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A general exact elastic shell solution for bending analysis

of functionally graded structures

Salvatore Brischetto∗

Abstract

This new work proposes a three-dimensional (3D) exact shell model for the static analysis of simply-
supported structures embedding Functionally Graded Material (FGM) layers when they are subjected to
harmonic transverse normal loads. Results are proposed in terms of displacement and stress amplitudes
through the thickness direction. One-layered FGM plates and cylinders, and sandwich cylindrical and
spherical shell panels embedding an internal FGM core and external classical skins have been analyzed.
Proposed results give a complete 3D description of FGM structures in terms of displacement and stress
states. Such results can be used to validate new refined 2D shell models proposed in numerical or
analytical form. Different geometries, lamination schemes, thickness ratios, materials and FGM laws
through the thickness have been analyzed in order to have a general overview of the problem. The
proposed 3D shell model uses the spherical 3D equilibrium equations developed in general orthogonal
curvilinear coordinates. These equations automatically degenerate in those for cylindrical and plate
structures via opportune considerations made about the radii of curvature. Equilibrium equations are
solved in closed form considering simply supported boundary conditions and harmonic applied loads. The
exponential matrix method has been employed to solve the second order partial differential equations in z.
These equations have constant coefficients because of the introduction of opportune mathematical layers
for the FGM description and for the curvature evaluation. A layer-wise approach has been identified
with the direct imposition in the 3D shell model of equilibrium conditions for transverse stresses and
compatibility conditions for displacements.

Keywords: functionally graded materials; sandwich plates and shells; 3D equilibrium equations; static
analysis; 3D stress and displacement states; layer-wise approach.

1 Introduction

Functionally Graded Materials (FGMs) are a specific type of composite materials where two or more
constituent phases have a continuous variation of elastic and thermal properties through different direc-
tions [1], [2]. A metallic and a ceramic phase are usually considered. In general, the related structure
is full ceramic where refractory features are requested and it is full metallic where high mechani-
cal properties are necessary. One of the main advantages of a monotonous variation of the volume
fraction of the constituent phases is the elimination of physical interfaces in related multilayered struc-
tures. This feature means the elimination of the stress discontinuity and the consequent suppression of
delamination-related problems [3]. FGMs have a lot of advantages and they are very attractive in those
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applications where the decrease of in-plane and transverse stresses is a fundamental feature. Reduction
of residual stress distributions, improved thermal properties, higher fracture toughness and reduced
stress intensity factors are fundamental properties in aerospace, automotive, marine and biomedical en-
gineering fields [4], [5]. In such applications, an accurate evaluation of strains, stresses, displacements
and vibrations is fundamental for the correct design of structures embedding FGM layers.

The present paper proposes a general three-dimensional (3D) exact shell model for the static analysis
of multilayered structures embedding FGM layers subjected to transverse normal loads applied at the
external surfaces. The method is an extension to FGM structures of the model already applied by the
author for the bending analysis of classical multilayered composite and sandwich plates and shells [6].
The 3D equilibrium equations are written in general orthogonal curvilinear coordinates and they are
valid for spherical shells, cylindrical shells, cylinders and plates. Such equations are exactly solved
considering simply supported structures and harmonic forms for applied loads. The partial differential
equations in z are solved by means of the exponential matrix method as detailed in [7]- [10]. This
methodology based on the exponential matrix method was already applied by Messina [11] to develop
a three-dimensional plate solution based on orthogonal rectilinear coordinates for the free-vibration
analysis of composite plates. The same methodology was also used by Soldatos and Ye [12] to solve the
3D equilibrium equations written in cylindrical coordinates for the free vibration analysis of angle-ply
multilayered cylinders. The exponential matrix method was also the base for the 3D model developed
by Fan and Zhang [13] for free vibration and bending analysis of spherical shells. Results by Fan
and Zhang [13] considered deep spherical and shallow spherical shells simply modifying the curvature
(plate case is seen as a very shallow spherical shell). In [13], 3D equilibrium equations were written
in orthogonal curvilinear coordinates valid for spherical shells. However, the geometrical property
of such coordinates which allows cylindrical shell, cylinder and plate investigations (using opportune
considerations made on the radii of curvature) was not explored. Fan and Zhang [13] used the three
displacement components and the three transverse stress components as the six main variables of the
problem. The present new work uses the three displacement components and the relative derivatives
in z as the six main variables. Moreover, Fan and Zhang [13] used the Cayley-Hamilton theorem as
main procedure. The different procedure employed in this present new work allows the use of a large
number of mathematical layers which is fundamental for the correct analysis of very thick shells where
the curvature terms must be rigorously evaluated. The use of a large number of mathematical layers
also allows an accurate extension to FGM structures because variable elastic properties can be correctly
assessed.

The ambition of this new work is to propose an exact 3D static model valid for different geometries
(spherical panels, cylindrical panels, cylinders and plates) embedding different materials (isotropic,
orthotropic, composite layers and sandwich configurations as already done in [6], and FGM layers as
will be here proposed). Past author’s works about 3D exact shell models have always considered the
free vibration analysis of simply supported structures. Free frequency investigation of simply supported
plates and shells has been proposed in [14] for one-layered configurations, in [15] for multilayered cases
and in [16] for FGM structures. Free vibration analysis of single-walled carbon nanotubes and double-
walled carbon nanotubes has been proposed in [17] and [18], respectively. The appropriate number of
mathematical layers and the opportune order of expansion for the employed exponential matrix have
been investigated in [19]. Works [20] and [21] proposed the study of the shell geometry approximation
in the case of classical and FGM shells, respectively. Papers [22]- [26] proposed a painstaking study to
compare the 3D exact shell model and several 2D numerical shell models in the case of free vibration
analysis and mode investigation of classical/FGM structures and carbon nanotubes. The cylindrical
bending modes and the relative interpretations of the boundary conditions using the 3D exact model
and several 2D refined numerical models have been proposed in [27] and [28].

