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Adapted Compressed Sensing:
a Game Worth Playing

Mauro Mangia, Fabio Pareschi, Riccardo Rovatti, Gianluca Setti

Abstract—Despite the universal nature of the compressed
sensing mechanism, additional information on the class of sparse
signals to acquire allows adjustments that yield substantial
improvements. In facts, proper exploitation of these priors allows
to significantly increase compression for a given reconstruction
quality.

Since one of the most promising scopes of application of
compressed sensing is that of IoT devices subject to extremely
low resource constraint, adaptation is especially interesting when
it can cope with hardware-related constraint allowing low com-
plexity implementations.

We here review and compare many algorithmic adaptation
policies that focus either on the encoding part or on the recovery
part of compressed sensing. We also review other more hardware-
oriented adaptation techniques that are actually able to make the
difference when coming to real-world implementations. In all
cases, adaptation proves to be a tool that should be mastered in
practical applications to unleash the full potential of compressed
sensing.

I. INTRODUCTION

All the magic of Compressed Sensing (CS) [1] is in the
possibility of going back and forth between two vectors xxx ∈
Rn and yyy ∈ Rm with m < n providing the first is κ-sparse
(κ < m). This means that an n×d matrix DDD called dictionary
exists such that the instances of xxx can be expressed as xxx = DDDξξξ
with ξξξ having not more than κ non-zero entries.

We go from xxx to yyy (the encoding step) with a linear
transformation yyy = AAAxxx for a certain m × n matrix. We go
from yyy to xxx (the decoding step) by exploiting the sparsity
prior on xxx to pick the right element among the infinite set of
solutions in ξξξ of the linear systems of equalities yyy = AAADDDξξξ.
The key point in decoding is that the search for a sparse
solution can be translated into a convex optimization problem
that can be tackled either exactly or by means of some iterative
approximation [2].

Compressed sensing is no longer an utterly new topic as the
seminal papers of Donoho, Candes and Tao [3], [4], [2] that
shed light upon this double path date back not less than 12
years.

The amount of theoretical development in this field is im-
pressive as is the number of techniques used for reconstructing
the so called original signal xxx from the overly famous small
number of linear measurements in the vector yyy [5], [6], [7],
[8], [9].

Among all the methodological results, adaptation has al-
ways been given a secondary role. The very main theory of CS
centers on words such as universal, democratic, non-adaptive,
etc. Actually, the pairing of sparsity with linear encoding is
such a powerful concept that all the theoretical guarantees that

ensure CS to work are basically independent of the specific
features of the signals involved in the process.

This is a key observation. In fact, a direct consequence of
this approach is that typical theoretical guarantees are upper
bounds on reconstruction errors, and upper-bounding means
that a worst-case analysis has been carried out, and worst-case
analysis implicitly considers also the worst possible signals,
whatever it may mean in each specific context.

From a more applicative point of view, guarantees are fun-
damental, but signals are not as bad as one is forced to assume
in the worst-case analysis. On the contrary, most of the times
they have features in addition to sparsity that can be leveraged
through adaptation to increase system performance. This is
especially important in case of hardware implementations that,
by their nature, must maximize performance while complying
with possibly severe resource constraints.

Hence, while universal theories deal with asymptotic trends,
adaptation allows the tuning of the constant coefficients hidden
in the asymptotic trend formulas that are irrelevant in the run
to infinity, but largely affect the cost and the performance of
real-world systems.

This playing with constants can be a key factor in expressing
the practical potential of CS. In fact, the ultimate simplicity
of the encoding step hints at applications in which resources
at the acquisition side are scarce while computational power
is available at the receiver of the sensed information. This
perfectly fits within the general framework that most of the
information engineering community is working on, i.e., the
grand view implied by “memes” like Internet of Things (IoT)
or Cyber-Physical Systems (CPS).

Networks of ubiquitous sensors and actuators whose activity
entails an intense exchange of data between them and to
local hub infrastructures, that act as a gateway to cloud-
based processing and decision, and in which acquired signals
follow a path that goes from extremely simple sensing units,
to concentrators, to server farms. The ability to compress with
a limited resource budget is appealing both at individual nodes
and in gateways, and CS can be a winning option.

This review article aims at collecting the most widespread
adaptation techniques presented in literature which proved
capable of improving CS performance on real-world signals
and of making the implementation of the acquisition sub-
systems of IoT networks more effective. We concentrate on
adapted CS and not on adaptive CS, meaning that adaptation
is performed at design-time considering the class of signal
to acquire and not at run-time on each signal instance [10].
Roughly speaking, adapted CS methods do not require any
resource trade-off. Encoding procedures are still based on the
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matrix multiplication AAAxxx, with the advantage to (strongly)
reduce the number of rows in AAA. With respect to the adoption
of the standard CS theory, the produced benefits are both
higher data compression and lower computational burden of
the encoder. Though we tried to be as exhaustive as possible in
bibliographic search, not every contribution is reported here as
we concentrate on those that appear to give better performance.

As a teaser on what can be done following this path,
consider a case leveraging on the simplicity and flexibility
of CS, whose performance can be substantially boosted by
adaptation. Electro Cardio Graphics (ECG) signals are of
interest in both healthcare and wellness oriented applications
as they give information on the status of the hearth as well as
on the activity of the subject.

The general effectiveness of CS in ECG monitoring is
discussed, for example, in [11], that shows a ≈ 40% improved
battery lifetime compared to state-of-the-art compression tech-
niques for an embedded ECG monitor although no adaptation
is considered.

The approach discussed in [12] uses CS as a basic building
block for ECG compression simultaneously supporting both
health care and wellness applications in a dual-mode wearable
monitor. More specifically, CS is employed as low-resource
scalable lossy compression stage working immediately after
signal digitalization and before data dispatching. From yyy =
AAAxxx one gets that each measurement in the vector yyy contains
information on the whole vector xxx and thus the number of
measurements passed to the decoder is a simple but effective
way of administering the rate-distortion trade-off.

As reported in Figure 1, the monitoring device is equipped
with a Non-Volatile-Memory (NVM) that stores the mHQ

measurements needed to reconstruct an High-Quality medical-
grade ECG (HQ) and with a transmitter sending only mLQ <
mHQ of those measurements to a personal device, such as a
smartwatch or a smartphone, whose functionalities depend on
the reconstruction of a Low-Quality ECG (LQ), e.g., sufficient
to reliably estimate heart rate. Actually, the proposed device
can switch from LQ to HQ due to an external trigger either
from the patient or from the heart rate monitoring device in
case of critical events whose scrutiny is needed at medical-
grade precision.

Clearly, both storage and transmission take advantage of
compression in terms of hardware cost, memory footprint,
computation time and, most important, energy consumption.
Adaptation plays a fundamental role in this. In fact, once target
qualities are fixed, the adoption of classical CS like in [11]
compresses with a factor 2.2:1 in the HQ setting and 3.7:1
in the LQ setting. If methods among these presented in this
paper are employed, the above figures become a compression
ratio of 6.0:1 for the HQ setting and 14.2:1 in the LQ setting.

The illustrated application briefly highlights how the adapta-
tion can be directly employable in the design of market-ready
systems. This is also an example of the way in which we
expect adaptive CS to play a significant role e in the incoming
future.

As an additional example, it is also worth mentioning that
the U.S. Food and Drug Administration has recently approved

Fig. 1. A dual mode ECG monitor that locally stores compressed data for
medical-grade analysis wile a subset of the compressed data are transmitted
to a gateway for wellness oriented applications.

a magnetic resonance imaging scan1 that uses CS to speed up
the images acquisition.

The rest of the paper is organized as follows. Section
II reports the basics of CS and three of the most useful
explanation of its working principle. Section III is devoted to
the review of methods that adapt the encoder to the class of
signals to acquire, distinguishing between methods inspired by
mutual coherence arguments and methods driven by average
energy considerations. Improvements with respect to non-
adaptive CS provided by encoder adaption are assessed in
Section IV. Section V deals with adaptation at the decoder.
Section VI develops the ECG monitoring application sketched
above by applying the best performing methods both at the
encoder and at the decoder. Section VIII is finally devoted to
describe adaptation policies that were devised in CS hardware
implementations.

II. BASICS OF CS
The most general model for CS signal encoding is yyy =

AAA (xxx+ νννx) +νννy , where νννx ∈ Rn and νννy ∈ Rm are vectors of
disturbances corresponding to the errors implicitly attached to
the signal (νννx) and those due to the processing producing the
measurements (νννy).

For simplicity’s sake, most of the contributions that tune
AAA neglect νννx as it makes the overall disturbance contribution
AAAνννx+νννy dependent on AAA. We adhere to such a simplification,
neglect such a dependency, and assume yyy = AAAxxx+ννν where ννν is
a vector of white and Gaussian disturbances ννν ∼ N

(
000, σ2IIIm

)
,

with IIIm the m×m identity matrix and σ2 the power of the
equivalent noise affecting each measurement. Paired with that,
the prototype decoding algorithm is the so called basis pursuit
denoising (BPDN) that estimates x̂xx = DDDξ̂ξξ with

ξ̂ξξ = argminξξξ∈Rd ‖ξξξ‖1 s.t. ‖yyy −BBBξξξ‖2 ≤ η (1)

where ‖·‖p indicates the p-norm, BBB = AAADDD and η = max ‖ννν‖2
takes into account the maximum deviation from the original

1online available on: https://www.healthimaging.com/topics/cardiovascular-
imaging/fda-clears-compressed-sensing-mri-acceleration-technology-siemens
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signal due to disturbances. Assuming that xxx = DDDξ̄ξξ for a certain
ξ̄ξξ one aims at ξ̂ξξ = ξ̄ξξ.

