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Interpretation of boundary conditions in the analytical

and numerical shell solutions for mode analysis of

multilayered structures
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‡ Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy

† DICAM Department, University of Bologna, Bologna, Italy

Abstract

The paper proposes the first 18 vibration modes for plates, and the first 14 vibration modes for cylinders
and cylindrical shells. All the edges of these structures are simply supported and the free frequencies are
calculated using an exact three-dimensional shell model. A comparison is proposed using two different
numerical models such as a classical two-dimensional finite element model and a refined two-dimensional
generalized differential quadrature model. The 3D exact model gives all types of vibration modes, when
the four edges are simply supported, changing the imposed half-wave numbers m and n in the two in-
plane directions α and β. Some of these modes have one of the two half-wave numbers equals zero.
When this condition is simultaneously combined with the condition of transverse displacement different
from zero, the resulting vibration mode is defined as cylindrical bending mode. The cylindrical bending
case has all the derivatives made in the direction where m = 0 or n = 0 equal zero. This feature means
that the vibrational behavior does not change along this particular direction. The numerical models
with the simply supported boundary conditions for all the edges do not achieve these results. These
cylindrical bending numerical results are obtained modifying the boundary conditions. Proposed results
will demonstrate the validity of this idea and how to modify the mathematical models in order to obtain
and improve the cylindrical bending solutions.

Keywords: 3D exact shell model; 2D finite element model; 2D generalized differential quadrature
model; vibration modes; cylindrical bending; simply supported edges; free edges; boundary conditions.

1 Introduction

A comparison in terms of free frequencies between classical two-dimensional (2D) finite elements
(FEs), classical and refined 2D generalized differential quadrature (GDQ) models and an exact three-
dimensional method has been proposed by authors in [1] and [2] for single-layered and multilayered
isotropic, composite and sandwich structures, and in [3] and [4] for single-layered and sandwich func-
tionally graded structures. The proposed analyses considered plates, cylinders, and cylindrical and
spherical panels. Low and high order frequency values were investigated for simply supported thick
and thin structures. Vibration mode investigation was fundamental to understand how to compare
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results obtained using the FE and GDQ solutions (numerical methods) and those obtained using the
exact three-dimensional model. The 3D exact model calculates infinite vibration modes for each pos-
sible combination of half-wave numbers (m,n). A 2D numerical solution calculates a finite number of
vibration modes, in fact it has a finite number of degrees of freedom considering the three directions
α, β and z. A possible procedure to compare a 3D exact model with a 2D numerical model is the
calculation of the frequency values via the 2D numerical code and then the evaluation of the 3D exact
frequency values using the opportune half-wave numbers (obtained using the graphical visualization of
the vibration modes by means of the GDQ or FE method). It is clear how the 3D model could give some
frequencies that are not calculated by the 2D numerical models, but these considerations were not the
aim of the past authors’ papers [1]- [4]. Those works tried to explain what could be the advantages and
the limitations of 2D numerical codes but they did not explain how to obtain the frequencies missed
by the numerical methods.

The analysis proposed in the present paper tries to fill this gap calculating all the possible first
18 (for plates) or 14 (for shells) 3D exact frequencies for isotropic and orthotropic single- and multi-
layered structures combining the half-wave numbers along the two directions α and β in the plane. 18
frequencies are calculated for the plate because some modes are twice given for material and geometrical
symmetry reasons. In these first frequencies there are some modes that cannot be calculated by the 2D
numerical models if structures are considered with four simply-supported edges. In general, these modes
are those corresponding to the cylindrical bending condition which, in the 3D exact solution, means
that one of the two half-wave numbers is equal to zero simultaneously with a transverse displacement
different from zero along the edge where the half-wave number is different from zero. These results are
not solutions of the 2D numerical models with the four simply supported edges, and it is necessary to
build a different mathematical model where two edges are simply supported and the other two ones are
free. In this way, cylindrical bending with the transverse displacement different from zero is allowed in
numerical models. In this paper, the mathematical model which represents the numerical solution is
opportunely modified changing the boundary conditions in order to obtain the missed frequencies and
modes. This feature is possible only when the zero half-wave number is imposed through a rectilinear
side because the half-wave number equals zero in the curvilinear edge does not mean that all the
quantities in that direction are constant. This feature is due to the curvature presence. The new
contribution of the present work is the investigation of cylindrical bending frequencies which can be
obtained by 2D numerical models only modifying the boundary conditions. Such a comparison has
never been made in past authors’ works [1]- [4].