The 3D models proposed in the literature have the main limitation of considering only determined
geometries and/or a limited number of materials and laminations. The present work tries to fill this
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gap considering a general exact 3D shell model valid for the free vibration analysis of classical materials
and FGMs, one-layered and multilayered configurations, plates and spherical/cylindrical panels as
already demonstrated in [14]- [28], for the static analysis of classical one-layered and multilayered
plates and shells as already developed in [6], and for the static analysis of FGM structures as will be
here demonstrated. The most important works which consider the 3D analysis of plate geometries are
discussed in the following part. Pagano [29], [30] developed a 3D elastic plate model for the bending
analysis of composite and sandwich plates. Such cases were extended to concentrated load applications
in [31]. A 3D exact plate solution for isotropic layers was proposed in [32] using a mixed form of
constitutive relations. Aimmanee and Batra [33], [34] developed a 3D analytical plate model for the
free frequency analysis of simply-supported structures. The vibration mode and flexural analysis of
simply supported plates with different load conditions were analyzed in [35] and [36] using a three-
dimensional plate model. Batra et al. [37] compared refined 2D and 3D plate theories in the case
of frequency investigations. Vibration modes of cross-ply plates with clamped edges were proposed
by Ye [38] using a recursive model. Isosceles triangular and circular plates were analyzed in [39]
and [40] using the Ritz methodology and a 3D model. Free frequency analysis and connected vibration
modes were investigated in [41] and [42] using a 3D elastic plate model. A three-dimensional exact
plate model was developed by Haojiang et al. [43] for the free frequency analysis of circular plates
embedding piezoelectric layers. Baillargeon and Vel [44] proposed a 3D model for the cylindrical
bending mode investigation of composite plates including piezoelectric actuators. A 3D state-space
model was developed in [45] and [46] for static and free frequency analysis of composite plates with
piezoelectric layers. Mechanical and electrical variables were evaluated. A 3D exact model for bending
and free vibration analysis of composite piezoelectric plates was developed in [47]. The 3D elastic
plate solution developed by Meyer-Piening [48] was used for the analysis of sandwich plates even if
authors declared the capability of a possible extension to curved shell panels. The 3D shell models are
less numerous. The 3D exact shell model by Ren [49] was used for the static analysis of composite
laminated cylindrical shells. The 3D exact elastic analysis by Varadan and Bhaskar [50] was employed
for the static analysis of composite laminated cylinders where harmonic loads were applied. The 3D
elastic model by Chen et al. [51] was based on three displacement functions and it allowed free vibrations
of cylindrical panels. Static, dynamic and buckling investigations of cylindrical shells were proposed
by Fan and Zhang [52] using 3D state equations written in a cylindrical reference system. The free
vibration investigation of cylindrical panels conducted by Gasemzadeh et al. [53] used a 3D exact
theory. Free vibration analysis of composite cylindrical and doubly-curved shells was conducted by
Huang [54] using the power series methodology to solve the coupled system of differential equations.
The 3D elastic shell equations solved by Sharma et al. [55], [56] analyzed the free vibration of hollow and
solid spheres using the Fröbenious matrix methodology. The free vibration analysis of hollow circular
cylinders was presented in [57] using a 3D elastic theory and a self-contained treatment methodology.
2D and 3D exact elastic models were used in [58] for free vibration analyses of circular cylindrical shells.
Vibration modes for thick cylinders were investigated in [59] using a layer-wise approach, the energy
minimization method and the three-dimensional elastic theory. The three-dimensional magneto-electro-
elastic free frequency analysis of cylindrical panels was proposed in [60]. 3D numerical models based on
the dynamic stiffness matrix method and on the Ritz method were developed in [61]- [63] for the free
frequency investigation of shell structures. 3D models for FGM structures are even less numerous. In
general, they can be grouped in theories for plate analysis and in theories for shell analysis. Hosseini-
Hashemi et al. [64] proposed in-plane and out-of-plane free frequency FGM plate investigation using
an exact 3D model. The 3D exact plate model by Vel and Batra [65] allowed both free and forced
vibration analysis of FGM plates with simply-supported edges. The 3D model for the bending analysis
of FGM plates developed by Xu and Zhou [66] used a general formulation for both displacement and
stress components. The 3D exact plate model developed by Zhong and Shang [67], employing the state
space approach, allowed the analysis of structures including functionally graded piezoelectric layers.
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The Chebyshev-Ritz methodology was used in [68] to develop a 3D plate model for the free frequency
investigation of FGM annular plates. The same methodology was employed in [69] for the free frequency
investigation of a sandwich FGM plate. Malekzadeh [70] developed a differential quadrature method
(DQM) for the free frequency analysis of functionally graded plates based on a two-parameter elastic
foundation. The 3D models by Kashtalyan [71] and Kashtalyan and Menshykova [72] were of particular
interest for the 3D bending analysis of one-layered and sandwich FGM plates. For 3D FGM shell
solutions, the work by Alibeigloo et al. [73] is worthy to be mentioned, an analytical solution for simply
supported edges and a semi-analytical solution for other boundary conditions were used to develop a 3D
model for the free frequency analysis of cylindrical shells embedding functionally graded piezoelectric
layers. The free frequency analysis of FGM curved thick shells was conducted by Zahedinejad et al. [74]
using the 3D elasticity theory and the differential quadrature method. Governing equations were solved
by means of trigonometric functions. Free frequency analysis of fluid-filled FGM shells with variables
thickness was proposed by Chen et al. [75] using a laminated approximated approach. A 3D elastic
shell model was developed by Vel [76] for free and forced frequency analysis of FGM cylindrical panels.
A meshless numerical solution based on the local Petrov-Galerkin methodology was developed for the
3D linear elastic solid analysis of FGM bodies in [77]- [79].

The next section shows the formulation of the proposed 3D exact shell model. It is based on the
3D equilibrium equations written in general orthogonal coordinates. Such equations are exactly solved
using harmonic forms for displacements, loads and stresses and the exponential matrix method for the
solution of differential equations. A layer-wise approach is employed which easily allows the typical
zigzag behavior of multilayered structures and the immediate imposition of equilibrium conditions
for transverse stresses, compatibility conditions for displacements and the load conditions in terms of
stresses. Results are divided in two parts. Preliminary assessments are fundamental to validate the
model and to select the opportune number M of mathematical layers and the order of expansion N for
the exponential matrix. New benchmarks propose reference results useful for the validation of new 2D
and 3D numerical models in the case of one-layered and sandwich FGM plates, cylinders, cylindrical
panels and spherical panels.

2 Three-dimensional model for functionally graded shells

Shell structures embedding functionally graded material (FGM) layers have elastic properties which
change with continuity through the thickness direction z. For this reason, the elastic coefficients Ck

il(z)
in constitutive equations for each physical k layer are function of the z coordinate:

σ
k = C

k(z)ǫk , (1)

the explicit form of Eq.(1) can be given using the stress vector σk = {σk
αα, σ

k
ββ, σ

k
zz, σ

k
βz, σ

k
αz , σ

k
αβ}

T , the

strain vector ǫk = {ǫkαα, ǫ
k
ββ, ǫ

k
zz, γ

k
βz, γ

k
αz , γ

k
αβ}

T and the 6 × 6 elastic coefficient matrix C
k(z) written

for the k physical layer and for the structural reference system using orthotropic angle θ equals 0◦ or
90◦ (this last feature means elastic coefficients Ck

16, C
k
26, C

k
36 and Ck

45 equal zero):

σk
αα = Ck

11(z)ǫ
k
αα + Ck

12(z)ǫ
k
ββ + Ck

13(z)ǫ
k
zz , (2)

σk
ββ = Ck

12(z)ǫ
k
αα + Ck

22(z)ǫ
k
ββ + Ck

23(z)ǫ
k
zz , (3)

σk
zz = Ck

13(z)ǫ
k
αα + Ck

23(z)ǫ
k
ββ + Ck

33(z)ǫ
k
zz , (4)

σk
βz = Ck

44(z)γ
k
βz , (5)

σk
αz = Ck

55(z)γ
k
αz , (6)

σk
αβ = Ck

66(z)γ
k
αβ . (7)
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In order to eliminate the dependency on z in elastic coefficients, k physical layers are divided in an
opportune number M of mathematical layers. In each new j layer, coefficients Cj

il can be now evaluated
as constant:

σj
αα = Cj

11ǫ
j
αα + Cj

12ǫ
j
ββ + Cj

13ǫ
j
zz , (8)

σj
ββ = Cj

12ǫ
j
αα + Cj

22ǫ
j
ββ + Cj

23ǫ
j
zz , (9)

σj
zz = Cj

13ǫ
j
αα + Cj

23ǫ
j
ββ + Cj

33ǫ
j
zz , (10)

σj
βz = Cj

44γ
j
βz , (11)

σj
αz = Cj

55γ
j
αz , (12)

σj
αβ = Cj

66γ
j
αβ . (13)

The mid-reference surface Ω0 of a three-dimensional shell is situated halfway between the top surface
and the bottom surface. The general curvilinear orthogonal reference system (α, β, z) is employed
defining the thickness h as the distance between external surfaces measured along the normal to Ω0.
The three displacement components u, v, and w are evaluated in the three directions α, β and z,
respectively. In order to describe the geometry of shells with constant radii of curvature, the following
parametric coefficients are defined:

Hα = (1 +
z

Rα
) , Hβ = (1 +

z

Rβ
) , Hz = 1 , (14)

Hα and Hβ depend on z (which varies with continuity from −h/2 to +h/2). Rα and Rβ are mean radii
of curvature evaluated in α and β directions, respectively. The same mathematical layers j are here
employed to exactly calculated the parametric coefficients Hα and Hβ. In this way, the dependency on
the thickness coordinate z is eliminated in geometrical relations and in the 3D equilibrium equations
for shells.

The geometrical relations for shells with constant radii of curvature written for the j mathematical
layer are:

ǫjαα =
1

Hj
α

∂uj

∂α
+

wj

Hj
αRα

, (15)

ǫjββ =
1

Hj
β

∂vj

∂β
+

wj

Hj
βRβ

, (16)

ǫjzz =
∂wj

∂z
, (17)

γjαβ =
1

Hj
α

∂vj

∂α
+

1

Hj
β

∂uj

∂β
, (18)

γjαz =
1

Hj
α

∂wj

∂α
+

∂uj

∂z
−

uj

Hj
αRα

, (19)

γjβz =
1

Hj
β

∂wj

∂β
+

∂vj

∂z
−

vj

Hj
βRβ

. (20)

Eqs.(15)-(20) are proposed for spherical shells but they can be also used for cylindrical shells in the case
of infinite Rα or infinite Rβ (which gives Hα = 1 or Hβ = 1), and for plates with both infinite Rα and

Rβ (which means Hα=Hβ=1). Parametric coefficients Hj
α and Hj

β are constant in the j mathematical
layer because they have been calculated using the z value in the middle of the considered mathematical
layer.
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Three-dimensional static equilibrium equations for spherical shells with constant radii of curvature
Rα and Rβ are:

Hj
β

∂σj
αα

∂α
+Hj

α

∂σj
αβ

∂β
+Hj

αH
j
β

∂σj
αz

∂z
+ (

2Hj
β

Rα
+

Hj
α

Rβ
)σj

αz = 0 , (21)

Hj
β

∂σj
αβ

∂α
+Hj

α

∂σj
ββ

∂β
+Hj

αH
j
β

∂σj
βz

∂z
+ (

2Hj
α

Rβ
+

Hj
β

Rα
)σj

βz = 0 , (22)

Hj
β

∂σj
αz

∂α
+Hj

α

∂σj
βz

∂β
+Hj

αH
j
β

∂σj
zz

∂z
−

Hj
β

Rα
σj
αα −

Hj
α

Rβ
σj
ββ + (

Hj
β

Rα
+

Hj
α

Rβ
)σj

zz = 0 , (23)

such differential equations have constant coefficients even if shell geometries and FGM layers are con-
sidered because the j mathematical layers have been introduced.