To grasp the core of CS theory, assume first that η = 0,
the noiseless case in which BPDN reduces to Basis Pursuit
(BP). Since m < n, then AAA and BBB are slanted matrices and,
assuming that they are full rank, finding ξ̄ξξ means picking the
right solution among the infinite number of candidates that
satisfy the ill-conditioned system of equations yyy = BBBξξξ.

A. Explaining CS with restricted isometries

First, let us try to explain how the previous problem may
admit a solution by assuming that matrix B satisfies the well-
known Restricted Isometry Property (RIP) [13]. Start by noting
that an obvious requirement is that no two κ-sparse vectors
ξξξ′ 6= ξξξ′′ solve yyy = BBBξξξj . In fact, if yyy = BBBξξξ′ = BBBξξξ′′, i.e., if
BBB (ξξξ′ − ξξξ′′) = 0, it is impossible to tell from yyy which of the
two solutions is the true signal.

Going back to the noisy case η > 0, not to be fooled by
disturbances, one should require that for any two κ-sparse
vectors ξξξ′ 6= ξξξ′′, the two vectors BBBξξξ′ and BBBξξξ′′ are sufficiently
far apart, i.e., that BBB (ξξξ′ − ξξξ′′) is not too small.

Since if ξξξ′ and ξξξ′′ are κ-sparse, then ξξξ′ − ξξξ′′ is up to 2κ-
sparse, and we needBBB to behave in a proper way when applied
to 2κ-sparse vectors.

This is formalized by the definition of the RIP that requires
BBB to be almost an isometry (i.e., a transformation that pre-
serves length) when it is applied to 2κ-sparse vectors. RIP is
quantified by a Restricted Isometry Constant (RIC) δ2κ that is
0 when BBB is a true isometry and increases as BBB departs from
that condition.

These ideas have been able to originate the most widely
known guarantees on the possibility of reconstructing xxx from
yyy by means of (1) [3]. By largely simplifying the sophisticated
machinery needed to prove this result, one knows that if δ2κ ≤√

2 − 1 the reconstruction error is bounded from above and
thus cannot completely disrupt the signal. In the noiseless case
η = 0 the reconstruction can be perfect, and the guarantees
substantially depend on the same assumption on δ2κ.

Furthermore, one can also prove that, if m = O (κ log (n/κ))
and one chooses AAA as a m× n random matrix whose entries
AAAj,k are independent and identically distributed (i.i.d.), for
example, as normals (i.e., AAAj,k ∼ N (0, 1)), then the probabil-
ity of producing a matrix BBB that satisfies the RIP property is
extremely high independently of the choice of the dictionary
D.

These good news imply a very simple design flow that is
completely agnostic of the features of the signal to acquire
with the exception of its sparsity κ, and basically employs
i.i.d. random matrices with the proper size.

Yet, since such a design flow is based on guarantees and
thus on worst-case derivations, in practice the performance of
this kind of CS systems on typical signals is much better than
what is ensured by theory.

B. Explaining CS with mutual coherence

Figure 2 helps understanding how CS works by applying it
to the particular case n = d = 3, m = 2 and κ = 1.

Fig. 2. The mutual-coherence point of view on CS

As a general property, any BBB decomposes its n-dimensional
domain into two orthogonal subspaces: its (n − m)-
dimensional kernel kerBBB (the green line on the left of Figure
2) and the m-dimensional image subspace imBBB> (the green
plane on both sides of Figure 2). Since vectors in kerBBB
disappear in the mapping, multiplication by BBB amounts to
projection onto imBBB>. Vice versa, once we are given a
measurement vector yyy′, the equation yyy′ = BBBξξξ defines the affine
(n−m)-dimensional subspace spanned by the sum BBB+yyy′+eee
(where ·+ indicates pseudo-inversion) for any eee ∈ kerBBB and
represented, for example, by the yellow straight line in Figure
2. Since κ = 1, among all the points of such subspace, the
one corresponding to the signal is that sitting on a coordinate
axis, i.e. the ξξξ′ represented by a yellow dot in Figure 2.

The same happens for the other measurement vector yyy′′,
that defines the orange affine subspace BBB+yyy′′ + eee of Figure
2 which contains only one point sitting on a coordinate axis,
i.e., the orange dot representing ξξξ′′.

Clearly, this going from yyy to ξξξ is possible since the projec-
tions of the coordinate axis on the green plane are distinct, as
shown on the right of Figure 2 that represents the co-domain
of BBB.

In more general terms, since yyy = BBBξξξ, such projections are
the columns of BBB. Since we are dealing with n vectors in an
m < n-dimensional space, they cannot be orthogonal. Yet,
we may ask them to be “as orthogonal as possible”. This is
where mutual coherence [14] comes into play. It is defined
considering the columns vectors BBB·,0, . . . ,BBB·,n−1 and setting

µ(BBB) = max
j 6=k

∣∣BBB>·,jBBB·,k∣∣
‖BBB·,j‖2 ‖BBB·,k‖2

(2)

Mutual coherence is the cosine of the smallest angle be-
tween any two vectorsBBB·,j and is bounded by µmin ≤ µ(BBB) ≤
1 with µmin =

√
(d−m)
(d−1)m [15]. In our toy case, the perfectly

symmetric disposition of the 3 projections in the 2-dimensional
plane, implies µ(BBB) = 1/22 that matches the lower bound for
d = n = 3 and m = 2 thus making BBB a very good matrix for
CS.

The most well-known result linking mutual coherence with
the possibility of reconstructing xxx from yyy is that, in the noise-

2that corresponds to angles of 2/3π between each pair of vectors in Figure
2
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less case, BP recovers the correct original signal providing that
µ(BBB) ≤ 1/(2κ−1) [16].

In general, to cope with possible disturbances that offset
the measurement vectors from its ideal position, one should
choose the matrix AAA so that the mutual coherence of the
columns of BBB = AAADDD is as low as possible to keep the
projections of the axes as far as possible from each other.

C. Explaining CS with polytopes

An interesting alternative view on noiseless recovery comes
from a polytope interpretation of BP whose working principle
can be exemplified using the same toy case used above. The
1-norm sphere of radius r, i.e., {ξξξ ∈ Rn| ‖ξξξ‖1 ≤ r}, is the so-
called n-dimensional cross-polytope. For n = 3 is its the blue
diamond-like shape in Figure 3.

In that figure, the radius of the 1-norm sphere is the min-
imum allowing a non-empty intersection between the sphere
itself and the yellow line, an intersection that is the solution
of BP. Note that this intersection contains the true ξ̄ξξ but only
a properly designed BBB can guarantee that other solutions do
not exist.

In particular, since κ = 1, the solution is on a vertex of
the cross-polytope that must be identified starting from the
projection BBB+yyy on the green plane.

In the case of Figure 3-(a) the projection of the cross-
polytope on the green plane yields the red hexagon in which
the 6 vertices of the cross-polytope are still distinguishable.

On the contrary, in Figure 3-(b) the projection of cross-
polytope on the green plane is the red rectangle in which 2 of
the 6 vertices of the cross-polytope disappear.

When this happens, more than one point of the minimum-
radius cross-polytope projects on the same BBB+yyy and BP is
unable to ensure that its solution is sparse and thus coincides
with the true signal.

This can be generalized to generic κ-sparse signals sitting
on κ-dimensional facets of the cross-polytope, which in this
case should be projected on the subspace imBBB> and remain
distinguishable. This leads to the estimation of the probability
that reconstruction is possible as the ratio between the number
of facets that are still recognizable after projection over the
total number of facets.

Overall, if one adopts this point of view, good matrices AAA
are those for which BBB = AAADDD preserves distinguishability of
κ-dimensional facets of the n-dimensional cross-polytope.

Adaptation methods start from the theoretical developments
that we have just sketched and identify promising merit figures
that are related with the capability of effectively reconstructing
ξ̄ξξ from yyy. Then, propose heuristics to improve such merit
figures.

III. ADAPTATION AT THE ENCODER SIDE

In describing all the methods we adopt some common
notation. Given a possible sensing matrix AAA, the matrix
BBB = AAADDD and the Gram matrix GGG = BBB>BBB remain implicitly
defined. Given any matrix MMM , we indicate its Singular Value
Decomposition (SVD) as MMM = UUUMMMΛΛΛMMMVVV

>
MMM with UUUMMM and

VVVMMM orthonormal matrices and where ΛΛΛMMM the diagonal matrix

Fig. 3. The polytope point of view of CS

aligning the singular values λMMM0 ≥ λMMM1 ≥ · · · ≥ 0. In what
follows, when a matrix MMM is symmetric it is also positive-
semidefinite and we may write its spectral decomposition as
MMM = QQQMMMΛΛΛMMMQQQ

>
MMM where QQQMMM is orthonormal.

