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The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple
verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential
Quadrature (GDQ) and the finite element (FE) methods) are compared with an exact 3D shell solution in the case of free vibrations
of functionally graded material (FGM) plates and shells. The first 18 vibration modes carried out through the 3D exact model are
compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are
computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are
used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary
conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, somemodes
cannot be calculated via the 2Dnumericalmodels evenwhen the boundary conditions aremodified because the cylindrical bending
requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in
the present paper for different geometries (plates, cylinders, and cylindrical shells), types of FGM law, lamination sequences, and
thickness ratios.

1. Introduction

The cylindrical bending conditions have a great diffusion
in the open literature because they allow an immediate and
simple verification of several plate and shell models. Some
of these plate models which use the cylindrical bending
hypotheses for the verifications are discussed in the fol-
lowing. Chen et al. [1] used the state-space method for
the investigation of a simply supported cross-ply laminated
plate embedding viscous interfaces in cylindrical bending.
Chen and Lee [2, 3] also used the state-space method for
the cylindrical bending analysis of simply supported angle-
ply laminated plates with interfacial damage and simply
supported angle-ply laminated plates subjected to a static
load. An experimental three-roller cylindrical bending inves-
tigation for plates was proposed by Gandhi and Raval [4];
the comparison with analytical solutions was also conducted.
Oral and Darendeliler [5] proposed a methodology for the
design of plate-forming dies in cylindrical bending using

optimization techniques which allow the cost reductions
of die production. Considering the large deflection of a
thin beam, under certain conditions, the solution of the
plate problem is not unique [6]. The bending-gradient plate
theory, seen as an extension of the Reissner-Mindlin plate
model, was used in [7] for the cylindrical bending analysis
of laminated plates. Nimbolkar and Jain [8] used the same
Reissner-Mindlin plate theory for the cylindrical bending
investigation of composite and elastic plates subjected to the
mechanical transverse load under plain strain conditions.
Sayyad and Ghugal [9] investigated laminated plates using
a 𝑛th order shear deformation theory under cylindrical
bending requirements. Some of the most important three-
dimensional exact plate solutions were proposed by Pagano
[10] and Pagano and Wang [11] for the cylindrical bending
analysis of multilayered composite plates. Saeedi et al. [12]
developed a 2D plate layer-wise model for the analysis of
delamination growth in multilayered plates subjected to
cylindrical bending loadings. This method is alternative to
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the finite element method. Shu and Soldatos [13] developed
a new stress analysis method to investigate the stress dis-
tributions in angle-ply laminated plates when subjected to
cylindrical bending. Further cylindrical bending analyses for
plates consider the inclusion of functionally graded material
(FGM) layers; typical examples are [14, 15]. In [16–21],
the cylindrical bending analysis was proposed for multi-
layered plates embedding piezoelectric and/or FGM layers.
The cylindrical bending analysis for multilayered composite
and/or piezoelectric plates proposed in [22–24] includes
the application of thermal loads. The cylindrical bending
analysis of shells is not so diffused in the literature. Few
cases can be found, and they concern the cylindrical bending
conditions imposed to cylindrical shells. Simply supported
angle-ply laminated cylindrical shells in cylindrical bending
were investigated in [25] using the state-space formulation for
the bending and free vibration analyses. A three-dimensional
piezoelectric model based on the perturbation method for
the cylindrical bending electromechanical load applications
to cylindrical shells was proposed in [26]. Yan et al. [27] ana-
lyzed the cylindrical bending behavior of a simply supported
angle-ply laminated cylindrical shell embedding viscoelastic
interfaces.

The authors proposed the free vibration analysis of simply
supported FGM plates and shells in [28, 29] where the 3D
exact shell model was compared with several 2D numerical
models such as the classical finite element (FE) one and
the classical and refined Generalized Differential Quadrature
(GDQ) methods. Similar comparisons were also proposed
in [30, 31] for one-layered and multilayered isotropic, com-
posite, and sandwich plates and shells. In such analyses, the
considered geometries are plates, cylinders, and cylindrical
and spherical shell panels. Low and high frequencies were
calculated for thick and thin simply supported plates and
shells with constant radii of curvature. The comparison
between the 2D numerical methods (FE and GDQ solutions)
and the 3D exact solution is possible only if an exhaustive
vibrationmode investigation is conducted.This investigation
allows understanding how to make the comparison between
numerical and analytical methods. This comparison is not
easy because the exact 3D solution gives infinite vibration
modes for all the possible combinations of half-wave numbers
(𝑚, 𝑛) and 2D numerical models propose a finite number of
vibration modes because they use a finite number of degrees
of freedom in the plane and in the thickness direction.
It should be underlined that the 3D exact model is able
to investigate any kind of geometric ratio (from extremely
thick to very thin structures); nevertheless it can model only
simply supported boundary conditions and it can investigate
structures wherein constant radii of curvature are present.
The 2D numerical approaches are more versatile (in terms
of boundary conditions and type of structure analyzed);
however they can be used only for moderately thick struc-
tures. It is obvious that thick structures can be analyzed only
when higher order displacement fields are set in such 2D
models. Since commercial codes implement only through the
thickness linear theories, they can investigate accurately only
moderately thick shells. The method proposed in [28–31] to
compare the 3D exact shell model and the 2D numerical

models is based on the calculation of the frequencies via
the 2D numerical code and their appropriate visualization
of the relative vibration modes via the GDQ and/or FE
method. After this visualization, the evaluation of the 3D
exact frequencies is possible by means of the appropriate
imposition of half-wave numbers obtained from the vibration
mode study. From this procedure, it is clear how the 3D
analysis could give some frequencies that cannot be calcu-
lated by the 2D numerical codes. This feature was not the
aim of the papers [28–31], and for this reason these missed
frequencies are investigated in the present newwork for FGM
structures.

This new analysis is conducted calculating the first 18
frequencies for one-layered and sandwich FGM plates and
shells by means of the 3D exact model. The half-wave
numbers are combined along the two directions 𝛼 and 𝛽
in the plane considering the simply supported boundary
conditions for the four edges. In these first 18 frequencies
there are some modes that cannot be calculated by means
of the 2D numerical models because they are not solutions
of the employed mathematical model with the four simply
supported edges. In general, these missed modes by the
2D numerical models correspond to the cylindrical bending
conditions. These conditions in the 3D exact solution mean
that one of the two half-wave numbers is equal to zero
through an edge direction with a transverse displacement
different from zero along the perpendicular edge. These
particular frequencies are not solutions of the 2D numerical
models built with the four edges which are simply supported,
but a different mathematical model must be defined where
two edges are simply supported and the other two are
free. These conditions allow the cylindrical bending, with
the transverse displacement through two parallel edges
different from zero, in numerical models in order to
obtain the missed frequencies and modes. This condi-
tion is possible only when the zero half-wave number
is imposed through a rectilinear side because the half-
wave number equals zero in the curvilinear edge does
not mean that all the derivatives in the that direction are
zero because of the presence of the curvature. This last
condition is in conflict with the definition of cylindrical
bending.

