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Original Article

Dynamic response of
laminated and sandwich
composite structures via
1D models based on
Chebyshev polynomials

A Pagani, M Petrolo and E Carrera

Abstract

This article presents the dynamic response of composite structures via refined beam

models. The mode superposition method was used, and the Carrera Unified

Formulation was exploited to create the advanced structural models. The finite element

method was employed to compute the natural frequencies and modes. The main nov-

elty of this article concerns the use of Chebyshev polynomials to define the displace-

ment field above the cross-section of the beam. In particular, polynomials of the second

kind were adopted, and the results were compared with those from analytical solutions

and already established Carrera Unified Formulation-based beam models, which utilize

Taylor and Lagrange polynomials to develop refined kinematics theories. Sandwich

beams and laminated, thin-walled box beams were considered. Non-classical effects

such as the cross-section distortion and bending/torsion coupling were evaluated.

The results confirm the validity of the Carrera Unified Formulation for the implemen-

tation of refined structural models with any expansion functions and orders. In particu-

lar, the Chebyshev polynomials provide accuracies very similar to those from Taylor

models. The use of high-order expansions, e.g. seventh-order, leads to results as accur-

ate as those of Lagrange models which, from previous publications, are known as the

most accurate Carrera Unified Formulation 1D models for this type of structural

problems.
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Introduction

The development of one-dimensional (1D) structural models is of great interest to
reduce the computational costs in many engineering applications. Advanced 1D
models are required to have results as accurate as those of plate/shell (2D) and solid
(3D) models. The Euler–Bernoulli Beam Theory (EBBT) [1] and the Timoshenko
Beam Theory (TBT) [2,3] are the classical beam theories. The TBT enhances EBBT
assuming constant shear strains across the cross-section. Slender and moderately
thick, solid-section beams subjected to bending can be analyzed with good accur-
acy using these theories. In the last decades, many refined beam theories have been
proposed to improve classical models, but preserving their computational effi-
ciency. Some of the most important are discussed here, with particular attention
paid to structural dynamics and composite structures. More comprehensive reviews
can be found in [4,5].

The adoption of shear correction factors [6,7] is a common way to improve
classical theories, although correction factors are strongly problem dependent.
Another approach exploits refined displacement field above the cross-section of
the beam to include non-classical effects such as warping and cross-section distor-
tions. Typical examples are those in [8–19].

This article exploits refined beam models developed in the framework of the
Carrera Unified Formulation (CUF). The CUF was initially developed for plates
and shells [20,21], and then extended to beams [22,23]. In the CUF framework,
refined structural models are built using expansions of the unknown variables.
The number of terms of the expansion, i.e. the number of unknowns, can be
chosen via a convergence analysis. The CUF has the great advantage to enable
the implementation of any order structural models with no need of formal
changes in the problem equations and matrices. Recently, the CUF 1D models
have been used for structural dynamics; in particular, free-vibration [24–27] and
dynamic response of thin-walled structures [28]. In the works above, higher order
beam theories were obtained using Taylor-like Expansion (TE). Lagrange expan-
sions (LE) and the component-wise approach were used in [29–33]. In [34], trig-
onometric, exponential and zig-zag models were used, whereas a beam theory
based on Chebyshev Expansion (CE) polynomials has been introduced in [35].
CE models were then used for the dynamic response of typical aerospace struc-
tures in [36].

In the present work, the mode superposition method is combined with 1D CUF
CE models to investigate the dynamic response of laminated structures. First, a
simply supported beam subjected to a sinusoidal load is considered. Then, a sand-
wich structure subjected to harmonic loads and a composite box beam subjected to
distributed loads are investigated. In this article, ‘Higher order, hierarchical models
by CUF’ section presents an overview of the higher order beam theories developed
in the framework of CUF. Moreover, the FEM approach and mode superposition
method are briefly outlined. ‘Numerical results’ section is devoted to the presenta-
tion of the results obtained using the proposed CUF, whereas conclusions are
drawn in the final section.
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Higher order, hierarchical models by CUF

