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Abstract11

We reformulate a model of avascular tumour growth in which the tumour
tissue is studied as a biphasic medium featuring an interstitial fluid and a
solid phase. The description of growth relies on two fundamental features:
One of those is given by the mass transfer among the constituents of the
phases, which is taken into account through source and sink terms; the other
one is the multiplicative decomposition of the deformation gradient tensor of
the solid phase, with the introduction of a growth tensor, which represents
the growth-induced structural changes of the tumour. In general, such tensor
is non-integrable, and it may allow to define a Levi-Civita connection with
non-trivial curvature. Moreover, its evolution is related to the source and
sink of mass of the solid phase through an evolution equation. Our goal is
to study how growth can be influenced by the inhomogeneity of the growth
tensor. To this end, we study the evolution of the latter, as predicted by
two different models. In the first one, the dependence of the growth tensor
on the tumour’s material points is not explicitly considered in the evolution
equation. In the second model, instead, the inhomogeneity of the growth
tensor is resolved explicitly by introducing the curvature associated with it
into the evolution equation. Through numerical simulations, we compare the
results produced by these two models, and we evaluate a possible role of the
material inhomogeneities on growth.
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1. Introduction15

Because of its repercussion on public health, the study of tumour growth is16

a very active research field, to which mathematical modelling can give an im-17

portant contribution [1, 2, 3]. A rather standard approach is to answer specific18

questions at each scale of interest by formulating dedicated models. These can19

be based on Statistical Mechanics [4], Kinetic Theories[5, 6, 7, 8, 9], and Con-20

tinuum Mechanics [10, 11] (and references therein), depending on whether21

the given problem involves the molecular, cellular, or the tissue scale. One of22

the main challenges, however, is to understand the complexes of phenomena23

that contribute to initiate the sprouting of a tumour, and to bridge across24

the physical scales at which they occur. The difficulty arises, for instance,25

when different types of models, conceived for different scales and disciplines,26

have to be combined efficiently, and solved simultaneously.27

Within the framework of Continuum Mechanics, the search for the multi-28

scale and interdisciplinary approach outlined above is put into action by29

formulating multiphasic, multi-scale models of tumour growth (see e.g. [12,30

13, 14, 15, 16, 17]). In such models, growth is described as the mass variation31

of the solid phase of the tumour at the expenses of its fluid constituents, and32

the mass variation is often viewed as the result of the cooperation of both33

chemical ad mechanical factors [18].34

From the point of view of Mechanics, a relevant aspect of growth is the35

occurrence of structural transformations that accompany the “visible” mo-36

tion of a tissue [19, 20] as well as its gain or loss of mass. All through the37

years, a huge amount of literature has been produced on this subject, and38

on the related issue of the residual stresses and strains that are expected to39

exist in a grown material [21]. In fact, apart from [22] and some other recent40

papers (see e.g. [23]), many works usually address the structural evolution of41

a medium that grows or remodels by having recourse to the Bilby-Kröner-42

Lee decomposition (BKL-decomposition) of the deformation gradient tensor43

(see e.g. [10, 15, 19, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] and the44

references therein). For a historically reliable review on the roots of the BKL45

decomposition and on its significance in Differential Geometry, the Reader46

is referred to [36] (Chapter 1, pp. 10–27) and to [37]. In both cases, the47

Authors give due credit to the “old”, yet always up-to-date, ideas that have48

led to what we nowadays know as BKL decomposition. In particular, the49

review provided in [37] makes the uncommon effort of drawing the attention50

of the Reader on some literature that, in spite of its importance, has not51

become as popular as it deserved.52

In the case of growth, the simplest version of the BKL-decomposition53

consists of splitting the deformation gradient tensor of a tissue into an ac-54
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commodating factor and a growth factor (cf. Sect. 2). The latter one, denoted55

by Fγ in the following, is often referred to as growth tensor, and is taken as56

the representative of the changes of the tissue’s internal structure.57

The main properties of Fγ are that it is non-integrable in general, and58

that it may induce a non-Euclidean metric tensor, Cγ = Fγ
T.Fγ. The latter59

can be employed to construct a Levi-Civita connection with a non vanishing60

fourth-order curvature tensor, R. This result is consistent with the analysis61

of Kröner [38], according to whom the stress-free body pieces can be glued62

together in a non-Euclidean space. We emphasise that, in the context of63

growth, the concept of curvature has been explored e.g. in [39, 40, 41, 42,64

43, 44, 45] (see also [46]).65

The introduction of the growth tensor, Fγ, produces many similarities66

among growth, finite strain elastoplasticity, and the theory of defects in solids67

(see e.g. [47, 36] for a review) and, in fact, many biological aspects of growth68

can be re-interpreted in terms of the evolution of inelastic distortions. One69

similarity with elastoplasticity is the definition of a stress-free “intermediate70

configuration”, which exemplifies the conceptual separation between growth71

and deformation. Actually, the “intermediate configuration” is a collection of72

tissue pieces rather than a true configuration, and is obtained in two steps:73

First, by removing all the loads acting on the current configuration of the74

tissue, and then, by ideally chopping the tissue in small, stress-free pieces75

[36]. These can be assembled in a reference configuration by means of a76

transformation that is identifiable with F−1
γ . Hence, growth can be under-77

stood as the reverse process, which maps the tissue pieces from the reference78

configuration into the intermediate one.79

Tensor F−1
γ is formally related to the existence of growth-induced in-80

homogeneities, [28, 42, 48, 49]. Note that we have emphasised the adverb81

“formally” because, in our theory, we are not using the concept of “archetype”82

[42, 48, 49]. This notion, instead, is used to define an inhomogeneous body83

as a body for which it is possible to define a non-singular tensor field, whose84

inverse is non-integrable [28, 42].85

Clearly, the way in which the inhomogeneities evolve depends on the bio-86

logical problem under study and, thus, on the proposed model of growth. For87

instance, in [28], a prototypal evolution law for the growth inhomogeneities88

is set in the form of a relation between Eshelby stress and the rate at which89

the inhomogeneities themselves are produced. In this case, the evolution law90

is obtained by following a reduction procedure that requires its compliance91

with the body’s material symmetries, and with the principles of uniformity,92

objectivity, and independence of the reference configuration [28].93

A different perspective is considered e.g. in [29, 50], where some phe-94

nomenological growth laws are discussed within a chemo-mechanical frame-95
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work. For arteries [51], an evolution law for the growth tensor is obtained96

in terms of a generalised Onsager’s relation, in which the driving force of97

growth is identified with the difference between a suitable measure of me-98

chanical stress and a target stress, referred to as “homeostatic stress”.99

As long as tumour growth is concerned, the hypothesis is often made100

that the growth tensor is a pure dilatation [52, 53], therby depending on one101

parameter only, denoted by γ and referred to as “growth parameter” in the102

sequel. In such cases, one has to supply an evolution law for γ (see e.g. (11b)103

below), which translates the mass balance law for the tissue’s solid phase into104

a kinematic constraint on γ itself [54, 55, 56, 57]. When this line of thought105

is followed, the evolution of the growth tensor is entirely dictated by the law106

describing the variation of mass of the tissue, denoted by rs in our notation.107

Since rs is related to the rate of change of γ, the problem arises to de-108

termine a generalised force that is conjugate to the variation of γ and that,109

thus, triggers growth. However, since rs is almost always assigned on the basis110

of biological observations (see e.g. [55, 56]), which may be phenomenologi-111

cal or “micro-mechanically motivated” [10], it may not be possible to identify112

mechanical stress with the “driving force” that moves the growth-related dis-113

tortions (i.e., the inhomogeneities, in the jargon of [28, 42]). This is, in fact,114

a relevant difference with elastoplasticity, in general, and with the models115

put forward in [28, 51], in which stress plays a central role. Indeed, it should116

be emphasised that the growth of a tumour may occur also in the absence of117

stress, whereas it strongly depends on the presence of nutrients, and may re-118

sult in a loss of mass when these are unavailable. Still, stress may contribute119

to modulate the way in which the mass change takes place [54, 58]. Perhaps,120

we might say that, whereas stress is the “starring character” of pure remod-121

elling (be it growth-induced or not), as it can be the trigger of the changes122

of the tissue’s structure, it is somehow “downgraded” to a modulating factor123

in the case of pure growth1.124

A rather different approach is suggested in [42], where the concept of “self-125

driven” inhomogeneities is introduced. The underlying idea, framed within126

the theory of defects in solids, could be rephrased as follows. Assume to have127

an inhomogeneous solid medium with a non-uniform distribution of defects,128

which can be modelled as incompatible distortions, and thus associated with129

Fγ. Assume, in addition, that the defects interact with each other, and that130

the strength of their mutual interaction is accounted for by the variability of131