The cylindrical bending analysis is very common in the literature because its simplicity allows an
immediate verification of the proposed structural models. Some plate models verified by means of cylin-
drical bending hypotheses were proposed in [5] where the responses of a simply supported cross-ply
laminate in cylindrical bending with viscous interfaces were studied using the state-space method. The
state-space method was also used in [6] and [7] for the investigation of simply supported angle-ply lam-
inates with interfacial damage and for static load application to simply supported angle-ply laminated
plates, respectively. Gandhi and Raval [8] proposed an experimental three-roller cylindrical bending for
plates which was compared with analytical solutions. A methodology for the design of plate-forming
dies in cylindrical bending, using optimization techniques to reduce the cost of die production, was
discussed in [9]. As demonstrated in [10] for the large deflection of a thin beam, the solution of the
plate problem is not unique under certain conditions. In [11], the cylindrical bending of laminates
was analyzed using the bending-gradient plate theory as an extension of the Reissner-Mindlin plate
model. The Reissner-Mindlin plate theory was also used in [12] for the cylindrical bending of elas-
tic and composite plates subjected to the mechanical transverse loading response under plain strain
conditions. Another recent publication regarding cylindrical bending conditions was presented in the
work by Sayyad and Ghugal [13] where they investigated flat laminated plates using a nth order shear
deformation theory. Well-known three-dimensional exact elasticity solutions for composite laminated
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plates were developed by Pagano [14], [15], and then verified using the cylindrical bending conditions.
A two-dimensional layer-wise model was introduced in [16] as an accurate and effective alternative to
the finite element method. This model was extended to the analysis of delamination growth in multi-
layered plates subjected to cylindrical bending loading. A new stress analysis method for the accurate
determination of the stress distributions in angle-ply laminated plates subjected to cylindrical bending
was proposed in [17]. Further cylindrical bending analyses for plates, which include functionally graded
layers, can be found in [18] and [19]. The works [20]- [25] proposed the cylindrical bending analysis of
flat plates embedding piezoelectric layers which can also be, in some cases, functionally graded in the
thickness direction. The thermal loads in cylindrical bending for flat plates were considered in [26]-
[28] where composite and/or piezoelectric layers were included. Other related papers about cylindrical
bending for shell structures are not so numerous in the literature. The most important cases concern
the cylindrical shells where the cylindrical bending conditions can be verified through the rectilinear
edges. Chen and Lee [29] used the state-space formulation for the bending and free vibration analysis
of simply-supported angle-ply laminated cylindrical panels in cylindrical bending. Wu and Syu [30]
proposed a three-dimensional (3D) piezoelectric model for cylindrical shells under cylindrical bending
electromechanical loads using the method of perturbation. The behavior of a simply supported angle-
ply laminated cylindrical shell in cylindrical bending with viscoelastic interfaces was studied in [31].
Further interesting works can be found in [32]- [35] where dynamic analyses of cylindrical shells are
proposed.

The present paper aims to compare the free frequencies obtained using a 3D exact shell model, a 2D
classical finite element model and a 2D refined generalized differential quadrature model. The 3D exact
shell model is based on the equilibrium equations written for the generic curvilinear orthogonal coordi-
nates, they are solved in closed form imposing simply supported boundary conditions. The differential
equations along z are solved using the exponential matrix method and the layer wise approach. Such
model is detailed and validated in Section 2. The 2D FE and GDQ models are described in Section 3.
The validation of these numerical approaches is also proposed in the same section. The 2D FE model is
based on a well-known commercial finite element code. The 2D GDQ model has been implemented in
an in-house academic software. The comparisons between these three different procedures are proposed
in Section 4 and the main conclusions are remarked in Section 5.

2 3D exact shell model

The three-dimensional exact shell model used in Section 4 has been developed in [36]- [44] for sev-
eral applications such as one-layered and multilayered isotropic, orthotropic, composite and sandwich
structures, functionally graded structures, single- and double-walled carbon nanotubes. The equilib-
rium equations are written in a general orthogonal curvilinear coordinate system (α, β, z) valid for
plates and shells with constant radii of curvature. These equations are solved in exact form supposing
simply supported edges and using the exponential matrix method to solve the differential equations in
z.

The three differential equations of equilibrium developed for the free vibration analysis of multilay-
ered spherical shells (a particular case of doubly-curved shells with constant radii of curvature Rα = Rβ)
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embedding NL layers are:
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where ρk indicates the mass density, (σk
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k
αβ) is the stress vector and ük, v̈k and ẅk

mean the second temporal derivatives of the three displacement components uk, vk and wk in α, β and
z directions, respectively. Each variable depends on the k layers (the true physical layers embedded
in the structure). Rα and Rβ are the radii of curvature referred to the mid-surface Ω0 of the whole
multilayered structure. Hα and Hβ continuously vary through the thickness of the multilayered shell
and they depend on the thickness coordinate z. The middle surface Ω0 of the shell is the locus of points
which lie midway between these surfaces. The parametric coefficients for shells in the case of constant
radii of curvature are:
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, Hz = 1 . (4)

