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A continuum elastic three-dimensional model for natural

frequencies of single-walled carbon nanotubes

Salvatore Brischetto∗

Abstract

The free vibration analysis of Single-Walled Carbon NanoTubes (SWCNTs) is proposed in the present

paper. A continuum approach (based on an exact elastic three-dimensional shell model) is used for

natural frequency investigation of simply supported SWCNTs. In order to apply this continuum model,

carbon nanotubes are defined as isotropic cylinders with an equivalent thickness and Young modulus.

Preliminary remarks are proposed concerning the possible use of a continuum approach and the most

convenient definitions of the equivalent thickness and Young modulus. Subsequently, the 3D shell method

is compared with different beam analyses to show the limitations of 1D beam models. Finally, zigzag,

armchair and general chirality SWCNTs (with various lengths and geometries) are analyzed via the 3D

shell model to calculate their vibration modes.

Keywords: A. Nano-structures; B. Vibration; C. Analytical modelling; C. Numerical analysis.

1 Introduction

Carbon NanoTubes (CNTs) were discovered in Japan by Iijma [1] in 1991. CNTs are closed graphene

sheets with a cylindrical shape. Research has shown that carbon nanotubes exhibit exceptional me-

chanical properties [2]. The elastic modulus has been shown to be greater than 1 TPa and the tensile
∗Corresponding author: Salvatore Brischetto, Department of Mechanical and Aerospace Engineering, Politecnico di

Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, ITALY. tel: +39.011.090.6813, fax: +39.011.090.6899, e.mail:
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strength exceeds that of steel by over one order of magnitude. In view of their exceptional mechanical

properties, CNTs are considered to be ideal reinforcements in composite structures [3]. Most CNT

applications depend on their exceptional elastic properties. Therefore, it is of central importance to

accurately quantify the elastic properties of Single-Walled CNTs (SWCNTs) [4] when a continuum

elastic model is applied for their analysis.

Three basic methods are used to simulate the behavior of CNTs [5]: Molecular Dynamics (MD)

simulations, atomistic-based modelling approaches and continuum approaches. In the former, the

simulations are based on the definition of a potential energy function (e.g., Tersoff-Brenner or Lennard-

Jones functions) [6]-[11]. In the second approach, CNTs are investigated using an atomistic finite

element model with beam elements and concentrated masses. The beams simulate the interatomic

covalent forces and the masses are located at the ends of the beams and represent the carbon positions

[12]-[17]. The third approach considers carbon nanotubes (which have a discrete molecular structure)

as continuum isotropic elastic cylinders which can be analyzed via beam or shell models. The computa-

tional effort necessary for the MD approach does not allow fast simulations of complex CNT networks.

Simulations of a real size multi-walled CNT by means of an atomistic-based modelling approach are

also expensive. Consequently, continuum approaches are preferred to MD and atomistic-based models

in the described simulations because the computational cost is better. A carbon nanotube has a dis-

crete molecular structure. Therefore, in order to apply a continuum model, it is necessary to correctly

suppose its effective wall thickness, Young modulus and Poisson ratio. Extensive studies [18]-[21] have

been conducted to analyze this feature, but a final conclusion has not yet been reached. In fact, the

thickness and Young modulus values shown in the papers analyzed below are very different for the same

elastic stiffness considered.

Many researchers have used beam models for continuum approaches to analyze free vibrations of

single-walled carbon nanotubes. Among these, Santos [22] used finite elements based on the Euler-

Bernoulli and Timoshenko beam theories. Azrar et al. [23] proposed the Timoshenko beam model

with generalized boundary conditions in order to take into account a more realistic and wider range of

boundary conditions. Unlike the Euler-Bernoulli beam model, the Timoshenko beam model allows for

the effects of transverse shear deformation and rotary inertia [24]. The Discrete singular convolution