Fγ (i.e., the more Fγ varies, the stronger the interaction is). Then, to adhere132

to Epstein’s statement [42]:133

1We warmly thank Prof. Luigi Preziosi for several discussions on this issue.
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“The evolution is intrinsic or self-driven if [...] the inhomogeneity134

moves just by virtue of its being there, perhaps in its effort to relax135

itself ”136

we claim that the spatial variability of Fγ is sufficient to initiate a sponta-137

neous evolution of Fγ in time.138

In our work, we formulate a model of tumour growth based on the the-139

ory presented in [42, 54]. We are interested in quantifying how, and to what140

extent, the inhomogeneities produced by growth influence the spatiotempo-141

ral evolution of γ. For this purpose, we propose a model that merges the142

quasi-phenomenological definition of rs supplied in [54] with the concept of143

“self-driven” distortions put forward in [42]. The underlying idea is that the144

functional form of the source/sink of mass rs should be modified by intro-145

ducing a term that takes explicitly into account the scalar curvature, κγ,146

associated with R (see Sect. 2.2). Our motivation for undertaking this task,147

inspired by [42], is to give a possible answer to the following question:148

Let us “prepare” the tissue in some grown configuration, with149

initial distribution of γ, γin, corresponding to nonzero curvature,150

κγin. Then, giving for granted that growth produces inhomo-151

geneities [28, 42], what is the impact of the initial inhomogeneities152

on the growth of the tissue in the subsequent instants of time?153

The remainder of this work is structured as follows: In Sect. 2, we provide154

the notation and the fundamental definitions used in our work. In Sect. 3,155

we formulate in detail our model of tumour growth. In Sect. 4, we solve a156

benchmark problem. In Sect. 5, we comment the results of our numerical157

simulations and, finally, in Sect. 6, we summarise our results, and outline158

some future research goals.159

2. Theoretical background160

2.1. Kinematics of growth161

We indicate by B a bounded region of the three-dimensional Euclidean162

space, S , chosen as reference placement for the considered tissue. For every163

X ∈ B and every x ∈ S , we introduce the tangent spaces TXB and TxS and164

the tangent bundles TB = tX∈BTXB and TS = tx∈STxS . Moreover, we165

denote by B(t) ≡ χ(B, t) the placement of the tissue at time t ∈ I , where166

χ( · , t) : B → S is the motion and I ⊂ R an interval of time. The tangent167

map F ( · , t) ≡ Tχ( · , t) is the deformation gradient tensor, and is defined as168

F ( · , t) : TB → TS , so that, for every X ∈ B, F (X, t) maps vectors of169

TXB into vectors of Tχ(X,t)S , i.e., F (X, t) : TXB → Tχ(X,t)S .170
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Remark 1. The “classical” definition of reference placement, or configura-171

tion, although widely used in Solid Mechanics, may not apply to biological172

tissues. To the best of our knowledge, this is particularly true for a medium173

undergoing appositional growth, i.e., the process in which material particles174

are either deposited on the growing medium, or depleted from it. In both cases,175

the “number” of material particles constituting the medium varies with time176

and, consequently, it is impossible to define a unique reference configuration177

for the medium, at least in the classical sense [22]. Rather, as reported in178

[22], “the reference configuration of a material point is defined at the time179

it is deposited,” which means that, at different times, the medium has to180

be associated with different reference configurations. In our setting, however,181

we deal with volumetric growth. This type of growth, in fact, still permits182

the definition of a fixed reference configuration for a growing medium if, as183

stated in [28], the addition or depletion of material is assumed to occur “in184

such a way that material points preserve their identity”. With the aid of this185

hypothesis, we can assume the existence of a fixed reference configuration for186

the medium under investigation.187

A major character of our theory is the BKL-decomposition, F = FeFγ.188

As anticipated in the Introduction, Fγ describes the inelastic changes of189

the tissue’s internal structure that are induced by growth, while Fe is the190

accommodating part of F , and is assumed to be elastic. Both Fe and Fγ191

are non-singular, and their determinants, Je = detFe and Jγ = detFγ, are192

strictly positive.193

For every pair (X, t) ∈ B×I , we prescribe that Fγ(X, t) maps vectors of194

TXB into “relaxed” vectors of another tangent space. Such space is denoted195

by TXNt, and can be identified with the image of TXB through Fγ(X, t)196

[45]. Coherently, we write Fγ(X, t) : TXB → TXNt, and, putting together197

this result and the definition of F (X, t), we express the elastic part of F (X, t)198

as Fe(X, t) : TXNt → Tχ(X,t)S .199

In general, the tissue may find itself in a stressed state both in the current200

and in the reference configuration. Stresses may have different origin but, in201

the present context, they are generated either by growth or by the loading202

history undergone by the tissue. Since in our framework growth is the only203

process regarded as inelastic, it produces stresses that cannot be eliminated204

by simply switching off the applied loads. Indeed, even though all such loads205

were suppressed, the tissue would still occupy a configuration in which the206

growth-induced stresses are nonzero.207

As mentioned in the Introduction, to achieve a state in which every part208

of the tissue is free of stress, one should virtually disassemble the tissue into209

a “conglomerate” of completely relaxed pieces [38]. Each of such pieces can210
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be thought of as an arbitrarily small neighbourhood of a point x ∈ Bt, and,211

for infinitesimally small neighbourhoods, the body piece associated with x212

can be identified with the tangent space of Bt at x, i.e., TxBt. In this case,213

the whole relaxation can be viewed as a linear mapping between tangent214

spaces. In particular, since the relaxation is elastic, it is represented by215

F−1
e (x, t) : TxBt → TXNt.216

Although, TXNt is attached to the same point X ∈ B as TXB, it depends217

on time and, above all, it is associated with a state of the tissue characterised218

by an important property: it is free of stress, and is obtained by distorting219

the elements of TXB, or the elements of TxBt, in a generally incompatible220

way. Hence, neither Fγ(X, t) nor F−1
e (x, t) can be taken as the tangent maps221

of deformations evaluated at X ∈ B and x ∈ Bt, respectively. Since this222

reasoning applies for each X ∈ B, the tangent bundle TNt = tX∈BTXNt223

cannot be associated with a configuration in the Euclidean space, and Nt224

cannot be claimed to be a configuration in the classical sense. Rather, it225

is the natural, or ground, state of the tissue, i.e., the state in which the226

tissue is free of stress. Such state encompasses the whole structural evolution227

undergone by the tissue, which occurs from the reference configuration in the228

form of the distortional tensor map Fγ( · , t) : TB → TNt. A sketch of the229

explanation given so far is given in Fig. 1 (left), where Nt is represented as230

a “conglomerate” of stress-free body pieces [38]. We recall, however, that Nt231

can be assembled in a stress-free Riemannian manifold, endowed with the232

curved metric induced by Fγ (cf. e.g. [38, 39, 45]).233

We notice that, at this stage, Fγ is not subjected to any restriction.234

Hence, granted the polar decompositions F γ(X, t) = Rγ(X, t)Uγ(X, t) and235

Fγ(X, t) = V γ(X, t)Rγ(X, t), which hold true for each pair (X, t) ∈ B×I ,236

Fγ(X, t) is generally obtained by combining one of the inelastic stretches,237

Uγ(X, t) : TXB → TXB and V γ(X, t) : TXNt → TXNt, with the rotation238

tensor Rγ(X, t) : TXB → TXNt.239

Before going further, we mention that a different formulation of the BKL-240

decomposition is presented in [59, 60]. The core of such formulation is the241

use of two mappings that define a base and a “target” [60] configuration for242

each of the factors of the BKL-decomposition. In summary, one indicates by243

Fa and Fg the accommodating and the growth part of F , so that F = FaFg244

holds true, and introduces the differentiable mappings χa and χg such that245

Fa and Fg are expressed as Fa = (Tχa)Ha and Fg = (Tχg)Hg [60]. Here,246

Tχa and Tχg are the tangent maps of χa and χg, and they represent the247

compatible contributions to Fa and Fg. On the contrary, in general Ha and248

Hg cannot be identified with the tangent map of any deformation. Indeed,249

Hg describes the generally incompatible structural changes due to growth,250

while Ha models the elastic distortions that may have to be applied to the251
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grown body pieces to restore a global configuration.252

For every t ∈ I , the map χg( · , t) is identified with the diffeomorphism253

χg( · , t) : B → Ct, where Ct is referred to as “intermediate configuration”,254

while Tχg( · , t) and Hg( · , t) are defined in terms of maps between tangent255

spaces, i.e., Tχg(X, t) : TXB → Tχg(X,t)Ct and Hg(X, t) : TXB → TXB,256

respectively [60]. Analogous considerations hold for χa( · , t) : Ct → Bt and257

for Tχa( · , t), and Ha( · , t) (see [60] for details). A drawing summarising the258

view of the BKL-decomposition presented in [60] is given in Fig. 1 (right).259

We notice that Hg plays the same role as Fγ in the present context.260

We emphasise that, although we do not use here the approach by [60],261

we find it important to draw attention on it because, through χg (or χa),262

it introduces an additional degree of freedom that, along with Fγ, could be263

useful for other applications of the BKL-decomposition.264

In the following, we investigate some consequences of the generally non-265

integrable nature of Fγ on the evolution of growth itself (cf. also [39, 45]).266

( )tB

X

γF eF

B

χx= ( )X t,
F

X
Wγ γF= W

W ( )X t,
w =FW

( )X t, ( )X t,

Nt

TXB

X

NtTX

Tx ( )tB Fa

B

FgTB

Ct

( )tBTCt T

( )tBχ
g

χa

χ

F

Hg

Ha

Figure 1: Schematic representation of the introduced mappings.