In order to obtain exact 3D solutions, the shell structures are considered as simply supported with
harmonic forms for the three displacement components:

uj(α, β, z) = U j(z)cos(ᾱα)sin(β̄β) , (24)

vj(α, β, z) = V j(z)sin(ᾱα)cos(β̄β) , (25)

wj(α, β, z) = W j(z)sin(ᾱα)sin(β̄β) , (26)

where U j , V j and W j are the displacement amplitudes measured in α, β and z directions, respectively.
Coefficients ᾱ = mπ

a and β̄ = nπ
b contain half-wave numbers m and n and shell dimensions a and b.

All these quantities are calculated at the mid-surface Ω0 as already done for the radii of curvature Rα

and Rβ. The substitution of Eqs.(24)-(26), (15)-(20) and (8)-(13) in 3D static equilibrium relations in
Eqs.(21)-(23) gives the following closed form in terms of displacement amplitudes and their derivatives
made with respect to the z coordinate:

(

−
Cj
55H

j
β

Hj
αR2

α

−
Cj
55

RαRβ
− ᾱ2

Cj
11H

j
β

Hj
α

− β̄2C
j
66H

j
α

Hj
β

)

U j +
(

− ᾱβ̄Cj
12 − ᾱβ̄Cj

66

)

V j+

(

ᾱ
Cj
11H

j
β

Hj
αRα

+ ᾱ
Cj
12

Rβ
+ ᾱ

Cj
55H

j
β

Hj
αRα

+ ᾱ
Cj
55

Rβ

)

W j +
(Cj

55H
j
β

Rα
+

Cj
55H

j
α

Rβ

)

U j
,z +

(

ᾱCj
13H

j
β+ (27)

ᾱCj
55H

j
β

)

W j
,z +

(

Cj
55H

j
αH

j
β

)

U j
,zz = 0 ,

(

− ᾱβ̄Cj
66 − ᾱβ̄Cj

12

)

U j +
(

−
Cj
44H

j
α

Hj
βR

2
β

−
Cj
44

RαRβ
− ᾱ2

Cj
66H

j
β

Hj
α

− β̄2C
j
22H

j
α

Hj
β

)

V j+

(

β̄
Cj
44H

j
α

Hj
βRβ

+ β̄
Cj
44

Rα
+ β̄

Cj
22H

j
α

Hj
βRβ

+ β̄
Cj
12

Rα

)

W j +
(Cj

44H
j
α

Rβ
+

Cj
44H

j
β

Rα

)

V j
,z +

(

β̄Cj
44H

j
α+ (28)

β̄Cj
23H

j
α

)

W j
,z +

(

Cj
44H

j
αH

j
β

)

V j
,zz = 0 ,

(

ᾱ
Cj
55H

j
β

Hj
αRα

− ᾱ
Cj
13

Rβ
+ ᾱ

Cj
11H

j
β

Hj
αRα

+ ᾱ
Cj
12

Rβ

)

U j +
(

β̄
Cj
44H

j
α

Hj
βRβ

− β̄
Cj
23

Rα
+ β̄

Cj
22H

j
α

Hj
βRβ

+ β̄
Cj
12

Rα

)

V j+

( Cj
13

RαRβ
+

Cj
23

RαRβ
−

Cj
11H

j
β

Hj
αR2

α

−
2Cj

12

RαRβ
−

Cj
22H

j
α

Hj
βR

2
β

− ᾱ2
Cj
55H

j
β

Hj
α

− β̄2C
j
44H

j
α

Hj
β

)

W j+ (29)

(

− ᾱCj
55H

j
β − ᾱCj

13H
j
β

)

U j
,z +

(

− β̄Cj
44H

j
α − β̄Cj

23H
j
α

)

V j
,z +

(Cj
33H

j
β

Rα
+

Cj
33H

j
α

Rβ

)

W j
,z+

(

Cj
33H

j
αH

j
β

)

W j
,zz = 0 .
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Eqs.(27)-(29) give a system of three second order partial differential relations in z. These equations are
here written for spherical shells having constant radii of curvature but they are also valid for cylindrical
panels and plates (simply considering one radius of curvature or both radii of curvature equal infinite).
For this reason, the proposed model can be considered as a general 3D shell model. Eqs.(27)-(29)

can be written in a compact form using coefficients Aj
s to define each block contained in

()

. These

coefficients defined for each j mathematical layer have index s from 1 to 19. Aj
s are constant in each

j mathematical layer because geometric parameters for shells and material properties for FGMs have
been exactly calculated in the middle of each j mathematical layer:

Aj
1U

j +Aj
2V

j +Aj
3W

j +Aj
4U

j
,z +Aj

5W
j
,z +Aj

6U
j
,zz = 0 , (30)

Aj
7U

j +Aj
8V

j +Aj
9W

j +Aj
10V

j
,z +Aj

11W
j
,z +Aj

12V
j
,zz = 0 , (31)

Aj
13U

j +Aj
14V

j +Aj
15W

j +Aj
16U

j
,z +Aj

17V
j
,z +Aj

18W
j
,z +Aj

19W
j
,zz = 0 . (32)

The system of second order differential equations in z proposed in Eqs.(30)-(32) can be reduced in a
system of first order differential equations in z simply redoubling the number of variables (see [7]- [10]).
The new compact system for a generic j mathematical layer is:

D
j ∂U

j

∂z̃
= A

j
U

j , (33)

where ∂Uj

∂z̃ = U
j ′ and U

j = [U j V j W j U j ′ V j ′ W j ′]. z̃ varies from 0 at the bottom to h at the
top. All the steps here omitted for the sake of brevity can be found in [6] for the case of 3D static
analysis of classical multilayered structures. The following steps must be performed in order to apply
the exponential matrix method:

D
j
U

j ′ = A
j
U

j , (34)

U
j ′ = D

j−1
A

j
U

j , (35)

U
j ′ = A

j∗
U

j , (36)

with A
j∗ = D

j−1
A

j . Matrices D
j , Aj and A

j∗ are constant in each j layer of the FGM shell. For
this reason, the solution of Eq.(36) for shell can be written in accordance with [8] and [9]:

U
j(z̃j) = exp(Aj∗z̃j)U j(0) with z̃j ǫ [0, hj ] , (37)

where z̃j indicates the coordinate through the thickness of each j layer (0 at the bottom and hj at the
top). The exponential matrix can be expanded using z̃j = hj for each j mathematical layer:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
+ . . .+

A
j∗N

N !
hj

N
, (38)

where I is the identity matrix having 6 × 6 dimension. The interlaminar continuity of displacements
and transverse shear/normal stresses must be imposed at each mathematical interface:

ujb = uj−1
t , vjb = vj−1

t , wj
b = wj−1

t , (39)

σj
zzb = σj−1

zzt , σj
αzb = σj−1

αzt , σj
βzb = σj−1

βzt , (40)

displacement and transverse stress components at the top (t) of the j-1 layer must be equal to displace-
ments and transverse stress components at the bottom (b) of the j layer.
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The proposed FGM shells have simply supported edges and they can consider transverse normal
loads applied at the top and/or at the bottom of the considered multilayered structure:

σzz = pz , σαz = 0 , σβz = 0 for z = −h/2,+h/2 or z̃ = 0, h , (41)

w = v = 0, σαα = 0 for α = 0, a , (42)

w = u = 0, σββ = 0 for β = 0, b , (43)

pz is the harmonic transverse normal load that can be applied at the top or at the bottom of the
structure in z direction:

pjz(α, β, z) = P j
z (z)sin(ᾱα)sin(β̄β) , (44)

where P j
z indicates the load amplitude.