(DSC) method based on the Timoshenko beam theory was used in [25] for free vibration problems

of carbon nanotubes. Foda [26] proposed a direct analytical approach to suppress the steady state

vibrations of a nanotube resting on a Winkler foundation. The natural frequencies and transversal
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responses of simply supported single-walled carbon nanotubes were analyzed in [27] by means of the

Timoshenko beam theory and the Bernoulli-Fourier method. Ming and Huiming [28] developed a single

beam model to analyze the thermal vibration of SWCNTs. In this work nonlocal elasticity incorporated

the effects of small size into the formulation. The flexural vibration of single-walled carbon nanotubes

was analyzed in [29] by the finite element method. The Timoshenko beam element formulation was

used for this purpose. Based on the nonlocal continuum theory, the nonlinear vibration of a SWCNT

(considered as a curved beam subjected to a harmonic load) was investigated in [30]. Vibrations of

nanotubes embedded in an elastic matrix were investigated in [31] by using the nonlocal Timoshenko

beam model. Both a stress gradient and a strain gradient approach were considered. The transverse

vibration of a single-walled carbon nanotube with light waviness along its axis was modeled in [32]

by the nonlocal Euler-Bernoulli and Timoshenko beam theories. The comparison between the two

models shows that the effects of transverse shear deformation and rotary inertia are considered only

in the Timoshenko beam model. The nonlocal Euler-Bernoulli beam theory was used in [33] for forced

vibrations of a simply supported single-walled carbon nanotube subjected to a moving harmonic load.

Murmu and Pradhan [34] developed a nonlocal elasticity and though the Timoshenko beam theory

investigated the stability response of a SWCNT embedded in an elastic medium. For the first time,

both Winkler-type and Pasternak-type foundation models were employed to simulate the interaction

of the SWCNT with the surrounding elastic medium. Non local constitutive equations of Eringen were

used in [35], different beam theories including those of Euler-Bernoulli, Timoshenko, Reddy, Levinson

and Aydogdu were compared.

The papers concerning the use of shell models for the vibration analysis of SWCNTs are less nu-

merous than those concerning the beam models. Shell models are usually more complicated than beam

models but they allow the analysis of CNTs with low length/diameter ratios. For these structures the

use of 1D beam models gives significant errors because short CNTs are not one-dimensional structures.

2D or 3D shell models are suitable for the analysis of short CNTs. When the radius/thickness ratio is

small, the use of refined 2D or 3D shell models are necessary for a correct vibration analysis as demon-

strated in Cinefra et al. [36]. Wang and Zhang [37] proposed a two-dimensional elastic shell model

to characterize the deformation of single-walled carbon nanotubes using the in-plane rigidity, Poisson

ratio, bending rigidity and off-plane torsion rigidity as independent elastic constants. An elastic shell

model of single-walled carbon nanotubes can be established only with a well-defined effective thickness.

Vibrations of single-walled carbon nanotubes based on a three-dimensional theory of elasticity were an-
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alyzed in [38]. The Flügge type shell equations (including the initial membrane hoop and axial stresses)

were used in [39] as governing equations for free axisymmetric vibrations of a single-walled carbon nan-

otube. Dong et al. [40] presented an analytical laminated cylindrical shell method to investigate wave

propagation in individual multiwall carbon nanotubes (MWNTs) or MWNTs embedded in an elastic

matrix. Further shell models for Double-Walled Carbon NanoTubes (DWCNTs) were proposed in [41]

and in [42] for free vibration and buckling analysis, respectively.

An exact three-dimensional elastic shell model is proposed in the present paper for free vibration

analysis of simply supported SWCNTs. The equilibrium equations in general orthogonal curvilinear

coordinates (see [43] and [44]) are developed for the case of a cylinder by giving an infinite value for

one of the two radii of curvature. These equations are exactly solved by imposing harmonic forms

for displacement components. The present model is validated by means of a comparison with the

beam models given in [33] and [35]. Different length/diameter ratios are analyzed to understand the

limitations of 1D beam models. Afterwards, the 3D shell model is used for the analysis of vibration

modes of different zigzag, armchair and general chirality SWCNTs. Particular attention is given to the

definition of the equivalent elastic properties of CNTs which actually are discrete molecular structures.