2.2. Growth and curvature267

In this work, Fγ is assumed to induce the Riemannian metric tensor268

Cγ = Fγ
T.Fγ, (1)

with is said to be the growth metric tensor. As pointed out in [59], Cγ induces269

a Levi-Civita connection with non-trivial curvature [40, 41]. To see this, we270

first construct the Christoffel symbols of the connection, which, for a given271

coordinate system, are given by [61]272

ΓAMN =
1

2
(C−1

γ )AB
[
∂(Cγ)BN
∂XM

+
∂(Cγ)BM
∂XN

− ∂(Cγ)MN

∂XB

]
, (2)
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and are symmetric in the lower indices, thereby implying the vanishing of273

the torsion [61], i.e.,274

Tor = (ΓAMN − ΓANM)EA ⊗EM ⊗EN = 0. (3)

Then, we compute the fourth-order curvature tensor generated by Cγ, i.e.,275

R = RA
BMNEA ⊗EB ⊗EM ⊗EN , whose components read [40, 41, 61]276

RA
BMN =

∂ΓABN
∂XM

− ∂ΓABM
∂XN

+ ΓAMDΓDBN − ΓANDΓDBM . (4)

Moreover, by contracting the first and the third index of R, we obtain the277

Ricci curvature tensor,278

R = RBNE
B ⊗EN = RD

BDNE
B ⊗EN , (5)

and, by double-contracting R with C−1
γ , we determine the scalar curvature279

associated with growth, i.e.,280

κγ = R : C−1
γ . (6)

3. A model of tumour growth281

We report on a mathematical model of tumour growth that, in spite of two282

important differences, largely follows the path designated in [54]. The first283

difference concerns the benchmark problem that we solve, whose geometry is284

much simpler than the one used therein. This choice is due to the fact that285

we are interested here in purely modelling issues The second difference, as286

anticipated in Sect. 1, concerns the definition of the source/sink term rs.287

3.1. Growth and balance laws288

By adhering to the model of tumour growth developed in [54], we describe289

a tumour in avascular stage as a biphasic medium comprising a solid and a290

fluid phase. At each point of the tissue, the amount of solid is measured by291

means of the apparent mass density ϕs%s, where ϕs and %s are said to be292

solid volumetric fraction and true mass density, respectively. Analogously,293

the amount of fluid is determined by the apparent density ϕf%f , with ϕf294

and %f being the volumetric fraction and true mass density, respectively. We295

recall that the true mass density of one of the phases constituting a mixture296

is the intrinsic mass density of the considered phase. In other words, it is297

the density that the phase would have if it were present in the mixture with298

unitary volumetric fraction. For this reason, the true mass density of a phase299

expresses its mass per unit volume of the phase itself, whereas the apparent300
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mass density expresses the phase mass per unit volume of the mixture as a301

whole.302

Within our biphasic model, the tumour represents a saturated porous303

medium, so that the condition ϕf = 1 − ϕs applies. Moreover, the fluid304

is assumed to feature only two constituents: nutrients, with mass fraction305

ωN, and “water”, with mass fraction ωw = 1 − ωN. We hypothesise that ωN306

is very small, so that the mass density of the fluid, %f , can be regarded as307

constant, and approximately equal to the mass density of water. What we308

call “water” here is, in fact, a fluid comprising several substances, among309

which the constituents of the dead cells that return to the fluid in order to310

be expelled.311

For simplicity, we prescribe that the solid phase consists of two types312

of cells only: the proliferating cells, with mass fraction ωp, and the necrotic313

cells, with mass fraction ωn = 1 − ωp. The former ones describe the gain of314

mass of the tissue in response to the consumption of the nutrients. However,315

they become necrotic when the nutrients fall below a given threshold. The316

necrotic cells, in turn, are absorbed by the fluid, thereby accounting for the317

tissue’s loss of mass due to cell death. In our model, the transition of a cell318

from the proliferating to the necrotic stage preserves the mass density of the319

cells. Hence, %s is independent of the composition of the solid phase, and320

may be regarded as constant, in spite of the fact that the mass fractions of321

the solid constituents may change in space and time [12, 54, 57].322

To account for the gain and loss of mass pertaining to the proliferating323

and necrotic cells, we introduce their mass balance laws, which we write324

under the hypothesis that both types of cells move with the same velocity325

vs, i.e., the solid phase velocity. By extending the model developed in [54],326

we write such balance laws as327

∂t(ϕs%sωp) + div(ϕs%sωpvs) = rpn + rfp + rpγ, (7a)

∂t(ϕs%sωn) + div(ϕs%sωnvs) = rnp + rnf + rnγ, (7b)

where rpn, rfp, rnp, rnf , rpγ, and rnγ denote the rates of mass uptake or328

depletion for the solid constituents. In particular, rpn describes the portion329

of proliferating cells that, per unit volume and unit time, is converted into330

necrotic cells. In turn, rnp is the rate at which the necrotic cells are generated331

at the expenses of the proliferating ones, so that the condition rpn + rnp = 0332

is respected. Moreover, rfp measures the growth of the proliferating cells333

due to the presence of nutrients, while rnf represents the depletion of the334

necrotic cells in the fluid. We remark that rpn, rfp, rnp, and rnf address335

processes that are at the basis of tumour evolution and, in this respect, their336

physical interpretation is rather intuitive. On the contrary, rpγ and rnγ are337
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introduced to investigate possible consequences of the properties of F γ on338

growth itself. In other words, their task is to establish a feed-back loop among339

growth, the distortions that it generates, i.e., F γ, and the influence of those340

on the mass exchange terms. To the best of our knowledge, the presence of341

rpγ and rnγ in (7a) and (7b) is a novelty in the framework of mathematical342

modelling of tumour growth.343

Since the mass fraction of the necrotic cells can be written as ωn = 1−ωp,344

Equation (7b) can be replaced by the mass balance law of the solid phase as345

a whole. Indeed, by adding together (7a) and (7b), we obtain [54]346

∂t(ϕs%sωp) + div(ϕs%sωpvs) = rpn + rfp + rpγ, (8a)

∂t(ϕs%s) + div(ϕs%svs) = rs, (8b)

where rs = rfp +rnf +rpγ +rnγ is the overall source/sink of mass for the solid347

phase. In general, this term can be diverted into changes either of density or348

of volume. In this work, since %s is constant, rs is diverted into changes of349

volume. To show this, we perform the backward Piola transformation of (8a)350

and (8b) by multiplying both equations by J = detF . Then, by splitting J351

as J = JeJγ, with Je = detFe and Jγ = detFγ, we obtain352

JγΦsν%sω̇p = J [rpn + rfp rpγ − ωprs], (9a)

˙
(JγΦsν%s) = Jrs = J [rfp + rnf + rpγ + rnγ], (9b)

where Φsν := Jeϕs is the volumetric fraction of the solid phase expressed per353

unit volume of the intermediate, stress-free configuration. We require now354

that Φsν is constant in time. Since %s is constant too, the left-hand-side of355

(9b) is proportional to J̇γ = Jγtr[ḞγFγ
−1]. Hence, (9a) and (9b) become356

ω̇p =
J [rpn + rfp + rpγ − ωprs]

JγΦsν%s

, (10a)

tr[ḞγFγ
−1] =

J [rfp + rnf + rpγ + rnγ]

Φsν%sJγ
. (10b)

In general, besides varying the mass of a tissue, growth may also induce357

isochoric distortions. Accordingly, Fγ can be written as Fγ = [detFγ]
1/3F̄γ,358

where [detFγ]
1/3 measures the tissue’s volume changes, and F̄γ is a volume-359

preserving tensor field that keeps track of the tissue’s remodelling at constant360

mass. Thus, by adopting the notation γ ≡ [detFγ]
1/3, we obtain [54]361

ω̇p =
J [rpn + rfp + rpγ − ωprs]

JγΦsν%s

, (11a)
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γ̇

γ
=
J [rfp + rnf + rpγ + rnγ]

3Φsν%sJγ
. (11b)

Remark 2. The hypothesis of constant true mass density of the solid phase362

is due to the fact that such phase is considered to be a representation of363

the tissue’s cells. These, in turn, are essentially made of water, whose mass364

density is constant in the biophysical range relevant to our work. It follows,365

thus, that also %s can be safely assumed to be constant. However, if this366

assumption is relaxed, Eq. (8b) can be recast in the form367

˙ϕs%s + ϕs%sdivvs = rs, (12)

and, by exploiting the identity J̇ = J(divvs), one can write368

Jϕ̇s%s + Jϕs%̇s + J̇ϕs%s = Jrs. (13)