The final linear algebraic system to be solved in the case of static analysis is given in the following
equation after the correct load application and the appropriate imposition of boundary conditions,
equilibrium conditions and compatibility conditions. All the steps for the evaluation of the final system,
here omitted for the sake of brevity, can be found in [6] where it has been used for the multilayered
structures embedding classical layers:

E U
1(0) = P , (45)

matrix E has always 6 × 6 dimension independently by the number of physical and mathematical
layers and even if the method is based on a layer wise approach. Increasing the order of expansion
N for the exponential matrix approximation in Eq.(38) and the total number M of mathematical and
physical layers of the structure, the dimension of matrix E always remains 6 × 6 even if the order of
each polynomial used as matrix components increases. The 6× 1 unknown vector U

1(0) contains the
three displacement components and the connected derivatives made with respect to the z coordinate
evaluated at the bottom of the first layer 1 (h1 = 0):

U
1(0) =



















U1(0)
V 1(0)
W 1(0)

U1′(0)

V 1′(0)

W 1′(0)



















, (46)

the load vector P is defined as:

P =

















PM
zt

0
0
P 1
zb

0
0

















, (47)

where PM
zt is the transverse normal load applied at the top of the whole structure (top (t) of the last

layer M) and P 1
zb is the transverse normal load applied at the bottom of the whole structure (bottom

(b) of the first layer 1).
From these six values evaluated at the bottom of the structure and included in the 6 × 1 vector

U
1(0), it is possible to obtain the other variables at each value of the thickness coordinate z using the

conditions in Eqs.(39) and (40). Stress and strain vectors are calculated through the thickness direction
using Eqs.(8)-(13) and (15)-(20), respectively. The displacements are exactly calculated because a
layer-wise approach with a high number M of mathematical layers and an opportune order N for the
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exponential matrix are employed. The strains are evaluated in a correct way because in Eqs.(15)-(20)
the derivatives of displacements made with respect to α and β are exactly evaluated by means of their
harmonic forms, and the derivatives of displacements with respect to z are directly obtained from the
system in Eq.(45) (for this reason it is not necessary to numerically derive displacements with respect
to z). Exact calculations of strains through the z direction in Eqs.(15)-(20) give exact calculations
of stresses through the z direction by means of Eqs.(8)-(13). The procedure here proposed has been
implemented in an in-house academic software called 3DES, which has been developed by the author
in a Matlab environment.

3 Results

This section is divided in two parts. The first part proposes four different assessments to validate
the present 3D exact shell model and to select the opportune order of expansion N for the exponential
matrix and the appropriate numberM of mathematical layers which will be used in the new benchmarks.
The second part shows four new benchmarks about FGM one-layered and sandwich configurations in
the case of four different geometries which are square plate, cylinder, cylindrical shell panel and spherical
shell panel. All the proposed structures in these assessments and benchmarks are simply supported
and subjected to harmonic loads.

3.1 Validation of the model

The first assessment considers a square one-layered FGM plate with an harmonic transverse normal
load applied at the top (amplitude Pz = 1Pa and half-wave numbers m = n = 1). The functionally
graded layer has a shear modulus which changes through the thickness direction z in accordance with
the following law:

G(z) = G0e
γ(z/h−0.5) with − h/2 ≤ z ≤ +h/2 . (48)

The material is isotropic with a Poisson ratio ν0 = 0.3 which is constant through the thickness direction.
Therefore, the Young modulus E(z) uses the same law indicated in Eq.(48) employing a reference value
E0 = 73GPa. The plate dimensions are a = b = 3m, the thickness ratio is a/h = 3. The reference
3D solution has been proposed by Kashtalyan [71] in terms of no-dimensional transverse displacements
w̄ = −G0w

Pzh
evaluated in the middle of the plate at z = 0. The proposed 3D solution is in accordance

with the 3D solution by Kashtalyan [71] for each value of the parameter γ selected in the exponential
law for the shear modulus (see Table 1). M = 300 mathematical layers and N = 3 order for the
exponential matrix have been selected in the proposed 3D shell solution to obtain satisfactory results.

The second assessment proposes a square one-layered FGM plate (a = b = 1m and thickness ratio
a/h = 10) subjected to an harmonic transverse normal load applied at the top with amplitude Pz = 1Pa
and half-wave numbers m = n = 1. The FG material law for the Young modulus through the thickness
direction has already been proposed by Zenkour [80] using the following equation:

E(z) = Em + (Ec − Em)

(

2z + h

2k

)κ

with − h/2 ≤ z ≤ +h/2 , (49)

where the Young modulus for the metallic phase is Em = 70GPa and the Young modulus for the ceramic
phase is Ec = 380GPa. The Poisson ratio remains constant through the thickness (νm = νc = 0.3).

The results in Table 2 are proposed as no-dimensional displacements ū = 100h3Ecu
a4Pz

and w̄ = 10h3Ecw
a4Pz

evaluated as maximum amplitude in particular positions through the thickness. Table 2 shows a
comparison between the present 3D shell solution and a quasi-3D layer-wise solution proposed in [81]
for the exponential κ of Eq.(49) changing from 1 to 10. Using an order N = 3 for the exponential
matrix and M = 300 mathematical layers, the present 3D solution is always in accordance with the
quasi-3D solution [81] for all the proposed κ values and investigated displacements.
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The third assessment shows a sandwich square plate with an internal FGM core. The case has been
proposed in [72] where Kashtalyan and Menshykova developed an appropriate 3D plate model. The
harmonic transverse normal load is Pz = 1Pa applied at the top with m = n = 1. The thickness
ratio is a/h0 = 3. Results are given in terms of no-dimensional transverse displacement w̄ = − G0w

Pzh0

evaluated as maximum amplitude at z = 0. The external skins of the sandwich plate have thickness
h1 = h3 = 0.1h0, the FGM core has thickness h2 = 0.8h0. The global thickness of the plate goes from
−h to +h with 2h = h0. A constant Poisson ratio ν = 0.3 is considered for all the plate. The value of
the shear modulus at z = 0 (at the middle of the sandwich which also means the middle of the FGM
core) is G0 = E0

2(1+ν) with E0 = 73GPa. Different ratios Gs/G0 between the shear modulus in the

external skins and shear modulus in the middle of the FGM core are proposed (0.9, 0.99, 0.999, 0.9999,
0.99999, 0.999999, 1.0). An exponential law is considered to link the G0 value with the Gs value of the
external skins:

G(z) = Gse
γ( z

0.4h0
+1.0)

with − 0.4h0 ≤ z ≤ 0 , (50)

G(z) = Gse
−γ( z

0.4h0
−1.0)

with 0 ≤ z ≤ 0.4h0 , (51)

Eq.(50) allows to link the shear modulus Gs of the bottom skin with the shear modulus G0 =
28.07692GPa at the middle of the FGM core. Eq.(51) allows to link the shear modulus Gs of the
top skin with the shear modulus G0 = 28.07692GPa at the middle of the FGM core. All the details
about the geometry and material laws of this assessment can be found in [72] where some figures better
explain this configuration. Table 3 proposes the comparison between the present 3D solution and the
3D solution by Kashtalyan and Menshykova [72] for different Gs/G0 values and consequently different
γ values in Eqs.(50) and (51). The present 3D shell solution (using N = 3 and M = 300) is very close
to the 3D solution by Kashtalyan and Menshykova [72].

The fourth and last assessment considers a one-layered FGM cylindrical shell. The radii of curvature
in α and β directions are Rα = 10m and Rβ = ∞, respectively. The dimensions are a = π

3Rα and
b = 1m with an harmonic transverse normal load applied at the top (Pz = 1Pa and m = n = 1). The
FGM layer has the same material law shown in Eq.(49) with the same elastic properties for the metallic
and ceramic phases. A comparison is proposed in Table 4 between the present 3D shell solution and
a quasi-3D layer-wise solution developed in [82]. The comparisons are proposed for different thickness
ratios Rα/h and several values of the parameter κ in Eq.(49). The transverse normal displacement
w̄ = w ∗ 1010 is calculated in the middle of the shell at z = 0. The proposed 3D shell model is
in accordance with the quasi-3D layer-wise solution [82] when an order N = 3 is employed for the
exponential matrix and M = 300 mathematical layers are used.

