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Abstract
The purpose of this paper is to study the properties of kinetic models for traffic flow

described by a Boltzmann-type approach and based on a continuous space of microscopic
velocities. In our models, the particular structure of the collision kernel allows one to find
the analytical expression of a class of steady-state distributions, which are characterized by
being supported on a quantized space of microscopic speeds. The number of these velocities
is determined by a physical parameter describing the typical acceleration of a vehicle and
the uniqueness of this class of solutions is supported by numerical investigations. This shows
that it is possible to have the full richness of a kinetic approach with the simplicity of a
space of microscopic velocities characterized by a small number of modes. Moreover, the
explicit expression of the asymptotic distribution paves the way to deriving new macroscopic
equations using the closure provided by the kinetic model.

Keywords Kinetic models, traffic flow, equilibrium distributions, discrete velocity models

MSC 35Q20, 65Z05, 90B20

1 Introduction
The purpose of kinetic theory for traffic flow is to provide an aggregate representation of the
distribution of vehicles on the road, thanks to a detailed characterization of the microscopic
interactions among the vehicles, which play an important role in the macroscopic trend of the
flow. The goal is to obtain information on the macroscopic characteristics of the flow without
assuming previous knowledge on the dependence of the mean velocity on the local density of
traffic, as it is done in standard macroscopic traffic models. See in particular the prototype of
macroscopic models, [18], or the reviews in [21, 26]. More refined macroscopic models consider
a system of equations, instead of a single equation, see [2], and/or they prescribe different flow
conditions at certain stages, building phase transitions within the flow, [4, 17, 19], but still it is
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necessary to complete the model with a closure law, derived from heuristic or physical arguments,
or from experimental data. Kinetic models provide quite naturally a closure law, which is linked
in general to the equilibria of the kinetic model. Another way to derive closure laws is through
microscopic “follow the leader” models [1, 28]. For a review on the derivation of macroscopic
traffic models from the microscopic “follow the leader” ones and from the mesoscopic kinetic
theory, see [3].

Several kinetic approaches have been proposed, starting from the pioneering work of [22,
23] and later [20]. These models were based on a Boltzmann-type collision term in which the
cross section, giving the probability of an interaction between two particles, is replaced with
a probability distribution depending on the local traffic conditions. The equation describes
the relaxation of the kinetic distribution in time due to the acceleration and slowing down
interactions among vehicles. However, the interaction integrals appearing in kinetic Boltzmann-
type models for traffic flow based on a continuous velocity space, see [14], typically do not provide
the analytical expression of the equilibrium distribution and they are very demanding from a
computational point of view. For this reason, two main approaches have been taken into account
in order to compute the time-asymptotic distribution or to reduce the computational cost: on the
one hand, one may consider Vlasov-Fokker-Planck type models in which the interaction integrals
are replaced by differential operators, see [10, 12, 13]; on the other hand, one may consider
simplified kinetic models with a small number of velocities, namely the discrete-velocity models,
see [7, 8].

In this work, following the classical Boltzmann-like setting of binary interactions, we study a
kinetic model based on a continuous velocity space, which does not suffer from the aforementioned
drawbacks. To this end, we focus only on spatially homogeneous problems and we investigate
the interplay between the microscopic rules appearing in the collision kernel and the equilibrium
solutions, finding analytical expressions of the time-asymptotic distribution, which result in a
realistic macroscopic model for traffic flow.

As in [14], our transition probability is characterized by the fact that drivers react to the
presence of other vehicles, deciding whether to modify their speed according to the overall traffic
conditions and to the particular velocity of the cars around them. Thus, the decision of whether
and how to modify one’s speed depends on the local traffic density, or better, on the free space
available, as we argue in [25]. Clearly, other choices were considered in literature. For example, in
[12] the authors assume that drivers react to the local mean speed and they decide to accelerate
or to brake by comparing their velocity to the speed of the flow. Here, the possible speeds
available to the driver are naturally the driver’s current speed, and a set of speeds which depend
on the velocity of the vehicles ahead and on the local density. In particular, the probability of
accelerating increases monotonically with the free space available. Instead, the probability of
braking increases as the road becomes congested.

This framework permits to take the stochasticity of the drivers’ behavior into account, thanks
to the probability distribution which assigns a weight to the possible driver’s decisions, while
maintaining the general kinetic setting, based on the deterministic evolution of the distribution
function. We propose two models that follow the framework just described: one is based on
quantized velocity jumps, i.e., if acceleration occurs the new speed is obtained by increasing the
pre-interaction velocity of a fixed quantity ∆v (δ model); the other one is based on a continuous
uniform distribution defined on a bounded interval parametrized by ∆v (χ model), see also
[14, 15].

In this paper, ∆v is a finite parameter which models the physical velocity jump performed by
vehicles when they increase their speeds as a result of an interaction. Clearly, this parameter may
depend on the mechanical characteristics of vehicles, see [24], but in this paper we will assume
that ∆v is fixed. In the section on macroscopic properties, §5, we show that ∆v is related to the
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Boltzmann
continuous-velocity:
f(t, v) s.t.
∂tf(t, v) = Q[f, f ](t, v)

Boltzmann
discrete-velocity:
fj(t), j = 1, . . . , N s.t.
d
dtfj(t) = Qj [f , f ](t)

Existence of quantized equilibria:
f∞(v) =

∑N
j=1 f

∞
j δvj (v)

All equilibria are quantized:
f∞(v) =

∑N
j=1 f

∞
j δvj (v)

discretize

equilibria
(T

h.3)

equilibria
(T

h.6)

(Th.6)

Macroscopic closure law based
on a reduced velocity space

Figure 1: Connection between the δ model and a discrete-velocity model, having the same
steady-state distribution.

maximum acceleration and we discuss how this parameter can be chosen through experimental
data used by Lebacque [16].

This paper also shows that the fundamental diagrams (or closure laws) obtained with the
perhaps more natural, but more complex and more computationally demanding, χ model are
very close to those provided by the simpler δ model. We thus investigate the equilibria of the δ
model, both from an analytical and a numerical point of view. Analytically we find that velocity
distributions formed by a linear combination of Dirac δ’s may be equilibria only if the δ’s are
centered at velocities spaced by multiples of ∆v. Next, we compute equilibria using a numerical
scheme capable of converging also to possible absolutely continuous equilibria. Here we find only
the quantized equilibria described above, independently of the discretization parameters. This
fact suggests that the class of discrete-velocity equilibria is the only one that the continuous-
velocity Boltzmann-type δ model possesses. This situation is summarized graphically in Figure 1.

The paper is organized as follows. In §2 we briefly recall the Boltzmann-type kinetic equation
and we specialize it by giving two sets of interaction rules. The resulting δ and χ models are
discussed in depth in §3 and in §4, respectively. In particular, in §3 we prove the existence of
a class of quantized steady-state distributions. Since we are unable to prove their uniqueness,
we discretize the model by approximating the kinetic distribution with a piecewise constant
function and we then show by numerical evidence that the class of stationary solutions of the
δ model is only the one we have already studied analytically. In §4, we show the somewhat
surprising result that the equilibrium distributions of the χ model yield a macroscopic flow that
is extremely well approximated by the discrete-velocity-based closure law resulting from the δ
model. This is illustrated in the final section §5, where we show that the fundamental diagrams,
that is the flux-density relationships, obtained from the two models tend to coincide under grid
refinement. Next we compare these diagrams with experimental data, finding that our models
reproduce well experimental fundamental diagrams and thus they capture the characteristics
of macroscopic traffic flow. Further, we compute the macroscopic acceleration induced by the
model, proving in particular its link with ∆v. We end the paper with a section summarizing the
main results of this work, and proposing possible applications and further developments. Finally,
the details of the matrix elements resulting from the discretization of the χ model are written in
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an Appendix.

2 The general form of the kinetic model
In this section we briefly recall the general structure of a Boltzmann-type kinetic traffic model,
which we will then specialize by prescribing a set of binary interaction rules in order to derive
two models which differ only in the modeling of the acceleration interaction. Both models are
defined on a continuous velocity space and they are characterized by a parameter ∆v related to
the typical acceleration of a vehicle.

We will focus on the space homogeneous case, because we want to investigate the structure
of the collision term and of the resulting equilibrium distributions. In particular, we show that
the simplified model (δ model) permits to describe the complexity of the equilibrium solutions
with a very small number of discrete velocities.

Let f = f(t, v) : R+ × V → R+ be the kinetic distribution function, where V = [0, Vmax] is
the domain of the microscopic speeds and Vmax is the maximum speed, which may depend on
the mechanical characteristics of the vehicles, on imposed speed limits, environmental conditions
(such as the quality of the road, the weather conditions, etc). The statistical distribution f is
such that f(t, v)dv gives the number of vehicles with velocity in [v, v + dv] at time t.

As usual, macroscopic quantities are obtained as moments of the distribution function f with
respect to the velocity v:

ρ(t) =
∫
V

f(t, v)dv, (ρu)(t) =
∫
V

vf(t, v)dv

where ρ is the density, i.e. the number of vehicles per unit length (tipically, kilometers), u is
the macroscopic speed and ρu is the flux of vehicles. Note that ρ can also be interpreted as the
reciprocal of the average distance between cars, see [2].

In the homogeneous case, the Boltzmann-type equation can be written as

∂tf(t, v) = Q[f, f ](t, v) (1)

where Q[f, f ](t, v) is the collisional operator which describes the relaxation to equilibrium due to
the microscopic binary interactions among vehicles. For mass conservation to hold, the collision
term must satisfy ∫

V

Q[f, f ](t, v)dv = 0.