Since it holds that J̇ = J̇eJg + JeJ̇γ = Jtr[Le] + Jtr[Lγ], with Le = Ḟ eF
−1
e369

and Lγ = Ḟ γF
−1
γ , one obtains370

Jϕ̇s%s + Jϕs%̇s + Jϕs%str[Le] + Jϕs%str[Lγ] = Jrs. (14)

Moreover, we require tr[Lγ] = rs/(ϕs%s), so that (14) becomes371

ϕ̇s%s + ϕs%̇s + ϕs%str[Le] = 0, (15)

which can be equivalently rearranged as ˙Jeϕs%s = 0. Thus, only the product372

ϕs%s, which individuates the mass density of the solid phase, is constant in373

time. Without loss of generality, it can be expressed with respect to the natural374

state, i.e., for Je = 1, as375

Jeϕs%s = Φsν%s0, (16)

where Φsν is the volumetric fraction in the natural state, and %s0 denotes a376

constant reference value of the solid phase mass density. Equation (16) im-377

plies that ϕs%s is a function of the elastic part of the overall deformation378

gradient tensor through Je. In this case, %s can be either treated as an in-379

dependent variable of the theory or specified through a state law. If the first380

option is chosen, the model necessitates an additional equation determining381

the volumetric fraction (cf. e.g. [62, 63, 64]). If, instead, the second choice382

is made, and one assumes that %s is a constitutive function e.g. of the com-383
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position of the solid phase, one obtains384

ϕs =
Φsν %̂s(ωp0)

Je%̂s(ωp)
=
JγΦsν %̂s(ωp0)

J%̂s(ωp)
. (17)

Here, %̂s(ωp) is the constitutive representation of the true mass density of the385

solid phase. As anticipated above, it is specified as a function of the com-386

position of the solid phase, which, within our model, is determined by the387

amount of proliferant and necrotic cells. Since it holds that ωp + ωn = 1, it388

suffices to use only one of the two mass fractions ωp and ωn to charaterise389

the composition. Upon choosing ωp, we let %̂s depend on ωp only, and we take390

ωp0 as a reference value for ωp.391

In conjunction with (11a) and (11b), also the mass balance laws of the392

nutrients and the fluid phase as a whole need to be studied393

∂t(ϕf%fωN) + div(ϕf%fωNvf + yN) = rNp, (18a)

∂t(ϕf%f) + div(ϕf%fvf) = −rs. (18b)

In (18a) and (18b), vf is the velocity of the fluid, yN is the mass flux vector394

associated with the motion of the nutrients relative to the fluid phase, and rNp395

is the rate at which the nutrients are “eaten” by the proliferating cells. We396

remark that, to ensure the conservation of the mass of the biphasic medium397

under study, the right-hand-side of (18b) is taken equal to the negative of rs.398

After some calculations, (18a) and (18b) can be rephrased as399

ϕf%f ω̇N + %fq gradωN + divyN = rNp + ωNrs, (19a)

div q + div vs =

(
1

%s

− 1

%f

)
rs, (19b)

where q = ϕf [vf−vs] is said to be filtration velocity. Finally, (19a) and (19b)400

can be pulled-back to the reference configuration, thereby obtaining401

(J − JgΦsν)%f ω̇N + %fQGradωN + DivY N = J [rNp + ωNrs], (20a)

DivQ+ J̇ =

(
1

%s

− 1

%f

)
Jrs, (20b)

where Q = JF−1q is the material filtration velocity, and Y N = JF−1yN402

is the material mass flux vector of the nutrients. Under the hypothesis of403

validity of Darcy’s law for the fluid, and of Fick’s law for the nutrients, Q and404

Y N read Q = −KGrad p and Y N = −%fDGradωN, with K = JF−1kF−T
405

being the material permeability, p the pore pressure, and D = JF−1dF−T
406
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the material diffusivity tensor of the nutrients in water. The tensors K and407

D are the backward Piola transforms of the spatial permeability, k, and of408

the spatial diffusivity, d, respectively.409

To conclude, we introduce the momentum balance law for the biphasic410

medium as a whole, which we write directly in material form (see [54] for411

details), i.e.,412

Div
(
−Jp g−1F−T + Psc

)
= 0, (21)

where Psc is referred to as the constitutive part of the first Piola-Kirchhoff413

stress tensor of the solid phase.414

3.2. Constitutive laws415

In this work, the tumour tissue is assumed to be isotropic, and, for sim-416

plicity, k and d are taken “unconditionally isotropic” [65], which means that417

they are both proportional to the inverse metric tensor g−1. Hence, we write418

k = k0g
−1 and d = d0g

−1, where k0 is given in the form of the Holmes-419

Mow scalar permeability [65, 66], and d0 is defined as a function of J and Jγ420

through the fluid phase volumetric fraction, i.e.,421

k0 = k0R

[
Φsνϕf

ϕf0ϕs

]m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
= k0R

[
J − JγΦsν

Jγϕf0

]m0

exp

(
m1

2

[
J2 − J2

γ

J2
γ

])
, (22a)

d0 = ϕfd0R =
J − JγΦsν

J
d0R. (22b)

In (22a), ϕf0 = 1−Φsν is a reference value of the fluid phase volumetric frac-422

tion, m0 and m1 are constant material coefficients, and k0R is said to be the423

reference permeability of the medium. This quantity is assumed to be a con-424

stant in this work, even though it should be defined as a function of material425

points in a more general setting. The factor d0R in (22b) is the reference dif-426

fusivity, which, for simplicity, is assumed here to be constant. This condition,427

in fact, may be violated when the nutrient mass fraction, ωN, is sufficiently428

greater than zero, in which case d0R should be defined as a function of ωN.429

By substituting (22a) and (22b) into the definitions of k and d, and the430

corresponding results into the expressions of the material permeability and431

diffusivity, we find432

K = Jk0C
−1, (23a)

D = (J − JγΦsν)d0RC
−1. (23b)
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Besides being isotropic, the solid phase of the tissue is assumed to be433

hyperelastic. Hence, its mechanical behaviour can be described by means of434

a strain energy density function, W , which we express per unit volume of435

the reference configuration. To account for the variation of internal structure436

induced by growth, W is given in terms of a constitutive function, W̃ , of F ,437

Fγ, and material points, X. The purely elastic contribution of the material438

to the overall energy can be measured by introducing the energy densityWν ,439

defined per unit volume of the stress-free configuration, whose associated440

constitutive representation, W̃ν , depends on F and Fγ exclusively through441

Fe. Hence, we write [28] (see also [67] for details)442

W = JγWν , W̃(F ,Fγ, X) = JγW̃ν(Fe). (24)

For W̃ν(F e), we choose a constitutive law of the Holmes-Mow type [66], i.e.,443

444

W̃ν(Fe) = Ŵν(Ce) = W̌ν(Î1(Ce), Î2(Ce), Î3(Ce))

= α0

{
exp(Ψ̂(Ce))− 1

}
, (25a)

Ψ̂(Ce) = Ψ̌(Î1(Ce), Î2(Ce), Î3(Ce))

= α1[Î1(Ce)− 3] + α2[Î2(Ce)− 3]− α3 ln
(
Î3(Ce)

)
, (25b)

where Ce = Fe
T.Fe is the elastic Cauchy-Green deformation tensor, Ŵν(Ce)445

is introduced to comply with objectivity, and, to account for isotropy, the446

dependence of W̌ν on Ce is expressed through the principal invariants447

I1 = Î1(Ce) = tr
(
η−1Ce

)
, (26a)

I2 = Î2(Ce) = 1
2
{[Î1(Ce)]

2 − tr[(η−1Ce)
2]}, (26b)

I3 = Î3(Ce) = detCe. (26c)

Here, η is the metric tensor of the “intermediate configuration” and, by using448

the equality Ce = F−T
γ CF−1

γ , it can be eliminated from (26a)–(26c), so that449

the invariants can be rephrased as functions of C and Cγ. Finally, in (25b),450

the material coefficients α0, α1, α2, and α3 are functions of Lamé’s elastic451

parameters [68] (in particular, as in [66], we set α3 = 1), i.e.,452

α0 =
2µ+ λ

4α3

, α1 = α3
2µ− λ
2µ+ λ

, α2 = α3
λ

2µ+ λ
, α3 = α1 + 2α2. (27)

Equations (24), (25a), (25b), and (26a)–(26c) permit to calculate the consti-453
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tutive part of the second Piola-Kirchhoff stress tensor of the solid phase:454

Ssc = Ŝsc(C,Cγ) =

[
JγF

−1
γ

(
2
∂Ŵν

∂Ce

(Ce)