3.2 Proposed benchmarks

The new proposed benchmarks consider four different geometries as shown in Figure 1 where a square
plate, a cylinder, a cylindrical shell panel and a spherical shell panel are proposed. The first two
benchmarks (square plate and cylinder) are one-layered FGM structures with the properties and con-
figurations as summarized in the left part of Figure 2. The last two benchmarks (cylindrical and
spherical shell panels) are sandwich structures embedding an internal FGM core with the properties
and configurations as summarized in the right part of Figure 2. The four structures have all the edges
considered as simply supported. The first benchmark is a square plate which has in-plane dimensions
a = b = 1m and thickness ratios a/h = 4, 20, 100. A transverse normal load Pz = 1Pa is applied at the
top in harmonic form with half-wave numbers m = n = 1. The only FGM layer has the Young modulus
which changes in accordance with the same law through the thickness direction z already indicated in
Eq.(49) (see also the left part of Figure 2). In Eq.(49) the volume fraction of the ceramic phase can
also be defined as:

Vc =

(

2z + h

2k

)κ

with − h/2 ≤ z ≤ +h/2 , (52)

10



the volume fraction of the ceramic phase Vc is zero at the bottom z = −h/2 (full metallic material)
and it is 1 at the top z = +h/2 (full ceramic material). Parameter κ can be set as 0.5, 1.0 and 2.0.
The Young modulus of the metallic phase is Em = 73GPa and the Young modulus of the ceramic
phase is Ec = 380GPa. The Poisson ratio remains constant through the thickness direction which
means νm = νc = 0.3. The second benchmark is a cylinder with radius of curvature Rα = 10m (the
other radius of curvature Rβ is infinite) and dimensions a = 2πRα and b = 20m. The investigated
thickness ratios are Rα/h = 4, 10, 100. A transverse normal load Pz = 1Pa is applied at the top
in harmonic form with half-wave numbers m = 2 and n = 1. The only FGM layer has the same
material law already described for the benchmark 1 in Eqs.(49) and (52). The Young modulus and
Poisson ratio of metallic and ceramic phases, and the parameters κ are the same already seen for
the benchmark 1. The third benchmark is a sandwich cylindrical shell with an internal FGM core
and external classic ceramic and metallic skins. The radii of curvature are Rα = 10m and Rβ = ∞,
dimensions are a = π

3Rα and b = 20m. The investigated thickness ratios are Rα/h = 4, 10, 100. The
harmonic transverse normal load (applied at the top surface) has amplitude Pz = 1Pa and half-wave
numbers m = n = 1. The sandwich configuration is shown in details in the right part of Figure 2.
The bottom skin has thickness h1 = 0.15h and it is full metallic with Young modulus Em = 73GPa
and Poisson ratio νm = 0.3. The top skin has thickness h3 = 0.15h and it is full ceramic with Young
modulus Ec = 200GPa and Poisson ratio νc = 0.3. The internal FGM core has thickness h2 = 0.7h
and its properties change gradually from the metallic phase to the ceramic phase in accordance with
Eqs.(49) and (52). In this case, in the ceramic volume fraction, the thickness h must be replaced by
the thickness of the core h2 = 0.7h with coordinate −0.7h ≤ z ≤ +0.7h. The Poisson ratio remains
constant and equals 0.3. The fourth and last benchmark considers a sandwich spherical shell panel with
an internal FGM core and two external skins in metallic at the bottom and ceramic at the top. The two
radii of curvature are Rα = Rβ = 10m, and the dimensions are a = b = π

3Rα. The proposed thickness
ratios are Rα/h = 4, 10, 100. An harmonic transverse normal load is applied at the top with amplitude
Pz = 1Pa and half-wave numbers m = n = 1. The sandwich configuration is the same already seen for
the benchmark 3 and it is detailed in the right part of Figure 2. For the plates of benchmark 1, the
displacements and stresses are given in the following no-dimensional forms:

{ū, v̄, w̄} =
104Em{u, v, w}

Pzh(a/h)4
, {σ̄αα, σ̄ββ , σ̄αβ} =

{σαα, σββ , σαβ}

Pz(a/h)2
, (53)

{σ̄αz , σ̄βz} =
{σαz, σβz}

Pz(a/h)
, σ̄zz = σzz .

For the shells in benchmarks 2, 3 and 4, the no-dimensional form of stresses and displacements are:

{ū, v̄, w̄} =
104Em{u, v, w}

Pzh(Rα/h)4
, {σ̄αα, σ̄ββ , σ̄αβ} =

102{σαα, σββ, σαβ}

Pz(Rα/h)2
, (54)

{σ̄αz , σ̄βz} =
102{σαz, σβz}

Pz(Rα/h)
, σ̄zz = σzz .

Figure 3 proposes the three no-dimensional displacements through the thickness direction of a square
one-layered FGM plate with thickness ratio a/h = 4 and exponential parameter κ = 1.0 for the FGM
law. The great value of thickness ratio and the presence of the FGM layer give displacements which
are not constant through the thickness direction. The structure has a symmetric geometry and the
functionally graded layer is considered as isotropic in the in-plane directions. For these reasons, in-plane
displacements ū and v̄ are coincident. Figure 4 shows the six no-dimensional stress components through
the thickness direction of the same FGM plate. For the same reasons explained for the displacement
evaluations, the stress components do not have any constant or linear behavior through the thickness
direction. The 3D behavior is clearly shown for each stress component. Because of the symmetry of the
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structure and the isotropic feature of the FGM layer, the in-plane stress σ̄αα is equal to the in-plane
stress σ̄ββ, and the transverse shear stress σ̄αz is equal to the transverse shear stress σ̄βz. Transverse
normal stress σ̄zz fulfills the loading boundary conditions which mean Pz = 1Pa at the top and Pz = 0
at the bottom. Transverse shear stresses σ̄αz and σ̄βz fulfill the loading boundary conditions Pα and
Pβ equal zero at both top and bottom surfaces of the plate. Table 5 gives an exhaustive overview for
all the displacement and stress components of the one-layered FGM square plate when the thickness
ratio a/h is equal 4, 20 and 100, and the exponential parameter κ for the FGM law is equal 0.5, 1.0
and 2.0. All the quantities are given as maximum amplitudes (the positions in the in-plane directions
are indicated in parentheses) along the thickness direction (bottom, middle and top of the plate). All
the considerations already proposed for the discussions of the figures, about the symmetric behavior
and the fulfillment of the boundary loading conditions, are here confirmed for each thickness ratio and
FGM law. This table proposes a complete overview on the 3D behavior of the investigated FGM plate.

The second benchmark considers a one-layered FGM cylinder. Figure 5 shows the three no-dimensional
displacement components through the thickness of a thick cylinder (Rα/h = 10) with exponential pa-
rameter of the FGM law κ = 0.5. The closed form of the cylinder gives a great rigidity, for this reason
the displacement components have a linear behavior even if the structure is thick and the FGM law
is non linear. The in-plane displacement ū is different from the in-plane displacement v̄ even if the
FGM is isotropic in the in-plane directions because the cylinder has not a full symmetric geometry.
The six no-dimensional forms of stress components through the thickness are proposed in Figure 6 for
the same values of thickness ratio and exponential parameter. The non-symmetric geometry of the
cylinder structure gives different values and curve trends for the in-plane stresses σ̄αα and σ̄ββ, and for
the transverse shear stresses σ̄αz and σ̄βz. The typical 3D behavior of the stresses is clearly shown for
each component because of the presence of the radius of curvature, the great value of the thickness and
the inclusion of the FGM layer. Transverse normal stress σ̄zz fulfills the loading boundary conditions
(Pz = 1Pa at the top and Pz = 0 at the bottom). Both transverse shear stresses σ̄αz and σ̄βz fulfill the
loading boundary conditions (Pα = Pβ = 0 at both top and bottom of the cylinder). Table 6 proposes
the displacement and stress values of the FGM cylinder for the thickness ratios Rα/h = 4, 10, 100 and
exponential parameters κ = 0.5, 1.0, 2.0. The amplitude values in the in-plane positions (as indicated
in parentheses) are given at the bottom, middle and top of the cylinder. As already disclosed in Figures
5 and 6, no symmetric behaviors are recognized in the in-plane directions, and the boundary loading
conditions are exactly fulfilled for transverse shear and transverse normal stresses at the top and at the
bottom. Numerical and analytical refined 2D models have a 3D capability if they are able to obtain
the values indicated in Table 6.