To avoid that scaling of AAA in yyy = AAAxxx+ννν alters the impact
of the disturbances ννν we assume that its energy is normalized∑m−1
j=0

∑n−1
k=0 AAA

2
j,k = n, a constraint that is commonly written

in terms of the Frobenius norm ‖AAA‖2F = n. Whenever such a
normalization is not explicit in the design flow we assume it
to be applied as last step.

A. Optimizing mutual coherence

From the theory concerning mutual coherence, one is led to
think that the lower the µ(BBB) the easier and better should be
signal recovery. This is the common guideline of a plethora
of methods that try to optimize AAA so that BBB has the least
possible coherence thus adapting sensing to the signal sparsity
dictionary.

As a common starting point for all methods, note that, if
the columns of BBB are normalized to unit length, the very same
definition of GGG implies that µ (BBB) is the maximum of the
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magnitudes of the off-diagonal entries in GGG. The prototype
optimization problem that is being solved is

min
GGG∈G,FFF∈F

‖GGG−FFF‖× (3)

where the ‖·‖× norm can be either the sup norm ‖·‖∞ or the
Frobenius norm ‖·‖F and the matrix set F is suitably defined
in every variant of (3). As far as G is concerned, we need to
limit the search to symmetric, positive semidefinite, low-rank
matrices with a unit diagonal, i.e.,

G={GGG|GGG>=GGG ∧GGG�0 ∧ rank(GGG)=m ∧ diag(GGG)=111} (4)

Since GGG is symmetric, we have GGG = QQQGGG
√

ΛΛΛGGG
√

ΛΛΛGGG
>
QQQ>GGG .

If ΛΛΛ′GGG is the m × m upper left submatrix of ΛΛΛGGG containing
the m non-zero eigenvalues and QQQ′GGG is the d ×m submatrix
of QQQGGG containing the m leftmost columns, then we also have
GGG = QQQ′GGG

√
ΛΛΛ′GGG
√

ΛΛΛ′GGG
>

(QQQ′GGG)
> implying BBB =

√
ΛΛΛ′GGG
>

(QQQ′GGG)
>.

With this, we may finally set AAA = BBBDDD+.
As far as G and F are convex sets defined as the intersection

of elementary convex sets, the key technique for solving (3)
is a mix of projected gradient descent [17] or shrinking in
which the projection on G and F is computed by the method
of alternating projections [18].

What follows is a brief overview of the proposals that use
the above setting, each of them labeled with the prefix coh-
followed by the initial of one of the proposing authors.

1) The “coh-S” method in [19]: The method is equivalent
to set ‖·‖× = ‖·‖F and F = {IIId}, with IIId the d× d identity
matrix, thus simply pursuing the reduction of all off-diagonal
entries of GGG.

As noted in [20], pushing GGG towards IIId can be also inter-
preted, under suitable assumptions on the signal to acquire, in
terms of minimization of the average squared error committed
by an oracle estimator of ξξξ that knows in advance which are
the non-zero entries.

2) The “coh-C” method in [21]: The author notices that
when d > n the dictionary is redundant and this implies some
coherence between the columns of DDD. Since vectors forming
a small angle get projected into vectors forming a small angle,
such a coherence is imported in AAADDD whatever the AAA.

Hence, instead of trying to reduce cross correlation, it is
more sensible to make GGG as close as possible to the Gram
matrix of the dictionary alone DDD>DDD. Hence, the method sets
F =

{
DDD>DDD

}
and considers both ‖·‖× = ‖·‖F and ‖·‖× =

‖·‖∞.
3) The “coh-X” method in [22]: The authors note that

pushing GGG towards IIId is not completely justified by the
objective of making the columns of BBB as distinguishable
as possible. In fact, assuming that distinguishable can be
interpreted as orthogonal, a set of d vectors in Rm that are as
orthogonal as possible is a Grassmannian frame (GF) [23].

Then it would be convenient to define F as the set of all the
possible Gram matrices corresponding to a GF. From [23] we
know that, if all the columns are normalized to unit length, the
absolute value of the scalar product of every pair of vectors in
a GF matches µmin. Hence, the corresponding Gram matrix
FFF is such that FFF j,k = ±µmin for every j 6= k. Regrettably

the set of such matrices is not convex and [22] relaxes it
to one of its convex supersets. In particular it considers the
set of symmetric, unit diagonal matrices, whose off-diagonal
entries have a magnitude not larger than µmin, i.e., F ={
FFF |FFF>=FFF ∧ FFF �0 ∧ diag(FFF )=1 ∧ |FFF j,k|≤µmin ∀j 6= k

}
.

4) The “coh-B” method in [24]: This method puts an
even stronger emphasis on frame-based design by considering
Equiangular Tight Frames (ETFs) [25], [26]. Tightness means
that

∥∥BBB>yyy∥∥2
2

= α ‖yyy‖22 for some α > 0. Equiangularity
implies α = d/m. Hence, the SVD of BBB then becomes
BBB = UUUBBB

[√
d/mIIIm 000

]
VVV >BBB and this forces GGG = BBB>BBB to

have a well defined spectral structure that is exploited to
redefine G as

G ={
GGG|GGG=QQQGGG

[
d
mIIIm 000

000 000

]
QQQ>GGG ∧ QQQGGG∈Rd×d ∧ QQQGGGQQQ

>
GGG =IIId

}
where QQQGGG = VVV BBB .

Further to that, [24] balances the goal of low mutual
coherence with the need for minimizing the effect of non-
perfect sparsity, something that we will not address in this
overview.

5) The “coh-L” method in [27]: This method mixes coh-
S and coh-X. It first notices that, for a full-rank dictionary
DDD whose SVD features ΛΛΛDDD =

[
ΛΛΛ 000

]
for some n × n

diagonal and non-singular matrix ΛΛΛ, the solution of the op-
timization problem entailed by the coh-S method is AAA =[
PPP ′ 000

]
PPP ′′ΛΛΛ−1UUU>DDD with PPP ′ ∈ Rm×m and PPP ′′ ∈ Rn×n ar-

bitrary orthonormal matrices. The corresponding Gram matrix
is

GGG = VVV DDD

[
PPP ′′>

000

] [
IIIm 000
000 000

] [
PPP ′′ 000

]
VVV >DDD

that can be further optimized according to coh-X using PPP ′′ as
a degree of freedom.

6) The “coh-E” method in [28]: As a slight variation, one
may think that reducing all the pairwise correlations between
columns of BBB is a too ambitious goal. This method departs
from such a worst-case target and concentrates on the largest
correlations, replacing the merit figure in (3) with the average
of the off-diagonal entries in GGG that exceed a certain threshold

t, i.e.,

∑
|GGGj,k|≥t|GGGj,k|∑
|GGGj,k|≥t 1

.

B. Adaptation considering second-order statistics

The common characteristic of the adaptation methods con-
sidered so far is that they rely on their design of AAA starting
from the knowledge of DDD with algorithms metrics that do not
consider how both signal and noise energy are processed byAAA.
Conversely, the adaptation methods we discuss in this section
base their effectiveness on how such energy is processed in
the encoder block. In particular, the last two methods we
present use also the knowledge of the second-order statistical
characterization of the input signals as an additional prior.
Depending on the application, suck knowledge could be either
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possessed in advance, or it must be obtained by estimation of
the second-order statistics on a proper set of possible signals.

What follows is a brief overview of the corresponding
proposals, each of them labeled with the prefix pow- followed
by the initial of one of the proposing authors.

1) The “pow-C” method in [20]: This method shares
the attention to mutual coherence that characterizes coh-S
and aims at obtaining GGG as close as possible to IIId. Yet, it
notices that if two matrices AAA′ and AAA′′ exist such that setting
BBB′ = AAA′DDD and BBB′′ = AAA′′DDD one has BBB′>BBB′ = BBB′′

>
BBB′′ = IIId,

then, AAA′′ is preferable to AAA′ whenever ‖AAA′′‖F < ‖AAA′‖F .
To see why, assume, for simplicity’s sake, that the sparse

representation of the signal is white, so that E
[
ξξξξξξ>

]
= IIId.

The power of the signal-related components in the measure-
ment vector yyy = BBBξξξ + ννν is E

[
‖BBBξξξ‖22

]
= E

[
ξξξ>BBB>BBBξξξ

]
=

tr
(
BBB>BBB>E

[
ξξξξξξ>

])
= ‖BBB‖2F .

To enforce the energy constraint ‖AAA‖2F = n one sets AAA =√
n

‖AAA′‖F
AAA′ and thus BBB =

√
n

‖AAA′‖F
BBB′ so that the power of the

signal-related component is n
‖AAA′‖2F

‖BBB′‖2F = nd
‖AAA′‖2F

since the
columns of BBB′ are normalized to unit length. Alternatively, by
choosing AAA′′ instead of AAA′ one obtains that the power of the
signal-related component becomes n

‖AAA′′‖2F
‖BBB′′‖2F = nd

‖AAA′′‖2F
>

nd
‖AAA′‖2F

.
As the disturbance ννν is independent of AAA, increasing the

signal-related component is surely beneficial and the method
designs AAA by solving

min
AAA∈Rm×n

‖AAA‖F s.t. DDD>AAA>AAADDD = IIId (5)

and then normalizing AAA to satisfy the sensing energy con-
straint.