Given a generic beam structure, the Cartesian coordinate system adopted is shown
in Figure 1. The cross-section � and the beam axis y are orthogonal. Moreover, the
beam axis has boundaries 0 � y � L. The validity of the formulation adopted is not
affected by the shape of the cross-section, since the reported rectangular cross-
section has merely explicative purposes. The displacement field of a beam model
in the framework of CUF can be written in a compact form as follows:

u x, y, z, tð Þ ¼ F� x, zð Þu� y, tð Þ, � ¼ 1, 2, . . . ,M ð1Þ

where u ¼ fux, uy, uzg
T is the displacement vector; F� indicates the functions of the

cross-section coordinates x and z; u� is the generalized displacement vector; M
indicates the number of terms in the expansion. The choice of F� and M is arbi-
trary. Thus, the basis functions adopted to model the displacement field across the
section can be different and expanded to any order.

Considering TE polynomials as F� functions, one can obtain the models referred
to as TE. For instance, the displacement field of a second-order TE model (TE2)
can be expressed as follows:

ux x,y,z, tð Þ ¼ ux1 y, tð Þþx ux2 y, tð Þþ z ux3 y, tð Þþx2 ux4 y, tð Þþxz ux5 y, tð Þþ z2 ux6 y, tð Þ

uy x,y,z, tð Þ ¼ uy1 y, tð Þþx uy2 y, tð Þþ z uy3 y, tð Þþx2 uy4 y, tð Þþxz uy5 y, tð Þþ z2 uy6 y, tð Þ

uz x,y,z, tð Þ ¼ uz1 y, tð Þþx uz2 y, tð Þþ z uz3 y, tð Þþx2 uz4 y, tð Þþxz uz5 y, tð Þþ z2 uz6 y, tð Þ

ð2Þ

where ux1 , uy1 , uz1 , . . . , uz6 represent the components of the generalized displace-
ment vector, i.e. the unknown variables. The classical models – EBBT and TBT –
can be obtained as particular cases of the TE1.

Another class of CUF models is based on LE. In this work, mainly bi-quadratic
nine-node (L9) Lagrange polynomials are used as F� . Lagrange polynomials can be
found in [23]. The displacement field within an L9 element can be written as:

ux x, y, zð Þ ¼ F1 x, zð Þux1 yð Þ þ F2 x, zð Þux2 yð Þ þ � � � þ F9 x, zð Þux9 yð Þ

uy x, y, zð Þ ¼ F1 x, zð Þuy1 yð Þ þ F2 x, zð Þuy2 yð Þ þ � � � þ F9 x, zð Þuy9 yð Þ

uz x, y, zð Þ ¼ F1 x, zð Þuz1 yð Þ þ F2 x, zð Þuz2 yð Þ þ � � � þ F9 x, zð Þuz9 yð Þ

ð3Þ

x

zy

L

Figure 1. Coordinate frame of the beam.
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The time variable t is omitted in the following for the sake of clarity. ux1, . . . , uz9
are the translational components of the nine points of the L9 element. L-elements
can be assembled above the cross-section imposing the displacement continuity at
the interface nodes.

In this article, the CE is used for the first time to investigate the dynamic
response of composite structures. For instance, the CE second-order kinematic
model (CE2) has 18 generalized displacement variables, and can be defined as
follows:

ux x, y, zð Þ ¼ P00 x, zð Þux1 yð Þ þ P10 x, zð Þux2 yð Þ þ P01 x, zð Þux3 yð Þ

þ P20 x, zð Þux4 yð Þ þ P11 x, zð Þux5 yð Þ þ P02 x, zð Þux6 yð Þ

uy x, y, zð Þ ¼ P00 x, zð Þuy1 yð Þ þ P10 x, zð Þuy2 yð Þ þ P01 x, zð Þuy3 yð Þ

þ P20 x, zð Þuy4 yð Þ þ P11 x, zð Þuy5 yð Þ þ P02 x, zð Þuy6 yð Þ

uz x, y, zð Þ ¼ P00 x, zð Þuz1 yð Þ þ P10 x, zð Þuz2 yð Þ þ P01 x, zð Þuz3 yð Þ

þ P20 x, zð Þuz4 yð Þ þ P11 x, zð Þuz5 yð Þ þ P02 x, zð Þuz6 yð Þ

ð4Þ

where P00, . . . ,P02 are the Chebyshev polynomials of the second kind, as shown
in [35].

