l

)2−α
]

(10)

By denoting q∗ = qµ/(kα l2−α∇p̄), results are presented in Fig.2 for different149

α-values. Once again, observe that the flow decreases in correspondence to the150

bar extremes. Moreover, when α → 2 (as when lch → 0) the classical local solution151

(q∗ = −1) is recovered. Nevertheless, there are some differences with respect to152

the previous case (Fig.1): whereas the nonlocal model based on a cone attenuation153

function always provides the local solution at a certain distance from the borders,154

according to the fractional approach all the structure is affected by non-locality.155

This is imputable to the long tails of the power law expression (5). Furthermore,156

it is evident from (10) that the flux increases along the bar length as l2−α .157

By means of dimensional analysis, it is possible to prove that the fractional158

permeability kα decreases as l1−α (1 < α < 2) instead of as l−1, the latter condi-159

tion holding both for local or other nonlocal models: this means that the pressure160

increases less than linearly with the bar length, as occurs in the classical case.161

The interested reader is referred to (Carpinteri and Sapora, 2010), where diffusion162
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problems in fractal media (and more specifically, in a Cantor bar) were investi-163

gated, proving that the field variable scales as lβ , β = α −1 being the non-integer164

dimension of the fractal set inside the bar where the gradient concentrates. The165

fractional nonlocal model and fractal model, although different, are thus char-166

acterized by the same scaling properties. Further studies are in progress. For167

recent advances on the relations between fractal geometry and fractional calcu-168

lus in transport problems, see also Balankin an Elizarraraz (2012); Alaimo and169

Zingales (2015).170

Fractional diffusion equation171

Let us now introduce the time variable t and consider the continuity equation:172

∂ p(x, t)
∂ t

=− 1
cϕ

∂q(x, t)
∂x

, (11)

where c is the compressibility [m2/N] and ϕ is the porosity.173

By substituting Eq.(6) into (11), we get:174

∂ p(x, t)
∂ t

=
dα
2

{Dα
0+[p(x, t)− p(0, t)]+ Dα

l−[p(x, t)− p(l, t)] }, (12)

where dα = kα/µcϕ is the fractional diffusivity coefficient [mα/s], and Dβ
a+ and175

Dβ
b− are the left and right Riemann-Liouville fractional derivatives with respect to176

the spatial variable x. They write:177

Dβ
0+ f (x) =

n−1

∑
k=0

f k(0)
Γ(1+ k−β )

(x)k−β +
1

Γ(n−β )

∫ x

0

f n(y)
(x− y)β−n+1 dy, (13)

178

Dβ
l− f (x) =

n−1

∑
k=0

(−1)k f k(l)
Γ(1+ k−β )

(l − x)k−β +
(−1)n

Γ(n−β )

∫ l

x

f n(y)
(y− x)β−n+1 dy, (14)
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n being the smallest integer larger than β , i.e. n = 2 in the present case.179

Equation (12) represents a fractional differential equation (Podlubny, 1999)180

in space. Note that, whereas the left fractional derivative coincides always with181

its integer order counterpart when the order of derivation is an integer number,182

the right fractional derivative coincides with the corresponding integer derivative183

only when the order of derivation is even; otherwise, it is equal to its opposite.184

Thus, the term in the curly brackets (which coincides with the Riesz fractional185

derivative up to a multiplicative factor, (Samko et al., 1993)) is equal to 2∂ 2 p/∂x2
186

when α = 2 ( Eq.(12) reverting to the classical diffusion equation), and vanishes187

when α = 1 (thus leading to a trivial condition providing a constant pressure field188

in time throughout the body).189

Suitable initial and boundary conditions must be assigned to Eq. (12). By190

analogy of what presented in Carpinteri et al. (2014), they write:191

p(x, t = 0) = p0(x), (15)
192

p(x = 0, t) = p0(t), or q(x = 0, t) =
kα
µ

Dα−1
l− [p(x)− p(l)]x=0 = q0(t), (16)

193

p(x = l, t) = pl(t), or q(x = l, t) =−kα
µ

Dα−1
0+ [p(x)− p(0)]x=l =−ql(t),

(17)

In other words, the boundary conditions on the flow rate (16) and (17) are ex-194

pressed by Caputo’s right fractional derivative (with order α − 1 ∈ (0,1]) eval-195

uated in the left extreme and by Caputo’s left fractional derivative (with order196