The solution of (5) can be written in terms of the SVD of
DDD and of the n-dimensional counter-diagonal unit matrix JJJn
to set

AAA = PPP
[
diag

(
λDDD
−1
m−1, λDDD

−1
m−2, . . . , λDDD

−1
0

)
000
]
JJJnUUUDDD

where PPP is an arbitrary orthonormal matrix.
2) The “pow-P” method in [29]: This method was devised

for radar application. Here, dictionaries are typically built from
the collection of responses from every possible target position
and thus features a number of vectors d much larger than the
number κ of non-null components in ξξξ, which correspond to
the number of actual targets and is in the order of few units.
It will show that this aspect also reflects to the fact that this
method guarantees very high performance when d/k is very
high while a strong performance degradation is observed for
cases with lower d/k values. The general setting comprises a
signal DDDξξξ, the disturbances ννν and an interference contribution
that we do not consider here. The optimization procedure for
AAA is heuristically derived by assuming that signal and noise are
Gaussian with ξξξ ∼ N (000,ΣΣΣξξξ) for a certain covariance matrix
ΣΣΣξξξ and ννν ∼ N

(
000, σ2IIIn

)
. Since xxx = DDDξξξ then one has xxx ∼

N (000,ΣΣΣxxx) with ΣΣΣxxx = DDDΣΣΣξξξDDD
> that can be decomposed as

ΣΣΣxxx = QQQΣΣΣxxxΛΛΛΣΣΣxxxQQQ
>
ΣΣΣxxx

.
With these assumptions, the method considers the estima-

tion of ξξξ from yyy and the corresponding confidence ellipsoid,

i.e. the set in which estimations fall with a certain probability.
In our case the shape and size of such an ellipsoid depend on
the conditioned covariance ΣΣΣξξξ|yyy. In particular, since the axes of
the ellipsoid are proportional to the eigenvalues of ΣΣΣξξξ|yyy (that
are non-negative), the method aims at making the distribution
of estimations more concentrated, hopefully along the right
direction, by minimizing

minAAA∈Rm×n tr
(
ΣΣΣξξξ|yyy

)
s.t.

{
‖AAA‖2F = n
AAAAAA> and ΣΣΣxxx have the same eigenvectors

(6)

The solution of such a problem is given in terms of the
eigenvalues of ΣΣΣxxx and of the squared lengths tk of the columns
of ΣΣΣξξξDDD

>QQQΣΣΣxxx . More specifically, the method in [29] sets AAA =
diag

(√
µ0, . . . ,

√
µm−1

)
QQQΣΣΣxxx

>
·,0:m−1 whereQQQΣΣΣxxx ·,0:m−1 is the

matrix made of the first m columns of QQQΣΣΣxxx and

µj =
tj
λΣΣΣxxx j

n+

L−1∑
k=0

σ

λΣΣΣxxxk

L−1∑
k=0

tk
λΣΣΣxxxk

− σ

λΣΣΣxxx j

3) The “pow-R” method in [30]: Real world signals are
not white and this method aims at exploiting this prior. Non-
whiteness depends on how average energy is distributed in
the signal space. Such an information is contained in the
correlation matrix KKKxxx = E

[
xxxxxx>

]
that is the starting point

of this method. Consider KKKxxx and note that if xxx were white,
then all the eigenvalues ofKKKxxx would be equal. Hence, one can
measure non-whiteness with localization [31], that quantifies
the deviation of the actual eigenvalues of KKKxxx from their
equidistributed version

Lxxx =

n−1∑
j=0

(
λKKKxxx j

tr (KKKxxx)
− 1

n

)2

=
tr
(
KKK2
xxx

)
tr2 (KKKxxx)

− 1

n
(7)

Localization goes from 0 (white signals) to 1− 1/n (signals
whose energy concentrates along a single direction).

The method does not yield deterministic matrices AAA. This
slightly complicates the design flow but provides some ad-
vantages that can be exploited, for example, for effective
implementations.

It assumes that AAA is a random matrix made of independent
and identically distributed non-white rows. If we indicate the
generic row as aaa> and the corresponding measurement with
y = aaa>xxx, then the method aims at identifying rows with an
high rakeness, i.e., with the ability of collecting the largest
possible amount of energy from the signal and transfer it to
the measurement3.

3This is similar to what some of the authors employed in (chaos-based) DS-
CDMA communication, where chip waveforms, spreading sequence statistics
and rake receivers taps were jointly selected to collect (rake) as much energy
as possible at the received side [32], [33]. In other words, the underlying
idea behind the rakeness-based CS is to adapt the statistics of the sensing
sequences to the class of input signals by exploiting the fact that the energy
and thus the information content of the signal is not uniformly distributed
over its whole domain.



Submitted to IEEE CIRCUITS AND SYSTEMS MAGAZINE 7

Since the power of the measurement is E
[
y2
]

=
E
[
xxx>aaaaaa>xxx

]
= tr (KKKxxxKKKaaa) the natural design parameter is

the correlation matrix KKKaaa = E
[
aaaaaa>

]
that is fixed by solving

max
KKKaaa∈Rn×n

tr (KKKxxxKKKaaa) s.t.


KKKaaa � 0
KKKaaa = KKK>aaa
tr (KKKaaa) = n

m
Laaa ≤ Lmax

aaa

(8)

where the first two constraints ensure that KKKaaa is a proper
correlation matrix, and the trace constraint makes the power
of each row equal to n/m so that the m-rows matrix AAA satisfies
the sensing energy constraint ‖AAA‖F = n on average.

The localization constraint is used to control the amount
of adaptation of the sensing matrix. When Lmax

aaa = 0 then
the rows are forced to be white and there is no adaptation.
When Lmax

aaa = 1 − 1/n all the rows come up lying along the
principal component of KKKxxx thus making all the measurements
maximally energetic but indistinguishable and thus useless.

The problem in (8) can be given an analytical solution that,
under the assumption Lmax

aaa ≤ Lxxx, reads

KKKaaa =
n

m

KKKxxx

tr (KKKxxx)

√
Lmax
aaa

Lxxx
+

1

m
IIIn

(
1−

√
Lmax
aaa

Lxxx

)
Once that KKKaaa is fixed, one may draw aaa′ ∼ N (0, IIIn) and

set aaa = QQQKKKaaa
√

ΛΛΛKKKaaaaaa
′ to produce a Gaussian row aaa> with the

proper correlation.
Further to that, methods exist [34][35] to reproduce the

same statistical behavior even if the the entries of AAA are
constrained to some low-cardinality, hardware-friendly [36],
[37], set of values like AAAj,k ∈ {−1, 1}, AAAj,k ∈ {−1, 0, 1},
or AAAj,k ∈ {0, 1}. If hardware friendliness is a major issue,
the constraint on the kind of entries in AAA can be plugged
directly into the rakeness-based design flow by adjusting (8)
[31] to yield sensing matrices that allow substantial savings in
computational complexity.

C. Power-based adaptation is not only about noise

The most obvious rationale beyond pow-C and pow-R
methods is that they increase the power of the signal-related
component AAAxxx in yyy = AAAxxx + ννν thus countering the effect of
noise. Yet, there is a deeper reason regulating their effective-
ness that can be illustrated using the polytope interpretation
of CS when DDD is an orthonormal basis.

To illustrate the core concept rotate Figures 3-(b) until it
appears as Figure 4. From this point of view, it is clear that
BP is not effective as the angle θ between kerBBB and the signal
ξξξ∗ is equal to the angle between the sparse representation of
the signal itself and a facet of the cross-polytope.

To generalize such an unfavorable condition, indicate with
A(ξξξ∗) the union of the facets that are adjacent to ξξξ∗. As an
example, in Figure 3, A(ξξξ∗) is made of the four segments (1-
dimensional facets) and the 4 triangles (2-dimensional facets)
on the surface of the blue cross-polytope that have ξξξ∗ as a
vertex. Based on A(ξξξ∗), define the set Θ(ξξξ∗) of the angles
formed by the sparse representation of the signal with any

Fig. 4. Angles deciding whether or not reconstruction by BP is possible

segment having ξξξ∗ as a vertex and lying on A(ξξξ∗). Problems
arise when the angle θ between kerBBB and ξξξ∗ belongs to Θ(ξξξ∗).

To prevent this from happening, we may choose a BBB such
that the angle θ is larger than max Θ(ξξξ∗). Since im BBB> is
orthogonal to ker BBB this translates into the requirement that
the angle φ between the rows ofBBB (whose linear combinations
yield im BBB>) and ξξξ∗ is smaller than π/2−max Θ(ξξξ∗). If DDD is
orthonormal, the angles between the rows of BBB and ξξξ∗ are the
same as those between the rows of BBBDDD> = AAA and DDDξξξ∗ = xxx∗.

Finally, given xxx∗ and assuming that the rows of AAA are
normalized to the same length, reducing the angle means
increasing the magnitude of each entry of yyy = AAAxxx, i.e., its
energy.

IV. ENCODER ADAPTATION AT WORK

We test the above methods in a common environment with
n = 128 and in which DDD is either a random orthonormal
matrix or a random dictionary with d = 256 and normalized
columns. Sparsity is set to κ = 6.