The 3D exact shell model is described and validated
in Section 2. It uses the equilibrium equations written
using the generic curvilinear orthogonal coordinates. Such
equations are solved in closed form by means of simply
supported boundary conditions. The differential equations
along 𝑧, written in layer-wise form, are solved using the
exponential matrix method (also known as transfer matrix
method or the state-space approach). The 2D FE and GDQ
models are proposed and opportunely validated in Sec-
tion 3. The 2D FE model makes use of a very common
commercial finite element code. The 2D GDQ models give
results by means of an in-house academic software and
they are based on classical and refined shell models. The
results about the comparisons between 3D exact and 2D
numerical models, with the remark about the boundary
conditions, are shown Section 4. Section 5 gives the main
conclusions.
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Figure 1: Geometries of plates and shells with constant radii of curvature and their local reference system.

2. Exact Solution of a 3D Shell Model

The three-dimensional exact shell model employed for the
comparisons proposed in Section 4 has been elaborated in
[32–40] for the free frequency analyses of single-layered and
multilayered isotropic, orthotropic, composite, FGM, and
sandwich plates and shells with constant radii of curvature
and for the free vibrations of single- and double-walled
carbon nanotubes including van der Waals interactions. The
equilibrium equations proposed in the general orthogonal
curvilinear coordinate system (𝛼, 𝛽, 𝑧) are valid for both
plates and shells with constant radii of curvature. For the
sake of clarity, the plates and shells geometries within their
local coordinate systems are depicted in Figure 1. The exact
form of these equations is obtained using simply supported
boundary conditions, while the differential equations in 𝑧
are solved by means of the exponential matrix method
(also known as transfer matrix method or the state-space
approach).

Considering spherical shells with constant radii of cur-
vature 𝑅𝛼 and 𝑅𝛽 and embedding 𝑁𝐿 classical or FGM layers,

the differential equations of equilibrium for the free vibration
analysis written for a generic 𝑘 layer are

𝐻𝛽 𝜕𝜎𝑘𝛼𝛼𝜕𝛼 + 𝐻𝛼 𝜕𝜎𝑘𝛼𝛽𝜕𝛽 + 𝐻𝛼𝐻𝛽 𝜕𝜎𝑘𝛼𝑧𝜕𝑧
+ (2𝐻𝛽𝑅𝛼 + 𝐻𝛼𝑅𝛽 ) 𝜎𝑘𝛼𝑧 = 𝜌𝑘𝐻𝛼𝐻𝛽�̈�𝑘,

𝐻𝛽 𝜕𝜎𝑘𝛼𝛽𝜕𝛼 + 𝐻𝛼 𝜕𝜎𝑘𝛽𝛽𝜕𝛽 + 𝐻𝛼𝐻𝛽 𝜕𝜎𝑘𝛽𝑧𝜕𝑧
+ (2𝐻𝛼𝑅𝛽 + 𝐻𝛽𝑅𝛼 ) 𝜎𝑘𝛽𝑧 = 𝜌𝑘𝐻𝛼𝐻𝛽V̈𝑘,

𝐻𝛽 𝜕𝜎𝑘𝛼𝑧𝜕𝛼 + 𝐻𝛼 𝜕𝜎𝑘𝛽𝑧𝜕𝛽 + 𝐻𝛼𝐻𝛽 𝜕𝜎𝑘𝑧𝑧𝜕𝑧 − 𝐻𝛽𝑅𝛼 𝜎𝑘𝛼𝛼 − 𝐻𝛼𝑅𝛽 𝜎𝑘𝛽𝛽
+ (𝐻𝛽𝑅𝛼 + 𝐻𝛼𝑅𝛽 ) 𝜎𝑘𝑧𝑧 = 𝜌𝑘𝐻𝛼𝐻𝛽�̈�𝑘.

(1)
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It is remarked that this set of equations is valid only
for spherical shells wherein 𝑅𝛼 = 𝑅𝛽 = 𝑅, because for
doubly curved shells with variable radii of curvature such
equations take a different form. The authors decided to keep
such system with the two radii of curvature distinct because
it will be much easier to understand the cylindrical bending
effect for plates and shells starting from a general point of
view.

In the case of shell geometries and/or FGM layers, each
physical layer 𝑘 must be divided in an opportune number
of 𝑞 mathematical layers to approximate the shell curvature
and/or the FGM law through the thickness direction 𝑧. The
index 𝑗 indicates the total mathematical layers obtained from
the subdivision of each 𝑘 layer in 𝑞 mathematical layers (𝑗 =𝑘 × 𝑞). The parametric coefficients for shells with constant
radii of curvature can be written as

𝐻𝛼 = (1 + 𝑧𝑅𝛼) ,
𝐻𝛽 = (1 + 𝑧𝑅𝛽) ,
𝐻𝑧 = 1.

(2)

A closed form solution for simply supported shells and
plates can be developed by writing harmonic displacements
as

𝑢𝑗 (𝛼, 𝛽, 𝑧, 𝑡) = 𝑈𝑗 (𝑧) 𝑒𝑖𝜔𝑡 cos (𝛼𝛼) sin (𝛽𝛽) ,
V𝑗 (𝛼, 𝛽, 𝑧, 𝑡) = 𝑉𝑗 (𝑧) 𝑒𝑖𝜔𝑡 sin (𝛼𝛼) cos (𝛽𝛽) ,
𝑤𝑗 (𝛼, 𝛽, 𝑧, 𝑡) = 𝑊𝑗 (𝑧) 𝑒𝑖𝜔𝑡 sin (𝛼𝛼) sin (𝛽𝛽) ,

(3)

where 𝑈𝑗(𝑧), 𝑉𝑗(𝑧), and 𝑊𝑗(𝑧) indicate the displacement
amplitudes in 𝛼, 𝛽, and 𝑧 directions, respectively. 𝑖 indicates
the imaginary unit. 𝜔 = 2𝜋𝑓 is the circular frequency
where 𝑓 is the frequency value in Hz. 𝑡 is the symbol for
the time. In the coefficients 𝛼 = 𝑚𝜋/𝑎 and 𝛽 = 𝑛𝜋/𝑏,𝑚 and 𝑛 are the half-wave numbers and 𝑎 and 𝑏 are the
shell dimensions in 𝛼 and 𝛽 directions, respectively (all these
quantities are evaluated on the midsurface Ω0). 𝜌𝑗 is the
mass density. (𝜎𝑗𝛼𝛼, 𝜎𝑗𝛽𝛽, 𝜎𝑗𝑧𝑧, 𝜎𝑗𝛽𝑧, 𝜎𝑗𝛼𝑧, 𝜎𝑗𝛼𝛽) are the six stress
components and �̈�𝑗, V̈𝑗, and �̈�𝑗 are the second temporal
derivative of the three displacement components. 𝑅𝛼 and𝑅𝛽 indicate the radii of curvature defined with respect the
reference surface Ω0 of the whole multilayered plate or shell.𝐻𝛼 and 𝐻𝛽 proposed in (2) vary with continuity through the
thickness direction of the multilayered structure. Therefore,
they depend on the thickness coordinate 𝑧. The reference
surface Ω0 of the structure is defined as the locus of points
which are positioned midway between the external surfaces.
Displacement components are indicated as 𝑢, V, and 𝑤 in 𝛼,𝛽, and 𝑧 directions, respectively.