The third benchmark about the sandwich cylindrical shell with an internal FGM core and two
external skins in metallic material at the bottom and ceramic material at the top is proposed in Figures
7 and 8 and in Table 7. Figure 7 proposes the three no-dimensional displacements through the thickness
direction in the case of thick cylindrical shell (Rα/h = 10) and FGM parameter κ = 2.0 for the core. The
no-symmetric behavior is clearly shown and the displacements are continuous at the interfaces because
the compatibility conditions have been opportunely introduced in the proposed 3D shell model. For the
same thickness ratio and exponential parameter, the six no-dimensional stress components are proposed
in Figure 8. No symmetry, due to the geometry of the structure, is present in the six stress components.
Transverse shear and transverse normal stresses σ̄αz, σ̄βz and σ̄zz are continuous though the thickness
direction and at each skin-core interface because equilibrium conditions have been opportunely imposed
in the proposed 3D shell model. In general, in classical sandwich structures, the in-plane stresses are
discontinuous through the interfaces because the elastic properties change from the skins to the core. In
the proposed sandwich structure embedding an FGM core, the elastic properties of the core gradually
change with continuity from those of the metallic skin at the bottom to those of the ceramic skin at the
top and there is not any discontinuity in the material properties. For these reasons, in-plane stresses
σ̄αα, σ̄ββ and σ̄αβ in Figure 8 are continuous through the thickness direction and at each interface
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between the core and the skins. However, the change in slope between the metallic skin and the core
and between the core and the ceramic skin is clearly shown in images for stresses σ̄αα, σ̄ββ and σ̄αβ.
In Figure 8, transverse normal stress σ̄zz and transverse shear stresses σ̄αz and σ̄βz fulfill the loading
boundary conditions. Table 7 confirms all the considerations already proposed in Figures 7 and 8 for
different thickness ratios (from thick to thin cylindrical shell panels) and several exponential parameters
κ for the FGM law. Valid and well-implemented 2D refined shell models must give the results proposed
in Table 7 for the three displacement amplitudes and the six stress amplitudes evaluated at the bottom,
middle and top of the shell. These values give an exhaustive 3D description of the elastic behavior of
the sandwich cylindrical shells embedding an FGM core.

The last benchmark is the more demanding for the 3D behavior investigation because of the presence
of two radii of curvature (Rα = Rβ) and the choice of a sandwich configuration with an FGM core and
a bottom full metallic skin and a top full ceramic skin. The sandwich spherical shell with thickness
ratio Rα/h = 4 and parameter κ = 1.0 for the FGM core is investigated in Figure 9 in terms of no-
dimensional displacements through the thickness. The in-plane displacements are not linear through
the thickness and the transverse displacement is not constant through the thickness because of the great
value of the shell thickness and the presence of the FGM core. Displacements are continuous through
the interfaces skins/core because the compatibility conditions have been successfully imposed in the 3D
shell model. In-plane displacements ū and v̄ are coincident because the proposed geometry is symmetric
and the three layers are isotropic. Figure 10 proposes the six no-dimensional stress amplitudes through
the shell thickness for the same spherical shell seen in the previous Figure 9. The presence of the FGM
core and of two radii of curvature gives a complicated curve trend for all the stress components, in
particular the in-plane stress components σ̄αα, σ̄ββ and σ̄αβ. The use of isotropic materials and the
symmetry of the spherical shell geometry give stress σ̄αα equals to stress σ̄ββ , and stress σ̄αz equals
to stress σ̄βz. Transverse shear and transverse normal stresses exactly satisfy the external loading
conditions and they are continuous through the thickness direction because the equilibrium conditions
have been directly imposed in the 3D shell model. In-plane normal and in-plane shear stresses σ̄αα, σ̄ββ
and σ̄αβ are continuous through the thickness and at each interface because of the use of the FGM core
which changes its elastic properties with continuity through the thickness direction. Even if such curve
trends are continuous, the presence of the two interfaces has been clearly shown thanks the change
in slope when passing from the bottom skin to the core, and from the core to the top skin. Table 8
proposes an exhaustive 3D description of the stress and displacement state of the sandwich spherical
shell panel for different thickness ratios and FGM parameters for the internal core. Such results confirm
the features and comments already given during the discussion of Figures 9 and 10. The displacement
and stress amplitudes are proposed in three positions through the thickness (bottom, middle and top).
As already remarked in past Tables 5-7, efficient refined 2D numerical and analytical shell models must
give displacement and stress values very close to those proposed in this table.

4 Conclusions

The present work has proposed a 3D exact static analysis of plate and shell structures embedding
functionally graded layers. Results have been proposed in terms of displacements and stresses through
the thickness direction. Plate, cylinder, cylindrical shell and spherical shell geometries have been
investigated. Single-layer and sandwich configurations embedding FGMs have been analyzed when a
transverse normal load has been applied at the external surfaces in harmonic form. The proposed
results give an exhaustive and complete 3D description of the structures and they can be used as new
assessments to validate future refined 2D shell models in both numerical and analytical form. The
employed 3D shell model is solved in closed form using harmonic loads and simply-supported boundary
conditions. The model is based on a general form of three-dimensional equilibrium shell equations
which are solved using the exponential matrix method and the layer wise approach. The opportune
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equilibrium and compatibility conditions have been included in the 3D shell model to correctly analyze
single-layer and sandwich FGM structures. Results in terms of displacements and stresses have been
given for different geometries, thickness ratios, lamination sequences, materials and FGM laws through
the thickness. Important considerations have been remarked for the symmetry conditions, the loading
boundary conditions, the continuity of displacements and stresses through the thickness direction. The
main advantages of the use of FGM layers (in particular an FGM core in sandwich configurations) have
been remarked in the results. The use of an FGM core gives the continuity of in-plane stresses through
the interfaces skins/core. Such a feature is not possible in classical sandwich structures.
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γ 3D [71] Present 3D

10−1 -1.4146 -1.4146
10−2 -1.3496 -1.3496
10−3 -1.3433 -1.3433
10−4 -1.3426 -1.3426
10−5 -1.3426 -1.3426
10−6 -1.3426 -1.3426
−10−1 -1.2740 -1.2740
−10−2 -1.3355 -1.3355
−10−3 -1.3419 -1.3418
−10−4 -1.3425 -1.3425
−10−5 -1.3425 -1.3425
−10−6 -1.3425 -1.3425

Table 1: Assessment 1, one-layered FGM plate. No-dimensional transverse displacement w̄ = −G0w
Pzh

evaluated in the middle of the plate at z = 0. Present 3D solution compared with the 3D solution
proposed by Kashtalyan [71].
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Model ū(−h/4) w̄(0)

κ = 1
Quasi-3D [81] 0.6436 0.5875
Present 3D 0.6436 0.5875

κ = 2
Quasi-3D [81] 0.9012 0.7570
Present 3D 0.9013 0.7570

κ = 3
Quasi-3D [81] 1.0106 0.8381
Present 3D 1.0107 0.8381

κ = 4
Quasi-3D [81] 1.0541 0.8823
Present 3D 1.0541 0.8823

κ = 5
Quasi-3D [81] 1.0716 0.9118
Present 3D 1.0716 0.9118

κ = 6
Quasi-3D [81] 1.0788 0.9351
Present 3D 1.0787 0.9351

κ = 7
Quasi-3D [81] 1.0817 0.9554
Present 3D 1.0817 0.9554

κ = 8
Quasi-3D [81] 1.0830 0.9738
Present 3D 1.0830 0.9739

κ = 9
Quasi-3D [81] 1.0837 0.9911
Present 3D 1.0837 0.9911

κ = 10
Quasi-3D [81] 1.0842 1.0074
Present 3D 1.0842 1.0075

Table 2: Assessment 2, one-layered FGM plate. No-dimensional displacements evaluated in different
positions through the thickness. Present 3D solution compared with the quasi-3D solution proposed
in [81].
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Gs/G0 γ 3D [72] Present 3D

0.9 0.105360 -1.422656 -1.444433
0.99 0.0100503 -1.350003 -1.351938
0.999 0.0010005 -1.343295 -1.343486
0.9999 0.000100005 -1.342629 -1.342648
0.99999 0.00001000005 -1.342562 -1.342564
0.999999 0.0000010000005 -1.342556 -1.342556
1.0 0.0 -1.343 -1.342555

Table 3: Assessment 3, sandwich plate with FGM core. No-dimensional transverse displacement w̄ =
− G0w

Pzh0
evaluated in the middle of the plate at z = 0. Present 3D solution compared with the 3D solution

proposed by Kashtalyan and Menshykova [72].