Finite element formulation

The stress r and the strain � vectors are defined as follows:

r ¼ �yy, �xx, �zz, �xz, �yz, �xy
� �T

� ¼ �yy, �xx, �zz�xz, �yz, �xy
� �T ð5Þ

Under the assumption of small displacements and elongations, the following
relation between strains and displacements holds:

� ¼ Du ð6Þ

D is the linear differential operator, defined as follows:

D ¼

0 @
@y 0

@
@x 0 0

0 0 @
@z

@
@z 0 @

@x

0 @
@z

@
@y

@
@y

@
@x 0

2
6666666664

3
7777777775

ð7Þ
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Applying the constitutive law, one can obtain the stress components:

r ¼ ~C� ð8Þ

For the sake of brevity, the explicit form of the coefficients ~Cij in the previous
relation is omitted. More details can be found in [37].

The shape functions Ni are used to interpolate the generalized displacement
vector u� along the y direction,

u x, y, zð Þ ¼ F� x, zð ÞNi yð Þu�i ð9Þ

where u�i is the nodal unknown vector. In the present work, four-node (B4) 1D
elements have been used; this leads to a cubic approximation along the y axis. The
internal strain energy Lint can be related to the work of the inertial loads Line

according to the principle of virtual displacements:

�Lint ¼

Z
V

��TrdV ¼ ��Line ð10Þ

where � stands for virtual variation. The virtual variation of the strain energy can
be written in a compact form combining equations (6), (8) and (9):

�Lint ¼ �u
T
sjK

ij�su�i ð11Þ

In the above relation, the fundamental nucleus of the stiffness matrix is Kij�s,
whereas the four indexes indicated by the superscripts are those used to expand the
elemental matrix. In particular, i and j are related to the shape functions Ni and Nj,
whereas � and s are related to the expansion functions F� and Fs. The 3� 3 array
which represents the fundamental nucleus is formally independent of the order of
the beam model. A more detailed explanation of the expansion of nuclei and
assembly procedures in FEM framework can be found in [23]. The work of the
inertial loadings can be written in terms of virtual variation,

�Line ¼

Z
V

��uT €udV ð12Þ

In the above equation, � stands for the density of the material, whereas €u is the
acceleration vector. By substituting equation (9) into equation (12), one has

�Line ¼ ��u
T
sj

Z
L

NiNjdy

Z
�

�F�Fsd� €u�i ¼ ��u
T
sjM

ij�s €u�i ð13Þ
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where Mij�s is the fundamental nucleus of the elemental mass matrix and €u�i indi-
cates the nodal acceleration vector. The components of the elemental mass are:

Mij�s
xx ¼Mij�s

yy ¼Mij�s
zz ¼

Z
L

NiNjdy

Z
�

�F�Fsd�

Mij�s
xy ¼Mij�s

xz ¼Mij�s
yx ¼Mij�s

zx ¼Mij�s
yz ¼Mij�s

zy ¼ 0

ð14Þ

It should be noted that no assumptions have been made on the expansion order
of the theory, even in the case of the inertial terms. In fact, using this formulation,
several refined beam models can be developed without any formal change in the
fundamental nucleus components.

The fundamental nuclei are substituted into the principle of virtual displacement
(equation (10)) to obtain the undamped dynamic problem. The CUF fundamental
nuclei are then expanded, and the global FEM arrays are assembled,

M €uþ Ku ¼ 0 ð15Þ

The second-order system of ordinary differential equations is reduced into a
classical eigenvalue problem if harmonic solutions are considered,

�!2
kMþ K

� �
uk ¼ 0 ð16Þ

where uk is the k-th eigenvector.