For simply supported shells and plates, the three displacement components have the following har-
monic form:

uj(α, β, z, t) = U j(z)eiωtcos(ᾱα)sin(β̄β) , (5)

vj(α, β, z, t) = V j(z)eiωtsin(ᾱα)cos(β̄β) , (6)

wj(α, β, z, t) = W j(z)eiωtsin(ᾱα)sin(β̄β) , (7)

where U j(z), V j(z) and W j(z) are the displacement amplitudes in α, β and z directions, respectively.
The imaginary unit is indicated by i. The circular frequency is ω = 2πf where f is the frequency
value measured in Hz and t is the time. The coefficients ᾱ and β̄ take the form ᾱ = mπ

a
and β̄ = nπ

b
,

where m and n are the half-wave numbers and a and b are the shell dimensions in α and β directions,
respectively (calculated on the mid-surface Ω0). The index j indicates the mathematical layers used to
approximate the curvatures in the k physical layers (each k physical layer is divided in j mathematical
layers in order to calculate the parametric coefficients with a sufficient precision). The substitution
of Eqs.(5)-(7) and constitutive and geometrical equations (here omitted but given in details in [37]
and [39]) in Eqs.(1)-(3) leads to the following final system:
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In the case of cylindrical bending analysis, one of the two half-wave numbers (m or n) is set to zero
which means ᾱ = mπ

a
= 0 or β̄ = nπ

b
= 0. This feature gives the derivatives made in a particular

direction (α or β) equals zero and each section in the cylindrical bending direction is always the same
because quantities do not change in this particular direction. However, this feature is possible only if
the side is rectilinear otherwise the curvature presence does not give constant quantities (see Figure 1).

Eqs. (8)-(10) given in compact form are (all the omitted details can be found in [36], [37] and [39]):

D
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j
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j = [U j V j W j U j ′ V j ′ W j ′]. Eq.(11) can be proposed as:
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with A
j∗ = D

j−1
A

j .
The solution of Eq.(14), as already described in [36], [37] and [39], is:

U
j(zj) = exp(Aj∗zj)U j(0) with zj ǫ [0, hj ] , (15)

where zj is the thickness coordinate for the j layer with values from 0 at the bottom to hj at the top.
The exponential matrix is calculated with zj = hj for each j layer as:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
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A
j∗N

N !
hj

N
, (16)

where I is the 6×6 identity matrix. This expansion has a fast convergence and it is not time consuming
from the computational point of view.

Considering j = M mathematical layers to approximate the shell curvature, M −1 transfer matrices
must be calculated using for each interface the interlaminar continuity conditions of displacements and
transverse shear/normal stresses. In order to obtain a closed form solution, the plates or shells must be
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considered as simply supported and free stresses at the top and at the bottom surfaces. The following
final system is obtained using the described conditions:

EU
1(0) = 0 , (17)

dimension of matrix E is (6 × 6), independently from the number of layers M , even if the solution is
based on a layer-wise method. U1(0) is U considered at the bottom of the entire multilayered structure
(first layer 1 with z1 = 0). Further comments about this solution method and all the steps omitted
in this work are given in [36]- [44] where this 3D exact solution has been extended for the first time
to several cases. The model has been extensively validated in [36]- [44] where it has been compared
with several 3D solutions given in the literature for one-layered and multilayered isotropic, orthotropic,
composite and FGM plates, cylinders and cylindrical/spherical shells. Therefore, it can be now used
with confidence for the frequency comparisons shown in Section 4.

The free vibration analysis is conducted finding the non-trivial solution of U1(0) in Eq.(17), this
feature means the imposition of the determinant of matrix E equals zero:

det[E] = 0 , (18)

Eq.(18) allows to calculate the roots of an higher order polynomial in λ = ω2. When a pair of half-wave
numbers (m,n) is imposed, a defined number of circular frequency values ω = 2πf (theoretically from
I to ∞) is calculated. This number depends on the order N used for the exponential matrix A

j∗∗ and
on the number M of fictitious/mathematical layers used to approximate the shell curvatures. From
the validations proposed in [36]- [44] using different cases proposed in the literature, N = 3 for the
exponential matrix and M = 100 or M = 102 for the mathematical layers (depending on the number
of physical layers embedded in the structure) are sufficient to always calculate the correct results for
each geometry, lamination sequence, number of layers, material and thickness ratio.

3 2D numerical models

Two different numerical models are used in the following sections to calculate the 3D exact shell results.
The first one is a classic 2D Finite Element (FE) model obtained using a commercial code (Strand7), the
second one is an innovative strong form solution achieved using the well-known Generalized Differential
Quadrature (GDQ) method [45]. For the sake of conciseness, no details are given regarding the FE
solution. The interested readers can refer to the user manual of the cited code for further details. The
only important feature is the use of standard 8-node elements, termed QUAD8, for the numerical FE
analyses. Data about mesh and convergence analysis can be found in past authors’ works [2]- [4]. On
the contrary, some details should be given for the GDQ solution because it does not follow the general
approach for the study of plates and shells generally used by other researchers. In particular, two main
features should be underlined regarding the present GDQ implementation. Firstly, higher order models
are used. Secondly, the GDQ shell model includes the curvature effects and the rotary inertias into the
formulation. As it is well-known, higher order models reach higher level of accuracy with respect to the
3D analysis if compared to classic linear theories such as Reissner-Mindlin (also known as First order
Shear Deformation Theory or FSDT, implemented in most FE codes) and Kirchhoff-Love (theory of
moderately thin structures). More accurate results are achieved, when curved structures are analyzed,
if the curvature effects are included into the formulation [46].