Rα/h 4 10 100

κ = 1
Quasi-3D [82] 0.0018 0.0170 5.2781
Present 3D 0.0019 0.0170 5.2783

κ = 4
Quasi-3D [82] 0.0032 0.0314 7.9739
Present 3D 0.0032 0.0314 7.9738

κ = 10
Quasi-3D [82] 0.0042 0.0404 9.2018
Present 3D 0.0042 0.0404 9.2029

Table 4: Assessment 4, one-layered FGM cylindrical shell. Transverse normal displacement w̄ = w∗1010

at z = 0. Present 3D solution compared with the quasi-3D solution proposed in [82].
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2 ) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

κ = 0.5

a/h=4
z = −h/2 37.871 37.871 97.921 -0.0797 -0.0797 0.0429 0.0000 0.0000 0.0000
z = 0 6.0391 6.0391 105.67 -0.0316 -0.0316 0.0232 0.4277 0.2410 0.2410
z = h/2 -27.344 -27.344 104.82 0.2821 0.2821 -0.1375 1.0000 0.0000 0.0000

a/h=20
z = −h/2 7.4451 7.4451 83.196 -0.0783 -0.0783 0.0422 0.0000 0.0000 0.0000
z = 0 0.9650 0.9650 83.479 -0.0339 -0.0339 0.0185 0.4315 0.2435 0.2435
z = h/2 -5.5227 -5.5227 83.330 0.2589 0.2589 -0.1388 1.0000 0.0000 0.0000

a/h=100
z = −h/2 1.4876 1.4876 82.562 -0.0782 -0.0782 0.0421 0.0000 0.0000 0.0000
z = 0 0.1912 0.1912 82.573 -0.0340 -0.0340 0.0183 0.4317 0.2436 0.2436
z = h/2 -1.1053 -1.1053 82.567 0.2581 0.2581 -0.1389 1.0000 0.0000 0.0000

κ = 1.0

a/h=4
z = −h/2 51.614 51.614 125.16 -0.0933 -0.0933 0.0502 0.0000 0.0000 0.0000
z = 0 11.115 11.115 136.20 -0.0512 -0.0512 0.0333 0.3940 0.2358 0.2358
z = h/2 -32.621 -32.621 135.60 0.3312 0.3312 -0.1639 1.0000 0.0000 0.0000

a/h=20
z = −h/2 10.273 10.273 107.45 -0.0929 -0.0929 0.0500 0.0000 0.0000 0.0000
z = 0 1.9050 1.9050 107.86 -0.0525 -0.0525 0.0285 0.3998 0.2386 0.2386
z = h/2 -6.4843 -6.4843 107.71 0.3036 0.3036 -0.1629 1.0000 0.0000 0.0000

a/h=100
z = −h/2 2.0538 2.0538 106.69 -0.0928 -0.0928 0.0500 0.0000 0.0000 0.0000
z = 0 0.3786 0.3786 106.70 -0.0526 -0.0526 0.0283 0.4000 0.2387 0.2387
z = h/2 -1.2969 -1.2969 106.70 0.3026 0.3026 -0.1629 1.0000 0.0000 0.0000

κ = 2.0

a/h=4
z = −h/2 68.415 68.415 162.32 -0.1228 -0.1228 0.0661 0.0000 0.0000 0.0000
z = 0 18.310 18.310 177.72 -0.0570 -0.0570 0.0362 0.3823 0.2227 0.2227
z = h/2 -38.889 -38.889 177.99 0.3892 0.3892 -0.1952 1.0000 0.0000 0.0000

a/h=20
z = −h/2 13.747 13.747 136.65 -0.1234 -0.1234 0.0664 0.0000 0.0000 0.0000
z = 0 3.1272 3.1272 137.22 -0.0570 -0.0570 0.0309 0.3911 0.2264 0.2264
z = h/2 -7.5438 -7.5438 137.07 0.3526 0.3526 -0.1893 1.0000 0.0000 0.0000

a/h=100
z = −h/2 2.7493 2.7493 135.53 -0.1234 -0.1234 0.0664 0.0000 0.0000 0.0000
z = 0 0.6212 0.6212 135.56 -0.0570 -0.0570 0.0307 0.3915 0.2266 0.2266
z = h/2 -1.5072 -1.5072 135.55 0.3512 0.3512 -0.1891 1.0000 0.0000 0.0000

Table 5: Benchmark 1, 3D exact results for displacements and stresses in a one-layered FGM plate.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

κ = 0.5

Rα/h=4
z = −h/2 201.99 66.732 334.97 6.2079 -3.0504 7.0941 0.0000 0.0000 0.0000
z = 0 184.09 4.0633 330.64 26.308 7.6328 17.904 0.4019 2.1460 7.5923
z = h/2 166.94 -57.655 322.91 40.593 32.897 16.885 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 30.816 3.3195 53.786 2.9118 0.2626 2.3389 0.0000 0.0000 0.0000
z = 0 29.627 -0.8588 53.333 10.684 3.8592 6.9727 0.3950 0.3640 1.2763
z = h/2 28.463 -4.9995 52.786 15.018 8.8905 7.9926 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.2906 -0.0127 0.5218 0.3069 0.1154 0.1999 0.0000 0.0000 0.0000
z = 0 0.2894 -0.0168 0.5213 1.0473 0.4200 0.6683 0.3924 0.0036 0.0126
z = h/2 0.2882 -0.0209 0.5207 1.3827 0.5884 0.8643 1.0000 0.0000 0.0000

κ = 1.0

Rα/h=4
z = −h/2 248.13 88.819 413.13 6.4938 -3.6717 7.6111 0.0000 0.0000 0.0000
z = 0 225.91 11.559 408.20 24.973 5.8800 17.451 0.3394 1.9735 7.0175
z = h/2 204.49 -64.861 398.68 49.105 37.792 21.079 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 37.762 4.5165 66.048 3.0594 0.2034 2.4815 0.0000 0.0000 0.0000
z = 0 36.298 -0.6140 65.503 10.176 3.4513 6.7156 0.3327 0.3321 1.1755
z = h/2 34.862 -5.7020 64.834 18.270 10.437 9.8633 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.3562 -0.0151 0.6398 0.3233 0.1209 0.2108 0.0000 0.0000 0.0000
z = 0 0.3547 -0.0201 0.6391 1.0010 0.3993 0.6395 0.3308 0.0032 0.0116
z = h/2 0.3533 -0.0252 0.6384 1.6925 0.7162 1.0596 1.0000 0.0000 0.0000

κ = 2.0

Rα/h=4
z = −h/2 319.84 121.31 534.34 8.2629 -5.1432 9.8622 0.0000 0.0000 0.0000
z = 0 291.15 22.185 528.56 21.174 4.0474 15.082 0.2906 1.8443 6.6434
z = h/2 263.23 -76.749 516.36 62.278 45.593 27.575 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 48.730 6.3103 85.380 3.9126 0.1826 3.1996 0.0000 0.0000 0.0000
z = 0 46.835 -0.3131 84.692 8.6591 2.7831 5.7600 0.2827 0.3123 1.1195
z = h/2 44.974 -6.8911 83.830 23.392 12.937 12.795 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.4600 -0.0191 0.8265 0.4146 0.1543 0.2706 0.0000 0.0000 0.0000
z = 0 0.4582 -0.0255 0.8257 0.8538 0.3390 0.5458 0.2812 0.0030 0.0110
z = h/2 0.4564 -0.0320 0.8248 2.1818 0.9187 1.3677 1.0000 0.0000 0.0000

Table 6: Benchmark 2, 3D exact results for displacements and stresses in a one-layered FGM cylinder.
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ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2) (a2 ,

b
2) (a2 ,

b
2) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

κ = 0.5

Rα/h=4
z = −h/2 449.90 66.226 656.49 -36.196 -15.020 14.365 0.0000 0.0000 0.0000
z = 0 260.48 -48.539 678.49 -7.8523 4.4284 9.0304 -0.0046 44.502 24.816
z = h/2 67.275 -166.31 663.66 61.555 48.971 -14.239 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 190.35 -3.9022 391.44 -20.575 -5.5595 11.026 0.0000 0.0000 0.0000
z = 0 139.68 -34.045 392.99 -2.6215 11.005 10.047 -0.3968 29.405 16.269
z = h/2 89.003 -64.212 390.36 44.906 41.406 -4.6004 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 3.5954 -0.9191 10.268 -0.0960 1.4149 1.1064 0.0000 0.0000 0.0000
z = 0 3.4587 -0.9997 10.266 0.8836 3.7631 2.0849 0.1582 0.7913 0.4364
z = h/2 3.3221 -1.0803 10.262 2.4232 5.3791 2.1007 1.0000 0.0000 0.0000