The final system in closed form is developed substituting
(3) and constitutive and geometrical equations (which are not

here given for the sake of brevity but they can be found in
detail in [32]) in (1):

(−𝐶𝑗55𝐻𝑗𝛽𝐻𝑗𝛼𝑅2𝛼 − 𝐶𝑗55𝑅𝛼𝑅𝛽 − 𝛼2𝐶𝑗11𝐻𝑗𝛽𝐻𝑗𝛼 − 𝛽2𝐶𝑗66𝐻𝑗𝛼𝐻𝑗𝛽
+ 𝜌𝑗𝐻𝑗𝛼𝐻𝑗𝛽𝜔2) 𝑈𝑗 + (−𝛼𝛽𝐶𝑗12 − 𝛼𝛽𝐶𝑗66) 𝑉𝑗

+ (𝛼𝐶𝑗11𝐻𝑗𝛽𝐻𝑗𝛼𝑅𝛼 + 𝛼𝐶𝑗12𝑅𝛽 + 𝛼𝐶𝑗55𝐻𝑗𝛽𝐻𝑗𝛼𝑅𝛼 + 𝛼𝐶𝑗55𝑅𝛽 ) 𝑊𝑗

+ (𝐶𝑗55𝐻𝑗𝛽𝑅𝛼 + 𝐶𝑗55𝐻𝑗𝛼𝑅𝛽 ) 𝑈𝑗,𝑧 + (𝛼𝐶𝑗13𝐻𝑗𝛽 + 𝛼𝐶𝑗55𝐻𝑗𝛽)
⋅ 𝑊𝑗,𝑧 + (𝐶𝑗55𝐻𝑗𝛼𝐻𝑗𝛽) 𝑈𝑗,𝑧𝑧 = 0,

(−𝛼𝛽𝐶𝑗66 − 𝛼𝛽𝐶𝑗12) 𝑈𝑗 + (−𝐶𝑗44𝐻𝑗𝛼𝐻𝑗𝛽𝑅2𝛽 − 𝐶𝑗44𝑅𝛼𝑅𝛽
− 𝛼2𝐶𝑗66𝐻𝑗𝛽𝐻𝑗𝛼 − 𝛽2𝐶𝑗22𝐻𝑗𝛼𝐻𝑗𝛽 + 𝜌𝑗𝐻𝑗𝛼𝐻𝑗𝛽𝜔2) 𝑉𝑗

+ (𝛽𝐶𝑗44𝐻𝑗𝛼𝐻𝑗𝛽𝑅𝛽 + 𝛽𝐶𝑗44𝑅𝛼 + 𝛽𝐶𝑗22𝐻𝑗𝛼𝐻𝑗𝛽𝑅𝛽 + 𝛽𝐶𝑗12𝑅𝛼 ) 𝑊𝑗

+ (𝐶𝑗44𝐻𝑗𝛼𝑅𝛽 + 𝐶𝑗44𝐻𝑗𝛽𝑅𝛼 ) 𝑉𝑗,𝑧 + (𝛽𝐶𝑗44𝐻𝑗𝛼 + 𝛽𝐶𝑗23𝐻𝑗𝛼)
⋅ 𝑊𝑗,𝑧 + (𝐶𝑗44𝐻𝑗𝛼𝐻𝑗𝛽) 𝑉𝑗,𝑧𝑧 = 0,

(𝛼𝐶𝑗55𝐻𝑗𝛽𝐻𝑗𝛼𝑅𝛼 − 𝛼𝐶𝑗13𝑅𝛽 + 𝛼𝐶𝑗11𝐻𝑗𝛽𝐻𝑗𝛼𝑅𝛼 + 𝛼𝐶𝑗12𝑅𝛽 ) 𝑈𝑗

+ (𝛽𝐶𝑗44𝐻𝑗𝛼𝐻𝑗𝛽𝑅𝛽 − 𝛽𝐶𝑗23𝑅𝛼 + 𝛽𝐶𝑗22𝐻𝑗𝛼𝐻𝑗𝛽𝑅𝛽 + 𝛽𝐶𝑗12𝑅𝛼 ) 𝑉𝑗

+ ( 𝐶𝑗13𝑅𝛼𝑅𝛽 + 𝐶𝑗23𝑅𝛼𝑅𝛽 − 𝐶𝑗11𝐻𝑗𝛽𝐻𝑗𝛼𝑅2𝛼 − 2𝐶𝑗12𝑅𝛼𝑅𝛽 − 𝐶𝑗22𝐻𝑗𝛼𝐻𝑗𝛽𝑅2𝛽
− 𝛼2𝐶𝑗55𝐻𝑗𝛽𝐻𝑗𝛼 − 𝛽2𝐶𝑗44𝐻𝑗𝛼𝐻𝑗𝛽 + 𝜌𝑗𝐻𝑗𝛼𝐻𝑗𝛽𝜔2) 𝑊𝑗

+ (−𝛼𝐶𝑗55𝐻𝑗𝛽 − 𝛼𝐶𝑗13𝐻𝑗𝛽) 𝑈𝑗,𝑧 + (−𝛽𝐶𝑗44𝐻𝑗𝛼
− 𝛽𝐶𝑗23𝐻𝑗𝛼) 𝑉𝑗,𝑧 + (𝐶𝑗33𝐻𝑗𝛽𝑅𝛼 + 𝐶𝑗33𝐻𝑗𝛼𝑅𝛽 ) 𝑊𝑗,𝑧
+ (𝐶𝑗33𝐻𝑗𝛼𝐻𝑗𝛽) 𝑊𝑗,𝑧𝑧 = 0.

(4)
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The cylindrical bending requirements for analytical methods
are obtained choosing one of the two half-wave numbers
which equals zero. This condition means 𝛼 = 𝑚𝜋/𝑎 =0 or 𝛽 = 𝑛𝜋/𝑏 = 0 which allows the derivatives made
in a particular direction (𝛼 or 𝛽) which equals zero too.
This mathematical condition means that each section in the
cylindrical bending direction has always the same behavior.

It is obvious that the cylindrical bending effect is proper
for cylindrical structures only. However, the authors started
the present treatise from the governing equations (1) of
spherical shell structures because one of the aims of the
present contribution is to underline which are the extra
terms (related to the curvature) that do not allow having the
structure to be in cylindrical bending conditions.