Each signal window is generated starting from a ran-
dom vector xxx′ ∼ N (000,ΣΣΣxxx′) for a certain ΣΣΣxxx′ . Such
a vector is then decomposed along DDD by setting ξξξ′ =
argminξξξ∈Rd ‖ξξξ‖1 s.t. xxx′ = DDDξξξ′. The vector ξξξ′ is then
sparsified into the vector ξξξ′′ by keeping only the κ largest
components while setting the others to 0. The signal is finally
generated as xxx = DDDξξξ′′. The matrix ΣΣΣxxx′ is chosen to make xxx
slightly low-pass and Lxxx ' 0.03 of the same magnitude of
some classical real-world signals.

Whatever method is used to build the matrixAAA, we compute
the measurement vector yyy = AAAxxx+ννν with ννν ∼ N

(
0, 10−6IIIm

)
and go from yyy to an estimation x̂xx of xxx by means of BPDN as
implemented in [38].

We evaluate the quality of reconstruction with the Re-
construction Signal-to-Noise-Ratio (RSNR) ‖xxx‖22 / ‖xxx− x̂xx‖

2
2.

Performance is assessed by considering 4000 Montecarlo
trials and computing the average RSNR that we indicate
with ARSNR. Though average performance is not a complete
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characterization of the effectiveness of CS it will suffice here
to give a general idea of what can be obtained by adaptation.

As a reference case we assume the one in which the entries
of AAA, before energy normalization, are independent normals
N (0, 1). It is a classical setting that we label as “i.i.d.”
and allows to quantify the improvements due to ”different
adaptation policies4

Since hardware implementations greatly benefit from con-
straining theAAAj,k to a small number of possible values, we also
consider, as a second setting, the option of substituting AAAj,k
with m−1/2sign (AAAj,k) to obtain antipodal adapted matrices.

Figure 5 and Figure 6 plot the number of measurements
against the ARSRN that they allow to achieve. Since n = 128,
the vertical span is limited to m ≤ n/2 = 64 to zoom in the
area in which the compression rate is at least 2:1. From the
shape of all the curves in the figures it is clear that performance
tends to saturate when m > 64.

In all plots, the i.i.d. reference case is the black line.
Plots are from the designer’s point of view: one chooses the
reconstruction quality along the horizontal axis and finds the
minimum number of measurements (and thus the compression
ratio) needed to obtain it. Hence, the lower the curve, the better
the method in exploiting the features of the signal to optimize
CS performance.

Note that the methods behave differently in the dictionary
and orthonormal basis cases. In particular, it is very interesting
to notice that the best option in the dictionary case (pow-P),
yields extremely low performance in the basis case, in which
pow-R consistently delivers the best performance.

It is also to notice that coherence-based methods (dashed
lines) seem to provide smaller improvements with respect to
power-based methods (solid lines) and to suffer more from
antipodal quantization passing from Figure 5 to Figure 6. On
the contrary, antipodal quantization does not cause any severe
loss in performance to the i.i.d. reference case and to the
power-based method.

Overall, adaptation proves to be quite effective. As an exam-
ple, consider a target ARSNR of 60 dB for a dictionary-based
CS. In both unconstrained or antipodal AAA cases, non-adpated
CS needs mi.i.d. = 57 measurements for a 2.2:1 compression
ratio. The pow-P method reduces it to mpow−P = 38 for
unconstrained AAA and mpow−P = 40 for antipodal AAA thus
yielding compression ratios of 3.4:1 and 3.2:1 respectively.

In the basis case, non-adapted CS needs mi.i.d. = 39
measurements for a 3.3:1 compression ratio. Yet, the pow-
R method yields mpow−P = 32 in both the unconstrained and
antipodal AAA cases, thus bringing compression ratio to 4:1.

V. ADAPTATION AT THE DECODER SIDE

Though, in principle, any convex optimization solver can be
used to solve BPDN, there is a flourishing literature developing
alternative reconstruction algorithms. For example, instead of
depending on the ‖·‖1 norm and its favorable geometry, signal
reconstruction can be approached from completely different

4The MATLAB code used to obtain these results is available at
https://goo.gl/6hknan.

TABLE I
PSEUDO-CODE OF OMP

1: ζζζ ←
[ ]

. initialize the vector that will contain the non-zero
components of ξ̂ξξ

2: J ←
[ ]

. initialize the vector that will contain supp
(
ξ̂ξξ
)

3: repeat
4: ∆yyy ← yyy −BBB·,Jζζζ . BBB·,J is the submatrix of BBB with columns

indexed by J
5: j = argmaxk

∣∣∣BBB>·,k∆yyy
∣∣∣ . column BBB·,k of BBB that best matches the

measurements residual
6: J ←

[
J j

]
. include it in J

7: ζζζ ← BBB+
·,Jyyy . re-estimate ζζζ by pseudo-inversion

8: until convergence

9: ξ̂ξξj ←
{
ζζζk if j = Jk
0 otherwise

. put non-zero components back into ξ̂ξξ

points of view, e.g., from the estimation, or machine learn-
ing, or regression point of view [39], [40], [41]. Moreover,
procedures exist that retrieve the original signal by generating
solutions to yyy = BBBξξξ iteratively and adjusting their sparsity at
each step. Different heuristics may be used to promote sparsity
and this gives rise to different methods [5], [6], [7]. The
simple structure of these methods, and their good performance,
make them ideal for CS embodiments in which the resources
devoted to signal reconstruction are limited. As an example,
the approach of Orthogonal Matching Pursuit (OMP) tries
to reconstruct supp (ξξξ) = {j|ξξξj 6= 0} iteratively by looking
for the columns of BBB that have the highest correlation with
the measurements vector yyy, a simplified pseudo-code being in
Table I.

Among this abundance, few methods concentrate on adapt-
ing the decoding procedure to the features of the signal. Since
the task of the decoder is to retrieve the sparse representation
ξξξ, it is most natural to exploit priors applying to that space.

In particular, the priors we consider concern supp (ξξξ) =
{j|ξξξj 6= 0}, i.e., the positions of the non-zero elements in ξξξ,
or the magnitudes of the non-zero elements in ξξξ.

1) The “dec-ZZ” method in [8]: This approach assumes
that the signal is not only sparse but also block-sparse. Blocks
are subvectors ξξξ[j] of ξξξ containing adjacent entries so that one
may partition ξξξ in β blocks ξξξ> =

[
ξξξ[0]
>

. . . ξξξ[β−1]
>
]
. The

signal is block-sparse if supp (ξξξ) is always contained in the
union of a number of blocks � β.

Block-sparsity is a stronger prior than simple sparsity
[42] and can be paired with Bayesian learning [8] to yield
effective reconstruction algorithms. The core idea is to as-
sume that each block follows a parameterized multivariate
Gaussian distribution ξξξ[j] ∼ N

(
0, γjΣΣΣξξξ[j]

)
and is independent

of the other blocks so that ξξξj ∼ N (0,ΣΣΣξξξ) with ΣΣΣξξξ =
diag

(
γ0ΣΣΣξξξ[0] , . . . , γβ−1ΣΣΣξξξ[β−1]

)
. With this model, γj = 0

implies that the block does not cover supp (ξξξ) and thus
controls the block sparsity.

Decoding is then divided in two steps. In the first step the
parameters γj and ΣΣΣξξξ[j] are learnt for j = 0, . . . , β − 1.
In the second step they are used to decode ξξξ by means of
straightforward Maximum-A-Posteriori estimation

ξ̂ξξ = ΣΣΣξξξBBB
> (σ2IIIm +BBBΣΣΣξξξBBB

>)−1 yyy
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(a) (b)

Fig. 5. Performance of different encoder adaptation policies when AAA is unconstrained: (a) DDD is a random dictionary; (b) DDD is a random orthonormal basis.

(a) (b)

Fig. 6. Performance of different encoder adaptation policies when AAAj,k = ±m−1/2: (a) DDD is a random dictionary; (b) DDD is a random orthonormal basis.

Depending on the different strategies for learning the γj and
ΣΣΣξξξ[j] , this approach gives rise to different methods that differ
in computational complexity more than in final performance.

2) The “dec-JZ” method in [43]: In this case one assumes
that, when ξξξj 6= 0 then its average magnitude varies with j.
This is most natural when, for example, DDD is a wavelet-like
orthonormal basis that decomposes the signal into a sequence
of approximation/detail pairs whose typical decay is known
by design of can be identified.

This decay information can be plugged into BPDN by
altering the sparsity promoting norm from ‖ξξξ‖1 to

∥∥WWW−1ξξξ∥∥
1

where WWW is the diagonal matrix aligning the coefficients
modeling the decay.

The method appears to be most effective when BPDN is
solved considering its lasso relaxation, i.e., in

min
ξξξ∈Rd

(1− α)
∥∥WWW−1ξξξ∥∥

1
+ α ‖yyy −BBBξξξ‖22

where the parameter α administers the weight of the two
components in the relaxation.

3) The “dec-P” method in [9], [44]: In OMP, the new
columns of BBB to be inserted in the set that is deemed to be
necessary to reproduce the measurements are selected for their
alignment with the residual measurement. A prior of the kind
used in the previous method can alter this selection by altering
the opportunity of choosing a column depending on the decay
coefficient of the corresponding entry in ξξξ.

This can be done by changing Line 5: in Table I with
j = argmaxk

∣∣∣BBB>·,k [(1− α)WWW−1 + αIIId
]

∆yyy
∣∣∣, where the

parameter α administers the trade-off between following the
correct decay and aligning with the residual.