κ = 1.0

Rα/h=4
z = −h/2 493.05 74.218 715.72 -39.889 -16.630 15.830 0.0000 0.0000 0.0000
z = 0 291.58 -48.492 740.62 -9.1048 2.9674 8.9709 0.0076 43.102 24.094
z = h/2 81.269 -177.22 725.77 64.328 51.680 -14.538 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 208.67 -3.2778 425.92 -22.974 -6.3775 12.208 0.0000 0.0000 0.0000
z = 0 153.81 -35.969 427.73 -3.6026 9.3438 9.5944 -0.3891 28.746 15.919
z = h/2 98.739 -68.805 425.01 47.119 44.046 -4.3715 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 3.9872 -1.0151 11.373 -0.1239 1.5573 1.2317 0.0000 0.0000 0.0000
z = 0 3.8358 -1.1044 11.371 0.7870 3.4730 1.9462 0.1283 0.7895 0.4354
z = h/2 3.6845 -1.1936 11.367 2.6357 5.9305 2.3441 1.0000 0.0000 0.0000

κ = 2.0

Rα/h=4
z = −h/2 532.79 80.313 774.35 -43.059 -17.964 17.112 0.0000 0.0000 0.0000
z = 0 320.96 -49.159 801.49 -8.6207 1.8842 7.8516 0.0272 41.736 23.387
z = h/2 95.786 -187.54 786.80 66.785 54.195 -14.738 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 226.35 -2.8737 459.85 -25.207 -7.1107 13.326 0.0000 0.0000 0.0000
z = 0 167.47 -38.015 461.90 -3.7153 7.3153 8.2004 -0.3802 28.384 15.731
z = h/2 108.16 -73.419 459.07 49.434 46.727 -4.2009 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 4.4703 -1.1347 12.740 -0.1529 1.7365 1.3849 0.0000 0.0000 0.0000
z = 0 4.3008 -1.2347 12.737 0.6558 2.9721 1.6793 0.1038 0.8126 0.4483
z = h/2 4.1313 -1.3347 12.733 2.9132 6.6210 2.6398 1.0000 0.0000 0.0000

Table 7: Benchmark 3, 3D exact results for displacements and stresses in a sandwich cylindrical shell
embedding an FGM core.

25



ū v̄ w̄ σ̄αα σ̄ββ σ̄αβ σ̄zz σ̄αz σ̄βz
(α,β) (0, b

2) (a2 , 0) (a2 ,
b
2 ) (a2 ,

b
2) (a2 ,

b
2) (0, 0) (a2 ,

b
2) (0, b

2) (a2 , 0)

κ = 0.5

Rα/h=4
z = −h/2 99.605 99.605 176.79 -7.9691 -7.9691 10.508 0.0000 0.0000 0.0000
z = 0 50.370 50.370 181.77 4.4653 4.4653 10.356 0.2102 17.816 17.816
z = h/2 0.0516 0.0516 175.09 27.022 27.022 0.0116 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 16.406 16.406 43.955 -0.7914 -0.7914 3.9853 0.0000 0.0000 0.0000
z = 0 10.565 10.565 43.811 3.9418 3.9418 5.4300 0.2020 5.2317 5.2317
z = h/2 4.7720 4.7720 43.039 11.135 11.135 2.8734 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.1132 0.1132 0.4864 0.2108 0.2108 0.2625 0.0000 0.0000 0.0000
z = 0 0.1064 0.1064 0.4857 0.5310 0.5310 0.5471 0.3574 0.0607 0.0607
z = h/2 0.0997 0.0997 0.4850 0.7283 0.7283 0.6272 1.0000 0.0000 0.0000

κ = 1.0

Rα/h=4
z = −h/2 110.27 110.27 195.31 -8.8493 -8.8493 11.633 0.0000 0.0000 0.0000
z = 0 57.690 57.690 201.15 3.5306 3.5306 9.9354 0.2004 17.286 17.286
z = h/2 2.0381 2.0381 194.04 28.830 28.830 0.4582 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 18.291 18.291 48.559 -0.9492 -0.9492 4.4430 0.0000 0.0000 0.0000
z = 0 11.881 11.881 48.423 3.4823 3.4823 5.1154 0.1773 5.1652 5.1652
z = h/2 5.4875 5.4875 45.587 12.030 12.030 3.3042 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.1257 0.1257 0.5392 0.2327 0.2327 0.2916 0.0000 0.0000 0.0000
z = 0 0.1182 0.1182 0.5385 0.4912 0.4912 0.5091 0.3264 0.0605 0.0605
z = h/2 0.1108 0.1108 0.5377 0.8042 0.8042 0.6968 1.0000 0.0000 0.0000

κ = 2.0

Rα/h=4
z = −h/2 121.44 121.44 216.35 -9.6632 -9.6632 12.811 0.0000 0.0000 0.0000
z = 0 65.460 65.460 222.89 2.7081 2.7081 8.6456 0.2017 16.866 16.866
z = h/2 4.4799 4.4799 215.46 30.791 30.791 1.0071 1.0000 0.0000 0.0000

Rα/h=10
z = −h/2 20.446 20.446 53.992 -1.1046 -1.1046 4.9667 0.0000 0.0000 0.0000
z = 0 13.377 13.337 53.858 2.8747 2.8747 4.4168 0.1606 5.2204 5.2204
z = h/2 6.2908 6.2908 52.943 13.129 13.129 3.7879 1.0000 0.0000 0.0000

Rα/h=100
z = −h/2 0.1412 0.1412 0.6049 0.2602 0.2602 0.3275 0.0000 0.0000 0.0000
z = 0 0.1328 0.1328 0.6040 0.4215 0.4215 0.4385 0.3072 0.0621 0.0621
z = h/2 0.1244 0.1244 0.6031 0.8993 0.8993 0.7828 1.0000 0.0000 0.0000

Table 8: Benchmark 4, 3D exact results for displacements and stresses in a sandwich spherical shell
embedding an FGM core.
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Benchmark 1
(one-layered FGM plate)

Benchmark 2
(one-layered FGM cylinder)

Benchmark 3
(sandwich FGM cylindrical shell)

Benchmark 4
(sandwich FGM spherical shell)

Figure 1: Geometries and FGM configurations of the four proposed benchmarks.

One-layered FGM configurations Sandwich configurations with FGM core

Material properties for benchmarks
1 and 2

Material properties for benchmarks
3 and 4

Figure 2: FGM configurations and elastic properties of the four proposed benchmarks.
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Figure 3: Benchmark 1, no-dimensional displacements through the thickness z̃ for a/h = 4 and κ = 1.0.

28



-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αα

σ
αα

stress component

σ
αα

z
/h

-0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
ββ

σ
ββ

stress component

σ
ββ

z
/h

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αβ

σ
αβ

stress component

σ
αβ

z
/h

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
zz

σ
zz

stress component

σ
zz

z
/h

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
αz

σ
αz

stress component

z
/h

σ
αz

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
βz

σ
βz

stress component

σ
βz

z
/h

Figure 4: Benchmark 1, no-dimensional stresses through the thickness z̃ for a/h = 4 and κ = 1.0.
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Figure 5: Benchmark 2, no-dimensional displacements through the thickness z̃ for Rα/h = 10 and
κ = 0.5.
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Figure 6: Benchmark 2, no-dimensional stresses through the thickness z̃ for Rα/h = 10 and κ = 0.5.
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Figure 7: Benchmark 3, no-dimensional displacements through the thickness z̃ for Rα/h = 10 and
κ = 2.0.
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Figure 8: Benchmark 3, no-dimensional stresses through the thickness z̃ for Rα/h = 10 and κ = 2.0.
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Figure 9: Benchmark 4, no-dimensional displacements through the thickness z̃ for Rα/h = 4 and
κ = 1.0.
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Figure 10: Benchmark 4, no-dimensional stresses through the thickness z̃ for Rα/h = 4 and κ = 1.0.
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