The compact form of (4) has been elaborated in detail in
[32]. The final version is here proposed:

D𝑗 𝜕U𝑗𝜕𝑧 = A𝑗U𝑗, (5)

where 𝜕U𝑗/𝜕𝑧 = U𝑗 andU𝑗 = [𝑈𝑗 𝑉𝑗 𝑊𝑗 𝑈𝑗 𝑉𝑗 𝑊𝑗].
Equation (5) is rewritten as

D𝑗U𝑗 = A𝑗U𝑗, (6)

U𝑗 = D𝑗−1A𝑗U𝑗, (7)

U𝑗 = A𝑗∗U𝑗, (8)

with A𝑗∗ = D𝑗−1A𝑗.
The exponential matrix method (also known as transfer

matrix method or the state-space approach) is employed for
the solution of (8) (details are given in [32]):

U𝑗 (𝑧𝑗) = exp (A𝑗∗𝑧𝑗)U𝑗 (0) with 𝑧𝑗 ∈ [0, ℎ𝑗] , (9)

where 𝑧𝑗 is the thickness coordinate for the 𝑗 mathematical
layer with values from 0 at the bottom to ℎ𝑗 at the top. The
exponential matrix is calculated using 𝑧𝑗 = ℎ𝑗 for each 𝑗
mathematical layer:

A𝑗∗∗ = exp (A𝑗∗ℎ𝑗)
= I + A𝑗∗ℎ𝑗 + A𝑗∗22! ℎ𝑗2 + A𝑗∗33! ℎ𝑗3 + ⋅ ⋅ ⋅

+ A𝑗∗𝑁𝑁! ℎ𝑗𝑁,
(10)

where I indicates the 6×6 identitymatrix.The expansion used
for the exponentialmatrix in (10) has a fast convergence and it
is not time consuming from the computational point of view.𝑗 = 𝑀 mathematical layers are used to approximate the
shell curvature and/or the FGM law through the thickness.𝑀 − 1 transfer matrices must be defined by means of
the interlaminar continuity conditions of displacements and
transverse shear/normal stresses at each interface.The closed
form solution for plates or shells is obtained using simply

supported boundary conditions and free stress conditions at
the top and at the bottom surfaces. The above conditions
allow the following final system:

EU1 (0) = 0, (11)

and the 6 × 6 matrix E does not change, independently of the
number of layers 𝑀, even if a layer-wise approach is applied.
U1(0) is the vector U defined at the bottom of the whole
multilayered shell or plate (first layer 1 with 𝑧1 = 0). All the
steps and details, here omitted for the sake of brevity, can be
found in [32–40] where the proposed exact 3D shell model
has been elaborated and tested for the first time for several
applications. Several validations for the 3D exact shell model
have been shown in [32–40]. For this reason, the model is
now used with confidence for the results and comparisons
proposed in Section 4.

The nontrivial solution ofU1(0) in (11) allows conducting
the free vibration analysis imposing the zero determinant of
matrix E:

det [E] = 0, (12)

Equation (12) is used to find the roots of an higher order poly-
nomial written in 𝜆 = 𝜔2.The imposition of a couple of (𝑚, 𝑛)
allows a certain number of circular frequencies 𝜔 = 2𝜋𝑓
(from I to ∞) to be calculated. This number of frequencies
depends on the order 𝑁 used in each exponential matrix
A𝑗∗∗ and the number 𝑀 of mathematical layers employed
for the shell curvature and/or the FGM law approximations.
The results shown in [32–40] confirm that 𝑁 = 3 for the
exponential matrix and 𝑀 = 100 for the mathematical
layers are appropriate to always calculate the correct free
frequencies for each structure, lamination sequence, number
of layers, material, FGM law, and thickness value.

3. 2D Finite Element Analysis and 2D
Generalized Differential Quadrature Models

The 3D exact natural frequencies are compared with two
numerical 2D solutions given by a weak and a strong
formulation. The former is a classic 2D finite element (FE)
model carried out through the commercial software Strand7.
The latter is a recent widespread technique known as Gener-
alized Differential Quadrature (GDQ) method [41]. Details
related to convergence and accuracy of these techniques
can be found in the works [29–31]. It is noted that the
FE solution employs a classic linear theory, known also
as Reissner-Mindlin theory, with a linear rotation of the
fibers through the shell thickness. The present GDQ solution
exploits higher order theories with a general expansion
through the thickness of the structure.This general approach
falls within the framework of the unified theories because
several structural models can be obtained via the repetition
of a fundamental nucleus. Another difference between the
GDQ applications and the FE ones is that the former
includes the curvature effects and the rotary inertias in its
formulation.
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The 2D kinematic hypothesis [42–50] considers the fol-
lowing expansion of the degrees of freedom:

U = 𝑁𝑐+1∑
𝜏=0

F𝜏u
(𝜏), (13)

where U represents the vector of the 3D displacement
components, which is function of (𝛼, 𝛽, 𝑧), and u𝜏 is the
vector of the displacement parameters, function of (𝛼, 𝛽),
which depends on the free index 𝜏. Therefore u𝜏 lays on the
midsurface of the shell [42]. The matrix F𝜏(𝑖𝑗) = 𝛿𝑖𝑗𝐹𝜏 (for𝑖, 𝑗 = 1, 2, 3) contains the so-called thickness functions where𝛿 is the Kronecker delta function. The thickness functions
describe how the displacement parameters characterize the
solution through the thickness. They can have any form of
any smooth function of 𝑧; however the classic form of these
functions is the power function. Thus, 𝐹𝜏 = 𝑧𝜏 can be 1(𝜏 = 0), 𝑧 (𝜏 = 1), 𝑧2 (𝜏 = 2), 𝑧3 (𝜏 = 3), and so on.
Please note that according to the mathematical background
of the present Unified Formulation the index 𝑁𝑐 + 1 is
reserved to the (optional) zigzag effect. Since the aim of the
present paper is to investigate the cylindrical bending effect
for functionally graded plates and cylindrical panels, the
following numerical applications will consider a fixed value
of 𝑁𝑐 = 3, so that 𝜏 = 0, 1, 2, 3. This choice is justified by the
fact that third order theories are sufficient, with a reasonably
limited number of degrees of freedom, to obtain accurate
solutions when compared to 3D shell models [42–50]. For
multilayered structures, such as sandwich configurations, the
zigzag function must be added into the formulation. Once
again, as shown in (13), the zigzag function is embedded at
the end of the expansion with the exponent 𝑁𝑐 + 1. When
such effect is neglected the sum of (13) stops at 𝑁𝑐.

The same theory used for the FE solution can be carried
out in the GDQmethod setting 𝜏 = 0, 1 and 𝑁𝑐 = 1; however
it has been shown in other recent works that the strong form
approaches led tomore accurate results with respect to the FE
ones [46, 48].