VI. BACK TO ECGS

The ECG signals we mentioned in the introduction offer
the opportunity of testing the effect of adaptation at both
the encoder and decoder side. In fact, they can be given
an approximately sparse representation along, for example,
a Daubechies-6 wavelet basis DDD that has a dyadic scaling
and thus induces a blockwise halving decay in the typical
magnitude of the coefficients.
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Fig. 7. Performance of different decoder adaptation policies.

We consider windows containing n = 512 samples taken
at 360 sample/s from a classical procedure generating clean
and realistic ECG tracks [45] and superimpose a noise vector
ννν ∼ N

(
000, 10−6IIIm

)
to the measurement vector yyy.

Figure 7 compares the performance of the three above
decoding strategies against non-adapted BPDN. In all cases AAA
is made of independent Gaussian random variables. Though
with different profiles, all methods give definite advantages
over non-adapted BPDN.

With reference to the hearth monitoring device briefly
sketched in the introduction, we may also evaluate what could
be the overall impact of adaptation both at the encoder and
decoder side.

Since we are dealing with a portable device in which the
resources for the computation of yyy are limited, we constrain
AAA = ±m−1/2.

The previous analysis (see Figure 6-(b)) suggests that, since
DDD is an orthonormal basis, it is convenient to us the pow-
R method that yields consistent improvement across multiple
target quality levels. From [12] we get that LQ reconstruction
supporting, for example, heart rate estimation may feature
an ARSNR as low as 7 dB. Yet, from [46] we get that
HQ reconstruction must provide an ARSNR not smaller than
34 dB.

From Figure 7 we get that, when neither the encoder
nor the decoder is adapted, an LQ recovery of the signal
requires mLQ = 86 thus yielding a 6.0:1 compression, while
HQ recovery requires mHQ = 232 thus yielding a 2.2:1
compression. This second result is a pretty standard one as
it is accepted that straightforward CS applied to ECGs is a
computationally effective way of enjoying a compression in
the order of 2:1.

Furthermore, introducing pow-R at the encoder and dec-P at
the decoder, i.e., the case where both encoder and decoder are
designed in according to an adapted CS method, the number
of measurements is reduced to mLQ = 36 and mHQ = 137
thus increasing the compression ratio from 6.0:1 to 14.2:1 in
the LQ case and from 2.2:1 to 3.7:1 in the HQ case. To give
an intuitive feeling on the improvement due to adaptation we

Fig. 8. Example reconstruction of an ECG signal (black track) by non-adapted
(red tracks) and adapted (blue tracks) CS for different compression ratios.

may consider 5 windows of an ideal ECG profile as reported
at the top of Figure 8. Based on that profile we test both the
non-adapted encoder-decoder pair and the adapted one, using
the number of measurements that make the adapted pair work
either at LQ (mLQ = 36) or HQ (mHQ = 137).

In Figure 8, the yellow-background plots refer to the mLQ =
36, while the green-background plots refer to mHQ = 137.
Independently of the compression, adapted CS widely outper-
forms the non-adapted option.

VII. ADAPTATION FOR HARDWARE IMPLEMENTATION

When dealing with implementations of CS-based acquisi-
tion systems, the concept of adaptation can be considered also
from an ”hardware-oriented” perspective. As an example, CS
has been characterized so far by the set of linear projections
expressed by yyy = AAAxxx. However, when dealing with a real
world input signal, the very concept of projection and scalar
product is heavily dependent on the way in which the input
signal information is encoded. In other word, it is fundamental
to keep into account the signal representation.

The aim of this section is to review both standard and
innovative approaches to examine practical problems that can
arise in hardware implementations of CS-based acquisition
systems and present an overview of solutions employed in
integrated circuits presented so far in the literature. Referring
to the above example, a brief survey is enough to identify
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the many different possibilities in which the linear projections
yyy = AAAxxx are computed according to the different input signal
model. The solution for this and other issues usually requires
the adaptation of the CS framework either at circuital or even
at system level.

Regrettably, a rapid scan of the recent literature on CS
related works reveals that among the overwhelming number
of works that can be found, only a negligible fraction of them
deals with the actual circuital implementation of the proposed
algorithm or technique.

To the best of authors’ knowledge, the first prototype
capable of implementing a CS-based system via the generic
yyy = AAAxxx product has been presented in [47]. The circuit is a
sub-Nyquist rate receiver for radar pulse signal designed in
90 nm technology, capable to acquire signals up to 2 GHz. In
[48], the authors describe a CS-based data acquisition front-
end for a radio frequency (RF) communication system imple-
mented in 90 nm CMOS process. The work in [49] presents an
analog front-end for ECG signals designed in 180 nm CMOS
process, while [50] reports an area and power efficient multi-
electrode arrays acquisition system based on CS designed in
180 nm CMOS process, outperforming previously presented
works in terms of compression rate and reconstruction quality
by a run-time adaptation. The work [51] describes a low-
power sub-Nyquist sampler for the multichannel acquisition of
cortical intracranial electroencephalographic (iEEG) signals.
The peculiarity of this architecture, which has been fabricated
in 180 nm CMOS process, is to consider the signal features not
only in the temporal domain, but also in the spatial domain.
The architecture presented in [37], designed in 180 nm CMOS
process, is an analog-to-information converter for generic
biomedical signals. It introduces a smart saturation checking
mechanism with which it is possible to reconstruct the ac-
quired signal even if many measurements suffer saturation,
and exploits the aforementioned pow-R approach introduced
in Section III-B. In [52], the authors propose a run-time signal
evaluation module (indicated as dynamic knob) designed in
130 nm CMOS process, with the aim of improving the quality
of the following CS encoder by adapting a few parameters
towards the input biosignal dynamics. Finally, in [53], the
complexity of the VLSI implementation of the generator
of the sensing matrix AAA is investigated, and the hardware
efficient generation of deterministic sparse sensing matrices
is considered.

A. Computation of compressed measurements

All aforementioned implementations share the same philos-
ophy: in order to compute m different measurements, the very
same hardware block is either replicated m times or used in
an interleaved way m times, and driven by the input signal xxx
and the m different instances corresponding to the rows of AAA.
For the sake of simplicity, in the following we will focus on
the scalar product y = aaa>xxx, where aaa. is a generic row of AAA
and y the corresponding element of the measurement vector.

A first group of works [47], [48], [49], [51], [37], [54] deal
with an analog input signal represented as a function x(t) of
the time variable t. As an example, x(t) may be the output

of a sensor (typically a voltage), or, more frequently, x(t) is
differentially encoded, i.e., it is represented as the difference
between two (voltage) quantities as x(t) = x+(t)− x−(t). In
a few cases, as in [51], the authors consider a multi-channel
scenario, and the input signal xxx(t) is actually an array of p
signals coming from different sensors.

For the sake of simplicity, in the following we limit our-
selves to the scalar case regardless of the fact that the actual
implementation of x is differential or single-ended.

When dealing with an analog signal, two issues immediately
arise if one thinks about the computation of y = aaa>xxx: i)
according to the standard CS model, xxx is assumed to be a
vector, while in a real implementation the best fit for the
input signal is a function of time x(t); ii) xxx is n-dimensional,
while x(t) is defined over the whole R, i.e., it has an infinite
dimensionality.

The standard solutions adopted to reconcile the differ-
ent signal models are sketched in Figure 9. The common
way to cope with dimensionality is by windowing x(t)
[47], [48], [49], [37]. The input signal is sliced to get
the functions x(l)(t), x(l+1)(t), x(l+2)(t), . . ., each of them
defined on contiguous and non overlapping time intervals
I(l), I(l+1), I(l+2), . . ., and such that x(l) : I(l) 7→ R. The l-
th slice of the input signal x(l)(t) gives rise to measurements
yyy(l), that are used to reconstruct x̂(l)(t). The complete input
signal can then be achieved by joining all the reconstructed
slices.

Conversely, coping with the first issue has not a unique
solution. The most general approach is that adopted by [47],
[48], where the generic measurement y is achieved by a
continuous time multiply-and-integrate architecture as in the
“analog continuous-time” case of Figure 9. The l-th slice of
the input signal x(l)(t) is first multiplied by a sensing function
a(t) (assumed defined over I(l)) and then integrated over I(l).
Focusing for simplicity on the case l = 0 where I(0) = [0, Tw],
the measurement is expressed as

y(0) =

∫ Tw

0

a(t)x(0)(t)dt (9)

It is interesting to notice that also this case can be easily
incorporated into the standard framework y = aaa>xxx under
the reasonable assumption that a(t) is generated starting from
n coefficients aaak stored into a local memory as the pulse-
amplitude modulated (PAM) function a(t) =

∑n−1
k=0 aaakg(t ·

n/Tw − k), being g(·) a normalized pulse5.
By replacing the definition of a(t) in (9), we get

y =

n−1∑
k=0

aaak

∫ Tw

0

g

(
t
n

Tw
− k
)
x(0)(t)dt

=

n−1∑
k=0

aaakx̃xx
(0)
k = aaa>x̃xx(0)

where we have implicitly defined a generalized Nyquist-rate
samples vector x̃xx(0) =