In fact, this ensures that, in the space homogeneous case, the density remains constant in time.
The collisional operator is usually split into a gain term G[f, f ] and a loss term L[f, f ], that

model statistically the interactions which lead to gain or to loose the test speed v. Denoting
with A(v∗→v|v∗) the probability that the velocity v ∈ V results from a microscopic interaction
between candidate vehicles with velocity v∗ and field vehicles with speed v∗, the model writes as
an integro-differential equation

∂tf(t, v) =
∫
V

∫
V

η(v∗, v∗)A(v∗→v|v∗)f(t, v∗)f(t, v∗)dv∗dv∗︸ ︷︷ ︸
G[f,f ](t,v)

− f(t, v)
∫
V

η(v, v∗)f(t, v∗)dv∗︸ ︷︷ ︸
L[f,f ](t,v)

(2)

in which η(v∗, v∗) is the interaction rate possibly depending on the relative speed of the interacting
vehicles, e.g. η(v∗, v∗) = |v∗ − v∗| as in [14, 5]. Although such a choice would make the model
richer, in [25] we found that a constant interaction rate is already sufficient to account for many
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aspects of the complexity of traffic. Another possibility is to consider η as dependent on the local
congestion of the road, that is η = η(ρ). However this is not relevant in the homogeneous case,
where ρ is constant, for then η would affect only the relaxation time towards equilibrium. Thus
in this paper we will set η =constant.
Notation. In the whole paper, in order to shorten formulas, we adopt the following traditional
shorthand f(t, v∗) = f∗, f(t, v∗) = f∗, etc. Note in particular that in the space homogeneous
case f∗ and f∗ are not different distribution functions, but the evaluation of the same f(t, v) at
two different points v∗ and v∗.

We will suppose that A depends also on the macroscopic density ρ in order to account for
the influence of the macroscopic traffic conditions (local road congestion) on the microscopic
interactions among vehicles, see [23, 14, 11, 25]. Thus, we suppose that A fulfills
Assumption 1.

A(v∗→v|v∗; ρ) ≥ 0, and
∫
V

A(v∗→v|v∗; ρ)dv = 1, for v∗, v∗, v ∈ V, ρ ∈ [0, ρmax]

where ρmax is the maximum density of vehicles, for instance the maximum number of vehicles
per unit length in bumper-to-bumper conditions.
Remark 1. Any transition probability density A that satisfies Assumption 1 guarantees mass
conservation since

∂t

∫
V

f(t, v)dv =
∫
V

Q[f, f ](t, v)dv =∫
V

∫
V

f(t, v∗)f(t, v∗)dv∗dv∗ −
∫
V

f(t, v)dv
∫
V

f(t, v∗)dv∗ = 0.

2.1 Choice of the probability density A

The probability density A assignes a post-interaction speed in a non-deterministic way, consis-
tently with the intrinsic stochasticity of the drivers’ behavior. The construction of A is at the
core of a kinetic model. Here, it is obtained with a very small set of rules.

• If v∗ ≤ v∗, i.e. the candidate vehicle is slower than the field vehicle, the post-interaction
rules are:

Do nothing: the candidate vehicle keeps its pre-interaction speed with probability 1−P1,
thus v = v∗;

Accelerate: the candidate vehicle accelerates to a velocity v > v∗ with probability P1.

• If v∗ > v∗, i.e. the candidate vehicle is faster than the field vehicle, the post-interaction
rules are:

Accelerate: in order to overtake the leading vehicle, the candidate vehicle accelerates to
a velocity v > v∗ with probability P2;

Brake: the candidate vehicle decelerates to the velocity v = v∗ with probability 1 − P2,
thus following the leading vehicle.

From the previous rules, we observe that the probability density A has a term which will be
proportional to a Dirac delta function at v = v∗, due to the interaction which preserves the pre-
interaction microscopic speed (the “Do nothing” alternative). Note that this is a “false gain” for
the distribution f , because the number of vehicles with speed v is not altered by this interaction.
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In the following, we assign the speed after braking as proposed in [22] and used also in [7, 8] in
the context of a discrete velocity model. Namely, we suppose that if a vehicle brakes, interacting
with a slower vehicle, it slows down to the speed v∗ of the leading vehicle. Thus, after the
interaction it gets the speed v = v∗ without overtaking the leading field vehicle. Instead, for the
post-interaction speed due to acceleration we propose two different models.

Quantized acceleration (δ model): the output velocity v is obtained by accelerating instan-
taneously from v∗ to the velocity min {v∗ + ∆v, Vmax}. Considering all possible outcomes,
the resulting probability distribution, in this case, is

A(v∗→v|v∗; ρ) =
{

(1− P1)δv∗(v) + P1δmin{v∗+∆v,Vmax}(v), if v∗ ≤ v∗

(1− P2)δv∗(v) + P2δmin{v∗+∆v,Vmax}(v), if v∗ > v∗.
(3)

Uniformly distributed acceleration (χ model): the new velocity v is uniformly distributed
between v∗ and min{v∗ + ∆v, Vmax}. On the whole, the resulting probability distribution
becomes

A(v∗→v|v∗; ρ) =
{

(1− P1)δv∗(v) + P1
χ[v∗,min{v∗+∆v,Vmax}](v)

min{v∗+∆v,Vmax}−v∗ , if v∗ ≤ v∗

(1− P2)δv∗(v) + P2
χ[v∗,min{v∗+∆v,Vmax}](v)

min{v∗+∆v,Vmax}−v∗ , if v∗ > v∗.
(4)

Note that the acceleration of a vehicle in (3) is similar to the one assumed in [7, 8], which
however were based on a discrete velocity space. In [7, 8] the acceleration parameter ∆v is
chosen as the distance between two adjacent discrete velocities, thus ∆v depends on the number
of elements in the speed lattice. In this work, ∆v is a physical parameter that represents the
ability of a vehicle to change its pre-interaction speed v∗. With this choice, ∆v does not depend
on the discretization of the velocity space and the maximum acceleration is bounded, as in [16].
In contrast, deceleration can be larger than ∆v, and this fact reflects the hypothesis that drivers
tend to brake immediately if the flow becomes more congested, while they react more slowly
when they can accelerate (see the concept of traffic hysteresis in [28] and references therein).

The acceleration performed in the χ model has some points of contact with the microscopic
rules prescribed in [12, 14]. In [12], however, the post-interaction speed is selected through a
random process in the interval [v∗, Vmax]. Here instead, the post-interaction speed is determinis-
tic. In [14] instead, the velocity after acceleration is uniformly distributed over a range of speeds
between v∗ and v∗+α(Vmax−v∗), where α is supposed to depend on the local density; in a similar
way, the output velocity from a braking interaction is assumed to be uniformly distributed in
[βv∗, v∗], with β ∈ [0, 1].

In the following, the probabilities P1 and P2 are taken as P1 = P2 =: P and P will be a
function of the local density only, as assumed for instance in [23] where P = 1 − ρ/ρmax. More
generally, from a modeling point of view, P should be a decreasing function of ρ, see also [10] or
[26]. For instance in [25] we have considered

P = 1−
(

ρ

ρmax

)γ
, (5)

where γ ∈ (0, 1) can be chosen to better fit experimental data. In [7] the choice P = α(1−ρ/ρmax)
is proposed, α ∈ [0, 1] is a parameter describing environmental conditions, for instance road or
weather conditions. In more sophisticated models, one could also choose P as a function of the
relative speed of interacting vehicles, but we will not explore this possibility in the present work.

The simplified choice P1 = P2 and the interaction rules described at the beginning of this
section guarantee the continuity of the transition probability (3) and (4) along v∗ = v∗.
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Remark 2. Both choices (3) and (4) for A include terms of the form δv∗(v), which actually
describe false gains mentioned above, because the velocity of the candidate vehicle does not
change. They are automatically compensated by false losses, as it can be seen by rewriting the
classical kinetic loss term of equation (2) in the form

L[f, f ](t, v) =
∫
V

∫
V

ηδv∗(v)f∗f∗dv∗dv∗.

3 The δ velocity model
Now, we focus on the steady states of model (3). We start with the existence of a particular
set of equilibrium solutions of the continuous model, which are computed analytically. Next, we
consider a finite volume discretization of the model, and we show that the discrete equilibria
have precisely the structure found before analytically, thus suggesting that the particular set of
equilibria found analytically are the only equilibria of the system.

It can be proven [9] that the Cauchy problem associated to (2) is well posed provided the
probability density A is Lipschitz continuous with respect to v∗ and v∗ in a suitable Wasserstein
metric. This is indeed the case of the A defined in (3), with P1 = P2.

Using the expression (3) for A, we rewrite the gain term in (2) as

G[f, f ](t, v) =η
∫
V

∫
V

[
(1− P )δmin{v∗,v∗}(v) + Pδmin{v∗+∆v,Vmax}(v)

]
f∗f
∗dv∗dv∗

and the following important result on the existence of a particular class of stationary solutions
holds. More precisely, it characterizes the equilibrium distributions having the form of linear
combinations of Dirac’s masses. This theorem establishes the connection represented by the left
vertical arrow in Figure 1.
Theorem 3. Let P be a given function of the density ρ ∈ [0, ρmax] such that P ∈ [0, 1]. Let
{vj}Nj=1 be a set of velocities in [0, Vmax]. The distribution function

f∞(v) =
N∑
j=1

f∞j δvj (v), f∞j > 0 ∀ j = 1, . . . , N,

with
∑N
j=1 f

∞
j = ρ, is a weak stationary solution of the δ model provided vj = v1 + j∆v,

j = 1, . . . , N .