2 3D shell model

The three differential equations of equilibrium written for the case of free vibration analysis of mul-

tilayered spherical shells with constant radii of curvature Rα and Rβ have been proposed in [43] and

[44] where they have been solved in exact form in analogy with the method proposed in [45] and [46].

In this paper, the equations are simplified for the cylindrical case by imposing an infinite value for the

radius of curvature Rβ (see Fig. 1). The general form proposed in [43] and [44] remains valid for both

plate and constant radius shell geometries.

2.1 Constitutive and geometrical relations

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α, β, z)

(see Fig. 1) are here given for a generic k isotropic layer. The stress components (σαα, σββ, σzz, σβz,

σαz, σαβ) are linked with the strain components (εαα, εββ , εzz, γβz, γαz, γαβ) for each k isotropic layer
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as:

σααk = C11kεααk + C12kεββk + C13kεzzk , (1)

σββk = C12kεααk + C22kεββk + C23kεzzk , (2)

σzzk = C13kεααk + C23kεββk + C33kεzzk , (3)

σβzk = C44kγβzk , (4)

σαzk = C55kγαzk , (5)

σαβk = C66kγαβk . (6)

The strain-displacement relations of three-dimensional theory of elasticity in orthogonal curvilinear

coordinates are written for the generic k layer of the multilayered cylindrical shell of Fig. 1 (the general

form for spherical shells with constant radii of curvature Rα and Rβ has been given in [43] and [44]):

εααk =
1

Hα
uk,α +

wk

HαRα
, (7)

εββk = vk,β , (8)

εzzk = wk,z , (9)

γβzk = wk,β + vk,z , (10)

γαzk =
1

Hα
wk,α + uk,z − uk

HαRα
, (11)

γαβk =
1

Hα
vk,α + uk,β . (12)

The parametric coefficients for cylindrical shells are:

Hα = (1 +
z

Rα
) , Hβ = 1 , Hz = 1 , (13)

Hα depends on the z coordinate. Hβ = 1 and Hz = 1 because β and z are rectilinear coordinates. Rα

is the principal radius of curvature along the α coordinate. Rβ is infinite for a cylinder (see Fig. 1).

Partial derivatives ∂
∂α , ∂

∂β and ∂
∂z are indicated with subscripts ,α, ,β and ,z.
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2.2 Equilibrium equations

The three differential equations of equilibrium written for the case of free vibration analysis of cylindrical

shells are given (the most general form for spherical shells with constant radii of curvature can be found

in [43] and [44]):

σααk,α + Hασαβk,β + Hασαzk,z +
2

Rα
σαzk = ρkHαük , (14)

σαβk,α + Hασββk,β + Hασβzk,z +
1

Rα
σβzk = ρkHαv̈k , (15)

σαzk,α + Hασβzk,β + Hασzzk,z − 1
Rα

σααk +
1

Rα
σzzk = ρkHαẅk , (16)

where ρk is the mass density. (σααk, σββk, σzzk, σβzk, σαzk, σαβk) are the six stress components and

ük, v̈k and ẅk indicate the second temporal derivative of the three displacement components uk, vk

and wk, respectively. Each quantity depends on the k layer. Rα is referred to the mid-surface Ω0 of

the whole multilayered shell. Hα continuously varies through the thickness of the multilayered shell

and it depends on the z thickness coordinate. Eqs.(14)-(16) have constant coefficients (even if a shell

geometry is considered) when the shell is divided in NL = 230 mathematical layers where the parametric

coefficient Hα can easily be calculated in the middle of each k mathematical layer.