[
x̃xx
(0)
0 , x̃xx

(0)
1 , . . . , x̃xx

(0)
n−1

]
where samples

5A typically, but not necessary, choice for g(·) is the rectangular pulse
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Fig. 9. Grand view of a possible actual implementation of a CS-based acquisition system. The input signal x(t) is first windowed into non overlapping
slices x(l)(t), x(l+1)(t), x(l+2)(t), . . ., that generate the measurements y(l), y(l+1), y(l+2), . . . respectively. The way how measurements are computed
depends on the input signal. For high frequency signals, the preferred solution is to mix x(t) with a(t) and then integrate the result with a continuous-time
integrator. Results are then quantized by Q(·). For low frequency signals, using a switching capacitors integration approach is a more common choice.
Another possible solution for low frequency signals is the fully digital approach, where x(t) is first sampled, quantized by Q(·), processed by a standard
multiply-and-accumulate architecture in the digital domain, and optionally re-quantized by Q′(·).

are taken are take at Nyquist rate but their amplitude is related
to

x̂xx
(0)
k =

∫ Tw

0

g

(
t
n

Tw
− k
)
x(0)(t)

Note that, in many practical cases, x̃xx is not so different
from the Nyquist rate sample vector xxx. In fact, we have x̃xx =
xxx when g(τ) is the standard Dirac delta operator δ(τ). Yet,
in practical implementations, it is common to replace δ(τ)
with a normalized pulse equal to the ideal rectangular pulse
χ(τ) = 1 when 0 ≤ τ < 1, and χ(τ) = 0 elsewhere. In this
case the generalized coefficient vector can be considered a
good approximation of Nyquist-rate sample vector, i.e., x̃xx ≈ xxx
if the input signal is quasi-stationary. Note also that the CS
reconstruction procedure will retrieve the generalized sample
vector x̃xx.

Moreover, if the input signal is low frequency, different
approaches are possible. A solution adopted in [49], [51],
[37] is to consider a switched capacitor architecture. In this
case, we are dealing with a discrete-time input signal model
thanks to the intrinsic sampling capabilities guaranteed by this
class of circuits. The generic l-th time windows of length Tw,
defined in the interval I(l) is sampled at rate n/Tw to generate
a n-length analog samples vector. Focusing, for the sake of
simplicity, on I(0) = [0, Tw], we get

xxx(0) =
[
x(0) (0) , x(0)

(
Tw
n

)
, . . . , x(0)

(
(n− 1)Twn

)]>

The Nyquist samples of the input signal are then processed
with a standard multiply-and-accumulate (MAC) analog archi-
tecture, shown in the ”analog discrete-time” case of Figure 9,
where a clock signal is assumed whose period is divided into
two phases.

In the first one, each sample of xxx(0)k = x(0)(kTw/n) is
multiplied by aaak, and the results sampled by the Cs. In the
second phase, all the charge stored in Cs is transferred to the
feedback capacitor Cf , that accumulates the voltage level to
be provided as circuit output. After n integration time steps,
and assuming Cs = Cf , we get at the circuit output

n−1∑
k=0

aaakxxx
(0)
k = aaa>xxx(0) = y(0)

that is the measurement associated to the generic row aaa> for
the time windows I0.

As final step, in both the considered cases (i.e., when x(t)
is high-frequency and measurements are computed by means
of a continuous-time integrator [47], [48], and when x(t) is
low-frequency and measurements are achieved with a switched
capacitor integrator [49], [51], [37]) y is finally converted
in digital words by a proper ADC (represented by the Q(·)
function of Figure 9) operating at a sub-Nyquist rate6.

6While the Nyquist rate is defined as n/Tw , with this solution the ADC
is working at a rate given by 1/Tw , or m/Tw in case a single shared ADC
is used to convert all m measurements.
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Another group of works [50], [52] assume to operate
directly on digital input signals. This approach has recently
been receiving increasing attention, and aims at using CS
as an early digital processing stage replacing complex and
expensive (either in terms of required energy or hardware
resources) classic compression algorithms. The corresponding
architecture is shown as the “digital” case in Figure 9. The
vector xxx is made of digital words after windowing, sampling
and quantizing the input signal x(t). In order to compute
y, it is enough to process xxx with a common digital MAC
architecture. Even if, in this case, the measurement y is
already a digital quantity that can be delivered “as is” to the
reconstruction algorithm, it is a common practice to apply
an additional re-quantization function (such as the Q′(·) in
the figure) to ensure, for example, a better adaptation to the
statistics of y.

B. Multiplication by aaak
Notwithstanding the actual implementation as a multiply-

and-integrate [47], [48], or a as multiply-and-accumulate stage
[49], [50], [51], [37], [53], one of the main difficulties in
realizing a CS signal acquisition stage is multiplying the input
signal by the sensing sequence/function. In fact, a multiplier
is one of the most complicated circuital block in a signal
processing chain, both in the analog and in the digital domain.

To tackle this issue, almost all the considered works con-
strains the elements of vectors aaak to assume a very limited
number of values. In [47], [48], [49], [37], it is required that
aaak ∈ {−1,+1}. The advantage of this approach is clear: the
multiplier block can be replaced by a simple sign inversion
circuit. More specifically, in the analog domain, and assuming
a differential encoding for x(t) [47], [48], [49], [51], [37],
a few pass transistors capable of exchanging the x+(t) and
x−(t) line are enough to perform multiplication by −1. In
the digital domain, the solution is similarly simple since a
straightforward two’s complement allows a multiplication by
−1. The multiplication by +1 is, of course, trivial in both
cases.

Another possible solution is to ask that aaak ∈ {0,+1} [50],
[51], [53]. In this case the situation is even simpler, since the
multiplication by +1 or 0 is simply achieved by allowing the
input signal to be summed/integrated or by disconnecting it
from the rest of the circuit, respectively.

When multiplication by an arbitrary value is desired, the
resulting circuit complexity is expected to substantially in-
crease and several authors have proposed remedies to cope
with this. As an example, in the discrete-time analog input
signal case, the authors of [49] describe a solution to achieve
the multiplication by a 6-bit integer value at virtually no cost
in terms of energy. More specifically, instead of relying on a
simple switched capacitor integrator based on two capacitors
such that shown in the “analog discrete-time” case of Figure 9,
they replace Cs with a 5-bit C-2C split capacitor array circuit
typically used in digital-to-analog converter. The effect is that
only a part (that is proportional to the 5-bits control value) of
the charge accumulated on the C-2C split capacitor array is
transferred to the Cf , thus performing at the same time both a

multiplication and the integration without any additional active
device. The 6-th bit of the control word is used as sign bit,
and decides if the signal to be integrated is x(t) or −x(t) by
exchanging the x+(t) and x−(t) differential lines.

C. Time continuity

In the windowing approach illustrated so far, the input signal
x(t) is sliced with respect to contiguous and non overlapping
time intervals of length Tw. From a circuital point of view,
let us refer again to Figure 9 and consider the time interval
I(l). The measurement y(l) is computed by considering the
input signal slice x(l)(t) and aaa. At the end of I(l), y(l)

is available, and can be converted into a digital word (or
requantized assuming a digital architecture). After that, the
integrator circuit have to be reset in order to be ready to start
the computation of a new measurement y(l+1). Note that these
two operations (conversion to digital word/requantization and
reset) may require a non-negligible amount of time.

Yet, at the same time instant when I(l) ends, I(l+1) starts
and all the aforementioned processes need to be repeated on
the successive slice x(l+1)(t) of the input signal to compute
y(l+1). While it is reasonable to assume that both y(l) and
y(l+1) should be computed by the same hardware block, it is
straightforward to understand that the two above requirements
are conflicting: i) a certain amount of time is needed for
the hardware block to be ready for start the computation of
the new measurement, and ii) the computation of the new
measurement should start immediately after the end of the
elaboration of the previous one.

While the solution for a digital architecture is trivial (a latch
is enough to store the accumulated value so that the multiply-
and-accumulate block is ready for the next computation),
the situation is more complicated when considering analog
hardware. In the latter case, a complex (and energy-hungry)
analog sample/hold should in principle be required. To avoid
it, [48] and [37] propose two similar solutions to be applied to
the continuous-time and the discrete-time model, respectively.

Referring to the “analog continuous-time” case of Figure 9,
in [48] the proposed multiply-and-integrate block is composed
by a single multiplication block and by two integration paths.
When the first block is integrating, the second one is discon-
nected from the multiplier and is working as a sample/hold
block. This allows enough time to the cascade circuit to
digitize the results, and also to clear the charge accumulated
on Cf before starting a new integration. At the end of the time
window, the role of the two paths is exchanged: the first one
works as a sample/hold, while the second path starts a new
integration phase for computing the next measurement.

An even simpler solution is presented in [37], where the
proposed design is based on a switched capacitor architecture.
Referring to the circuit sketched in the “analog discrete-time”
case of Figure 9, the authors created two integration paths
by replicating only the feedback capacitors Cf , while all
other element (the multiplier, Cs and the active amplifier) are
shared. The working principle is exactly the same as in the
previous case: when the first Cf is used for computing the
actual measurement, the second Cf is sampling the previous
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measurement and may be connected to the cascading analog-
to-digital converter, leaving enough time for the conversion
and for removing the charge accumulated on it. At the end of
each time window, the role of the two capacitors is exchanged.
Note also that the further advantage of this solution is that no
active (and so, energy consuming) devices are replicated.