Proof. Without loss of generality suppose that {vj}Nj=1 is an ordered set of velocities such that
0 ≤ v1 < · · · < vN ≤ Vmax. Since the distribution function f∞(v) =

∑N
j=1 f

∞
j δvj (v) is a weak

stationary solution of the δ model, it satisfies the following steady weak form of equation (2):∫
V

∫
V

(∫
V

φ(v)A(v∗→v|v∗; ρ)dv
)
f∞(v∗)f∞(v∗)dv∗dv∗ − ρ

∫
V

φ(v)f∞(v)dv = 0,

where φ ∈ Cc(V ) is a test function, with Cc(V ) the space of continuous functions having compact
support contained in V , and the probability density A is given in (3). Substituting the expression
of f∞ in the above equation we obtain

(1− P )
N∑
k=1

k∑
h=1

φ(vh)f∞h f∞k + (1− P )
N∑
k=1

N∑
h=k+1

φ(vk)f∞h f∞k

+ Pρ

N∑
h=1

φ(min{vh + ∆v, Vmax})f∞h − ρ
N∑
j=1

φ(vj)f∞j = 0.

(6)
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The proof will be organized as follows: in order to determine an equation for the f∞j ’s, we
consider a particular family of test functions φj defined as piecewise linear functions such that
φj(vj) = 1 and φj(vi) = 0, ∀ i 6= j; in this way, first we find an equation for f∞1 , then we show
that f∞2 6= 0 if v2 = v1+∆v and finally by induction we prove that if f∞j 6= 0, then vj = v1+j∆v,
for some j ∈ {1, . . . , N}.
Let j = 1, equation (6) with φ = φ1 becomes

(1− P )
N∑
k=1

f∞1 f∞k + (1− P )
N∑
h=2

f∞h f∞1 + Pρ

N∑
h=1

φ1(v1 + ∆v)f∞h − ρf∞1 = 0.

Due to the particular construction of φ1 and using
∑N
j=1 f

∞
j = ρ, the above expression reduces

to
−(1− P )(f∞1 )2 + (1− 2P )ρf∞1 = 0

which admits the two roots f∞1 = 0 and f∞1 = ρ 1−2P
1−P . If P > 1/2, only f∞1 = 0 is acceptable,

because the other root is negative. If instead P < 1/2, both roots can be accepted, but only
f∞1 = ρ 1−2P

1−P > 0 is stable. This argument will be used for selecting a single root throughout the
proof.
Now, let j = 2 and φ = φ2. Equation (6) writes as

−(1− P )(f∞2 )2 + [(1− 2P )ρ− 2(1− P )f∞1 ] f∞2 + Pρ
N∑
h=1

φ2(min{vh + ∆v, Vmax})f∞h = 0. (7)

Note that φ2(min{vh + ∆v, Vmax}) = 1 if h = 1 and v1 + ∆v = v2. While φ2(min{vh +
∆v, Vmax}) = 0 otherwise, due to the particular choice of φ2 which is centered in v2 and can be
taken with support smaller than 2 |v2 − v1 −∆v| around this point. Then, if v2 6= v1 + ∆v, the
constant coefficient of (7) is zero for all P ∈ [0, 1] and the solutions of the equation are f∞2 = 0
or f∞2 = ρ 1−2P

1−P − 2f∞1 . Exploiting the structure of f∞1 and the fact that f∞j ≥ 0, only f∞2 = 0
is the admissible solution for all values of P ∈ [0, 1].
Instead, if v2 = v1 + ∆v, the third term in equation (7) is Pρf∞1 ≥ 0, for all P ∈ [0, 1].
More precisely, if P ≥ 1/2 then f∞1 = 0, thus the constant coefficient vanishes and again
one concludes that f∞2 = 0. While if P < 1/2, Pρf∞1 is positive and since the discriminant
D = ((1− 2P )ρ− 2(1− P )f∞1 )2 + 4P (1 − P )ρf∞1 of equation (7) is positive and the leading
coefficient is negative, the equation has two real roots with opposite signs. Therefore

f∞2 = −(1− 2P )ρ+ 2(1− P )f∞1 −
√
D

−2(1− P ) > 0

and this is the only case in which f∞2 can be non-zero.
We now proceed by induction. Suppose that vk − v1 is an integer multiple of ∆v and

f∞k =

0, if P ≥ 1/2
−(1−2P )ρ+2(1−P )

∑k−1
l=1

f∞l −
√
Dk

−2(1−P ) if P < 1/2

for all k = 3, . . . , j − 1, where Dk =
(

(1− 2P )ρ− 2(1− P )
∑k−1
l=1 f

∞
l

)2
+ 4P (1− P )ρ

∑k−1
l=1 f

∞
l .

We show that f∞j can be non-zero only if vj = v1 + j∆v, for j ∈ {1, . . . , N}.
Taking the test function φ = φj , the equation for f∞j writes as

−(1− P )(f∞j )2 +
[

(1− 2P )ρ− 2(1− P )
j−1∑
l=1

f∞l

]
f∞j + Pρ

N∑
h=1

φj(min{vh + ∆v, Vmax})f∞h = 0.

(8)
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Note that φj(min{vh + ∆v, Vmax}) = 1 if h = j − 1 and vj−1 + ∆v = vj . While φj(min{vh +
∆v, Vmax}) = 0 otherwise, due to the particular choice of φj which is centered in vj and can be
taken with support smaller than 2 |vj − vj−1 −∆v| around this point. If vj = v1 + j∆v, then
vj = vj−1 + ∆v and the above equation becomes

−(1− P )(f∞j )2 +
[

(1− 2P )ρ− 2(1− P )
j−1∑
l=1

f∞l

]
f∞j + Pρf∞j−1 = 0

which has two real roots. If P ≥ 1/2, using the inductive hypothesis f∞k = 0 for all k ≤ j − 1.
Thus f∞j = ρ 1−2P

1−P (which is again not acceptable since it is negative) or f∞j = 0, confirming the
induction. If P < 1/2, we have two real roots with opposite signs, so one proves that f∞j can be
chosen strictly positive.
If instead vj 6= v1 + j∆v then the constant term of equation (8) is zero and the two roots are

f∞j = 0 and f∞j = Sj = (1−2P )ρ−2(1−P )
∑j−1

l=1
f∞l

1−P which is negative for all values of P ∈ [0, 1]
using the Lemma 4 below.

In the previous proof we use the following technical fact.
Lemma 4. Let P be a given function of the density ρ ∈ [0, ρmax] such that P ∈ [0, 1]. Consider
{fj}Kj=1 ∈ R defined as

fj =
2(1− P )

∑j−1
l=1 fl − (1− 2P )ρ− Cj
−2(1− P )

with Cj > 0. Assume that fj is positive for all j. Then

Sk =
(1− 2P )ρ− 2(1− P )

∑k−1
l=1 fl

1− P < 0

for all 2 ≤ k ≤ K.

Proof. We proceed by induction on k. Let k = 2

S2 = (1− 2P )ρ− 2(1− P )f1

1− P = − C1

1− P < 0.

Suppose Sj < 0, j = 3, . . . , k − 1, then Sk < 0. In fact

Sk = Sk−1 − 2fk−1 < 0.

3.1 Discretization of the model
Observe that Theorem 3 ensures the existence of a class of steady solutions for the δ model
which are characterized by the fact that the total mass of vehicles on the road is distributed only
on the velocities which are multiples of ∆v. We cannot prove the uniqueness of such a class of
steady solutions. However we can show by numerical evidence that the asymptotic distributions
of the δ model are only of the type stated by Theorem 3. Thus, in this subsection we introduce
a discretization of the model (3).

To this end, the explicit formulation of the gain term is now useful. Notice that the Dirac
delta function at v = min {v∗ + ∆v, Vmax} can be split as

δmin{v∗+∆v,Vmax}(v) =
{
δv∗+∆v(v), if v∗ ∈ [0, Vmax −∆v]
δVmax(v), if v∗ ∈ (Vmax −∆v, Vmax]

9



because the velocity jump of size ∆v, leading to the output velocity v = v∗+∆v, can be performed
only if v∗ ≤ Vmax −∆v. If instead v∗ ∈ (Vmax −∆v, Vmax], the post-interaction velocity will be
v = Vmax. Thus the gain term of the δ model can be written as

G[f, f ](t, v) =η(1− P )f(t, v)
[∫ Vmax

v

f∗dv∗ +
∫ Vmax

v

f∗dv∗

]

+ ηPρ

[
f(t, v −∆v)H∆v(v) + δVmax(v)

∫ Vmax

Vmax−∆v
f∗dv∗

] (9)

whereHα(x) denotes the Heaviside step function with jump located in α. The last term in the ex-
pression of G means that, as a result of the microscopic interactions, the mass Pρ

∫ Vmax
Vmax−∆v f∗dv∗

is allocated entirely to the speed Vmax. Note that, in space-nonhomogeneous models, f∗ and f∗
may refer to distributions evaluated at different locations in space, see for instance [14] and [15].
For this reason we keep the integrals over field and candidate particles separate.

Suppose for simplicity that the acceleration parameter ∆v satisfies ∆v = Vmax/T with T ∈ N.
We consider a discretization of the velocity space defining the velocity cells Ij = [(j − 3

2 )δv, (j −
1
2 )δv] ∩ [0, Vmax], for j = 1, . . . , N . Note that all cells have amplitude δv = Vmax/(N − 1) except
I1 and IN which have amplitude δv/2.

We consider a piecewise constant approximation of the kinetic distribution so that

f(t, v) ≈ fN (t, v) =
N∑
j=1

fj(t)
χIj (v)
|Ij |

, (10)

where fj represents the number of vehicles traveling with velocity v ∈ Ij .
By integrating the kinetic equation (1) over the cells Ij and using fN (t, v) in place of f(t, v)

we obtain the following system of ordinary differential equations

f ′j(t) = Qj [f, f ](t) :=
∫
Ij

Q[f, f ](t, v)dv, (11)

whose initial conditions f1(0), . . . , fN (0) are such that

N∑
j=1

fj(0) =
∫
V

f(t = 0, v)dv = ρ

and ρ is the initial density, which remains constant during the time evolution in the spatially
homogeneous case.