The present 2D refined kinematic model falls within the general framework of unified formulations
[47]- [55] and it can be presented as:

U =

Nc+1
∑

τ=0

Fτu
(τ) , (19)
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where U contains the 3D displacement components and u includes the displacement parameters of the
τth order. It is recalled that these parameters lay on the middle surface of the shell [47]. Fτ(ij) = δijFτ

(for i, j = 1, 2, 3) is the thickness function matrix and δ is the Kronecker delta function.
Generally power functions are considered through the shell thickness, therefore Fτ takes the form

of 1, z, z2, z3, according to the order of expansion τ . It is not the aim of the present investigation to
show the accuracy among different expansion orders. Thus, for all the following numerical results it has
been set τ = 0, 1, 2, 3 and Nc = 3, because it has been demonstrated by previous works about similar
topics [47]- [55] that this expansion is generally more than enough to obtain accurate solutions for thin
and thick shells. When multi-layered structures are considered, the Murakami function is added to the
kinematic expansion. It is recalled that the exponent Nc + 1 is reserved for the Murakami function,
otherwise this order is neglected.

It has been demonstrated in the previous authors’ works that the numerical solutions of classic FEs
are similar to the ones obtained setting τ = 0, 1 and Nc = 1 because a FSDT is achieved, even though
the strong form approaches led to more accurate results with respect to the FE ones [51], [53].

The relation between generalized strains ε(τ) and displacements u(τ) can be set as:

ε
(τ) = DΩu

(τ) for τ = 0, 1, 2, . . . , Nc, Nc + 1 , (20)

DΩ is a differential operator explicitly defined in [47]. The present constitutive material model is linear
and elastic, therefore for a general kth lamina, the Hooke law can be applied:

σ
(k) = C̄(k)

ε
(k) , (21)

where σ(k) is the vector of the stress components and C̄(k) is the matrix of elastic coefficients valid

for the kth ply [47]. The components of the constitutive matrix are indicated as C̄
(k)
ξη and are defined

with respect to the curvilinear reference system O′αβz after the application of the transformation
equations [47], that take the elastic constants from the material reference system to the geometrical
one.

The Hamilton principle helps to define the stress resultants of the τth order for a 3D doubly-curved
solid [47]:

S(τ) =

NL
∑

k=1

∫ zk+1

zk

(

Z(τ)
)T

σ
(τ)HαHβdz for τ = 0, 1, 2, . . . , Nc, Nc + 1 , (22)

where S(τ) is the vector of the τth order which includes the stress resultants. The definition of Eq. (22)
can be rewritten as a function of the generalized sth order strain ε(s) vector as:

S(τ) =
Nc+1
∑

s=0

A(τs)
ε
(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 (23)

where

A(τs) =

NL
∑

k=1

∫ zk+1

zk

(

Z(τ)
)T

C̄(k)Z(s)HαHβdz . (24)
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Equation (24) defines the elastic coefficients which are given by the following integral expressions:

A
(τs)
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A
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NL
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H̺
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ζ
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for τ, s = 0, 1, 2, . . . , Nc, Nc + 1

for ξ, η = 1, 2, 3, 4, 5, 6

for ̺, ζ = 0, 1, 2

(25)

where τ , s indicate the corresponding thickness function Fτ , Fs (classic powers of z in this paper).
It is recalled that the exponent Nc + 1 is reserved for the Murakami function, otherwise this order is
neglected. The subscripts τ̃ , s̃ indicate the derivatives of the thickness functions Fτ , Fs with respect
to z. Since only power functions have been used, they take the form ∂Fτ/∂z, ∂Fs/∂z = 0, 1, 2z, 3z2,
4z3, . . . , Ncz

Nc−1. The subscripts ̺, ζ represent the exponent of the quantities Hα, Hβ, whereas ξ, η

are the indices of the material constants C̄
(k)
ξη for the kth ply [47]- [54].

The dynamic equilibrium equations and their boundary conditions are carried out from the Hamilton
Principle. The present generalized approach gives a fundamental nucleus of three motion equations:

D⋆
ΩS

(τ) =

Nc+1
∑

s=0

M(τs)ü(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 , (26)

where D⋆
Ω is the equilibrium operator and M(τs) is the inertia matrix. Their explicit expressions have

been presented in a previous authors’ paper [47].
By combining the kinematic equation (20), constitutive equation (23) and the motion equation (26),

the fundamental governing system in terms of displacement parameters is carried out:

Nc+1
∑

s=0

L(τs)u(s) =

Nc+1
∑

s=0

M(τs)ü(s) for τ = 0, 1, 2, . . . , Nc, Nc + 1 , (27)

where L(τs) = D⋆
ΩA

(τs)DΩ is the fundamental operator [47].
Boundary conditions must be included for the solution of the differential equations (27). Combining

conveniently the static and kinematic conditions, any boundary condition can be imposed. In general,
three possibilities are the most used ones [47], which are: clamped edge boundary conditions (C), free
edge boundary conditions (F) and simply-supported edge boundary conditions (S). The present paper
investigates structures with simply-supported and free edges. Thus, simply supported conditions are:

N (τ)
α = 0, u

(τ)
β = u(τ)z = 0 τ = 0, 1, 2, . . . , Nc, Nc + 1 at α = α0 or α = α1 β0 ≤ β ≤ β1 ,

u(τ)α = 0, N
(τ)
β = 0, u(τ)z = 0 τ = 0, 1, 2, . . . , Nc, Nc + 1 at β = β0 or β = β1 α0 ≤ α ≤ α1 ,

(28)

whereas the free edge conditions can be indicated as:

N (τ)
α = 0, N

(τ)
β = 0, T (τ)

α = 0 τ = 0, 1, 2, . . . , Nc, Nc + 1 at α = α0 or α = α1 β0 ≤ β ≤ β1 ,

N (τ)
α = 0, N

(τ)
β = 0, T

(τ)
β = 0 τ = 0, 1, 2, . . . , Nc, Nc + 1 at β = β0 or β = β1 α0 ≤ α ≤ α1 .

(29)
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Each of the investigated structures in Section 4 has four edges. In the original case, the four edges
are simply-supported as reported by Eqs.(28). In order to perform the cylindrical bending analyses,
two edges are simply-supported and the other two are free. Therefore, Eqs. (28) and (29) are mixed
accordingly to the problem under investigation. Refer to each single problem of the Section 4 for more
details on these features.

4 Results

In this section, the numerical results regarding the comparison of Cylindrical Bending (C.B.) effects of
3D exact shell models and 2D numerical ones are presented. This paper focuses on flat plates, circular
cylinders and cylindrical shells because the C.B. effects occur only when at least two straight edges are
present (see Figure 1 for further details).

The first example regards a simply-supported square plate (a = b = 1 m) with thickness ratios a/h
equal 100 and 20. Thin and moderately thick plates are drawn. The structure is one-layered (h1 = h)
and made of Aluminum alloy (E = 73 GPa, ν = 0.3, ρ = 2800 kg/m3). The FE model uses a 40 × 40
QUAD8 mesh with a total number of 29280 degrees of freedom (dofs). The GDQ solution is based
on a not-uniform grid (Chebyshev-Gauss-Lobatto collocation [45]) with 31 × 31 points for both thin
and moderately thick plates and a third-order kinematic model without Murakami function. All the
results are reported in Table 1 where the first column indicates the half-wave numbers to set in the
3D exact shell model. The second column indicates the type of mode for the 3D exact solution for
a given (m,n) couple. I indicates the first mode and II indicates the second mode. In the case of
in-plane modes, the caption (w = 0) is added. The third column shows all the results for the 3D exact
solution, both classical and cylindrical bending (C.B.) results are obtained using the same run. The
other four columns of the table are related to the 2D numerical models where simply-supported four
edges conditions are investigated through 2D FE and 2D GDQ models, and cylindrical bending results
are calculated via 2D FE(C.B.) and 2D GDQ(C.B.) models. The numerical results related to the full
simply-supported boundary conditions are found implementing a single numerical model where the four
edges are simply supported. The same conditions cannot be used for the C.B. results due to symmetry.
In order to achieve two different mode shapes in cylindrical bending, two different structures must be
numerically modeled. For instance, in order to get the mode shapes related to (0, 1) or (1, 0), the β
edges must be free or the α edges must be free, respectively. The same can be said for all the other
symmetric conditions in cylindrical bending. It must be underlined that there is a perfect match among
the 3D and 2D solutions when full simply-supported structures are analyzed. On the contrary, a small
error is observed for the C.B. conditions. This aspect is due to the fact that the numerical models do
not achieve a perfect cylindrical bending mode shape, as the 3D exact model, and this feature is clearly
shown in Figures 2 and 3. This behavior happens because the C.B. deformed shape must have the
derivatives along the simply supported direction equals zero and this is not the case of the investigated
square plate. In fact, the color map of the cited figures clearly shows that near the boundaries the
flexural displacements are not parallel. The same cannot be said for the in-plane mode shapes (w = 0)
when the plate is simply-supported on the four edges. In fact, in the latter configuration, the color
map depicts parallel color lines and the vibration numerical frequencies perfectly match the 3D exact
ones. The perfect C.B. effect occurs when the straight direction has an ”infinite” length. Obviously this
aspect cannot be numerically proven, but a trend to such solution can be found extending the length
of the simply-supported edges, as it is reported in Table 2 and in Figures 4 and 5. Table 2 reports
the values of the first natural frequency of the a/h = 100 plate that has two simply-supported edges
and two free edges using the GDQ model. a is the plate side and L is the extended edge. Table 2 is
reported in graphical form in Figure 4 where it is clear that the more L is large, the smaller is the error
with respect to the 3D exact model. When the considered edge is 25 times the original one, the error
between the two solutions is very small. In fact, the mode shape for such structure is very similar to
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a C.B. condition as depicted by Figure 5, in this case the boundary effects are negligible with respect
the length of the simply supported edges. Take note that it is not possible to completely avoid the
boundary effects due to the free edges. Results with m = 0 or n = 0 combined with w = 0 are not
cylindrical bending modes and they can be found with 2D numerical models without modifying the
boundary conditions.