The closed form of Eqs.(14)-(16) is obtained for simply supported shells. The three displacement

components have the following harmonic form:

uk(α, β, z, t) = Uk(z)eiωtcos(ᾱα)sin(β̄β) , (17)

vk(α, β, z, t) = Vk(z)eiωtsin(ᾱα)cos(β̄β) , (18)

wk(α, β, z, t) = Wk(z)eiωtsin(ᾱα)sin(β̄β) , (19)

where Uk(z), Vk(z) and Wk(z) are the displacement amplitudes in α, β and z directions, respectively.

i is the coefficient of the imaginary unit. ω = 2πf is the circular frequency where f is the frequency

value, t is the time. In coefficients ᾱ = pπ
a and β̄ = qπ

b , p and q are the half-wave numbers and a and b

are the shell dimensions in α and β directions, respectively (they are calculated in the mid-surface Ω0).

Eqs.(1)-(6), (7)-(12) and (17)-(19) are substituted in Eqs.(14)-(16) to obtain the following system
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of equations for each k mathematical layer:

(
− C55k

HαR2
α

− ᾱ2 C11k

Hα
− β̄2C66kHα + ρkHαω2

)
Uk +

(
− ᾱβ̄C12k − ᾱβ̄C66k

)
Vk +

(
ᾱ

C11k

HαRα
+

ᾱ
C55k

HαRα

)
Wk +

(C55k

Rα

)
Uk,z +

(
ᾱC13k + ᾱC55k

)
Wk,z +

(
C55kHα

)
Uk,zz = 0 , (20)

(
− ᾱβ̄C66k − ᾱβ̄C12k

)
Uk +

(
− ᾱ2 C66k

Hα
− β̄2C22kHα + ρkHαω2

)
Vk +

(
β̄

C44k

Rα
+ β̄

C12k

Rα

)
Wk+

(C44k

Rα

)
Vk,z +

(
β̄C44kHα + β̄C23kHα

)
Wk,z +

(
C44kHα

)
Vk,zz = 0 , (21)

(
ᾱ

C55k

HαRα
+ ᾱ

C11k

HαRα

)
Uk +

(
− β̄

C23k

Rα
+ β̄

C12k

Rα

)
Vk +

(
− C11k

HαR2
α

− ᾱ2 C55k

Hα
− β̄2C44kHα+

ρkHαω2
)
Wk +

(
− ᾱC55k − ᾱC13k

)
Uk,z +

(
− β̄C44kHα − β̄C23kHα

)
Vk,z +

(C33k

Rα

)
Wk,z+ (22)

(
C33kHα

)
Wk,zz = 0 .

Parametric coefficients Hα are constant because the thickness coordinate z is given in the middle of

each k mathematical layer. The system of Eqs.(20)-(22) is written in a compact form by introducing

constant coefficients Ask for each block
()

with s from 1 to 19:

A1kUk + A2kVk + A3kWk + A4kUk,z + A5kWk,z + A6kUk,zz = 0 , (23)

A7kUk + A8kVk + A9kWk + A10kVk,z + A11kWk,z + A12kVk,zz = 0 , (24)

A13kUk + A14kVk + A15kWk + A16kUk,z + A17kVk,z + A18kWk,z + A19kWk,zz = 0 . (25)

Eqs.(23)-(25) are a system of three second order differential equations. This system can be reduced to

a system of first order differential equations [43]-[46]:




A6k 0 0 0 0 0

0 A12k 0 0 0 0

0 0 A19k 0 0 0

0 0 0 A6k 0 0

0 0 0 0 A12k 0

0 0 0 0 0 A19k







Uk

Vk

Wk

U ′
k

V ′
k

W ′
k




′

=




0 0 0 A6k 0 0

0 0 0 0 A12k 0

0 0 0 0 0 A19k

−A1k −A2k −A3k −A4k 0 −A5k

−A7k −A8k −A9k 0 −A10k −A11k

−A13k −A14k −A15k −A16k −A17k −A18k







Uk

Vk

Wk

U ′
k

V ′
k

W ′
k




.