Mode superposition method

The equilibrium governing equations of the dynamic response in a system with
multiple degrees of freedom (DOFs) are [38]:

M €u tð Þ þ C _u tð Þ þ Ku tð Þ ¼ P tð Þ ð17Þ

where C is the damping matrix and P is the time-dependant loading vector, which is
computed in the framework of CUF as in [23]. The vector of unknowns u is trans-
formed in accordance with the superposition method:

u tð Þ ¼ �x tð Þ ð18Þ

where � is a DOFs�m matrix containing m M-orthonormalized eigenvectors and
xðtÞ is a time-dependent vector of order m. To transform the equations of motion,
each term of equation (18) is substituted into the governing equations (equation
(17)) and pre-multiplied by �T

x
::
tð Þ þ�TC�x

:
tð Þ þ�2x tð Þ ¼ �TP tð Þ ð19Þ
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where �2 is the diagonal matrix that stores the eigenvalues !2
i . If the damping is

neglected, from equation (19), one can notice that the equations of motion are
decoupled. Hence, m individual equations can be obtained by decomposing this
relation. The solution for each equation is computed by means of the Duhamel
integral

€xi tð Þ þ !
2
i xi tð Þ ¼ ri tð Þ

ri tð Þ ¼ �iP tð Þ

�
i ¼ 1, 2, . . . , n ð20Þ

xi tð Þ ¼
1

!i

Z t

0

ri �ð Þ sin!i t� �ð Þd� þ �i sin!itþ �i cos!it ð21Þ

To compute �i and �i, initial conditions need to be addressed. The contribution
to the response for each mode is obtained after the solution for each of the m
equations is calculated.

um tð Þ ¼
Xm
i¼1

�ixi tð Þ ð22Þ

In this approach, the accuracy of the solution depends on m.

Numerical results

This section presents the numerical results of this article. First, preliminary ana-
lyses were carried out on an isotropic structure. Then, a sandwich beam and a
laminated box beam were considered.

Compact square section

A first, preliminary assessment is presented in this section to validate the modal
superposition methodology. A simply supported, square section beam is con-
sidered. The cross-section height is 0.1m, the span-to-height ratio L/h is 100,
and the material properties are E¼ 69GPa, v¼ 0.33 and �¼ 2700 kg

m3. A vertical,
harmonic force was applied at the centre of the mid-span section, Pz tð Þ ¼
Pz0 sin !tð Þ, where Pz0 ¼ �1000N is the amplitude of the sinusoidal load, and
! ¼ 7 rad

s is the angular frequency. According to the Euler–Bernoulli beam assump-
tions, the peak response can be approximated as follows [38]:

uzmaxDYN ’
2Pz0L

3

	4EI

1

1� !
!1

ð23Þ

where I is the moment of inertia of the beam cross-section. Such an approximation
is valid as soon as !1 4!, in which !1 is the bending, first fundamental angular
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frequency. The dynamic response was investigated using the modal superposition
and the present CUF models over the time interval [0, 8] s. Table 1 shows the
maximum transverse displacements at the centre of the mid-space cross-section. In
particular, this table compares the approximated analytical value, TE and CE
models up to the third-order. Figure 2 shows the loading point transverse displace-
ment over the time interval using the analytical solution based on Euler–Bernoulli
and CE3. There is a good match between the analytical results and those from the
finite element models. The use of refined models does not modify the solution to a
great extent. As well known, slender, homogenous beams under bending are well

Table 1. Maximum transverse displacement (mm) using different theories,

square beam.

Model uzmaxDYN !1

Analytical –69.4719 14.4030

TE3 –70.0014 14.4006

CE3 –70.0019 14.3999

TE: Taylor-like Expansion; CE: Chebyshev Expansion.

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  1  2  3  4  5  6  7  8

u z
 (

m
)

t (s)

ANLT
CE3

Figure 2. Transverse displacement at the centre of the mid-span section for different models,

square beam.
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modelled by classical theories. The results from CE models match perfectly the
TE ones.