The second case considers the same plate geometry described in the first example. In this case
four composite layers with the same thickness (h1 = h2 = h3 = h4 = h/4) and lamination sequence
90◦/0◦/90◦/0◦ are considered. The material properties are E1 = 132.38 GPa, E2 = E3 = 10.756 GPa,
ν12 = ν13 = 0.24 and ν23 = 0.49, shear modulus G12 = G13 = 5.6537 GPa and G23 = 3.603 GPa,
ρ = 1600 kg/m3. Both numerical 2D models (FE and GDQ ones) use the same elements, mesh, grid
and degrees of freedom already shown in the first example. The Murakami zigzag function is added to
the refined 2D GDQ model in the case of multilayered configurations. Results are proposed in Table
3 using the same organization already described for the Table 1. The conclusions and considerations
already seen for the one-layered isotropic plate analyzed in Table 1 are confirmed for the four-layered
composite plate investigated in Table 3. For the composite lamination, the refined 2D GDQ model is
much closer to 3D exact solution than the classical 2D FE model.

The third example is related to a simply-supported cylinder with Rα = 10 m, Rβ = ∞, a = 2πRα,
b = 20 m and thickness ratios Rα/h equals 100 and 10. A two-layer lamination scheme is taken into
account with h1 = h2 = h/2 made of Aluminium alloy as bottom layer and Titanium alloy (E = 114
GPa, ν = 0.3, ρ = 2768 kg/m3) as top layer. The FE model is made of 20× 80 QUAD8 elements for a
total number of 27966 degrees of freedom, whereas the GDQ solution is made of a 21× 41 Chebyshev-
Gauss-Lobatto grid. The results for this example are reported in Table 4 with the same meaning of the
columns already seen in the previous flat plate cases. It should be noted that the structure is symmetric
only with respect to one direction. Numerically speaking, compatibility conditions must be enforced
on the closing meridian in order to obtain a closed revolution shell. Thus, for achieving C.B. conditions
the shell is numerically investigated as not bounded. In this case the first 6 mode shapes (rigid body
motions) are neglected and the other flexural modes are taken from the 7th numerical mode onwards.
Good agreement can be observed among all the presented vibration frequencies. Results with n = 0
and w 6= 0 indicate the C.B. conditions. Such results are obtained by means of 2D numerical models
modifying the boundary conditions (see 2D FE(C.B.) and 2D GDQ(C.B.) models). The cases n = 0
combined with w = 0 are not C.B. conditions and the frequencies can be found without modifying the
boundary conditions in the 2D numerical models.

The final test regards a simply-supported cylindrical shell panel with Rα = 10 m, Rβ = ∞, a =
π/3Rα, b = 20 m and thickness ratios Rα/h equals 100 and 10. The structure is made of a three-
layered (h1 = h2 = h3 = h/3) composite laminate with 90◦/0◦/90◦ sequence and material properties
E1 = 132.38 GPa, E2 = E3 = 10.756 GPa, ν12 = ν13 = 0.24 and ν23 = 0.49, shear modulusG12 = G13 =
5.6537 GPa and G23 = 3.603 GPa, ρ = 1600 kg/m3 (the same material proposed for the composite
plate case). The FE model is made of 40 × 40 QUAD8 elements for total 29280 degrees of freedom,
whereas the GDQ solution is made of a 31 × 31 Chebyshev-Gauss-Lobatto grid. The present natural
frequencies are reported in Table 5 with the same meaning of the columns seen in the previous cases.
In order to achieve the cylindrical bending conditions, the numerical models have the straight edges
simply-supported and the curved ones as free. Note that it is not possible to achieve C.B. conditions
when (m,n) equals (0, 1) or (0, 2) because the cylindrical bending should occur on the curved edge and
this is not physically possible because of the variation of displacement components due to the curvature
presence. This feature is indicated as N.A. (Not Applicable) solution in Table 5. Therefore, this kind of
3D exact solutions cannot be achieved by any numerical model. Cases with n = 0 or m = 0 combined
with w = 0 can be found with 2D numerical models without modifying the simply supported boundary
conditions.