)
F−T
γ

]
= 2Jγb1C

−1
γ + 2Jγb2[I1C

−1
γ −C−1

γ CC−1
γ ] + 2Jγb3I3C

−1, (28)

with bi = ∂W̌ν/∂Ii, i ∈ {1, 2, 3}. Consequently, the first Piola-Kirchhoff455

stress tensor Psc can be expressed constitutively as456

Psc = P̂sc(F ,Cγ) = F Ŝsc(C,Cγ), (29)

and, thus, the constitutive part of the Cauchy stress tensor reads457

σsc = σ̂sc(F ,Cγ) = J−1P̂sc(F ,Cγ)F
T

=
Jγ
J

{
2b1be + 2b2[I1be − be.be] + 2b3I3g

−1
}
, (30)

where be = FC−1
γ F T is the elastic right Cauchy-Green deformation tensor.458

3.3. Sources and sinks of mass459

To model growth, it is necessary to describe the mass exchanges among460

the constituents of the system under study. In our framework, this requires461

to provide mathematical expressions for rfp, rpn, rnf , and rNp, and to relate462

each of these quantities with the appropriate set of chemo-mechanical vari-463

ables. For rpn, rnf , rNp and rfp, we adopt the phenomenological expressions464

suggested in [54], which we report here with slight changes of notation, i.e.,465

rpn = −ζpn

〈
1− ωN

ωNcr

〉
+

ϕsωp = −ζpn

〈
1− ωN

ωNcr

〉
+

JγΦsν

J
ωp, (31a)

rnf = −ζnfϕs[1− ωp] = −ζnf
JγΦsν

J
[1− ωp], (31b)

rNp = −ζNp
ωN

ωN + ωN0

ϕsωp = −ζNp
ωN

ωN + ωN0

JγΦsν

J
ωp, (31c)

rfp = ζfp

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
ϕfϕs

ϕf0

ωp

= ζfp

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
J − JγΦsν

Jϕf0

JγΦsν

J
ωp. (31d)

The terms rpn, rnf , and rNp are sinks of mass for the constituents to which466

they refer. In particular, rpn represents the loss of mass of the proliferant467

cells that become necrotic. The term rfp, instead, is a source of mass for468
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the proliferant cells, and represents the mass gained by this population of469

cells at the expenses of the fluid. We need to emphasise that both rpn and rfp470

represent processes whose occurrence is strongly controlled by the availability471

of the nutrients in the tissue. To describe mathematically the concept of472

“availability of the nutrients”, we introduce a critical value of the nutrient473

mass fraction, ωNcr ∈ ]0, 1[, and we model the transfers of mass associated474

with rpn and rfp as threshold processes. Accordingly, when it holds that475

ωN ≤ ωNcr, the proliferant cells die, which means that rpn is active, while rfp476

is switched off. On the contrary, for ωN > ωNcr, rpn must vanish identically,477

whereas rfp is switched on. Such activation and deactivation of rpn and rfp478

is formulated by means of the operator 〈 · 〉+, which returns the argument479

to which it is applied, when the argument is greater than zero, and zero480

otherwise. Thus, it is introduced to switch off cell death when the mass481

fraction of the nutrients, ωN, is above, or equal to, the threshold level ωNcr ∈482

]0, 1[, which is assumed to be a constant of the model.483

In our model, the coefficients ζpn, ζnf , ζNp and ζfp are constants, and484

can be related to the characteristic time scales with which, respectively, the485

proliferating cells die, the necrotic cells are converted into fluid, the nutrients486

are consumed and the interstitial fluid becomes a tumor due to cell growth.487

We notice that the sinks defined in (31a)–(31d) depend on the solid phase488

volumetric fraction, ϕs = (JγΦsν)/J , in such a way that they vanish for489

vanishing ϕs. For the same reason, rpn must be zero for zero ωp, rNp must490

be zero when ωp or ωN is zero, and rnf must be zero for unitary ωp, i.e., for491

zero ωn (indeed, ωn = 1− ωp). We remark, in addition, that the dependence492

of rNp on ωN is taken from Population Dynamics [69], with the constant493

ωN0 ∈ ]0, 1] being a reference value of the nutrient concentration, introduced494

to modulate the rate at which their uptake occurs. The dependence of rfp on495

ϕs and ϕf = 1−ϕs guarantees that growth ceases in the limit of compaction,496

i.e., when all the fluid flows away, and the porous medium features no voids,497

or when the solid disappears, which means that ϕs becomes zero. Besides,498

rfp vanishes for vanishing ωp, and is modulated by stress through the term499

〈σ̄〉+, where σ̄ is defined as500

σ̄ = −1
3
(g : σsc) = −

2
3

∑3
i=1 i biIi

Je

. (32)

We reserve now a separate treatment for the non-standard terms rpγ and501

rnγ. In particular, for the sake of simplicity, we set rnγ = 0 and we prescribe502

rpγ as503

rpγ = c

[
ζfp

ωN

ωNcr

ϕfϕs

ϕf0

ωp

]
κγ = c

[
ζfp

ωN

ωNcr

J − JγΦsν

Jϕf0

JγΦsν

J
ωp

]
κγ. (33)
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With the formulation of rpγ given in (33), we assume that rpγ is proportional504

to κγ through the factor c ζfp(ωN/ωNcr)(ϕf%s)/ϕf0. In this work, the product505

c ζfp is assumed to be constant and it represents, with respect to a suitable506

time scale, the way in which the inhomogeneities induced by growth evolve507

in the tissue. Moreover, as explained above for the standard terms (31a)–508

(31d), we need to account for the limit cases in which compaction occurs509

(ϕf = 0) or the solid phase is locally absent (ϕs = 0). In fact, we ensure510

that rpγ vanishes when ϕf or ϕs vanish. Finally, we relate the availability of511

nutrients to growth. In fact, we prescribe that growth does not take place if512

ωN = 0, and we modulate the growth rate through the reference value ωNcr.513

This factor, indeed, is introduced to re-scale the current mass fraction of the514

nutrients, ωN. In particular, the effect of κγ is amplified for ωN > ωNcr, and515

reduced for ωN ≤ ωNcr.516

For the sake of a lighter exposition, in the present work we suppress the517

rotations related to growth, so that Rγ reduces to a shifter [61] from TB518

to TNt, and we assume that Uγ represents a pure dilatation, i.e., we set519

Uγ = γI. This form of Uγ also implies Jγ = γ3 and Cγ = γ2G, so that the520

material metric, G, is rescaled by γ2. Hence, no remodelling is considered in521

this work, and growth is entirely expressed in terms of an evolution law for522

γ, which, for given rfp and rnf , coincides with (11b).523

We emphasise that the introduction of κγ in our model of tumour growth524

is the major novelty of our work, and it constitutes the principal difference525

with respect to the model developed in [54]. The difference is in the fact526

that, while (11b) is an ordinary differential equation in [54], it is a partial527

differential equation in our model. This feature of our approach allows for528

an explicit resolution of the spatial variability of γ and, more importantly,529

it permits to estimate to what extent such variability influences growth. In530

fact, going through the calculations leading to (6), we notice that κγ features531

the derivatives of γ up to the second order. Hence, by introducing rpγ into532

(11b), we obtain a nonlinear diffusion-reaction like equation in the unknown533

γ. Solving this equation shows how the resolved spatial variability of γ534

influences the evolution of the other model descriptors, i.e., the mass fraction535

of the proliferating cells, the mass fraction of the nutrients, the motion, and536

pressure.537

Looking at (11b), and combining it with the definitions (31b), (31d), and538

(33), we notice that, when the mass fraction of the nutrients, ωN, is below539

the threshold ωNcr (so that rfp = 0), we obtain540

γ̇

γ
= c

[
ζfp

3%s

ωN

ωNcr

ϕf

ϕf0

ωp

]
κγ −

ζnf

3%s

[1− ωp]. (34)
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In (34), indeed, the evolution of γ is governed by an affine function of κγ,541

and is modulated by the mass fractions ωp and ωN. More generally, instead,542

when ωN is above ωNcr, Equation (34) becomes:543

γ̇

γ
=c

[
ζfp

3%s

ωN

ωNcr

ϕf

ϕf0

ωp

]
κγ −

ζnf

3%s

[1− ωp]

+
ζfp

3%s

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
ϕf

ϕf0

ωp. (35)

Equation (35) combines two models: The first two terms on the right-hand-544

side of (35) are an adaptation of the model by Epstein [42] to our biphasic545

problem, which requires the introduction of the mass fraction of nutrients546

and proliferating cells as well as the volumetric fraction of the fluid phase.547

The last term, instead, is taken from the model by Mascheroni et al. [54] and548

has phenomenological nature in order to account for the fact that growth549

occurs when the mass fraction of the nutrients, ωN, is greater than ωNcr, and550

it is modulated by stress.551

Remark 3. Following [42], one could formulate a more general model, with-552

out the a priori assumptions of no growth-induced rotations and Uγ = γI.553

In this case, a possible evolution law for Fγ could be obtained by relating Ḟγ554

to a known function of R and GradR [42]. Such an evolution law, however,555

is out of the scope of this work. Therefore, for the moment, we simply neglect556