(26)

Eq.(26) can be written in a compact form for a generic k layer:

Dk
∂Uk

∂z
= AkUk , (27)
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where ∂Uk
∂z = U ′

k and Uk = [Uk Vk Wk U ′
k V ′

k W ′
k]. Eq.(27) can be written as:

U ′
k = A∗

k Uk , (28)

with A∗
k = D−1

k Ak. The solution of Eq.(28) is:

Uk(zk) = exp(A∗
kzk)Uk(0) with zk ε [0, hk] , (29)

where zk is the thickness coordinate of each k layer from 0 at the bottom to hk at the top.

If we consider NL layers, NL−1 transfer matrices T k−1,k must be calculated by using for each inter-

face the following conditions for interlaminar continuity of displacements and transverse shear/normal

stresses:

ub
k = ut

k−1 , vb
k = vt

k−1 , wb
k = wt

k−1 , (30)

σb
zzk = σt

zzk−1 , σb
αzk = σt

αzk−1 , σb
βzk = σt

βzk−1 , (31)

each displacement and transverse stress component at the top (t) of the k-1 layer is equal to displace-

ments and transverse stress components at the bottom (b) of the k layer. Eqs.(30)-(31) in compact

form are:

U b
k = T k−1,kU

t
k−1 . (32)

The calculated T k−1,k matrices allow vector U at the bottom (b) of the k layer with vector U at the

top (t) of the k− 1 layer to be linked. The structures are simply supported and free stresses at the top

and at the bottom, this feature means:

σzz = σαz = σβz = 0 for z = 0, h , (33)

w = v = 0, σαα = 0 for α = 0, a , (34)

w = u = 0, σββ = 0 for β = 0, b . (35)

The combination of Eqs. (28), (29), (32) and (33)-(35) leads to the following system (details can be

found in [43] and [44]): [
E

] [
U b

1

]
=

[
0

]
. (36)
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Matrix E has always (6 × 6) dimension, independently from the number NL of mathematical layers,

even if the method uses a layer-wise approach. The free vibration analysis means to find the non-trivial

solution of U b
1 (displacement at the bottom of the layer 1) in Eq.(36) by imposing the determinant of

matrix E equals zero:

det[E] = 0 . (37)

Eq.(37) means to find the roots of an higher order polynomial in λ = ω2. For each pair of half-wave

numbers (p, q) a certain number of circular frequencies are obtained depending on the order N chosen

for each exponential matrix in Eq.(29) and the number NL of mathematical layers.

3 Results

The preliminary assessment considers a simply supported Single-Walled Carbon NanoTube (SWCNT)

for the beam analysis shown in Simsek [33] and Aydogdu [35] . The equivalent elastic cylinder has

a very small diameter/thickness ratio, for this case the use of classical 2D shell models could exhibit

some difficulties. Frequencies are also investigated for different length/diameter ratios, however beam

models may be inappropriate for short SWCNTs. After the preliminary validation, the 3D shell model

is used to investigate the natural frequencies of several SWCNTs with different geometries (armachair,

zigzag, general chirality) and length/radius ratios.

3.1 Preliminary assessment

The SWCNT is simply supported, the equivalent elastic cylinder has properties as indicated in Simsek

[33]. The equivalent Young modulus is E = 1TPa with Poisson ratio ν = 0.3, the effective thickness

considered for this Young modulus value is h = 0.35nm. The mass density is ρ = 2300kg/m3. The

external diameter of the cylinder is de = 1nm, this value means a ratio de/h=2.86 which requests

the use of beam models. Some difficulties may arise when classical 2D shell models are used for the

analysis of such cylinders. The use of very refined 2D shell models (see Cinefra et al. [36]) or 3D

exact shell models can overcome this limitation. The radius of curvature in α direction, referred to

the mid-surface, is Rα = de/2 − h/2 = 0.325nm. The dimension in α direction is a = 2πRα and the

b dimension is L = 5nm, 10nm, 20nm, 50nm and 100nm for ratios L/de = 5, 10, 20, 50 and 100,