We set r := ∆v/δv ∈ R+ and we define r+ := r+ 1
2 , r
− := r− 1

2 . Then Idr+e is the cell which
contains v = ∆v, where dr+e denotes the integer part of r+. By computing the right hand side

10



dr−e

dr+e

dr+e

Ajδ for 1 ≤ j ≤ dr−e

j

j

1−P

dr−e

dr+e

dr+e

Ajδ for j = dr+e

1

Proportional to P

dr−e

dr+e

dr+e

Ajδ for dr+e < j < N

j

j

j − dre+ δdre,dr+e

dr−e

dr+e

dr+e

Ajδ for j = N

N − dr−e

N

N

P

Figure 2: Structure of the probability matrices of the δ model, with ∆v = Vmax/2.
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of the ODE system (11), we obtain explicitly

1
η
Qj [f, f ](t) = (1− P )f jfj + (1− P )fj

N∑
k=j+1

fk (12a)

+ (1− P )f j
N∑

h=j+1
fh − fj

N∑
k=1

fk, for j = 1, . . . ,
⌈
r−
⌉

1
η
Qj [f, f ](t) = (1− P )f jfj + (1− P )fj

N∑
k=j+1

fk + (1− P )f j
N∑

h=j+1
fh (12b)

+ Pρ

[
2f1 min{1

2 ,
⌈
r+⌉− 1

2 − r}+ δdre,dr−ef2(
⌈
r−
⌉
− r)

]
::::::::::::::::::::::::::::::::::::::::::::::::

− fj
N∑
k=1

fk, for j =
⌈
r+⌉

1
η
Qj [f, f ](t) = (1− P )f jfj + (1− P )fj

N∑
k=j+1

fk + (1− P )f j
N∑

h=j+1
fh (12c)

+ Pρ
[
(1 + δdre,dr+eδj,dr+e+1)fj−dre(1 + r − dre) + fj−dre+1(−r + dre)

]
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

− fj
N∑
k=1

fk, for j =
⌈
r+⌉+ 1, . . . , N − 1

1
η
QN [f, f ](t) = (1− P )fNfN (12d)

+ Pρδdre,dr+e

[
fN−dr+e(r −

⌈
r−
⌉
) + fN−dr−e(

⌈
r+⌉− 1

2 − r)
]

:::::::::::::::::::::::::::::::::::::::::::::::::::

PρfN−dr−e

[
1
2δdre,dr

−e + (r −
⌈
r−
⌉

+ 1
2)
]

+ Pρ

N∑
h=N−dr+e+2

fh

::::::::::::::::::::::::::::::::::::::::::::::::::::::

− fN
N∑
k=1

fk.

where here δi,j ’s are Kronecker’s delta’s. The terms with a wavy underline are those deriving
from the acceleration term. In the formulae above, the position of the index of the components
of f = [f1, . . . , fN ]T ∈ RN distinguishes the distribution of the field and of the candidate vehicles:
bottom right for the candidate vehicles (as in fh), top right for the field vehicles (as in fk). In
vector form:

d

dt
fj = η

[
fTAjδf − fTej1T

N f
]
, j = 1, . . . , N (13)

where ej ∈ RN denotes the vector with a 1 in the j-th component and 0’s elsewhere, 1T
N =

[1, . . . , 1] ∈ RN . The matrices Ajδ have a sparse structure, shown in Fig. 2 in which the nonzero
elements are shaded with different hatchings, corresponding to the different values of the ele-
ments, as indicated in the panels in which they appear for the first time.

As it can be checked using (12), these matrices are stochastic with respect to the index j,

12



Parameter Description Definition
N number of discrete speeds
δv cell amplitude δv = Vmax

N−1
r ratio between the speed jump ∆v and the cell amplitude δv r = ∆v

δv

T number of speed jumps ∆v contained in [0, Vmax] T = Vmax
∆v

Table 1: Table of the numerical parameters.

r

Ajδ for 1 ≤ j ≤ r

j

j

1−P

r

Ajδ for r < j < N

j

j − r

j

P

r

Ajδ for j = N

N − r

N

N

Figure 3: Structure of the probability matrices of the δ model with δv integer sub-multiple of
∆v.

i.e.
∑N
j=1

(
Ajδ

)
hk

= 1, ∀h, k ∈ {1, . . . , N}. This property comes from Assumption 1, and it
guarantees mass conservation.

Recall that the elements of the matrix
(
Ajδ

)
hk

are the probabilities that the candidate vehicle
with velocity in Ih, interacting with a field vehicle with velocity in Ik, acquires a velocity in Ij .
The fact that these matrices are sparse means that a velocity in Ij can be acquired only for
special values of the velocity of candidate and field vehicles. In particular, the j-th row of the
matrix Ajδ contains the probability of what we called “false gains” in Remark 2, that is the
probability that the candidate vehicle does not change its speed. The non zero elements of the
j-th column are the probabilities that a candidate vehicle acquires a speed in Ij by braking down
to the speed of the leading vehicle. The non zero rows, located at h = j−dre+δdre,dr+e, h−1 and
h+ 1, contain the probabilities that the candidate vehicle accelerates by ∆v, acquiring therefore
a velocity in v∗+ ∆v ∈ Ij starting from a velocity v∗ in Ih−1, Ih or Ih+1. The band between the
rows j −dre+ δdre,dr+e+ 2 and j − 1 is filled with zeros, because in the δ model the acceleration
is quantized. As we will see in Section 4.1, this band will be filled by non zero elements in the χ
model, where the acceleration is distributed uniformly between [0,∆v].

In Table 1 we summarize the numerical parameters introduced in order to discretize the
continuous-velocity model.

δv as integer sub-multiple of ∆v. For the special choice of the velocity grid which ensures
that r = ∆v/δv ∈ N, then the formulae (12) simplify and the resulting interaction matrices are
given in Figure 3. Notice that the rows j − r ± 1 are filled with zeros. In fact, since δv is an
integer sub-multiple of ∆v, a velocity in Ij can be obtained as result of an acceleration only if
the pre-interaction speed is a velocity in Ij−r.
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Figure 4: Approximation of the asymptotic kinetic distribution function obtained with two
acceleration terms ∆v = 1/T , T = 3 (top), T = 5 (bottom), and N = rT + 1 velocity cells, with
r ∈ {1, 4, 8}; ρ = 0.3 (left) and ρ = 0.6 (right) are the initial densities. We mark with red circles
on the x-axes the center of the T + 1 cells obtained with r = 1.

The structure of the matrices Ajδ determines the equilibrium of the discrete model (13). In
Figure 4 we show the function f∞N (v) = limt→∞ fN (t, v) obtained by integrating numerically the
system of equations up to steady state, for a few typical cases. In all numerical tests we take
P = 1 − ρ, with Vmax = ρmax = 1. As initial macroscopic densities, we choose ρ = 0.3, 0.6
(plots to the left and right of the figure). We consider two values for the acceleration parameter,
∆v = Vmax/T , T = 3, 5 (top and bottom of the figure). The number of velocities in the grid is
taken as N = rT+1, with r ∈ {1, 4, 8}. The three curves in each plot contain the data for the cell
averages of the equilibrium distribution for the different values of r. It is clear that in all cases,
f∞N (v) is a function of the density ρ and it approaches a series of delta functions, centered in the
velocities which are multiples of ∆v and indicated in the picture by red dots on the horizontal
axis.

This means that, as δv → 0, only a finite number T + 1 of velocities carry a non-zero mass of
vehicles at equilibrium. More precisely, the discrete asymptotic function f∞N (v) is different from
zero only in the T + 1 cells I1, Ir, I2r, . . . , IN . Therefore, as time goes to infinity the number of
nonzero values of the fj ’s appearing in (10) is univocally determined by the acceleration term
∆v = Vmax/T .

The previous considerations can be supported by the numerical results in Figure 5, in which
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Figure 5: Evolution towards equilibrium of the discretized model (13) with N = 4 (green), N = 7
(blue) and N = 10 (red) grid points. The acceleration parameter ∆v is taken as Vmax/3 and the
density is ρ = 0.6. Black circles indicate the equilibrium values.

we show the evolution towards equilibrium of the fj ’s, j = 1, . . . , N . In this figure, ∆v = Vmax/3,
and the different plots are obtained starting from a uniform initial distribution, namely fj(t =
0) = ρ/N,∀j = 1, . . . , N , with r = 1 (green), r = 2 (blue) and r = 3 (red), which correspond to
N = 4, 7 and 10 velocity cells respectively, and ρ = 0.6. It is clear that under grid refinement
the number of nonzero steady values does not change. In fact, note that a different dynamics
towards equilibrium is observed, for different values of the number N of cells, but as equilibrium
is approached, the values of the fj ’s go to zero except for the velocities corresponding to integer
multiples of ∆v. Moreover, the non zero values of the steady-state distribution f∞ do not depend
on the discretization parameter δv. This fact can be also deduced by looking at equations (12) of
the discrete collision operator. These expressions are not functions of δv. Thus all exact values
of the equilibria can be obtained using a coarse grid.

Theorem 6 below confirms the structure of the equilibria that we have just observed in the
numerical results and it states that the steady-state solution of the δ model, prescribed by
Theorem 3, can be reconstructed numerically on the grid with δv = ∆v. To this end, we first
recall a result from [6], where the existence and well posedness of the solution of such systems is
proved and then we show that the discrete equilibria of additional equations resulting from the
choice r > 1 give actually no contribution.
Theorem 5. (Delitala-Tosin) Let fj(t = 0) ≥ 0, with

∑N
j=1 fj(t = 0) = ρ, be the initial condition

for the system
d

dt
fj = fTAjf − fTej1T

N f , j = 1, . . . , N,

where the matrices Aj are stochastic matrices with respect to the index j, i.e.
∑
j A

j
hk = 1 for

all h, k. Then there exists t∗ = +∞ such that the system admits a unique non-negative local
solution f ≥ 0 satisfying the a priori estimate

||f(t)||1 = ||f0||1 = ρ ∀t ∈ (0, t∗ = +∞].