GradR in the evolution law for Fγ, thereby keeping only its derivatives up to557

the second order. Moreover, since in our framework it holds that Uγ = γI,558

we end up with model in which the evolution of γ is a function of the scalar559

curvature, κγ, whereas it does not depend on the spatial derivatives of γ of560

order higher than the second.561

4. Solution of a benchmark problem562

4.1. Summary of the model563

Before addressing the details of the considered benchmark problem, we564

summarise the model equations, and declare the unknowns to be determined.565

In doing this, we perform the following simplifications: (a) since the cells566

consist mainly of water, the mass densities %s and %f are regarded as equal567

to each other, so that the right-hand-side of (20a) is zero; (b) the advective568

term QGradωN is considered to be negligible with respect to the other terms569

of (20a). In conclusion, the model equations are given by (11a), (11b), (20a),570

(20b), and (21), which we rewrite as571

Div
[
−Jpg−1F−T + Psc

]
= 0, (36a)
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J̇ −Div [KGrad p] = 0, (36b)

(J − γ3Φsν)ω̇N −Div [DGradωN] = J

(
rNp

%f

+
3γ3 Φsν ωN

J

γ̇

γ

)
, (36c)

ω̇p = −ζpn

%s

〈
1− ωN

ωNcr

〉
+

ωp +
ζnf

%s

[1− ωp] + 3[1− ωp]
γ̇

γ
, (36d)

γ̇

γ
= c

[
ζfp

3%s

ωN

ωNcr

J − γ3Φsν

J − JΦsν

ωp

]
κγ +

J [rfp + rnf ]

3γ3Φsν%s

, (36e)

where rnf , rNp, and rfp are defined in (31b), (31c), and (31d). Consistently572

with (36a)–(36e), the unknown of the models are the motion of the solid573

phase, χ, the pressure, p, the nutrient mass fraction, ωN, the growth parame-574

ter, γ, and the mass fraction of the proliferating cells, ωp. Finally, K, D, and575

Psc are specified in (23a), (23b), and (29), and all the material parameters576

are reported in Table 1 and in Table 2.577

4.2. Description of the benchmark test578

As a proof of concept, we specialise now Equations (36a)–(36e) to a bench-579

mark problem taken from the literature. For our purposes, we select the580

problem of “isotropic and homogeneous growth inside a rigid cylinder”, for-581

mulated in [55] for the case of mono-phasic growing medium, and we adapt582

it to our scopes.583

Also in our formulation, the growth is isotropic, i.e., Uγ = γI, and takes584

place inside a tissue specimen of cylindrical shape, with undeformable curved585

surface. Hence, both the reference and the current configurations of the tissue586

have cylindrical shapes, with equal radius and different lengths. We indicate587

by Rin and L the initial radius and the initial length of the cylinder, re-588

spectively. Moreover, the reference configuration is covered with a system of589

cylindrical coordinates X̂ = (R,Θ, Z), where R, Θ, and Z are the radial,590

circumferential, and axial coordinate, respectively. Analogously, the generic591

current configuration of the tissue is covered with the system of cylindrical592

coordinates x̂ = (r, ϑ, z). Any rigid rotation of the specimen about the axis593

of the cylinder is suppressed from the outset.594

The restrictions imposed on χ imply that only the axial component of595

the momentum balance law (36a) has to be solved, and that the sole un-596

known component of the motion is the axial one, χz, while the radial and597

circumferential ones, χr and χϑ, return the radial and the angular coordinate,598

respectively.599

The growth cannot be assumed to be homogeneous in our framework, as600

the scalar curvature, κγ, would then be trivially zero, and our model would601

boil down to a simple biphasic rephrasing of the model presented in [55]. On602

20



the contrary, to highlight the role of κγ, we prescribe initial distributions of603

γ with a strong gradient.604

In [55], the two extremities of the considered cylinder are free of applied605

forces, so that the axial component of stress is zero both at two outermost606

sections of the cylinder and, because of homogeneity, everywhere else in-607

side it. In our setting, however, we may only conclude that the overall axial608

Cauchy stress, σzz = −p + σzzsc is zero, whereas the pressure, p, and the609

constitutive Cauchy stress, σzzsc , cannot be individually zero because of the610

point-dependent distribution of γ. In fact, they can be such only in the limit611

in which the initial inhomogeneities relax, and the conditions p = 0 and612

σzzsc = 0 are the unique, stationary solutions to (36a) and (36b). Further613

differences with [55] are due to the different constitutive relations which we614

work with, and to the fact that our solid phase consists of two types of cells.615

To solve (36a)–(36e) compatibly with the descriptions given so far, we616

prescribe the reference configuration of the tissue, B, to be of cylindrical617

shape, and we assign the following set of boundary conditions, which apply618

for all times:619

χr = Rin, on (∂B)C, (37a)

χϑ = Θ, on (∂B)C, (37b)

(−Jpg−1F−T + Psc).NA = 0, on (∂B)Left and (∂B)Right, (37c)

(−KGrad p).NC = 0, on (∂B)C, (37d)

p = 0, on (∂B)Left and (∂B)Right, (37e)

(−%fDGradωN).NC = 0, on (∂B)C, (37f)

ωN = ωNenv, on (∂B)Left and (∂B)Right, (37g)

(Gradγ)N = 0, on ∂B. (37h)

In (37a)–(37g), (∂B)C is the lateral boundary of the cylindric specimen,620

whereas (∂B)Left and (∂B)Right are the left and the right surfaces at the621

extremities of B, respectively, NA is the unit vector field normal to (∂B)Left622

and (∂B)Right, NC is the unit vector field oriented normal to (∂B)C, and623

Rin is the initial radius of the cylinder. Furthermore, it holds that ∂B =624

(∂B)Left ∪ (∂B)Right ∪ (∂B)C, and that N is the unit vector field normal to625

∂B.626

Before going further, we remark that the boundary conditions (37d) and627

(37f) describe the situation in which (∂B)C, besides being undeformable,628

is also impermeable to the fluid and to the nutrients. Finally, the Dirichlet629

condition (37g), with ωNenv kept constant in all calculations, means that the630

tissue specimen finds itself in a “bath” of nutrients, which can flow through631

the boundary surfaces (∂B)Left and (∂B)Right.632
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Together with (37a)–(37g), we enforce the initial conditions:633

χr(R,Θ, Z, 0) = R, χϑ(R,Θ, Z, 0) = Θ, (38a)

χz(R,Θ, Z, 0) = Z + uin(Z), (38b)

p(R,Θ, Z, 0) = 0, (38c)

ωN(R,Θ, Z, 0) = ωNenv, (38d)

γ(R,Θ, Z, 0) = γin(Z), (38e)

ωp(R,Θ, Z, 0) = 1, (38f)

which apply at all inner points of B. The way in which the problem is634

formulated allows to infer that the deformation gradient tensor takes on635

the form F = er ⊗ ER + eϑ ⊗ EΘ + (1 + u′)ez ⊗ EZ , where u is the axial636

displacement, the prime indicates partial differentiation in the axial direction637

(i.e., u′ ≡ ∂u/∂Z), while {er, eϑ, ez} and {ER,EΘ,EZ} are the vector basis638

and the co-vector basis generated by the coordinate systems x̂ = (r, ϑ, z) and639

X̂ = (R,Θ, Z), respectively. It is understood that R ∈ [0, Rin], Θ ∈ [0, 2π[,640

and Z ∈
[
−1

2
L, 1

2
L
]
.641

As a further simplification, we require that all the physical quantities642

involved in the model are point-independent on each cross-section of the643

specimen, whereas they do vary along the axis of the cylinder, i.e., they are644

point-dependent only through the axial coordinate, Z. Therefore, the scalar645

curvature reads646

κγ =
2(γ′)2 − 4γγ′′

γ4
=

6(γ′)2 − (4γγ′)′

γ4
, (39)

and the model equations simplify as reported below:647

[(Psc)
zZ ]′ = p′, (40a)

˙1 + u′ =

[
k0

1 + u′
p′
]′
, (40b)

[(1 + u′)− γ3Φsν ]ω̇N =

[(
(1 + u′)− γ3Φsν

(1 + u′)2
d0R

)
ω′N

]′
+ γ3Φsν

[
3
γ̇

γ
ωN −

ζNp

%f

ωN

ωN + ωN0

ωp

]
, (40c)

ω̇p = −ζpn

%s

〈
1− ωN

ωNcr

〉
+

ωp +
ζnf

%s

[1− ωp] + 3[1− ωp]
γ̇

γ
, (40d)

γ̇

γ
= |c|

[
ζfp

3%s

ωN

ωNcr

(1 + u′)− γ3Φsν

(1 + u′)(1− Φsν)
ωp

]
4γγ′′ − 2(γ′)2

γ4
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+
ζfp

3%s

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
(1 + u′)− γ3Φsν

(1 + u′)(1− Φsν)
ωp

− ζnf

3%s

[1− ωp], (40e)

where we have set J = 1 + u′, and k0 is defined in (22a). Equations (40a)–648

(40d) are now put in weak form, and solved by employing the Finite Element649

Method. To eliminate rigid motions along the axial direction, we introduce650

a Dirichlet point for u at Z = 0, where we prescribe u(0, t) = 0 for all t.651

Finally, we assign the initial conditions γin(Z) and uin(Z) in such a way that652

the problem results to be symmetric with respect to Z = 0.653

Parameter Unit Value Equation Reference

L [cm] 1.000 Initial length —
Rin [cm] 1.000 · 10−2 Initial radius —
λ [Pa] 1.333 · 104 (27) [70]
µ [Pa] 1.999 · 104 (27) [70]
k0 [mm4/(N s)] 0.4875 (22a), (23a), [66]
m0 [−] 0.0848 (22a) [66]
m1 [−] 4.638 (22a) [66]
d0R [m2/s] 3.200 · 10−9 (22b), (40c) [66]

Table 1: Parameters used in the definitions of the energy density, permeability and
diffusivity. The mass fraction of the solid phase in the natural state is Φsν = 0.8. The
solid and fluid phase densities are %s = %f = 1000 kg/m3.