10



5 Conclusions

This work presented the cylindrical bending of plates and cylindrical shells in the free vibration analysis.
This effect is analyzed using a 3D exact shell model and two different 2D numerical models, one based
on the weak formulation (classical FEs) and the other one based on the strong formulation (GDQ
method). It has been demonstrated that the cylindrical bending (C.B.) behavior in the 3D exact shell
model can be achieved considering completely simply-supported structures and simply imposing one
of the two half-wave numbers equals zero. The numerical models need mixed simply-supported and
free boundary conditions in order to obtain the cylindrical bending behavior. It has been shown that
the actual cylindrical bending (C.B.) occurs only with respect to straight edges. The C.B. natural
frequencies of the numerical solutions tend to the 3D exact ones when the straight simply-supported
edges are extended up to 20 times the value of the original edges. The C.B. conditions cannot be
obtained modifying the boundary conditions in 2D numerical models when the half-wave number is
zero in the curvilinear edge. In-plane vibration modes with m = 0 or n = 0 combined with zero
transverse displacement are not C.B. modes and they can be obtained by 2D numerical models without
modifying the simply supported conditions for all the edges.
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a/h=100

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
0,1 I 24.27 - 23.68 - 23.67
1,0 I 24.27 - 23.68 - 23.67
1,1 I 48.52 48.53 - 48.53 -
0,2 I 97.02 - 95.68 - 95.67
2,0 I 97.02 - 95.68 - 95.67
1,2 I 121.2 121.3 - 121.2 -
2,1 I 121.2 121.3 - 121.2 -
2,2 I 193.9 194.0 - 193.9 -
0,3 I 218.1 - 216.0 - 216.0
3,0 I 218.1 - 216.0 - 216.0
1,3 I 242.3 242.7 - 242.3 -
3,1 I 242.3 242.7 - 242.3 -
2,3 I 314.8 315.1 - 314.8 -
3,2 I 314.8 315.1 - 314.8 -
0,4 I 387.3 - 384.2 - 384.3
4,0 I 387.3 - 384.2 - 384.3
1,4 I 411.4 412.6 - 411.4 -
4,1 I 411.4 412.6 - 411.4 -

a/h=20

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
0,1 I 120.8 - 117.7 - 117.8
1,0 I 120.8 - 117.7 - 117.8
1,1 I 240.6 241.0 - 240.6 -
0,2 I 477.2 - 469.7 - 470.0
2,0 I 477.2 - 469.7 - 470.0
1,2 I 594.0 596.6 - 594.0 -
2,1 I 594.0 596.6 - 594.0 -
2,2 I 938.9 944.7 - 939.0 -
0,3 I 1052 - 1039 - 1041
3,0 I 1052 - 1039 - 1041
1,3 I 1164 1174 - 1164 -
3,1 I 1164 1174 - 1164 -
2,3 I 1496 1511 - 1496 -
3,2 I 1496 1511 - 1496 -
0,1 II (w=0) 1583 1584 - 1583 -
1,0 II (w=0) 1583 1584 - 1583 -
0,4 I 1821 - 1789 - 1805
4,0 I 1821 - 1789 - 1805

Table 1: Isotropic one-layered plate. Analytical 3D vs. 2D numerical models. Frequency f in Hz.
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L/a 1 2 3 4 5 6 7 8 9 10 20 25
3D exact 24.27 24.27 24.27 24.27 24.27 24.27 24.27 24.27 24.27 24.27 24.27 24.27

2D GDQ(C.B.) 23.67 23.93 24.03 24.08 24.11 24.13 24.15 24.16 24.17 24.17 24.20 24.20

Table 2: First mode for a/h=100 isotropic plate: convergence of the 2D GDQ(C.B.) solution versus
the length of the simply supported edges.
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a/h=100

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
0,1 I 28.24 - 28.23 - 28.23
1,0 I 28.24 - 28.23 - 28.23
1,1 I 44.06 44.08 - 44.07 -
0,2 I 112.7 - 112.7 - 112.6
2,0 I 112.7 - 112.7 - 112.6
1,2 I 121.9 122.1 - 122.0 -
2,1 I 121.9 122.1 - 122.0 -
2,2 I 175.7 175.9 - 175.7 -
0,3 I 252.4 - 252.9 - 252.4
3,0 I 252.4 - 252.9 - 252.4
1,3 I 259.9 260.6 - 260.0 -
3,1 I 259.9 260.6 - 260.0 -
2,3 I 297.7 298.3 - 297.8 -
3,2 I 297.7 298.3 - 297.8 -
3,3 I 393.3 394.3 - 393.4 -
0,4 I 446.0 - 447.8 - 446.1
4,0 I 446.0 - 447.8 - 446.1
1,4 I 452.9 454.7 - 453.1 -

a/h=20

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
0,1 I 138.3 - 139.2 - 138.3
1,0 I 138.3 - 139.2 - 138.3
1,1 I 215.0 216.5 - 215.1 -
0,2 I 521.6 - 534.0 - 522.6
2,0 I 521.6 - 534.0 - 522.6
1,2 I 565.1 577.8 - 566.3 -
2,1 I 565.1 577.8 - 566.3 -
2,2 I 802.5 821.9 - 804.0 -
0,1 II(w=0) 939.9 939.9 - 939.9 -
1,0 II(w=0) 939.9 939.9 - 939.9 -
0,3 I 1079 - 1128 - 1084
3,0 I 1079 - 1128 - 1084
1,3 I 1112 1162 - 1117 -
3,1 I 1112 1162 - 1117 -
2,3 I 1276 1327 - 1280 -
3,2 I 1276 1327 - 1280 -
3,3 I 1642 1714 - 1647 -
0,4 I 1743 - 1857 - 1753