The following result, together with Remark 7, shows that all equilibria of the discrete model
are of the quantized form described by Theorem 3. Thus the next Theorem establishes the
correspondences symbolized by the right vertical and the middle horizontal arrows in Figure 1.
Theorem 6. Let P be a given function of the density ρ. For any fixed ∆v = Vmax/T , T ∈ N, let
fr(ρ) denote the equilibrium distribution function of the ODE system (13), obtained on the grid
with spacing δv given by ∆v = rδv with r = (N − 1)/T ∈ N. Then

(fr)j =
{

(f1)d jr e mod(j − 1, r) = 0
0 otherwise
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is the unique stable equilibrium and the values of f1 depend uniquely on the initial density ρ,
with

∑T+1
k=1 (f1)k = ρ.

Proof. We already know from Theorem 5 that the solution of (13) exists, is non-negative and is
uniquely determined by the initial condition.

To prove the statement, we compute explicitly the equilibrium solutions of (13), using the
explicit expression of the collision kernel given in (12a), (12b), (12c) and (12d), with r ∈ N and
N = rT + 1. Since here we are interested in the solutions of the homogeneous problem, we will
take identical distributions for the candidate and the field vehicles, i.e. fj = f j .

For j = 1, using the expression (12a) and the fact that
∑N
k=1 fk = ρ we obtain

d

dt
f1 = 0 ⇔ −(1− P )f2

1 + (1− 2P ) ρf1 = 0.

This is a quadratic equation for f1, which has the two roots f1 = 0 and f1 = ρ(1− 2P )/(1−P ).
It is easy to see that one solution is stable, and the other one unstable, depending on the value
of P . Here we are interested only in the stable root, so we find

(fr)1 =
{

0 P ≥ 1
2

ρ 1−2P
1−P otherwise

(14)

Thus, no vehicle is in the lowest speed cell I1 if P ≥ 1
2 , which, for the simple case P = 1 − ρ

means that all cars are moving if ρ ≤ 1
2 .

The case j = 1 we just computed is typical. Also for larger values of j, we find a quadratic
equation for the unknown fj , which involves only previously computed values of fk, k < j. Thus,
we can easily compute iteratively all components of fr.

For 2 ≤ j ≤ r, the equilibrium equation is obtained by using again the expressions (12a) with
r ∈ N. Then

−(1− P )f2
j +

[
(1− 2P )ρ− 2(1− P )

j−1∑
k=1

fk

]
fj = 0.

Start from j = 2. Clearly, for P ≥ 1
2 , substituting equation (14), we again have (fr)2 = 0. For

P < 1
2 , the equation for f2, with f1 given by (14), becomes

−(1− P )f2
2 − (1− 2P ) ρf2 = 0.

Comparing with the equation for f1, we see that now the stable root is f2 = 0. Thus, at
equilibrium, we have (fr)2 = 0, for all values of P . Analogously, it is easy to see that (fr)j = 0,
∀j = 3, . . . , r.

For r+1 ≤ j < N , in place of (12a), we use (12b) and (12c) in order to obtain the equilibrium
equation. Then

−(1− P )f2
j +

[
(1− 2P )ρ− 2(1− P )

j−1∑
k=1

fk

]
fj + Pρfj−r = 0. (15)

The equation has a positive discriminant

Dj =
[

(1− 2P )ρ− 2(1− P )
j−1∑
k=1

fk

]2

+ 4P (1− P )ρfj−r
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thus it always admits two real roots. To fix ideas, let us consider r + 1 ≤ j ≤ 2r. If j = r + 1,
since (fr)k = 0, ∀k = 2, . . . , r, equation (15) becomes

−(1− P )f2
r+1 + [(1− 2P )ρ− 2(1− P )f1] fr+1 + Pρf1 = 0.

Thus, we find (fr)r+1 = 0 for P ≥ 1/2, because the equation for fr+1 becomes identical to (3.1).
If instead P < 1/2, substituting the expression for f1, the equation for fr+1 becomes

−(1− P )f2
r+1 − (1− 2P )ρfr+1 + ρ2P (1− 2P )

1− P = 0.

This equation has a negative and a positive real root, which is stable. Thus

(fr)r+1 =
{

0 P ≥ 1
2

−(1−2P )ρ+ρ
√

(1−4P 2)
2(1−P ) otherwise.

Now, let r + 1 < j ≤ 2r. Since fj−r = 0, the constant term of equation (15) is zero. Then, as
seen for j = 2, . . . , r, it is easy to prove that, for each j = r + 2, . . . , 2r and for all values of P ,
one solution is negative and thus (fr)j = 0.

Clearly, this procedure can be repeated and we find that

(fr)j =

0 P ≥ 1
2

−2(1−P )
∑j−1

k=1
fk+(1−2P )ρ+

√
Dj

2(1−P ) otherwise

if j = lr + 1, l = 0, . . . , T − 1, while (fr)j = 0 otherwise. From these considerations, the thesis
easily follows. Finally, just note that for the last value, fN , we can use mass conservation

(fr)rT+1 = (fr)N = ρ−
T−1∑
l=0

(fr)lr+1(ρ).

Notice that the result above proves that equilibria are determined by the initial density ρ,
which is constant in time in the spatially homogeneous case, but they do not depend on the
number of cells N used to approximate the kinetic distribution. In fact, the stable equilibria just
computed correspond exactly to the values f∞j given in Theorem 3 and they can all be recovered
on the coarse grid δv = ∆v, i.e. choosing r = 1.
Remark 7 (The case of a generic δv). In order to further investigate the existence of stable
equilibria, we can seek more general ones numerically. In fact, the finite volume discretization
(10) is capable of converging to absolutely continuous equilibria, but so far we proved that it
converges to sums of Dirac masses if δv is an integer submultiple of ∆v. Here we apply our
discretization scheme with non-integer ratios r = ∆v/δv and show that the resulting equilibria
converge, in the sense of distributions, to the equilibria already described in Theorems 3 and 6.

When r = ∆v/δv is not integer, Theorem 6 cannot be applied, but numerical integration
of equation (13) shows that, for large time, the solution approaches equilibria that have masses
concentrated at points spaced by ∆v. More precisely, in this more general case, only a small
finite number of f∞j ’s is nonzero and the cumulative distribution function induced by the discrete
f∞N (v), cf. (10),

FN (v) =
∫ v

0
f∞N (v)dv, v ∈ [0, Vmax],
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Figure 6: Cumulative density at equilibrium for several values of δv → 0. The density is ρ = 0.6
and ∆v is chosen as 1/3 (left), 1/5 (right).

approximates the cumulative distribution of a sum of Dirac masses centered at multiples of ∆v.
That is, FN (v) converges to a piecewise constant function with jump discontinuities at multiples
of ∆v. See Figure 6.

Furthermore, Figure 6 shows that the jump discontinuities of the cumulative distribution
in the limit δv → 0 are located exactly in the points computed analytically by Theorem 6
in the case r ∈ N. In particular, the figure shows the cumulative distribution at equilibrium
computed by solving numerically (13) for several values of the discretization parameter δv with
non-integer ratio ∆v/δv. In both panels the density is ρ = 0.6, while ∆v = 1/3 in the left plot
and ∆v = 1/5 in the right one. The continuous red curve represents the cumulative distribution
of the stationary solution for δv = ∆v, computed by Theorem 6. The black dotted curve is
computed with N = 15 velocity cells, the green dot-dashed line with N = 30 and finally the blue
dashed one with N = 60. We observe that as δv → 0 the cumulative distribution tends to that
of the analytic solution of Theorem 3, where only the velocities centered in multiples of ∆v give
rise to a jump discontinuity.

We conclude the section with a few remarks on the structure of the equilibria of (13).
Remark 8 (Reduced velocity space). The δ model is characterized by a small number of non-
trivial values for the microscopic velocities, which allows one to compute analytically the equi-
librium of the system. This fact provides an analytic closure of the macroscopic equations. This
fact can also be exploited from a numerical point of view, justifying the use of a small number
of discretization points in simulations aimed at capturing equilibrium effects. In this sense, the
model seems to suggest that kinetic corrections can be accounted for with a computational cost
which is not much higher than the one needed for a macroscopic model.

Remark 9 (Unstable equilibria). Theorem 6 gives the uniqueness of the stable equilibrium of
the model with ∆v/δv = r ∈ N. Unstable ones may occur if the initial condition is such that
f1(0) = 0. In fact, the interaction rules related to the case v∗ > v∗ do not generate a post-
interaction velocity v which is less than v∗. Thus if f1(0) = 0, i.e. if there are no vehicles with
velocity v1 = 0 at the initial time, there will not be interactions leading to an increase of f1. This
consideration can be generalized: if fj(0) = 0 for j = 1, . . . , j̄ < r, then the computed equilibria
will be fj = (fr)j−j , where fr is the vector containing the stable equilibria. In this sense, the
equilibrium solution of the δ model does not only depend on ρ but also on the initial condition
f(0, v). These solutions however are unstable: a small perturbation on f1(t = 0) is enough to
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Figure 7: Evolution towards equilibrium, ρ = 0.7, T = 4, N = 17. Left: fj(t = 0) ≡ ρ/N .
Middle: fj(t = 0) = 0, j = 1, 2, 3, fj(t = 0) ≡ (ρ/(N − 3)), j > 3. Right: f1 = ε = 10−6, f2 =
f3 = 0 and fj(t = 0) ≡ ((ρ− ε)/(N − 3)). The thick lines highlight the components fj and the
blue ones are for those that appear in stable equilibria, i.e. with j = kr + 1 for k = 0, . . . , T .
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Figure 8: Speed of convergence towards the stable equilibria of the δ model. The initial condition
is a small random perturbation of the steady-states.

trigger the evolution towards the stable equilibrium, which depends only on ρ.
This is illustrated in Figure 7: in the left panel we show the evolution towards equilibrium

when fj(t = 0) 6= 0 for all classes (this is the stable equilibrium), while in the middle we show the
case when f1 = f2 = f3 = 0. In the rightmost panel we show a perturbation of the previous case,
where f1 takes a very small but nonzero value. It is clear that the evolution goes at first towards
the unstable equilibrium of the middle panel, but then, in the long run, the stable equilibrium
of Theorem 6 emerges.