5. Results654

To evaluate the impact of the scalar curvature, κγ, on the evolution of655

the system under study, we solve (40a)–(40e) twice: First, we set c = 0 in656

(40e), thereby switching off the term with κγ (this first model is denominated657

M1). Then, we set c 6= 0, and solve (40a)–(40e), paying particular attention658

to the effect of κγ (this second model is referred to as M2).659

For our purposes, we prepare a protocol of numerical experiments in which660

the initial distribution of the growth-related distortions, γin(Z), has strong661

gradients and non-vanishing curvatures. Specifically, we consider two types662

of γin(Z), i.e.,663

γosc(Z) = f0 + g0 cos(h0Z), (41a)

γatan(Z) =

{
a0 − b0 atan

(
r0

(
Z + 1

4
L
))
, Z ∈

[
−1

2
L, 0

]
,

a0 + b0 atan
(
r0

(
Z − 1

4
L
))
, Z ∈

]
0, 1

2
L
]
,

(41b)
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Parameter Unit Value Description Reference

ζfp [kg/(m3 s)] 1.343 · 10−3 (31d),(33),(42) [71]
ζpn [kg/(m3 s)] 1.500 · 10−3 (31a) [71]
ζnf [kg/(m3 s)] 1.150 · 10−5 (31b) [71]
ζNp [kg/(m3 s)] 3.000 · 10−4 (31c) [72, 73]
c [m2] {0,−10−6} (33) —
g0 [−] 0.125 · 10−1 (41a) —
f0 [−] 1 + g0 (41a) —
h0 [1/cm] 8π (41a) —
a0 [−] 1.020 (41b) —
b0 [−] 0.010 (41b) —
r0 [1/cm] 50π (41b) —
ωNcr [−] 1.000 · 10−3 (31d), (33),(42) —
ωNenv [−] 7.000 · 10−3 (31d),(42) —
ωN0 [−] 1.480 · 10−4 (31c) —
δ1 [−] 7.138 · 10−1 (31d),(42) [74]
δ2 [Pa] 1.541 · 103 (31d),(42) [74]

Table 2: Parameters used in the definitions of the system’s geometry, in the definitions of
the sources and sinks of mass, and in the initial conditions for γ.

both defining even functions with respect to Z = 0, and representing a grown664

configuration of the tumour characterised by strong inhomogeneities. All the665

parameters featuring in (41a) and (41b) are reported in Table 2. The models666

‘M1’ and ‘M2’ are further specialised in ‘M1(a)’ and ‘M2(a)’, for γin = γosc,667

and ‘M1(b)’ and ‘M2(b)’, for γin = γatan.668

5.1. Formulation of specialised sub-models669

Models M1(a) and M1(b) [no spatial resolution of the inhomogeneities]. We670

solve (40a)–(40e) with c = 0, thereby switching off the curvature in the671

simulations. Hence, (40e) reduces to the ordinary differential equation672

γ̇

γ
=
ζfp

3%s

〈
ωN − ωNcr

ωNenv − ωNcr

〉
+

[
1− δ1〈σ̄〉+

δ2 + 〈σ̄〉+

]
(1 + u′)− γ3Φsν

(1 + u′)(1− Φsν)
ωp

− ζnf

3%s

[1− ωp], (42)

and the boundary condition (37h) is no longer necessary. Therefore, together673

with (40a)–(40d) and (42), only the boundary conditions (37a)–(37g) and the674

initial conditions (38a)–(38f) have to be accounted for.675

Although the spatial variability of γ does not play a direct role on (42),676

the initial distribution of the growth-related distortions does influence the677

evolution of γ.678
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Models M2(a) and M2(b) [spatial resolution of the inhomogeneities]. We679

solve (40a)–(40e) with c 6= 0, and we enforce the complete set of bound-680

ary and initial conditions, i.e., (37a)–(37h) and (38a)-(38f), respectively. In681

this case, the scalar curvature, κγ, does contribute to drive the evolution of682

γ, through the first term on the right-hand-side of (40e).683

5.2. Numerical results684

In Fig. 2, we report the displacement of the tumour in the axial direction685

of the specimen, evaluated at the cross section of the cylinder Z = L/2, i.e.,686

u(L/2, t) = χz(L/2, t)− χz(L/2, 0). As expected, in all the considered cases,687

the results of our simulations show that u(L/2, t) increases monotonically688

with time. By comparing M1(a) with M2(a), and M1(b) with M2(b), we689

note that the curvature seems to play a significant role in the evolution of690

the tumour displacement. In fact, the inclusion of the curvature augments691

the steepness of the displacement from the beginning of the simulation, and,692

from the 3rd day onward, it increases its magnitude appreciably. This result693

suggests, in addition, that the initial curvature relaxes, and that the system,694

at the end of the simulation, finds itself in a less curved configuration.These695

deductions are confirmed by Fig. 3 and Fig. 4, in which the spatial distri-696

bution of the scalar curvature κγ, at the initial and final instants of time, is697

presented.698

Figure 2: Evolution of the tumour in the axial direction, evaluated at the cross section
Z = L/2. Panel on the left: comparison between M1(a) and M2(a), for which γin = γosc.
Panel on the right: comparison between M1(b) and M2(b), for which γin = γatan.

Starting from Fig. 3, we note that the oscillating behaviour of the scalar699

curvature κγ, which reflects the trend of the initial distribution of the inho-700

mogeneities γin = γosc, results strongly mitigated at the end of the simulation.701

In fact, oscillations are appeased in this case, and κγ is closer to zero than702

the initial case, which means that tissue is evolving towards a configuration703

with reduced curvature. Analogously, in Fig. 4, the concentration of the gra-704

dient, which characterizes the scalar curvature for the model with γin = γosc,705
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Figure 3: Spatial distribution of the scalar curvature κγ evaluated on the meridian section
of the specimen, in the case of γin = γosc. Panel on the left: initial instant of time. Panel
on the right: final instant of time.

Figure 4: Spatial distribution of the scalar curvature κγ evaluated on the meridian section
of the specimen, in the case of γin = γatan. Panel on the left: initial instant of time. Panel
on the right: final instant of time.

relaxes at the end of the simulation. Also in this case, the tissue attains a fi-706

nal configuration in which the inhomogeneities are appreciably redistributed.707

The presence of the curvature κγ in the model and its relaxation, influences708

the spatial trend of the growth. In this sense, looking at Fig. 5, we notice709

that marked qualitative differences emerge among the spatial profiles of γ710

computed with M1(a) and M2(a), or M1(b) and M2(b). Still, if we neglect711

the embodiment of the curvature, the curves are qualitatively similar, with712

the magnitude increasing as time goes by. In particular, no peculiarity of713

the initial data seems to be found in the computed curves: The presence714

of oscillations in the case for which γin = γosc (left), or the steep change in715

concavity, for the other choice of γin, i.e. γin = γatan (right). On the other716

hand, when the curvature is explicitly considered, the spatial distribution717

of the growth is strongly influenced by the initial conditions. In detail, de-718

pending on time, the oscillations (left) and the rapid change in concavity719

(right), characterizing the two chosen initial distribution of inhomogeneities,720

are mitigated, but still present, until the end of the simulations. Althougth721
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Figure 5: Spatial profile of the growth parameter γ for the models with γin = γosc (panel
on the left) and γin = γatan (panel on the right). Since the problem is symmetric, only the
half [0, L/2] of the domain is shown.

the differences outlined above, and independently on the initial condition γin,722

all the considered models lead to a final spatial behaviour of γ, in which the723

inhomogeneities are present.724

Another point to put in evidence concerns Fig. 5 (left). The sub-system725

corresponding to the interval [0, L/2] is initially symmetric with respect to726

Z = L/4. Yet, this further symmetry is lost in the course of time, as visible727

from the the spatial profile of γ. This peculiarity of the results could be ex-728

plained by referring to biological motivations, rather than geometric ones. To729

specify this aspect, let us focus on Fig. 6, which reports the trend of the nu-730

trient mass fraction. We note, indeed, that the nutrients tend to diffuse from731

the boundaries (∂B)Left and (∂B)Right towards the centre of the specimen,732

along its axial direction. In the course of this process, there exists an instant733

of time after which the mass fraction of the nutrients becomes smaller than734

the critical value ωNcr in the interior of the tumour. Hence, while the growth735

of the tumour is inhibited in its centre, it is active close to the free bound-736

aries, where the mass fraction of the nutrients is still higher than the critical737

threshold.738

Figure 6: Spatial profile of the nutrient mass fraction ωN for the models with γin = γosc
(panel on the left) and γin = γatan (panel on the right). Since the problem is symmetric,
only the half [0, L/2] of the domain is shown.
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Figure 7: Spatial profile of the proliferating cells mass fraction ωP for the models with
γin = γosc (panel on the left) and γin = γatan (panel on the right). Since the problem is
symmetric, only the half [0, L/2] of the domain is shown.