respectively. Table 1 gives the first three circular frequencies ω̄ = ωL2
√

ρA
EI (where A is the area of

the ring and I is the moment of inertia of the ring) for short and long simply supported cylinders
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with different L/de ratios. The first three non-dimensional circular frequencies are obtained with an

imposed half-wave number p=2 in α direction and half-wave numbers q in β direction equal to 1,2

and 3. Beam models correctly work for long and moderately long cylinders. However, shell models

give correct results for both long and short cylinders. The Euler-Bernoulli Beam Model (EBM) was

proposed in Simsek [33] and Aydogdu [35] for the first three frequencies for ratios L/de=10, 20, 50.

The same cases were also investigated in [35] by means of the Timoshenko Beam Model (TBM). TBM

gives more accurate results than EBM because it includes the effects of transverse shear deformation

and rotary inertia. However, TBM shows some problems for second and third frequency in the case

of short SWCNTs (L/de=10). The 3D shell model gives satisfactory results for both long and short

SWCNTs and it also allows for the vibration analysis of cylinders with small diameter/thickness ratios.

For these small ratios, classical 2D shell models could exhibit some difficulties. Table 1 shows that the

TB model gives similar results to the 3D shell model, while the EB model produces larger differences.

The TB model has some difficulties for short SWCNTs. Additional results from the 3D shell model are

recorded in Table 1 (they were not obtained in [33] and [35] via beam models). They show a complete

overview of the SWCNT behavior and they can be used as a benchmark for the validation of future 1D

beam and 2D shell models. Additional results for very short and very long SWCNTs have also been

included. Scientists involved in beam and shell model analyses of SWCNTs can try to complete this

table. After this assessment, the 3D shell model can be considered as validated and it can be used with

confidence for future analyses.

3.2 Free vibrations of SWCNTs

In the previous assessment, the effective wall thickness h of the single-walled carbon nanotube was

assumed to be equal to the inter-planar spacing of graphite layers (0.35 nm) and the mechanical

properties were consequently calculated (Young modulus and Poisson ratio). The choice of this thickness

value gives the equivalent mechanical properties. In the literature, there are many dissenting opinions

about the mechanical characterization of carbon nanotubes. The present paper does not discuss these

aspects, but it proposes a 3D model which is able to validate future continuum approaches based on

1D beam and 2D shell models. The choice of h = 0.35nm gives cylinders which are very hard to

analyze correctly. Different choices (with smaller thicknesses but consequently higher values of Young

modulus) are possible for benchmarks with different behaviors and problems. The SWCNTs can have

different geometries depending on the chiral vector
−→
Ch = n−→a1 + m−→a2 which also gives different radius
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values (see Fig. 2 and Table 2 for further details about armachair, zigzag and general chirality CNTs).

Chen and Cao [6] proposed different continuum approaches for CNT analysis, they gave a completely

different value for the thickness wall h. This value was h = 0.08nm that means an effective Young

modulus E = 6.85TPa and Poisson ratio ν = 0.19. The continuum models proposed in [6] used these

mechanical properties for CNT analysis. The comparison of these results with those obtained via the

Molecular Dynamic (MD) analysis has always shown a difference which is less than 5%. For this reason,

these properties have been used for the new benchmarks proposed in this section by means of the 3D

exact model. Table 2 shows the radius of curvature r and the number of atoms for several SWCNT

configurations (armachair with n = m, zigzag with (n,0) and general chirality with n 6= m). The

mass density ρ is not defined because the circular frequencies are given in a non-dimensional form

related to ρ (ω∗ = ωL
√

ρ
E ). Several length/radius ratios (L/r) are proposed for each SWCNT, r = Rα

is considered as the radius of curvature in the α direction with respect to the mid-surface. Table 3

shows the circular frequencies for each SWCNT described in Table 2 and Fig. 2 with length/radius

ratios L/r = 20, 25, 30, 35. The frequencies are obtained for a half-wave number in α direction p=2