Remark 10 (Convergence rate to equilibrium). In Figure 8 we study the rate of convergence to-
wards the stable steady-states. For the set of densities ρ ∈ {0.2, 0.3, 0.4, 0.6, 0.7, 0.8} we integrate
numerically the system (13) for large times starting from a small random perturbation of the sta-
ble equilibrium. In both panels, we use a linear scale for the x-axis (time) and a logarithmic scale
for the y-axis (error). The error is computed at each step as e(t) = ‖f(t)− f∞‖2. The figure
suggests that the rate of convergence towards the stable equilibrium depends on the density. In
fact, in the left panel we consider different values of the ratio ∆v/δv = r, in particular r = 1 (solid
lines) and r = 2 (dashed lines), and we note that the slopes of the curves corresponding to the
same value of ρ are the same. A similar behavior is observed in the right plot in which two differ-
ent ∆v are taken, ∆v = 1/5 (solid lines) and ∆v = 1/3 (dashed lines). We can conjecture that for
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large enough times the distance from equilibrium behaves as e(t) ' Ce−M(ρ)t ‖f(t = 0)− f∞‖2,
where C = C(r,∆v), M(ρ) > 0.

4 The χ velocity model
The structure of the steady-state distribution of the δ model clearly depends on the particular
choice of the acceleration interaction made in (3), in which a vehicle accelerates by jumping from
its pre-interaction velocity v∗ to the new velocity v∗+ ∆v. Thus it could seem quite natural that
only velocities 0, ∆v, 2∆v, . . . , Vmax give a non zero contribution at equilibrium.

Here we study the χ model, already introduced in Section 2.1 (see equation (4)), in which
vehicles can assume a post-interaction velocity uniformly distributed over a range of speeds when
the acceleration interaction occurs. We will show that, although this model is more refined than
the δ model, at equilibrium the essential information is already caught by the simpler δ model.

Using the formulation (4) for the transition probability density A, we rewrite the gain term
in (2) as

G[f, f ](t, v) = η

∫
V

∫
V

[
(1− P )δmin{v∗,v∗}(v) + P

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

]
f∗f
∗dv∗dv∗.

Notice that the χ function can be split as

χ[v∗,min{v∗+∆v,Vmax}](v)
min {v∗ + ∆v, Vmax} − v∗

=
{
χ[v∗,v∗+∆v](v)

∆v , if v∗ ∈ [0, Vmax −∆v]
χ[v∗,Vmax](v)
Vmax−v∗ , if v∗ ∈ (Vmax −∆v, Vmax]

hence substituting in the above equation and evaluating explicitly the integrals, we find

G[f, f ](t, v) =η(1− P )f(t, v)
[∫ Vmax

v

f∗dv∗ +
∫ Vmax

v

f∗dv∗

]

+ ηPρ

[
1

∆v

∫ Vmax−∆v

0
χ[v∗,v∗+∆v](v)f∗dv∗ +

∫ Vmax

Vmax−∆v

χ[v∗,Vmax](v)
Vmax − v∗

f∗dv∗

]
.

(16)
Observe that (16) differs from (9) only in the terms proportional to P .

4.1 Discretization of the model
To compute the steady-state solution of the χ model, we need to integrate the equations nu-
merically. We use the same discretization of the velocity space V introduced to discretize the δ
model and therefore the kinetic distribution is approximated as in (10).

Integrating the kinetic equation (1) over each cell, we find the system of ODEs (11), but
now the gain term is given by (16). Although in this case the integrals are laborious, they
can be computed recalling that ∆v = Vmax/T with T ∈ N and assuming that δv is an integer
submultiple of ∆v. Thus we will take N − 1 ≡ 0 (modT ) and r = N−1

T .
The details are reported in Appendix A. Here we just point out that, as in the case of the δ

model, the ODE system can be conveniently rewritten in vector form as

d

dt
fj = η

[
fTAjχf − fTej1T

N f
]
, j = 1, . . . , N (17)

where f = [f1, . . . , fN ]T ∈ RN is the vector of the unknown functions, ej ∈ RN denotes the
vector with a 1 in the j-th coordinate and 0’s elsewhere, 1T

N = [1, . . . , 1] ∈ RN and Ajχ is the
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Figure 9: Structure of the probability matrices of the χ model with δv integer sub-multiple of
∆v.

j-th interaction matrix such that
(
Ajχ
)
hk

contains the probabilities that a candidate vehicle with
velocity in Ih interacting with a field vehicle with velocity in Ik acquires a velocity in Ij .

Since the matrices appearing in (17) are again stochastic, we can apply Theorem 5 to guar-
antee the well posedness of the associated Cauchy problem.

In Figure 9 we show the structure of the χ matrices: they are less sparse than the δ matrices
because of the uniformly distributed acceleration in [v∗, v∗ + ∆v], where v∗ is the pre-interaction
speed. In fact the matrix Ajχ contains non-zero elements also in the rows from the (j − r+ 1)-th
to the (j − 1)-th, see the shaded areas in Figure 9, which represent non-zero probabilities of
accelerating to a speed in Ij . Since ∆v = rδv, exactly r rows fill up. Instead, the area drawn
using hatching contains the same probabilities already shown in Figure 3 for the case of the
δ model, with r ∈ N. Note that the elements of the matrices depend on δv (see equations
(A.1)). Thus, in contrast to the δ model, steady solutions of the ODE system (17) depend on the
number of velocity cells N chosen to approximate the kinetic distribution (see (10)). In other
words, although δv is an integer sub-multiple of ∆v, this model does not converge, as time goes
to infinity, to the asymptotic distribution on the coarse grid as in the δ model. However, we do
recover the asymptotic distribution on the coarse grid in the limit δv → 0.

Notice from equations (A.1) that all the elements in the rows j − r, . . . , j − 1 of the matrices
Ajχ, j = 1, . . . , N , tend to 0 as 1/r when the grid is refined. In particular, for j = 1, . . . , r,
Ajχ → Ajδ. This consideration is not true for the matrices Ajχ, for j = r + 1, . . . , N .

4.2 Expected speed of the δ and the χ model
Despite their differences the χ and the δ model are deeply related. This can be seen by computing
the expected output speed in each model resulting from a fixed pre-interaction speed. We define
the expected value 〈v〉 of the post-interaction velocity as

〈v〉 =
∫ Vmax

0
vA(v∗→v|v∗; ρ) dv, (v∗, v∗) ∈ V × V. (18)

For brevity we indicate with Aδ(v) and Aχ(v) the probability densities given in (3) and (4)
respectively. Again we assume that P1 = P2 = P as function of the density ρ. For the δ model
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we obtain

〈v〉δ =
∫ Vmax

0
v
[
(1− P ) δmin{v∗,v∗}(v) + P δmin{v∗+∆vδ,Vmax}(v)

]
dv (19)

= (1− P ) min{v∗, v∗}+ P

{
v∗ + ∆vδ, if v∗ + ∆vδ ≤ Vmax

v∗ + (Vmax − v∗) , if v∗ + ∆vδ > Vmax

In contrast, if we consider the χ model we have

〈v〉χ =
∫ Vmax

0
v

[
(1− P ) δmin{v∗,v∗}(v) + P

χ[v∗,min{v∗+∆vχ,Vmax}](v)
min {v∗ + ∆vχ, Vmax} − v∗

]
dv

= (1− P ) min{v∗, v∗}+ P


1

∆vχ

∫ v∗+∆vχ

v∗

v dv, if v∗ + ∆vχ ≤ Vmax

1
Vmax − v∗

∫ Vmax

v∗

v dv, if v∗ + ∆vχ > Vmax

and thus

〈v〉χ = (1− P ) min{v∗, v∗}+ P


v∗ + ∆vχ

2 , if v∗ + ∆vχ ≤ Vmax

v∗ + 1
2 (Vmax − v∗), if v∗ + ∆vχ > Vmax

(20)

By comparing the last lines of (19) and (20), it is clear that

〈v〉χ = 〈v〉δ ∀ v∗ ≤ Vmax −∆vχ, provided ∆vδ = 1
2∆vχ. (21)

Remark 11 (Uniformly distributed deceleration). The computation of the expected speed shows
a link between the δ model and the χ model. In fact, under the constraint ∆vδ = 1

2∆vχ, the two
models provide the same expected speed. Similarly, if we consider a braking scenario in which
the candidate vehicle brakes to a speed uniformly distributed in an interval centered on v∗, then
the expected speed results to be again (1− P )v∗.
Remark 12. Let us compare the Ajχ matrices (Figure 9) for r < j ≤ N − r with a given ∆v and
the corresponding Ajδ matrices (Figure 3) with ∆v

2 . For the case r ∈ N, the isolated nonzero row
of Ajδ is at j−

r
2 , which corresponds to the middle of the green shaded area in Ajχ. Moreover, for

any fixed ∆v, it can be proved that, for δv → 0, the sum of the quantities located in the shaded
area of Ajχ is equal to the total contribution provided by the