The relation between generalized strains 𝜀(𝜏) anddisplace-
ments u(𝜏) can be set as

𝜀
(𝜏) = DΩu

(𝜏) for 𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1, (14)

where DΩ is a differential operator explicitly defined in [42].
The present constitutive material model is linear and elastic;
therefore for a general 𝑘th lamina,Hooke’s law can be applied:

𝜎
(𝑘) = C(𝑘)𝜀(𝑘), (15)

where 𝜎(𝑘) is the vector containing the stress components
and C(𝑘) represents the constitutive matrix for each 𝑘th ply
[42] of the structure. Each component of the constitutive
matrix is indicated by the symbol 𝐶(𝑘)𝜉𝜂 and it is valid in the
curvilinear reference system 𝑂𝛼𝛽𝑧 of the reference geome-
try.These coefficients are evaluatedwith the application of the
transformation matrix [42].

The stress resultants are the terms which correspond to
the punctual 3D stresses of the 3D doubly curved solid.
Their definition can be achieved by developing the Hamilton
principle for the present structural theory [42]:

S(𝜏) = 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

(Z(𝜏))𝑇 𝜎(𝜏)𝐻𝛼𝐻𝛽𝑑𝑧
for 𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1,

(16)

whereZ(𝜏) is a 6×9matrix containing the thickness functions𝐹𝜏 and the curvature coefficients𝐻𝛼 and𝐻𝛽; the definition of
suchmatrix with some other details can be found in [42]. S(𝜏)
include the stress resultants as a function of the order 𝜏.

The definition of (16) can be rewritten as

S(𝜏) = 𝑁𝑐+1∑
𝑠=0

A(𝜏𝑠)𝜀(𝑠) for 𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1, (17)

which is a function of generalized strains of order 𝑠 𝜀(𝑠).
Note that the so-called elastic coefficients are defined as

A(𝜏𝑠) = 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

(Z(𝜏))𝑇C(𝑘)Z(𝑠)𝐻𝛼𝐻𝛽𝑑𝑧, (18)

and they can be carried out by the following integral expres-
sions:

𝐴(𝜏𝑠)
𝜉𝜂(𝜁)

= 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

𝐶(𝑘)𝜉𝜂 𝑧𝑠𝑧𝜏𝐻𝛼𝐻𝛽𝐻𝛼𝐻𝜁𝛽 𝑑𝑧

𝐴(�̃�𝑠)
𝜉𝜂(𝜁)

= 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

𝐶(𝑘)𝜉𝜂 𝑧𝑠𝜏𝑧𝜏−1𝐻𝛼𝐻𝛽𝐻𝛼𝐻𝜁𝛽 𝑑𝑧

𝐴(𝜏�̃�)
𝜉𝜂(𝜁)

= 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

𝐶(𝑘)𝜉𝜂 𝑠𝑧𝑠−1𝑧𝜏𝐻𝛼𝐻𝛽𝐻𝛼𝐻𝜁𝛽 𝑑𝑧
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𝐴(�̃� �̃�)
𝜉𝜂(𝜁)

= 𝑁𝐿∑
𝑘=1

∫𝑧𝑘+1
𝑧𝑘

𝐶(𝑘)𝜉𝜂 𝑠𝑧𝑠−1𝜏𝑧𝜏−1𝐻𝛼𝐻𝛽𝐻𝛼𝐻𝜁𝛽 𝑑𝑧
for 𝜏, 𝑠 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1, 𝜉, 𝜂 = 1, 2, 3, 4, 5, 6, , 𝜁 = 0, 1, 2.

(19)

It is recalled that the exponent 𝑁𝑐 + 1 is reserved for the
Murakami function; otherwise this order is neglected. The
subscripts �̃� and �̃� indicate the derivatives of the thickness
functions 𝐹𝜏 and 𝐹𝑠 with respect to 𝑧. The subscripts  and 𝜁
are the exponents of the quantities𝐻𝛼 and 𝐻𝛽, whereas 𝜉 and
𝜂 are the indices of the material constants 𝐶(𝑘)𝜉𝜂 for the 𝑘th ply

[42–49].Note that𝐶(𝑘)𝜉𝜂 ,𝐻𝛼, and𝐻𝛽 are quantities that depend
on the thickness 𝑧. Therefore, the integrals of (19) cannot
be computed analytically. The present solution for solving
such integrals is to employ a numerical integration algorithm.
In particular, the so-called Generalized Integral Quadrature
(GIQ) method is utilized. For an accurate evaluation of the
integrals, 51 points per layer are considered in the integration.

The Hamilton principle supplies for the dynamic equilib-
rium equations and the correspondent boundary conditions.
In detail, the fundamental nucleus of three motion equations
takes the form

D⋆ΩS
(𝜏) = 𝑁𝑐+1∑

𝑠=0

M(𝜏𝑠)ü(𝑠)

for 𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1,
(20)

whereD⋆Ω is the equilibrium operator andM(𝜏𝑠) is the inertial
matrix. Their explicit expressions have been presented in a
previous authors’ paper [42].

Combining the kinematic equation (14), constitutive
equation (17), and themotion equation (20), the fundamental
governing system in terms of displacement parameters is
carried out:

𝑁𝑐+1∑
𝑠=0

L(𝜏𝑠)u(𝑠) = 𝑁𝑐+1∑
𝑠=0

M(𝜏𝑠)ü(𝑠)

for 𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1,
(21)

where L(𝜏𝑠) = D⋆ΩA
(𝜏𝑠)DΩ is the fundamental operator [42].

Boundary conditions must be included for the solution
of the differential equations (21). The present paper deals
only with free and simply supported boundary conditions.
The former is used to reproduce the cylindrical bending
conditions considering alternatively one free edge and one
simply supported edge. When the four edges are all simply
supported, the problem is the same as the ones investigated

in the previous papers [29–31]. Simply supported conditions
are

𝑁(𝜏)𝛼 = 0,
𝑢(𝜏)𝛽 = 𝑢(𝜏)𝑧 = 0

𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1 at 𝛼 = 𝛼0 or 𝛼 = 𝛼1, 𝛽0 ≤ 𝛽 ≤ 𝛽1,
𝑢(𝜏)𝛼 = 0,

𝑁(𝜏)𝛽 = 0,
𝑢(𝜏)𝑧 = 0

𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1 at 𝛽 = 𝛽0 or 𝛽 = 𝛽1, 𝛼0 ≤ 𝛼 ≤ 𝛼1,

(22)

Free edge conditions are

𝑁(𝜏)𝛼 = 0,
𝑁(𝜏)𝛽 = 0,
𝑇(𝜏)𝛼 = 0
𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1 at 𝛼 = 𝛼0 or 𝛼 = 𝛼1, 𝛽0 ≤ 𝛽 ≤ 𝛽1,
𝑁(𝜏)𝛼 = 0,
𝑁(𝜏)𝛽 = 0,
𝑇(𝜏)𝛽 = 0
𝜏 = 0, 1, 2, . . . , 𝑁𝑐, 𝑁𝑐 + 1 at 𝛽 = 𝛽0 or 𝛽 = 𝛽1, 𝛼0 ≤ 𝛼 ≤ 𝛼1.