Sandwich beam

This section presents the dynamic response of a clamped–clamped sandwich beam.
The free vibration analysis of this beam was presented in [39]. The structure consists
of two face sheets (f) bonded to a core (c). Isotropic materials were employed with
Ef¼ 68.9GPa, Ec¼ 179.014MPa, Gf¼ 26.5GPa, Gc¼ 68.9MPa, �f¼ 2687.3 kg/m3

and �c¼ 119.69 kg/m3. Figure 3 shows the cross-section geometry, with
hf¼ 0.40624mm, hc¼ 6.3475mm, b¼ 25.4mm and L¼ 1.2187m. Two different
loading cases were considered, as shown in Figure 3. Both load cases have a sinus-
oidal load having amplitude F0¼�10N and angular frequency !¼ 30 rad/s.

The time-dependent transverse displacement at the mid-span load application
point is shown in Figure 4 for various theories, whereas the maximum and min-
imum displacements are reported in Table 2. The maximum deformation of the
cross-section at mid-span is reported in Figure 5 for Case 1. The results suggest that

. Overall, classical models can detect the time-dependent displacement behaviour
of the structures. However, significant differences were found in the maximum
values due to the neglecting of torsion and the in-plane distortion of the cross-
section.

. The novel CE models are as accurate as TE models and in good agreement
with LE.

Six-layer composite box beam

A cantilever, thin walled, hollow, rectangular beam was considered. This structure
has been previously investigated in [40–43] in which free vibration analyses were
carried out. The structure consists of a six-layer laminated box beam with hollow
rectangular cross-section, whose dimensions are length L¼ 844.55mm, height
h¼ 13.6mm, width b¼ 24.2mm and thickness t¼ 0.762mm. Each layer has the

Z

X

(a) (b)

F

b

hc

hf

Z

X

F

b

hc

hf

Figure 3. Cross-section geometry of the sandwich beam and application points of the sinus-

oidal loads. (a) Case I and (b) Case II.
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Figure 4. Transverse displacement at the mid-span load application point for various the-

ories, sandwich beam model. (a) Case I and (b) Case II.
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same thickness. Two material cases were considered. The same aluminium alloy of
the previous case was employed for the isotropic case. Moreover, an orthotropic
material having the following properties was considered,

E1 ¼ 141:96GPa E2 ¼ E3 ¼ 9:79GPa 
12 ¼ 
13 ¼ 0:42 
23 ¼ 0:5
G12 ¼ G13 ¼ 6:0GPa G23 ¼ 4:83GPa � ¼ 1445:0 kg

m3

Different stacking sequences and ply angles were taken into account, namely the
circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiff-
ness (CUS), as in Table 3. The box beam was subjected to a pressure load whose
distribution across the section is shown in Figure 6. The load was uniformly dis-
tributed in the span-wise direction while a linear distribution was considered along
the width. The distributed load resultant is 10 N, whereas the height of the linear

Table 2. Maximum and minimum transverse displacement (mm) at the mid-span cross-section

obtained by means of various theories, sandwich beam.

Theory DOFs

Case I Case II

uzmax
uzmin

uzmax
uzmin

EBBT 93 6.612 –6.600 6.604 –6.596

TBT 155 6.612 –6.600 6.612 –6.600

TE2 558 6.472 –6.517 6.476 –6.521

TE7 3348 6.751 –6.742 6.916 –6.907

CE2 558 6.472 –6.517 6.476 –6.521

CE7 3348 6.751 –6.743 6.917 –6.908

LE 7533 6.795 –6.819 6.958 –6.982

EBBT: Euler–Bernoulli Beam Theory; TBT: Timoshenko Beam Theory; TE: Taylor-like Expansion; CE:

Chebyshev Expansion; LE: Lagrange expansion.

EBBT
CE7

LE

Figure 5. Deformation of the mid-span cross-section of the sandwich beam, Case 1.
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Table 3. Stacking sequences of the six-layer box beam.