(
j − r

2
)
-th row of the δ matrices

obtained with the acceleration parameter ∆v
2 . In other words, as δv → 0, the total effect of the(

j − r
2
)
-th row of Ajδ with ∆v

2 is spread over r + 1 rows in the matrices Ajχ with ∆v, which are
the rows shaded in green in Figure 9.
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5 Macroscopic properties
Macroscopic acceleration In order to explain the relation of ∆v with the acceleration of the
vehicles in the model, we compute the rate of change of the macroscopic velocity:

∂u

∂t
= ∂

∂t

[
1
ρ

∫
V

vf(t, v) dv
]

= 1
ρ

∫
V

vQ[f, f ](t, v) dv

= η

ρ

[∫
V

v dv
∫
V

∫
V

A(v∗→v|v∗; ρ)f∗f∗ dv∗dv∗ − ρ
∫
V

vf(t, v) dv
]

= η

ρ

[∫
V

∫
V

〈v〉f∗f∗ dv∗dv∗ − ρ
∫
V

vf(t, v) dv
]

where 〈v〉 is a function of v∗ and v∗ as defined in (18).
In the case of the δ model, 〈v〉δ is given by (19) and thus

∂u

∂t
= η

ρ

[
(1− P )

∫ Vmax

0

∫ v∗

0
v∗f∗f

∗ dv∗dv∗ + (1− P )
∫ Vmax

0

∫ Vmax

v∗

v∗f∗f
∗ dv∗dv∗

+ Pρ

∫ Vmax−∆v

0
(v∗ + ∆vδ)f∗ dv∗ + Pρ

∫ Vmax

Vmax−∆v
Vmaxf∗ dv∗ − ρ

∫ Vmax

0
vf(t, v) dv

]
.

Given an initial distribution f(t = 0, v), the equation above yields the evolution of the macro-
scopic acceleration in time. It is easy to study analytically this quantity at the initial time. In
particular, we compute the initial acceleration in the case in which all vehicles are still but the
density is below the value for which P = 1/2 (that is ρ = 1/2 when taking P = 1 − ρ). By
considering an initial distribution with all vehicles in the lowest velocity class, i.e. of the form
f(0, v) = 2ρ

δvχI1(v), we have

∂u

∂t

∣∣∣∣
t=0

= ηP∆vδ
∫ Vmax−∆vδ

0
f∗ dv∗ +O(δv) = ηρP∆vδ +O(δv).

The above equation shows that the acceleration of the vehicles in the δ model depends linearly
on ∆v. Analogously, for the χ model, using (20), one obtains

∂u

∂t

∣∣∣∣
t=0

= 1
2ηρP∆vχ +O(δv)

which reinforces the remark made in (21) about the similarities of the χ and the δ model when
∆vχ = 2∆vδ.
Remark 13 (Acceleration). Recall that (ηρ)−1 is a time. Thus ηρ∆v is the built-in acceleration
of the model, which, not surprisingly, is linked to ∆v. We can use dimensional arguments to
estimate the order of magnitude of ∆v. According to Lebacque [16], the maximum acceleration
of cars is approximately aLB = 2.5 m/s2. The maximum speed is approximately Vmax ' 28m/s,
and we expect the maximum acceleration when P = 1. Thus ηρ∆v ' aLB .

The estimates above provide the trend of the macroscopic acceleration starting from rest.
For the general case, we now study the evolution of the macroscopic velocity u in time, up
to steady state. These data are shown in Fig. 10 and Fig. 11, for various combinations of
the model parameters. The results shown are obtained integrating the equations for the δ and
the χ model found in (13) and (17), respectively, with r ∈ N, and computing at each time
u(t) = 1

ρ

∫
V
vf(t, v) dv.
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Figure 10: Evolution of the macroscopic velocity in time. Left: comparison of different values of
T and δv. The dot-dashed lines without markers correspond to the χ model. Right: relaxation
to steady state for different combinations of η and T .
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Figure 11: Evolution of the macroscopic velocity in time, for different values of T and η. Left:
ρ = 0.65. Right: ρ = 0.9.

Figure 10 shows a typical case in which we expect acceleration. The density is ρ = 0.15,
well below the value corresponding to P = 1/2 when P = 1 − ρ, and we start with an initial
distribution in which f1(t = 0) = ρ, while fj(t = 0) = 0, for all j ≥ 2. Thus initially all vehicles
are still, and, since the density is low, they will accelerate to reach the maximum speed. The
duration of the transient depends on the product η∆v = η/T , for a fixed density, as is apparent in
the right panel of the figure, because the acceleration, i.e. the slope of the curves, is proportional
to η∆v. The left panel shows the effect of the grid discretization, i.e. the role of δv = 1/(N − 1).
It is clear that the discretization grid has no influence on the results, as expected from Theorem
6. The dot-dashed lines without markers show the evolution of the macroscopic velocity obtained
with the χ model. The colour code is chosen to ensure that the curves with ∆vδ = 1

2∆vχ are
drawn in the same colour. As expected, the macroscopic velocity for the χ and the δ model
behave very similarly, provided the parameter ∆v is chosen correctly.

Next, in Figure 11, we show the evolution of the macroscopic velocity in two cases when
we expect deceleration for the δ model. Namely, we consider ρ = 0.65 in the left panel and
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ρ = 0.9 in the right panel. The initial distribution is fN (t = 0) = ρ − ε, f1(t = 0) = ε, and
fj(t = 0) = 0, j = 2, . . . , N − 1. The value ε is introduced to ensure convergence to the stable
equilibrium, see Remark 9. Here ε = 0.01. In other words, we start with a congested traffic,
in which initially almost all vehicles are traveling at the fastest speed available. Clearly, this
situation is somewhat artificial, but surely we expect the vehicles to brake. Since braking does
not depend on ∆v, we expect that the relaxation time towards equilibrium depends mainly on
η and only weakly on T . This is clearly seen in both pictures. The macroscopic speed to which
the model relaxes on the other hand will depend on ∆v and on ρ, but not on η. Note that when
ρ = 0.9, in all cases considered here, the equilibrium speed is nearly zero: in fact the traffic is
extremely jammed. For ρ = 0.65 instead, we expect that the traffic will have a residual speed,
because we are well below the value P = 1/2, but cars are not “bumper to bumper”, and this
residual speed does depend on ∆v.

Fundamental diagrams As already discussed in the previous section, the nonzero elements of
the matrix Ajχ can be lumped in the matrix Aδj for N sufficiently large, with the only exception
of the elements in the rectangle r ×N (see Figure 9) of the matrices for j = N − r + 1, . . . , N .
This is shown, for instance, in the evaluation of the expected value of the resulting speeds due
to acceleration interactions in (19) and (20), which are comparable, except again for high speed
values close to Vmax (and different from it by at most ∆v). Thus, although the χ model is
apparently more refined then the δ model, we expect both models to provide similar macroscopic
information, for large N . This is usually analyzed by computing the density and the flux as
moments of the asymptotic kinetic distribution f∞(v):

ρ =
∫ Vmax

0
f∞(v) dv, (ρu) =

∫ Vmax

0
vf∞(v) dv

and by studying the characteristics of the related fundamental diagram which is obtained plotting
the flux against the density.

Notice that, for the δ model, Theorem 6 ensures that only few velocities, obtained with
δv = ∆v, are necessary to describe completely the exact asymptotic kinetic distribution. We
expect therefore that the macroscopic behavior of the δ model will be apparent even on the
coarse velocity grids, i.e. for r = 1.

Figure 12 shows the fundamental diagrams provided by the δ model (blue curves) and the
χ model (red curve), computed with ∆vδ = 1

2∆vχ, for two different values of ∆vδ. In the left
panel, r = 1, while r = 20 on the right. The figure shows that the diagram of the χ model is
very similar to the diagram of the δ model when N → ∞ and this result is in agreement with
the fact that the expected output speed of the two models is mostly the same (i.e., the same in a
large range of pre-interaction speeds) when choosing the acceleration parameter of the δ model
as a half of the acceleration parameter of the χ model. The only difference is provided by the
maximum speeds which, as already noted, are slightly different. Note that the similarity of the
fundamental diagrams does not mean that the asymptotic equilibrium functions of the χ and of
the δ model converge to the same function as N tends to ∞.

Observe that the fundamental diagrams given by the δ model in both plots in each line of
Figure 12 use the same information. In fact, following the results of Theorem 6, the macroscopic
flux is given by

Fluxδ(r) =
∫ Vmax

0
vf∞N (v)dv =

N∑
j=1

(fr)j
1
|Ij |

∫
Ij

v dv =
T+1∑
l=1

(f1)lv(l−1)r+1

where vj denotes the center of the cell Ij and fr is the vector containing the equilibria of the
system (13) with ∆v/δv = r ∈ N. Recalling the definition of Ij , we have that v1 = ∆v/4r,
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Figure 12: Fundamental diagrams resulting from the δ model (blue *-symbols) and from the χ
model with acceleration parameter ∆vδ = 1

2∆vχ (red circles). The dashed line is the flux of the
δ model in the limit r →∞.

vN = Vmax − ∆v/4r and v(l−1)r+1 = (l − 1)∆v. Thus, in order to compute the fundamental
diagram of the δ model with any value of r, it is enough to compute the equilibria f1 using r = 1
and then compute the flux with the formula above. In particular, using only f1, one may also
compute the fundamental diagram of the δ model also in the limit r →∞ with the formula

Fluxδ(∞) =
T+1∑
l=1

(f1)l(l − 1)∆v.

The dashed blue line in all panels of Figure 12 shows the quantity Fluxδ(∞) just defined. Note
that in the case of the χmodel, for each value of r, one has instead to compute the full equilibrium
distribution with N = rT + 1 velocities.

When increasing r, we observe that the flux at ρmax approaches zero. This is because for
ρ = ρmax, (f1)1 is the only non zero component at equilibrium, all vehicles travel at a velocity in
the lowest speed class I1 and the flux is therefore ∆v

4r (f1)1. Similarly, in the free phase all vehicles
travel at a velocity in the highest speed class IN and the flux is therefore (Vmax − ∆v

4r )(f1)T+1 =
(Vmax − ∆v

4r )ρ. The free-phase flux is therefore linear in ρ and its slope approaches Vmax when
r →∞.