(the cylinder is closed in this direction and only even p values are possible) and half-wave numbers

in β direction q from 1 to 5. For each SWCNT (armachair, zigzag and general chirality CNT) the

non-dimensional circular frequencies (the first five vibration modes) decrease as the length L of CNT

increases (bigger values of the L/r ratio). A longer cylinder is less rigid than the same cylinder with a

shorter length L. The armachair SWCNTs (n=m) have frequencies which decrease as the value n=m

increases, this feature is due to the fact that armachair CNTs with higher values of n=m have bigger

radii of curvature (less rigid cylinders). This behavior is confirmed for each vibration mode (from the

first to the fifth one) and for each L/r ratio. Zigzag SWCNTs (m=0) have a radius of curvature that

increases with the n value (consequently the length also increases because of the L/r ratio) and the

behavior is the same as that seen for the armachair CNTs. The general chirality (8,4) SWCNT has

a behavior similar to that obtained for the (6,6) armachair SWCNT because the radii of curvature

are almost the same. Fig. 3 summarizes some of the results given in Table 3. It shows the non-

dimensional circular frequencies for armachair and zigzag SWCNTs in relation to the L/r ratio. Each

non-dimensional circular frequency decreases as the L/r ratio increases. These considerations are valid

for both armachair (5,5) and zigzag (16,0) SWCNTs as shown in Fig. 3.

The considerations shown in the present analysis are useful for the validation of future continuum

approaches applied to vibration analysis of SWCNTs (both 1D beam and 2D shell models). The main
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limitation of this paper is that the elastic properties do not change when the chirality of the SWCNT is

modified (only the geometry changes). This limitation can be overcome by the use of an MD simulation

that supports the present 3D exact analysis.

4 Conclusions

The present paper has proposed an exact 3D elasticity model to analyze free vibrations of Single-Walled

Carbon NanoTubes (SWCNTs). The continuum approach was used by introducing an equivalent elas-

tic isotropic cylinder in place of the discrete molecular structure of SWCNTs. The exact solution is

proposed for simply supported cylinders. Several types of SWCNTs were considered such as arma-

chair, zigzag and general chirality ones. Different radius/thickness and length/radius ratios have been

considered in the analysis to show the limitations of 1D and 2D models. 1D beam models correctly

work for long or moderately long cylinders (higher values of length/radius ratio). For short cylinders

(smaller values of length/radius ratio) the use of 2D shell or 3D models is necessary. Classical 2D shell

models can exhibit some difficulties for shells with small values of radius/thickness ratio, in this case

the use of refined 2D shell models or 3D elasticity models is required. The present 3D exact elastic

model could be used as a reference solution for the validation of 1D beam and 2D shell models applied

to the vibration analysis of SWCNTs. The author is aware of the limitations of continuum mechanics

models, and future work will be performed to integrate a molecular dynamic analysis with the present

3D exact model.
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Figure 1: Notation, reference system and continuum approach for a Single-Walled Carbon NanoTube
(SWCNT).

Figure 2: Chiral vector for armachair, zigzag and general chirality single-walled carbon nanotubes.
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Figure 3: Benchmark, non-dimensional circular frequencies ω∗ for armachair (5,5) (on the left) and
zigzag (16,0) (on the right) SWCNTs versus L/r ratio.
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mode (p,q) 3D Shell EBM[33],[35] TBM[35]
L/de = 5

I (2,1) 9.3481 . . . . . .
II (2,2) 32.917 . . . . . .
III (2,3) 63.917 . . . . . .

L/de = 10
I (2,1) 9.7295 9.8696 9.7443
II (2,2) 37.392 39.478 36.841
III (2,3) 79.361 88.826 57.450

L/de = 20
I (2,1) 9.8356 9.8696 9.8381
II (2,2) 38.918 39.478 38.964
III (2,3) 86.072 88.826 85.748

L/de = 50
I (2,1) 9.8638 9.8696 9.8645
II (2,2) 39.392 39.478 39.398
III (2,3) 88.375 88.826 88.415

L/de = 100
I (2,1) 9.8487 . . . . . .
II (2,2) 39.488 . . . . . .
III (2,3) 88.752 . . . . . .