(23)

4. Results

The present section includes some numerical applications
for the comparison of the 3D exact shell vibrations with
two numerical 2D models. In particular classical simply
supported solutions and cylindrical bending (CB) behavior
of plates and shells are presented.The following computations
focus on plates, circular cylinders, and cylindrical panels due
to the fact that the CB effect occurs only when at least two
parallel straight edges are present in the structure.

The first case is a square plate (𝑎 = 𝑏 = 1m) with
simply supported edges. Two thickness ratios are analyzed:
thin 𝑎/ℎ = 100 and moderately thick 𝑎/ℎ = 20 structure. The
plate is made of a single functionally graded layer (ℎ1 = ℎ)
with volume fraction of ceramic (𝑐) phase:

𝑉𝑐 (𝑧) = (0.5 + 𝑧ℎ)𝑝 with 𝑧 ∈ [−ℎ2 , ℎ2 ] , (24)
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Table 1: One-layered FGM plate with 𝑝 = 0.5. Analytical 3D versus 2D numerical models. Frequency 𝑓 in Hz.

𝑚, 𝑛 Mode 3D exact 2D FE 2D FE (CB) 2D GDQ 2D GDQ (CB)𝑎/ℎ = 1001, 0 I 40.19 — 39.07 — 39.210, 1 I 40.19 — 39.07 — 39.211, 1 I 80.37 80.06 — 80.36 —2, 0 I 160.7 — 158.0 — 158.40, 2 I 160.7 — 158.0 — 158.42, 1 I 200.8 200.1 — 200.8 —1, 2 I 200.8 200.1 — 200.8 —2, 2 I 321.2 320.2 — 321.1 —3, 0 I 361.3 — 356.8 — 357.70, 3 I 361.3 — 356.8 — 357.73, 1 I 401.4 400.2 — 401.3 —1, 3 I 401.4 400.2 — 401.3 —3, 2 I 521.5 520.2 — 521.5 —2, 3 I 521.5 520.2 — 521.5 —4, 0 I 641.6 — 635.4 — 636.50, 4 I 641.6 — 635.4 — 636.54, 1 I 681.6 680.1 — 681.5 —1, 4 I 681.6 680.1 — 681.5 —𝑎/ℎ = 201, 0 I 200.2 — 195.1 — 195.10, 1 I 200.2 — 195.1 — 195.11, 1 I 398.9 399.5 — 398.8 —2, 0 I 791.6 — 786.4 — 779.70, 2 I 791.6 — 786.4 — 779.72, 1 I 985.8 995.4 — 985.7 —1, 2 I 985.8 995.4 — 985.7 —2, 2 I 1560 1588 — 1560 —3, 0 I 1749 — 1767 — 17290, 3 I 1749 — 1767 — 17293, 1 I 1936 1980 — 1936 —1, 3 I 1936 1980 — 1936 —3, 2 I 2490 2566 — 2490 —2, 3 I 2490 2566 — 2490 —1, 0 II (𝑤 = 0) 2775 2773 — 2775 —0, 1 II (𝑤 = 0) 2775 2773 — 2775 —4, 0 I 3034 — 3124 — 30070, 4 I 3034 — 3124 — 3007

where 𝑝 is the power exponent which varies the volume
fraction of the ceramic component through the thickness.
Two limit cases occur for (24): 𝑉𝑐 = 1 when 𝑝 = 0 and𝑉𝑐 → 0when𝑝 = ∞. In the following computations it is set as𝑝 = 0.5. Note that the volume fraction function in (24) gives
a material which is ceramic (𝑐) rich at the top and metal (𝑚)
rich at the bottomof the structure.Themechanical properties
(Youngmodulus andmass density) are given by the theory of
mixtures as

𝐸 (𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) 𝑉𝑐,
𝜌 (𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚) 𝑉𝑐, (25)

where 𝐸𝑚 and 𝜌𝑚 are the elastic modulus and mass density
of the metallic phase, respectively. 𝐸𝑐 and 𝜌𝑐 are the corre-
sponding properties of the ceramic phase. Note that in all
the following computations the Poisson ratio is considered
constant through the thickness; thus ]𝑐 = ]𝑚 = ] = 0.3. The
two constituents have the following mechanical properties:

𝐸𝑚 = 73GPa,
𝜌𝑚 = 2800 kg/m3,𝐸𝑐 = 380GPa,
𝜌𝑐 = 3800 kg/m3.

(26)
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Figure 2: Continued.
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(h) Mode II: (𝑤 = 0) (1, 0), 2D

Figure 2: Differences between in-plane and cylindrical bending vibration modes for the 𝑎/ℎ = 20 one-layered FGM plate with 𝑝 = 0.5. 3D
modes versus 2D modes.

Since the FE commercial software does not have an
embedded tool for the computation of functionally graded
properties through the thickness, the present FE applications
are carried out building a fictitious laminated structure with
isotropic plies. In detail, the thickness of the FGM lamina has
been divided into 100 fictitious layers and for each layer the
corresponding mechanical properties have been computed
through (25). The numerical model has been made of a
uniform element division of 40 × 40 Quad8 elements for a
total number of 29280 degrees of freedom (dofs). The GDQ
solution is computed with a not-uniform Chebyshev-Gauss-
Lobatto grid [41] with 31 × 31 points for both thickness
ratios. It is underlined that since a single ply is set, no zigzag
function is needed in the computation. It is recalled that the
present higher order GDQ model considers a third order
expansion with 𝜏 = 0, 1, 2, 3, whereas the FE one has a
first order model (also known as Reissner-Mindlin model).
Table 1 reports the results in terms of natural frequency
(Hz), wherein the first column reports the number of half-
waves (𝑚, 𝑛) of the 3D exact solution. Note that, for a fixed
set of half-wave numbers, different mode shapes can occur
(indicated by the second column “Mode”). In particular, I
indicates the first mode and II indicates the second mode. In
the case of in-plane modes, the caption (𝑤 = 0) is added to
underline that the vibration occurs in the plane and not out
of plane. The third column shows all the results for the 3D
exact solution, both classical and cylindrical bending (CB)
results. It is noted that these frequencies are obtained with
a single run of the 3D exact code keeping simply supported
boundary conditions for all the four edges of the plate. The
other four columns of Table 1 refer to the numerical solutions
for simply supported structures and for cylindrical bending
conditions (setting two free opposite edges). The cylindrical
bending results are indicated by the acronym CB in the same
table.