In Figure 12, we observe that both models provide a sharp decrease in the flux, beyond the
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Figure 13: Fundamental diagrams resulting from the δ model with acceleration parameter ∆vδ =
1
4 . The probability P is taken as in (5) with γ = 1 (blue data), γ = 3/4 (green data) and γ = 1/4
(cyan data). The dashed lines are the fluxes in the limit r →∞.

critical density, namely the value of the density marking the transition from free to congested
flow. This phenomenon is well known in traffic modeling, and it is called capacity drop, see [28]
and references therein. From Theorem 6 it is apparent that, for the δ model, the critical density
corresponds to a bifurcation of the equilibrium solutions. In fact, one deduces that for P ≥ 1

2 the
equilibrium distribution is f∞(v) = ρδVmax(v), which means that all vehicles travel at maximum
speed. Only when P < 1

2 the lower speed classes begin to fill up. Thus, the physical concept
of phase transition in traffic flow theory has a rigorous mathematical counterpart in the present

model. Using the law given in (5) the value of ρ for which P = 1/2 is ρc :=
( 1

2
) 1
γ and then we

may act on γ in order to change the critical density. For instance, see Figure 13 in which we plot
three fundamental diagrams of the δ model with P as in (5) and γ = 1 (∗-markers), γ = 3/4
(×), γ = 1/4 (�).
Remark 14. Observe from Figure 12 that the critical density of the χ model approaches the
critical density of the δ model when N →∞. In fact, since the matrix A1

χ → A1
δ for r →∞, we

also have that (fχr )1 →
(
f δ1
)

1. More precisely, the analogous of (3.1) for the χ model is

− (1− P ) f2
1 +

(
1− 2P + P

2r

)
ρf1 = 0

and the stable equilibrium is thus{
0 P ≥ 2r

4r−1
ρ 1−2P

1−P +O( 1
r ) otherwise

In Figure 14 we show the fundamental diagrams of the χ model for r = 1 and r = 20, together
with a few representative fj ’s at equilibrium, as functions of ρ. In the left part, for r = 1, two
phase transitions appear in the fundamental diagram (top left). Comparing with the bottom
left plot, the origin of this phenomenon can be appreciated. A first transition occurs when the
density becomes large enough to force a few drivers to brake: thus the second largest speed class
IN−1 starts being populated (green dashed curve), while the fastest speed class begins to be
depleted (red curve). A second transition occurs when some vehicles enter the lowest speed class
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Figure 14: Top: fundamental diagrams provided by the χ model with N = 4 (left) and N = 61
(right) velocities. Bottom: equilibria of the function f1 (blue solid line), fN−1 (green dashed)
and fN (red dot-dashed) for any density in [0, 1].

(blue curve). This latter transition is the one that, when increasing r, moves towards the critical
density ρ = 1/2, see Remark 14. The first phase transition is not observable for large r, because
fN−1 is related to the velocity vN−1 → Vmax, as δv → 0, so that the transition of vehicles from
IN to IN−1 is not enough to determine an abrupt change in the flux.

Comparison with experimental data Figure 15 shows the comparisons of the results pro-
duced by the δ model with experimental data published in [27]. In the left figure we have tuned
the critical density to reproduce the correct position of the phase transition. The experimental
data are normalized and the fundamental diagram computed by the model is provided for all
values of the density between 0 and ρmax, which corresponds to a situation in which all vehi-
cles are bumper-to-bumper and still. The figure on the right stems from the observation that
experimental data contain a residual movement even in the congested phase. Thus the bumper-
to-bumper situation is never actually observed. Therefore in the figure on the right we also
tune the maximum density ρ̃max actually observed, with ρ̃max < ρmax. In this case we obtain a
very good agreement with experimental data. With the present model we do not reproduce the
scattering of the data, but this can be explained keeping into account a mixture of two different
populations of drivers and/or vehicles, as we have proposed in [25].

6 Conclusions and perspectives
In this work we have studied two kinetic models for vehicular traffic based on a Boltzmann-like
term describing binary interactions. We have assumed a continuous space of microscopic speeds
and we have analyzed the space homogeneous case to study the asymptotic behavior of the
distribution function together with the resulting flux-density diagrams.
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Figure 15: Comparison between experimental data and the diagram resulting from the δ model,
with ∆v = 1/4, P = 1 − ρ1/4. The experimental diagram is reproduced by kind permission of
Seibold et al. [27].

Our models are characterized by a parameter ∆v, that has physical relevance and is related
to the maximum speed variation in a unit of time. The models are defined by the transition
probability of gaining a given velocity and they differ only in the modeling of the acceleration
interaction.

First of all we have studied the case in which the resulting speed after an acceleration is
obtained by a velocity jump from v∗ to v∗ + ∆v, where v∗ is the pre-interaction speed. We
have referred to this model as δ model and we have found a class of asymptotic distributions
which is atomic with respect to the velocity variable. In other words it is a linear combination of
Dirac delta functions centered in a finite number of velocities. The number T of delta functions
contributing to the stable equilibrium distribution is controlled by the acceleration parameter
through the relation ∆v = Vmax/T . This result means that the number of discrete velocities
necessary to completely describe the equilibrium distribution function is implicitly determined
by the acceleration parameter ∆v and therefore is small.

Instead, in the χ model we have prescribed the acceleration interaction in a way that is closer
to the modeling given in [14], but again respecting the physical relevance of ∆v. In fact, we
have assumed that the output speed after acceleration is uniformly distributed over the range
[v∗, v∗ + ∆v]. We have shown that the χ model with acceleration parameter ∆v gives a macro-
scopic behavior similar to the one provided by the simpler δ model with acceleration parameter
∆v/2, as it can be seen by studying the macroscopic properties of the two models and comparing
their fundamental diagrams, notwithstanding the fact that the respective asymptotic distribution
functions do not approach each other. Thus the χ model, despite the more sophisticated descrip-
tion of interactions, gives the same macroscopic information of the simpler and computationally
much cheaper δ model, at least at equilibrium. Moreover we have proved that both models
provide a bounded macroscopic acceleration, studying the evolution in time of the macroscopic
velocity, and its relation with the parameter ∆v.

The results obtained in this work suggest that a small number of velocities is sufficient for
the kinetic modeling of traffic. This is crucial to make kinetic modeling of complex traffic
flows amenable to computations. Note also that here the acceleration remains controlled by
∆v, in contrast to models based on a lattice of velocities, in which the possible outcomes of an
interaction and the acceleration of vehicles depend on the particular lattice chosen [6]. Moreover
the complete knowledge of the equilibrium distribution is crucial to derive macroscopic models
with a rich enough closure law resulting naturally as consequence of the microscopic interactions.
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Thus, without the need of prescribing heuristic speed-density relations, we obtain fundamental
diagrams with a phase transition and a capacity drop as those occurring in experimental data.

Finally, the particular structure of the equilibrium distribution provided by the δ model allows
one to generalize this framework to the case of multipopulation models, as in [24], in order to
recover multivalued fundamental diagrams, see also [25].
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A Matrix elements for the discretization of the χ model
In order to compute the Ajχ matrices, we observe that the gain operator of the δ model given
in (9) differs from the gain operator of the χ model only in the terms proportional to P appearing
in the equation (16). Therefore, we just show the terms resulting from

1
η
G̃[f, f ](t, v) = Pρ

∆v

∫ Vmax−∆v

0
χ[v∗,v∗+∆v](v)f∗dv∗ + Pρ

∫ Vmax

Vmax−∆v

χ[v∗,Vmax](v)
Vmax − v∗

f∗dv∗.
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When the terms above are integrated over the cells I1, we get∫
I1

1
η
G̃[f, f ](t, v)dv =Pρ

4r f1. (A.1a)

For j = 2, . . . , r, ∫
Ij

1
η
G̃[f, f ](t, v)dv =Pρ

r

j−1∑
h=1

fh + Pρ

2r fj . (A.1b)

For j = r + 1, ∫
Ir+1

1
η
G̃[f, f ](t, v)dv =3Pρ

4r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ

2r fj . (A.1c)

For j = r + 2, . . . , N − r − 1,∫
Ij

1
η
G̃[f, f ](t, v)dv =Pρ

2r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ

2r fj . (A.1d)

For j = N − r,∫
IN−r

1
η
G̃[f, f ](t, v)dv =Pρ

2r fj−r + Pρ

r

j−1∑
h=j−r+1

fh + Pρ

[
3
8r + 1

2 +
(

1
2 − r

)
log
(

2r
2r − 1

)]
fj .

(A.1e)

For j = N − r + 1, . . . , N − 1,∫
Ij

1
η
G̃[f, f ](t, v)dv = Pρ

2r fj−r + Pρ

r

N−r−1∑
h=j−r+1

fh + Pρ

[
1
2r + log

(
2r

2r − 1

)]
fN−r (A.1f)

+ Pρ

j−1∑
h=N−r+1

log
(
N − h+ 1

2
N − h− 1

2

)
fh

+ Pρ

[
1 +

(
j + 1

2 −N
)

log
(
N − j + 1

2
N − j − 1

2

)]
fj .

Finally, for j = N ,∫
IN

1
η
G̃[f, f ](t, v)dv = Pρ

[
1
8r + 1

2 log
(

2r
2r − 1

)]
fj−r + Pρ

2

j−1∑
h=j−r+1

log
(
N − h+ 1

2
N − h− 1

2

)
fh + PρfN .

(A.1g)

The matrices Ajχ can be formed by removing the underlined terms in (12) with r ∈ N and
adding the contributions given in (A.1).
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