Layup

Flanges Webs

Top Bottom Left Right

CAS2 30½ �6 30½ �6 30=� 30½ �3 30=� 30½ �3

CAS3 45½ �6 45½ �6 45=� 45½ �3 45=� 45½ �3

CUS1 15½ �6 �15½ �6 15½ �6 �15½ �6

CUS2 0=30½ �3 0=� 30½ �3 0=30½ �3 0=� 30½ �3

CUS3 0=45½ �3 0=� 45½ �3 0=45½ �3 0=� 45½ �3

CAS: circumferentially asymmetric stiffness; CUS: circumferentially uniform stiffness.

Figure 6. Load distribution for the box beam.

Table 4. Maximum transverse displacement (mm) at the free tip of the six-layer box beam

using various models.

Model TE3 TE7 CE3 CE7 LE

DOFs 930 3348 930 3348 19344

CAS2 14.085 15.000 14.087 14.992 15.247

CAS3 33.842 37.012 33.845 36.948 37.517

CUS1 8.056 8.923 8.057 8.923 9.190

CUS2 5.581 5.755 5.582 5.756 5.770

CUS3 6.529 6.590 6.529 6.591 6.560

Isotropic 3.447 3.453 3.447 3.453 3.454

TE: Taylor-like Expansion; CE: Chebyshev Expansion; LE: Lagrange expansion; DOFs: degrees of freedom;

CAS: circumferentially asymmetric stiffness; CUS: circumferentially uniform stiffness.
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distribution is 10/L N/m. The load was modelled as a function of the time accord-
ing to the following relation:

q ¼
q0
t1
, t 2 0, t1½ �

q0, t4 t1

�
ð24Þ

The analysis was performed considering t1¼ 0.05 s. Table 4 shows the transverse
displacement for various models, whereas Figure 7 shows the transverse

(a) (b)

(c) (d)

(e) (f)

Figure 7. Time-dependent transverse displacement at the free tip of the six-layer box beam

for various theories. (a) CAS2, (b) CAS3, (c) CUS1, (d) CUS2, (e) CUS3, and (f) isotropic.

CAS: circumferentially asymmetric stiffness; CUS: circumferentially uniform stiffness.
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displacement over the time interval considered. Figure 8 shows the distortion of the
free tip cross-section via CE7 and LE. The results suggest that

. Perfect agreement was found between CE and TE.

. Depending on the stacking sequence, different expansion orders are needed to
detect accurate results. In particular, CAS2, CAS3 and CUS1 may require

CE7

(a) (b)

(c) (d)

(e)

LE
CE7

LE

CE7
LE

CE7
LE

CE7
LE

Figure 8. Free tip cross-section distortion, six-layer composite box beam. (a) CAS2,

t¼ 0.049 s; (b) CAS3, t¼ 0.059 s; (c) CUS1, t¼ 0.059 s; (d) CUS2, t¼ 0.054 s; (e) CUS3,

t¼ 0.055 s. CAS: circumferentially asymmetric stiffness; CUS: circumferentially uniform

stiffness.
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seventh or higher orders while, in the other cases, third-order models are
enough. Similar results were found for the free vibration analysis [35].

. The distortion of the cross-section from CE models matches LE with good
accuracy.

Conclusions

This article has dealt with the dynamic response of laminated and sandwich struc-
tures. 1D CUF refined structural models have been employed together with the
finite element method and the mode superposition method. In particular, the
Chebyshev polynomial expansions have been used to model the displacement
field above the cross-section of the structure. The main aim of this article has
been the investigation of the accuracy of the Chebyshev-based 1D models for
structural dynamics problems of composite structures. Numerical assessments
have dealt with compact homogeneous and sandwich beams as well as a six-
layer box structure. The results have been compared with those from Taylor and
Lagrange 1D models and analytical solutions. The results suggest that

. The novel CE models have proved to be as accurate as Taylor models (TE). In
most cases, seventh-order expansions canmatch the accuracy of Lagrangemodels
(LE). However, TE and CE models usually require fewer DOFs than LE.

. Higher order expansions can detect torsion, bending/torsion coupling and cross-
section distortions properly.

. As a general guideline, TE and CE should be used when global non-local effects
have to be investigated. On the other hand, LE should be preferred to deal with
local effects.
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