There is a very good agreement among the three solutions
when simply supported conditions are considered. On the
contrary a small error is observed in cylindrical bending
because the actual CB condition is not completely satisfied
due to the fact that the plate has a limited dimension in the
simply supported direction. This feature can be detected in
Figures 2 and 3 because the deformed shapes of the plate in
the CB configuration are not properly correct. In fact, the
fibers parallel to the supported edges are not parallel among
them but there is a curvature effect due to the free boundaries
and to the limited length of the plate. On the contrary, the
in-plane mode shapes (𝑤 = 0), when the plate is simply
supported on the four edges, have all the fibers parallel among
them also after the deformation. These modes are the results
obtained in the 3D solution with 𝑚 = 0 or 𝑛 = 0 combined
with 𝑤 = 0. They are not cylindrical bending modes; in
fact they can be found with 2D numerical models without
modifying the boundary conditions. 3D frequencieswith𝑚 =0 or 𝑛 = 0 (with w different from 0) are CB modes which can
be obtained considering two simply supported edges and two
free edges in 2D numerical models.

As it is well-known the “perfect” CB would occur when
the simply supported direction has an “infinite” length.
This cannot be proven numerically, but a trend can be
observed modeling different plates in cylindrical bending
configuration with different lengths.These analyses are made
keeping one side of the plate constant and enlarging the
length of the other edge. In the present computations, 𝑎 is
kept constant and 𝑏 = 𝐿 varies from 1 to 20. The results of
the aforementioned analysis are listed in Table 2 and depicted
in Figures 4 and 5. Table 2 includes the numerical values
of the first mode shape in cylindrical bending for the 3D
exact solution, the 2D FE, and the 2D GDQmodels. Figure 4
shows that both GDQ and FE solutions tend to the 3D exact
one increasing the length of the simply supported edge. In
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Figure 3: Continued.
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Figure 3: First four cylindrical bending vibration modes for the 𝑎/ℎ = 20 one-layered FGM plate with 𝑝 = 0.5. 3D modes versus 2D modes.
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Figure 4: First frequency 𝑓 in Hz for the 𝑎/ℎ = 100 one-layered
FGM plate with 𝑝 = 0.5: convergence of 2D GDQ and 2D FE
solutions increasing the length of the simply supported sides.

particular, the GDQ solution is slightly more accurate than
the FE one. The 2D GDQ solution is carried out by enlarging
the length of one of the sides of the plate and the samenumber
of dofs is kept. On the contrary, the FE model is generated
by 40 × 40 blocks of mesh. In other words, the plate with𝐿 = 2𝑎 has a mesh of 40 × 80, the one with 𝐿 = 3𝑎 has a
mesh 40 × 120, and so on. When 𝐿 = 20𝑎, the error among
the 3D exact and the 2D numerical solutions is very small and
this is proven also by the mode shapes of Figure 5, wherein
the boundary effect is negligible with respect the length of

the simply supported edges. It must be underlined that it is
impossible to completely avoid the boundary effects due to
the free edges.

The second example is related to a simply supported
cylinder with 𝑅𝛼 = 10m, 𝑅𝛽 = ∞, 𝑎 = 2𝜋𝑅𝛼, and 𝑏 =20m and thickness ratios 𝑅𝛼/ℎ = 100 and 𝑅𝛼/ℎ = 10. A
one-layered FGM scheme is considered with ℎ1 = ℎ and
the same volume fraction function of (24) for the previous
example but setting 𝑝 = 2.0. The present material properties
are the same as the flat plate. The FE model has a 20 ×80 Quad8 mesh with 27966 dofs and the GDQ solution
has a 15 × 51 Chebyshev-Gauss-Lobatto grid. Numerically
speaking, compatibility conditions must be enforced on the
closing meridian in order to obtain a closed revolution shell
[42]. To obtain the CB conditions numerically, the cylinder
is modeled completely free and the first 6 rigid mode shapes
are neglected and removed from the numerical solution. It
is noted that the GDQ model uses a third-order kinematic
expansion with no zigzag effect as the previous case, since
a one-layer structure has been taken into account. Table 3
reports the results with the same meaning of the symbols
seen in Table 1. A very good agreement is observed when the
cylinder is simply supported, whereas, when the cylinder is
completely free, some small errors can be observed but the
numerical solutions follow the 3D exact one.

Results with 𝑛 = 0 and 𝑤 ̸= 0 indicate the CB conditions.
Such results are obtained by means of 2D numerical models
modifying the boundary conditions (see 2D FE(CB) and 2D
GDQ(CB)models).The cases 𝑛 = 0 combined with𝑤 = 0 are
not CB conditions and the frequencies can be found without
modifying the boundary conditions in the 2D numerical
models.

The final test is related to a cylindrical panel with 𝑅𝛼 =10m, 𝑅𝛽 = ∞, 𝑎 = 𝜋/3𝑅𝛼, and 𝑏 = 20m and thickness ratios𝑅𝛼/ℎ = 100 and 𝑅𝛼/ℎ = 10. The present shell is a sandwich
structure embedding a FGM core with ℎ2 = 0.7ℎ and two
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Figure 5: First vibration mode for the 𝑎/ℎ = 100 one-layered FGM plate with 𝑝 = 0.5: 2D GDQ solution and edge effects versus the length
of the simply supported sides.

external skins with ℎ1 = ℎ3 = 0.15ℎ (ℎ1 + ℎ2 + ℎ3 = ℎ). The
bottom layer ismade of isotropicmetallicmaterial and the top
layer is made of ceramic material; the mechanical properties
are

𝐸𝑚 = 73GPa,
𝜌𝑚 = 2800 kg/m3,
𝐸𝑐 = 200GPa,
𝜌𝑐 = 5700 kg/m3.

(27)

The FGM core has a volume fraction function defined as

𝑉𝑐 (𝑧) = (0.5 + 𝑧0.7ℎ)𝑝 with 𝑧 ∈ [−0.35ℎ, 0.35ℎ] , (28)

where 𝑝 = 1.0 is employed in the present computations. The
Poisson ratio is constant (]𝑐 = ]𝑚 = ] = 0.3). Equations (25)
are still valid with 𝑉𝑐 defined as in (28).

The FEmodel is made of 40×40Quad8 elements for total
29280 dofs and the GDQ model has a 31 × 31 Chebyshev-
Gauss-Lobatto grid. Since a sandwich structure is analyzed
in the following, a third-order theory with zigzag function
is considered in the computations for the GDQ method. The
present natural frequencies are reported in Table 4 with the
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Table 2: First frequency 𝑓 in Hz for the 𝑎/ℎ = 100 one-layered FGM plate with 𝑝 = 0.5: convergence of 2D GDQ and 2D FE solutions
increasing the length of the simply supported sides.

𝐿/𝑎 1 2 3 4 5 6 8 10 15 20 3D exact
2D GDQ 39.21 39.64 39.80 39.88 39.93 39.97 40.01 40.04 40.07 40.08 40.19
2D FEM 39.07 39.49 39.66 39.74 39.79 39.83 39.87 39.89 39.93 39.94 40.19

Table 3: One-layered FGM cylinder with 𝑝 = 2.0. Analytical 3D versus 2D numerical models. Frequency 𝑓 in Hz.