A relevant result concerns the dynamics of the proliferating cells, as shown739

in Fig. 7. Their mass fraction, ωp, remains close to unity in the proximity740

of the boundary (∂B)Right, where the level of nutrients is still high, while it741

diminishes in the centre of the tumour, where nutrients tend to become un-742

available (this means that the proliferating cells are “converted” into necrotic743

ones). This phenomenon is influenced by the explicit resolution of the cur-744

vature in the model. Indeed, when the curvature is explicitly considered, the745

conversion process of proliferating cells into necrotic ones is accelerated in746

the first days, and slowed down towards the end of the simulations. This747

behaviour occurs for both choices of γin, but appears to be slightly more748

pronounced for γin = γatan.749

Figure 8: Spatial profile of the pore pressure p for the models with γin = γosc (panel on
the left) and γin = γatan (panel on the right). Since the problem is symmetric, only the
half [0, L/2] of the domain is shown.

To proceed with our analysis, we refer to Fig. 8, where we plot the be-750

haviour of the pressure, p. When the tumour grows, the interstitial fluid flows751

towards the centre of the tumour, and p decreases from the free boundary752

(where the condition p = 0 applies) to the tumour’s interior, where it takes753

on negative values. However, when the system goes towards the end of the754
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simulations, p tends to become positive in the cases in which the curvature755

is explicitly accounted for, while it tends to zero from below otherwise.756

Figure 9: Spatial profile of the effective stress σ̄ for the models with γin = γosc (panel on
the left) and γin = γatan (panel on the right). Since the problem is symmetric, only the
half [0, L/2] of the domain is shown.

Finally, in Fig. 9, we display the effective stress σ̄. First, we notice that757

the tumour is subjected to a compressive stress, since σ̄ is positive. Apart758

from this result, which is common to all the studied cases, we report that the759

curvature modifies the qualitative behaviour of σ̄. As final remark, we note760

how the spatial evolution of the stress in the specimen, independently of the761

model, is strongly affected by the initial distribution of the inhomogeneities.762

6. Conclusion763

In this work, a mathematical model addressing tumour growth has been764

presented. The mechanical framework has been developed by regarding the765

tumour as a multi-constituent, biphasic medium, and by enforcing the BKL-766

decomposition of the deformation gradient tensor. The growth of the tumour767

is influenced by both mechanical stimuli and biological factors, such as the768

nutrients transported by the interstitial fluid, and the interactions among769

proliferating and necrotic cells.770

The principal novelty of our approach consists of a partial reformulation771

of the balance laws for the constituents of the solid phase, in such a way772

that it is introduced an explicitly dependence on the scalar curvature, κγ,773

generated by the growth tensor Uγ = γI through the Riemannian, growth-774

related metric tensor Cγ = γ2G.775

The introduction of κγ amounts to express the evolution law for γ as a776

partial differential equation, with the purpose of obtaining a better resolution777

of the material inhomogeneities, and an estimate of their influence on growth.778

To accomplish this task, we prescribe two types of initial conditions for γ,779

both characterised by strong gradient and nonzero initial curvature, κγin.780
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Two more thoughts about our results may be worth to be mentioned.781

The first one concerns the physical interpretation of the evolution of the782

initial inhomogeneities accompanying γin. Indeed, since γ evolves according783

to a generalised diffusion-reaction like equation, one may say that, in our784

model, the material inhomogeneities brought about by growth “dissipate”785

towards a configuration in which they are redistributed over the tissue. The786

second thought pertains to the structure of the evolution equation (40e),787

and is also related to the first one. Indeed, in the case in which the initial788

inhomogeneities relax, the system tends to pass from a configuration in which789

it is not invariant under material translations to a homogeneous configuration790

in which it is translational invariant, thereby restoring the symmetry that is791

initially broken by γin.792

One limitation of our study is related to the fact that, in this work, we793

have just relied on a phenomenological model in which κγ appears without a794

strong theoretical justification. We have not built a systematic constitutive795

framework, in which, for example, the strain energy density of our material796

depends on γ and on κγ, nor have we conducted any study of the dissipation797

inequality of the system at hand. Yet, confident in the intuitions that have798

led to the model presented in [42], we hope that our results could provide a799

basis for further investigations.800

In our work, we concentrated on an academic benchmark problem in order801

to compare our results with those of other Authors and, in particular, with802

those of Ambrosi and Mollica [55]. For this reason, our general setting is as803

simple as the setting of the problems taken as reference, expect for the fact804

that we deal with a biphasic system featuring two cell populations and for the805

fact that we account for the role of inhomogeneities through the introduction806

of the term rpγ in the mass balance law of the proliferant cells. Clearly, our807

model can be further generalised and, in our opinion, this could be done in808

several steps. Here, we give some indications on how the formulation of our809

problem should look like if such generalisations were done.810

First, one could consider exactly the same framework and geometry as811

the ones presented here, while relaxing the hypothesis of axial symmetry812

of the problem. In this case, the initial inhomogeneities may vary not only813

in the axial direction, but also radially or circumferentially, and the scalar814

curvature κγ must be computed according to its own definition (6), since it815

is no longer represented by (39). This requires the computation of all the816

partial derivatives necessary to determine the Christoffel symbols as well as817

the fourth-order curvature tensor specified in (4) and (5), respectively.818

A second option could be to formulate an evolution law for γ in which the819

evolution is driven by the full curvature tensor R and its gradient GradR,820

rather than by the scalar curvature only. In this case, the definitions of rpγ821
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and rnγ should be further generalised, thereby implying a rewriting of the822

mass balance laws of the proliferant and necrotic cells.823

A further extension of the model could be the formulation of an evolution824

law for the whole growth tensor F γ, with a restriction on tr[Ḟ γF
−1
γ ], as done825

in (10b). A model of this type extends the concept of growth presented in826

this work and further rephrases the theory proposed in [42].827

Another step is to specialise our model to problems with more realistic828

geometries, which may arise from two- and three-dimensional studies. For a829

given study, this means that the boundary value problem formulated in our830

work has to be modified, and the Finite Element scheme adopted to solve it831

has to be extended accordingly. In particular, the use of new computational832

schemes may not be needed to resolve physical phenomena that could not be833

captured otherwise, as is the case, for example, when the growth of a tumour834

in the present of a host tissue and is studied [54].835

Finally, although in the present work we dispensed with remodelling from836

the outset, we are aware of the fact that such process accompanies growth.837

In fact, it plays an important role in the redistribution of the mechanical838

stress within the tissue and, thus, on the modulating effect of the latter839

on the growth of a tumour. One possible way for studying remodelling is840

to use the decompositions F = F eF rF γ or as F = F eF γF r, where F r841

represents the distortion tensor describing the remodelling process, and to842

study the dynamics of F r in relationship with all the other model variables. In843

the literature, F r is often assumed to describe a plastic-like phenomenon844

and is thus treated accordingly. Within the context of tumour growth, F r845

accounts for the structural transformations of a tissue at the cellular level. Its846

introduction requires to elaborate numerical schemes capable of capturing the847

interplay between the growth and the structural evolution of a tissue, even848

when these phenomena exhibit rather separated time scales.849

Moreover, our model could be developed and extended to describe other850

biological situations. For instance, the approach presented in this work for851

isotropic media could be adapted for describing a tumour growing in anisotropic852

tissues. Moreover, we could investigate the coupling with other remodelling853

phenomena, introduced in term of cellular reorganisation, bluefibre reorienta-854

tion or onset of degenerative phenomena. Finally, at the pore scale, the effect855

of inhomogeneities could be studied by introducing a kinematic descriptor,856

called “intrinsic volume ratio” [64].857
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