Table 1: Preliminary assessment: comparison between present 3D shell model and beam models (Euler-
Bernoulli Beam Model (EBM) and Timoshenko Beam Model (TBM)) proposed in [33] and [35]. First
three non-dimensional circular frequencies ω̄ for different L/de ratios. p and q are the imposed half-wave
numbers.

SWCNT (n,m) (5,5) (6,6) (7,7) (8,8) (10,0) (12,0) (14,0) (16,0) (8,4)
r(nm) 0.338 0.405 0.473 0.540 0.390 0.468 0.546 0.624 0.413
n. atoms 1040 1248 1456 1664 1200 1440 1680 1920 1200

Table 2: Geometry and properties (radius of curvature and number of atoms) for SWCNTs used in the
present paper and in Chen and Cao [6].
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L/r I (2,1) II (2,2) III (2,3) IV (2,4) V (2,5)
armachair (5,5)

20 0.3404 1.2535 2.5261 3.9825 5.5138
25 0.2754 1.0413 2.1635 3.5088 4.9781
30 0.2309 0.8870 1.8802 3.1114 4.4967
35 0.1987 0.7709 1.6564 2.7815 4.0771

armachair (6,6)
20 0.3397 1.2507 2.5199 3.9712 5.4953
25 0.2748 1.0390 2.1585 3.4999 4.9641
30 0.2304 0.8851 1.8760 3.1040 4.4851
35 0.1982 0.7692 1.6528 2.7751 4.0671

armachair (7,7)
20 0.3392 1.2489 2.5160 3.9643 5.4838
25 0.2744 1.0376 2.1554 3.4945 4.9554
30 0.2301 0.8839 1.8734 3.0994 4.4780
35 0.1980 0.7682 1.6505 2.7711 4.0610

armachair (8,8)
20 0.3389 1.2478 2.5135 3.9598 5.4764
25 0.2742 1.0367 2.1534 3.4904 4.9498
30 0.2299 0.8832 1.8717 3.0965 4.4734
35 0.1978 0.7676 1.6491 2.7686 4.0571

zigzag (10,0)
20 0.3398 1.2512 2.5210 3.9733 5.4986
25 0.2749 1.0394 2.1594 3.5015 4.9666
30 0.2305 0.8854 1.8763 3.1053 4.4872
35 0.1983 0.7695 1.6534 2.7762 4.0689

zigzag (12,0)
20 0.3392 1.2490 2.5162 3.9647 5.4845
25 0.2744 1.0377 2.1556 3.4948 4.9559
30 0.2301 0.8840 1.8735 3.0997 4.4784
35 0.1980 0.7683 1.6507 2.7714 4.0614

zigzag (14,0)
20 0.3389 1.2477 2.5134 3.9595 5.4759
25 0.2742 1.0366 2.1533 3.4907 4.9494
30 0.2299 0.8831 1.8716 3.0963 4.4730
35 0.1978 0.7675 1.6490 2.7684 4.0568

zigzag (16,0)
20 0.3387 1.2469 2.5115 3.9561 5.4703
25 0.2740 1.0359 2.1518 3.4880 4.9452
30 0.2298 0.8825 1.8703 3.0941 4.4696
35 0.1977 0.7670 1.6479 2.7765 4.0538

general chirality (8,4)
20 0.3396 1.2504 2.5193 3.9703 5.4936
25 0.2747 1.0388 2.1581 3.4992 4.9628
30 0.2304 0.8849 1.8756 3.1033 4.4841
35 0.1982 0.7691 1.6524 2.7745 4.0663

Table 3: Present 3D shell model, frequencies in non-dimensional circular form ω∗ for different SWCNTs
and L/r ratios. Imposed half-wave numbers p=2 in α direction and q=1, . . . , 5 in β direction.
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