𝑚, 𝑛 Mode 3D exact 2D FE 2D FE (CB) 2D GDQ 2D GDQ (CB)𝑅𝛼/ℎ = 1004, 0 I 0.896 — 0.897 — 0.8836, 0 I 2.532 — 2.538 — 2.5118, 0 I 4.854 — 4.867 — 4.81910, 0 I 7.848 — 7.871 — 7.80112, 0 I 11.51 — 11.55 — 11.4610, 1 I 13.56 13.60 — 13.57 —12, 1 I 14.41 14.49 — 14.45 —14, 0 I 15.84 — 15.89 — 15.778, 1 I 16.38 16.40 — 16.36 —14, 1 I 17.56 17.67 — 17.63 —16, 0 I 20.83 — 20.90 — 20.7016, 1 I 22.07 22.22 — 22.16 —6, 1 I 24.41 24.42 — 24.38 —18, 0 I 26.49 — 26.58 — 26.4014, 2 I 27.42 27.52 — 27.46 —18, 1 I 27.51 27.72 — 27.63 —16, 2 I 28.75 28.90 — 28.83 —12, 2 I 29.21 29.26 — 29.22 —𝑅𝛼/ℎ = 104, 0 I 8.774 — 9.085 — 8.6796, 0 I 24.56 — 25.71 — 24.306, 1 I 39.78 40.89 — 39.79 —4, 1 I 43.88 43.57 — 43.88 —8, 0 I 46.54 — 49.20 — 46.028, 1 I 55.75 59.05 — 55.76 —2, 1 I 72.02 71.01 — 72.02 —2, 0 I (𝑤 = 0) 73.22 73.90 — 73.19 —10, 0 I 74.19 — 79.33 — 73.476, 2 I 81.10 82.61 — 81.11 —10, 1 I 81.89 88.11 — 81.91 —8, 2 I 87.83 91.73 — 87.85 —4, 2 I 90.16 90.84 — 90.17 —12, 0 I 107.1 — 115.9 — 106.110, 2 I 108.1 115.5 — 108.1 —2, 2 I 108.9 110.5 — 108.9 —12, 1 I 114.2 124.5 — 114.3 —4, 3 I 126.3 128.6 — 126.3 —

same meaning of the columns seen in the previous cases.
In order to achieve the cylindrical bending conditions, the
numerical models have the straight edges simply supported
and the curved edges as free. Due to the CB definition,
it is not possible to achieve CB conditions when 𝑚 = 0

and 𝑛 = 1, 2, 3, . . . because the cylindrical bending should
occur on the curved edge and this is not physically possible
because of the variation of displacement components due to
the curvature presence. This aspect is indicated as NA (Not
Applicable) solution in Table 4. Therefore, this kind of 3D
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Table 4: Sandwich cylindrical shell panel embedding FGM core with 𝑝 = 1.0. Analytical 3D versus 2D numerical models. Frequency 𝑓 in
Hz.

𝑚, 𝑛 Mode 3D exact 2D FE 2D FE (CB) 2D GDQ 2D GDQ (CB)𝑅𝛼/ℎ = 1001, 0 I 1.948 — 1.951 — 1.9412, 0 I 8.856 — 8.872 — 8.8232, 1 I 11.04 11.10 — 11.04 —1, 1 I 18.50 18.73 — 18.50 —3, 0 I 20.38 — 20.42 — 20.303, 1 I 21.16 21.28 — 21.16 —2, 2 I 22.21 22.42 — 22.21 —3, 2 I 24.84 24.96 — 24.84 —3, 3 I 32.35 32.54 — 32.35 —4, 0 I 36.49 — 36.60 — 36.342, 3 I 36.92 37.39 — 36.92 —4, 1 I 37.14 37.45 — 37.14 —4, 2 I 39.40 39.65 — 39.41 —3, 4 I 42.26 42.61 — 42.26 —4, 3 I 43.78 44.03 — 43.78 —1, 2 I 45.68 46.64 — 45.68 —4, 4 I 50.35 50.64 — 50.35 —2, 4 I 50.40 51.28 — 50.40 —𝑅𝛼/ℎ = 101, 0 I 19.05 — 19.63 — 18.841, 1 I 30.54 31.45 — 30.55 —1, 2 I 62.09 64.09 — 62.09 —2, 0 I 83.26 — 88.57 — 82.540, 1 I 87.10 — NA — NA0, 1 II (𝑤 = 0) 88.20 89.56 — 88.20 —2, 1 I 88.80 95.31 — 88.82 —0, 2 I 91.76 — NA — NA1, 3 I 95.76 99.83 — 95.67 —0, 3 I 103.6 — NA — NA2, 2 I 106.6 114.7 — 106.7 —0, 4 I 129.1 — NA — NA1, 4 I 133.5 141.3 — 133.5 —2, 3 I 136.4 147.5 — 136.4 —1, 0 II (𝑤 = 0) 166.5 173.8 — 166.5 —0, 5 I 168.3 — NA — NA2, 4 I 175.5 191.8 — 175.5 —0, 2 II (𝑤 = 0) 176.4 179.1 — 176.4 —

exact solutions cannot be achieved by any numerical model.
Once again, solution with 𝑛 = 0 or 𝑚 = 0 combined with𝑤 = 0 (in-plane modes) can be found with 2D numerical
models without modifying the simply supported boundary
conditions.

5. Conclusions

Thepresent paper analyzes the cylindrical bending in the free
frequency analysis of functionally graded material (FGM)
plates and cylindrical shells. This condition is investigated
by means of a 3D exact shell model and two different 2D

numerical models, a weak formulation based on classical
Finite Elements (FEs) and a strong formulation based on
the GDQ method. The cylindrical bending (CB) behavior in
the 3D exact shell model can be analyzed using completely
simply supported structures and supposing one of the two
half-wave numbers equals zero.The numerical models obtain
the CB behavior using mixed simply supported and free
boundary conditions. It has been demonstrated that the
actual cylindrical bending (CB) is possible only with respect
to straight edges.TheCBnatural frequencies of the numerical
solutions converge to the 3D exact CB ones if the length of
straight simply supported edges is increased up to 20 times
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the value of the original edges. The CB conditions are not
possible in 2D numericalmodels when the half-wave number
is zero in the curvilinear edge; in this case the modification
of boundary conditions does not properly work. In-plane
vibrationmodeswith zero transverse displacement combined
with 𝑚 = 0 or 𝑛 = 0 cannot be defined as CB frequencies and
they can be calculated via 2D numerical models without the
modification of the simply supported conditions for the four
edges. All the considerations about the cylindrical bending
are valid for each geometry (plate, cylinder, and cylindrical
shell), lamination scheme, FGM law, and thickness ratio.
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