Table 3: Four-layered composite [90◦/0◦/90◦/0◦] plate. Analytical 3D vs. 2D numerical models.
Frequency f in Hz.
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Rα/h=100

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
6,0 I 2.078 - 2.072 - 2.070
8,0 I 3.984 - 3.973 - 3.969
10,0 I 6.442 - 6.424 - 6.429
12,0 I 9.448 - 9.423 - 9.428
10,1 I 10.76 10.76 - 10.76 -
12,1 I 11.65 11.64 - 11.65 -
8,1 I 12.77 12.78 - 12.78 -
14,0 I 13.00 - 12.97 - 12.95
14,1 I 14.33 14.31 - 14.33 -
16,0 I 17.10 - 17.06 - 17.03
16,1 I 18.07 18.05 - 18.07 -
6,1 I 18.92 18.93 - 18.93 -
18,0 I 21.74 - 21.70 - 21.65
14,2 I 21.86 21.81 - 21.87 -

Rα/h=10

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
4,0 I 7.276 - 7.205 - 7.237
6,0 I 20.39 - 20.32 - 20.20
6,1 I 32.11 32.07 - 32.11 -
4,1 I 34.21 34.21 - 34.21 -
8,0 I 38.62 - 38.85 - 38.31
8,1 I 45.94 45.89 - 45.95 -
2,1 I 55.77 55.81 - 55.77 -
2,0 I (w=0) 57.07 57.05 - 57.07 -
10,0 I 61.55 - 62.10 - 61.17
6,2 I 64.74 65.01 - 64.74 -
10,1 I 67.78 67.80 - 67.78 -
4,2 I 70.94 71.37 - 70.94 -
8,2 I 71.41 71.52 - 71.41 -
2,2 I 85.43 86.03 - 85.43 -

Table 4: Isotropic two-layered cylinder. Analytical 3D vs. 2D numerical models. Frequency f in Hz.
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Rα/h=100

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
1,0 I 1.079 - 1.079 - 1.079
2,0 I 4.906 - 4.909 - 4.907
2,1 I 7.717 7.723 - 7.718 -
3,0 I 11.29 - 11.30 - 11.29
3,1 I 12.02 12.02 - 12.02 -
1,1 I 13.43 13.44 - 13.43 -
3,2 I 15.60 15.60 - 15.60 -
2,2 I 15.61 15.62 - 15.62 -
4,0 I 20.21 - 20.25 - 20.21
4,1 I 20.62 20.63 - 20.62 -
3,3 I 21.62 21.62 - 21.62 -
4,2 I 22.52 22.53 - 22.52 -
2,3 I 24.42 24.42 - 24.43 -
4,3 I 26.49 26.49 - 26.49 -

Rα/h=10

m,n Mode 3D Exact 2D FE 2D FE(C.B.) 2D GDQ 2D GDQ(C.B.)
1,0 I 10.61 - 10.76 - 10.61
1,1 I 20.81 20.73 - 20.82 -
2,0 I 45.79 - 48.43 - 45.85
0,1 I(w=0) 46.99 47.03 - 46.99 -
1,2 I 47.28 47.11 - 47.30 -
2,1 I 49.51 49.23 - 49.60 -
2,2 I 65.53 65.08 - 65.60 -
1,3 I 82.06 81.73 - 82.09 -
1,0 II(w=0) 89.79 89.80 - 89.79 -
0,1 II 90.69 - N.A. - N.A.
0,2 I(w=0) 93.99 93.99 - 93.99 -
2,3 I 93.94 95.14 - 94.00 -
0,2 II 96.87 - N.A. - N.A.
3,0 I 97.86 - 109.6 - 98.19

Table 5: Three-layered composite [90◦/0◦/90◦] cylindrical shell panel. Analytical 3D vs. 2D numerical
models. Frequency f in Hz.
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Figure 1: Geometries investigated by means of 3D exact and 2D numerical models.
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Figure 2: Differences between in-plane (w = 0) and cylindrical bending vibration modes for the a/h=20
isotropic one-layered plate. 3D modes vs. 2D modes.
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Figure 3: First four cylindrical bending vibration modes for the a/h=20 isotropic one-layered plate.
3D modes vs. 2D modes.
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Figure 4: First mode for the a/h=100 isotropic plate: convergence of the 2D GDQ(C.B.) solution
increasing the length of the simply supported edges.
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Figure 5: First vibration mode for the a/h=100 isotropic plate: 2D GDQ(C.B.) solution and edge
effects vs. length of simply supported edges.
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