α − 1 ∈ (0,1]) evaluated in the right extreme. Of course, they are integral-type197

boundary conditions.198
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Numerical solution and discussion of results199

If the diffusion problem described by (12) was set on an infinite medium,200

analytical solutions could be achieved by Laplace-Fourier transforms (Gorenflo201

and Mainardi, 2009; Atanackovic and Stankovic, 2009). On the other hand, if202

the analysis refers to finite domains as in the present case, numerical schemes203

have to be implemented. Different expressions were proposed to approximate204

fractional operators with order comprised between 1 and 2 (Lynch et al., 2003;205

Meerschaert et al., 2006; Ortigueira, 2008; Yang et al., 2010): the so-called L2206

algorithm by Oldham and Spanier (1974) is here adopted. Let us introduce a207

partition of the interval [0, l] on the x axis made of n (n ∈ N) intervals of length208

∆x = l/n. The generic point of the partition has the abscissa xi, with i= 1, ...,n+1209

and x1 = 0, xn+1 = l; that is, xi = (i− 1)∆x. Hence, for the inner points of the210

domain (i = 2, ...,n), the discrete form of Eq.(12) reads (1 ≤ α < 2):211

pi, j+1 − pi, j

∆t
≈ dα

2
(∆x)−α

Γ(3−α)
×{

2−α
(i−1)α−1 (p2, j − p1, j)+∑i−2

k=0(pi−k+1, j −2pi−k, j + pi−k−1, j) [(k+1)2−α − k2−α ]+

− 2−α
(n− i+1)α−1 (pn+1, j − pn, j) +∑n−i

k=0 (pi+k+1, j −2pi+k, j + pi+k−1, j) [(k+1)2−α − k2−α ]
}
,

(18)

where pi, j = p(xi, t j) and t j = j∆t, ∆t representing the discrete time step.212

Let us now introduce dimensionless time t∗ = tdα/lα . Suppose the following213

initial shape for the pressure field: p(x∗, t = 0)= p0exp(−(x∗−0.5)2/0.01), being214

p0 a reference pressure, and homogeneous boundary conditions. The space-time215

dimensionless solution p∗ = p/p0 related to Eq. (18) is reported in Fig. 3 for216

α = 1.25 and 2.00.217
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As can be seen, nonlocal interactions affect the solution, influencing both the218

shape and the global diffusion velocity (the end of the transient regime results de-219

layed). The situation is described at a fixed time t∗ = 0.031 in Fig. 4 for different220

fractional orders α .221

Eventually, we consider the case of a constant pressure difference between the222

bar extremes, p(x = l, t)> p(x = 0, t) in the steady-state regime. The contribution223

of the left-hand term in Eq. (18) (i.e. the time derivative) vanishes. The solution,224

in terms of dimensionless pressure gradient ∇p∗ = ∇p× l/(pl − p0) is plotted in225

Fig. 5 for different fractional orders α . In the classical local case (α = 2), the226

pressure gradient is obviously constant throughout the body. On the other hand,227

for fractional orders α , the pressure gradient concentrates at the extremes of the228

domain due to a lower presence of nonlocal interactions, i.e. to boundary effects.229

Lower values with respect to the local solution are attained on the central bar, this230

effect being more pronounced for decreasing fractional orders α .231

Physical meaning of fractional operators232

For sufficiently regular functions, Riemann-Liouville fractional derivatives co-233

incide with those defined by Marchaud (Samko et al., 1993), where the derivatives234

are replaced by the corresponding incremental ratios. In the steady-state regime235

and in absence of external forces, Eq. (12) can be thus put in the following form:236

kα
2

(α −1)
Γ(2−α)

[
p(x)− p(0)

(x)α +
p(x)− p(l)
(l − x)α +α

∫ l

0

p(x)− p(y)

|x− y|1+α dy

]
= 0. (19)

For the inner points of the domain (i = 2,. . . , n), the discrete form of Eq. (19)237

reads:238

kvs
i,1(pi − p1)+ kvs

i ,n+1(pi − pn+1)+
n+1

∑
j=1, j ̸=i

kvv
i, j(pi − p j) = 0, (20)

12



It is evident how the nonlocal fractional model is equivalent to a discrete model239

where two channels appear: the former connecting the inner material pores with240

the bar edges, ruling the volume-surface long-range interactions, with permeabil-241

ity kvs; the latter connecting the inner material pores with each other, describing242

the nonlocal interactions between non-adjacent volumes, with permeability kvv.243

Provided that the indexes are never equal one to the other, the following expres-244

sions for the permeabilities hold (i = 1,. . . , n+1):245

kvs
i,1 = kvs

1, i =
kα
2

α −1
Γ(2−α)

A∆x
(xi − x1)

α , (21)

246

kvs
i,n+1 = kvs

n+1,i =
kα
2

α −1
Γ(2−α)

A∆x
(xn+1 − xi)

α , (22)
247

kvv
i, j = kvv

j,i =
kα
2

α(α −1)
Γ(2−α)

A(∆x)2

|xi − x j|1+α , (23)

being A the area cross-section. Furthermore, by looking at the boundary con-248

ditions (16)-(17), it is possible to state that a fourth set of elements has to be249

introduced: it is composed by a single channel connecting the bar extremes, with250

permeability251

kss
1,n+1 = kss

n+1,1 =
kα

2 Γ(2−α)

A
(xn+1 − x1)α−1 . (24)

The superscript ss for the permeability (24) is used since the element connecting252

the bar edges can be seen as modeling the interactions between material pores253

lying on the surface, which, in the simple one-dimensional model under exami-254

nation, reduce to the two points x= 0, l. Note that the presence of such a channel255

was implicitly embedded in the constitutive equation (6). However, since it pro-256

vides a constant flow contribution throughout the domain, its presence was lost by257

derivation when passing from Eq. (6) to Eq. (12).258

13



To summarize, the constitutive fractional relationship (6) is equivalent to a259

discrete pore-channel model with three sets of nonlocal elements. Note that their260

permeabilities (21)-(24) all decay with the distance, although their decaying ve-261

locity is different.262

Conclusions263

A Darcy’s law of convolution integral type, describing the dependence of the264

flow rate in one point on the gradient of pressure of all nonadjacent points, was265

assumed. By choosing a power law expression for the attenuation function, mod-266

eling the decreasing flow rate along with the distance, the fractional diffusion267

equation for porous materials was derived. Fractional operators were limited to268

the space variable. The problem was investigated on finite domains, through frac-269

tional finite differences, both in the transient and steady-state regimes. The influ-270

ence of the fractional order 1 < α ≤ 2 on results was discussed, and a physically-271

sound interpretation of fractional operators was derived in terms of volume and272

surface channels with different permeability.273

The results presented here may be useful to investigate pressure response of274

a well reservoir which in general is not homogenous (Chang and Yortos, 1990;275

Acuna et al., 1995; Yao et al., 2012; Camacho-Velázquez et al., 2008; Yang et276

al., 2014) and, consequently, is not well described in terms of the usual diffusion277

equation (Razminia et al., 2015a,b).278

Eventually, the following step to extend the present investigation and to ana-279

lyze the delays of the fluid pressure at the boundary on the flow of fluid through280

the medium, seems that of further modifying nonlocal Darcy’s law (1) by adding281

a fractional time derivative to the right member. The study can have a great im-282
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portance in the framework of oil fields, where patterns of mineralization and per-283

meability changes have to be modeled (Caputo, 2000).284

The fractional model proposed herein is intrinsically multiscale. As it is well285

known, the structure of shales deposit has been reported to be multiscale, i.e.,286

ranging from the nanoscale up to the global scale of a deposit. We argue that287

the fractional mathematical modeling of the flow of fluids and gas in nanoporous288

geomaterials can create a new branch of subterranean fluid mechanics. Our future289

steps will include comparison with real field data.290
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Figure 1: Nonlocal diffusion according to a cone attenuation function: dimensionless flow field
providing a constant pressure gradient, for different l∗ch values.
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Figure 2: Nonlocal diffusion according to a power-law attenuation function (fractional model):
dimensionless flow field providing a constant pressure gradient for different α values.

25



Figure 3: Dimensionless pressure field related to: (a) a nonlocal model (α = 1.25); (b) a local one
(α = 2.00).
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Figure 4: Dimensionless pressure field at t∗ = 0.031 for different α-orders.
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Figure 5: Dimensionless pressure gradient in the steady-state regime for different fractional orders
α .
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