D. Saturation

Independently of the architecture, measurements must be
quantized/requantized before dispatching them. Unfortunately,
such an operation may lead to saturation problems. Even if
this has been rarely considered, it is a severe issue both for
analog and digital CS implementations.

Since y =
∑n−1
k=0 aaakxxxk, and assuming a large n (or more

precisely, assuming that the number of terms aaakxxxk 6= 0 is
large), the central limit theorem can be applied to the sum
resulting into y. As a consequence, the distribution of the
result is expected to be approximately Gaussian, so that y
may indeed assume very large values, while the majority of
the observed cases will be practically located around the mean
value.

This is an important issue for a twofold reason: i) the
applied quantization function is uniform, i.e., all quantization
steps have the same size, and ii) the conversion range is
limited by an upper and a lower threshold, which identify
the interval where conversion is correctly preformed, while
outside it saturation occurs.

When an analog CS architecture needs to be implemented,
the two above mentioned quantization thresholds must care-
fully be selected. In fact, it is obvious that using very different
values can decrease (ideally, down to zero) the probability of
a saturation event. This has however the drawback, due to
the large quantization step, to increase the quantization error
and reduces the reconstruction quality. Conversely, making the
values of the two thresholds closer to each other results in
a lower quantization error, but increases to a non-negligible
value the probability of a saturation event.

A similar problem has to be considered also when comput-
ing y by means of a digital multiply-and-accumulate block.
Unless a complex and non-efficient floating point represen-
tation is used, a high number of bits in the representation
of y will result in negligible probability of saturation. The
drawback is the non-efficient coding, since the most significant
bits will hardly ever be used. It is worth stressing that a non-
efficient coding of measurements is actually a very serious
problem, since it is in contrast with the ambition of CS to
work as an efficient compression algorithm.

As an additional problem, saturation may actually be ob-
served at any time in the computation of y. Let us define the
succession of values

y[j] =

j∑
k=0

aaakxxxk, j = 0, 1, . . . , n− 1 (10)

with y = y[n − 1]. This is the sequence of all intermediate
partial sums that lead to y. Considerations similar to those
mentioned above for y, hold also for each y[j]. When analog

Fig. 10. During the computation of a generic measurement y, when the
intermediate accumulated value y[j] leaves the safe interval

[
y−sat, y

+
sat

]
, a

non-linear phenomenon occurs (saturation, overflow, etc.). In this case, the
final accumulated value may be different from the expected one. Stopping the
integration at time step ̂ when the safe region is left is a smart solution to
get a non-erroneous measurement.

hardware is the choice, the integrator computing (10) may sat-
urate (i.e. compromising the correct operation of the integrator
in its linear region). Similarly, in a digital architecture, the
multiply-and-accumulate block may overflow. In both cases,
the outcome of the computation (i.e., the final y) is unpre-
dictable. Using this value for reconstructing the input signal
leads to an error that will impair the signal reconstruction.

A workaround for this problem was first proposed in [55]
and adopted in [37] for the “analog discrete-time” case,
and can be easily extended to any other architecture. The
authors added two analog comparators to the multiply-and-
integrate block with the aim of checking whether y[j], ∀j ∈
{0, 1, . . . , n− 1} is in a safe range of linearity of the integrator
block, defined by an upper threshold y+sat and a lower one
y−sat. As soon as this region is left, the time step ̂ is recorded
along with the fact that the threshold being reached is y+sat or
y−sat. These data are transmitted to the reconstruction algorithm
instead of the corrupted measurement.

More specifically, it is reasonable to assume that the ex-
pected value of each step aaakxxxk is small with respect to the
integrator linearity range. In this way, the probability of a
saturation event would be limited even for n large. As a
consequence, we have either

̂∑
k=0

aaakxxxk ≈ y−sat or

̂∑
k=0

aaakxxxk ≈ y+sat (11)

By introducing a sensing vector aaa′ ∈ Rn defined as

aaa′ =
[
aaa0, aaa0, . . . , aaa̂, 0, . . . , 0

]>
the two expressions in (11) can be written as aaa′>xxx ≈ y−sat
or aaa′>xxx ≈ y+sat, respectively, and can be used in the recon-
struction algorithm to replace the erroneous y = aaa>xxx. This
approach is schematically represented in Figure 10.

The advantage of this solution with respect to the simple
approach where measurements characterized by a saturation
event are marked as invalid and not used in the reconstruction
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algorithm [56] can be explained by considering that the phi-
losophy underlying CS is to reconstruct the input signal with
the minimum amount of information. Accordingly, being able
to recover even a small quantity of information from saturated
measurements is an advantage. The authors of [37] showed
that, using this approach, when a small ratio of measurements
present saturation, it is still possible to recover the input signal
with the same quality one get when no saturation events occur.
Furthermore, they also showed that when up to 60% of the
measurements are characterized by a saturation event, it is
still possible to reconstruct the input signal with an almost
negligible drop in performance.

E. Generation of sensing sequences

The generation of aaa appears as a straightforward operation
in a CS-based system. Nevertheless, when dealing with a prac-
tical CS systems implementation, this operation surprisingly
requires appreciable care.

While in test prototypes it is commonly allowed to exter-
nally generate and load the sensing sequences [47], [37], any
IoT CS-based not must have the elements of aaa available on-
chip. With respect to this, it is immediate to conclude that
storing all the sensing sequences in an internal memory is in
general not an option. In fact, referring for instance to [49]
where n = 256, m = 64, and each entry of the sensing matrix
is a 6-bit quantized value, storing all different elements of
all vectors aaa would require 100-Kbit of dedicated memory,
something that should be avoided in the implementation of an
analog circuit. So the path to follow is the on-chip generation
of the sensing sequences.

Yet, as extensively shown in this paper, CS performance
strongly depends on the choice of the acquisition sequences.
We have seen that sensing sequences need to be randomly
drawn or generated by adopting one of the discussed ap-
proaches. While the complexity of the second solution is
obvious, the first case may present drawbacks when using a
simple linear feedback shift register (LFSR) due to the low
quality of the generated stream. The problem is relevant, in
particular, if the number of channels is high, and so the number
of different elements in aaa to be generated at the same time.

While in [48], [51] the generation of sequences aaa is achieved
by a simple LFSR with no additional details, in [49] a complex
Fibonacci—Galois 384-bit LFSR is designed. Basically, 64 6-
bit Fibonacci LFSRs have been integrated into the circuit, each
one generating a different aaa. Then, the 64 LFSRs are further
randomized by dithering their less significant bits in a Galois
fashion, each LFSR using the most significant bits of another
stage. An external trigger signal enables a 384-bit seed load
at the beginning of each integration window7.

A completely different problem was instead faced in [47].
The proposed integrated circuit is a sub-Nyquist sampler for a
2 GHz bandwidth input signal. The circuit has a continuous-
time analog architecture, and uses PAM sampling signal a(t)

7Note that, even if [49] is the only work where the elements of each aaa are
the approximations of real quantities, the authors considers only uniformly
distributed random values due to the complexity of generating a Gaussian
distribution at hardware level.

obtained from antipodal sequences aaa, where the multiplication
by a(t) is simply achieved by exchanging the differential lines
of the differential input signal. Due to the 2 GHz input signal
bandwidth, the aaak symbols must be generated at a rate equal
to 4 Gbit/s. The use of an internal serial memory for storing
the aaa vector, built upon a programmable shift register, even
with all its implementation drawbacks, has been found to be
the only solution allowing versatility at this speed.

The problem of the efficient generation of the elements of aaa
has also been considered in [53]. The authors propose a simple
and deterministic algorithm to generate binary vectors aaa (i.e.,
aaak ∈ {0, 1}) that, once collected into the sensing matrix AAA,
ensures that i) AAA satisfies the theoretically requirements for
input signal reconstruction at the decoder side; and ii) AAA is
easily obtained with a finite state machine.

The method proposed in [53] relies on the quasi-cyclic array
code based binary matrix framework. In particular, the authors
aim to utilize the parity-check matrices of array codes and their
submatrices to construct AAA. In more details, let us indicate
with IIIq the q × q identity matrix, and PPP q the q × q cyclic
permutation matrix defined as

PPP q =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0


Given an integer r, the sensing matrix AAA is the rq × q2

binary matrix given by

AAA =


IIIq IIIq · · · IIIq
IIIq PPP q · · · PPP q

q−1

...
...

. . .
...

IIIq PPP q
r−1 · · · PPP q

(r−1)(q−1)


According to [53], the proposed approach shows compara-

ble recovery performance for EEG and spike data compression
with respect to standard approach at a reduced hardware
complexity.

F. The spatio-temporal approach

In the works [50], [51] authors consider a multichannel EEG
recording as input. A multichannel signal may be modeled as
an array xxx(t) composed of p real functions, with xxx : R 7→ Rp.
By windowing it and sampling it at rate Tw/n, we get for
each I(l), a slice of signal represented by a p×n matrix, that
can be easily unrolled to get a p× n vector. The standard CS
framework can then be applied to this vector with no other
modification.

Indeed, a spatio-temporal approach may lead to several
advantages with respect to a standard approach, since it make
possible to exploit the input signal features in two different
domains (i.e. spatial and temporal one).

This is an open research topic. Yet, by limiting ourselves
to a pure circuital level consideration, it interesting to see
how in [51] this model is used to reduce the hardware
complexity of y = aaa>xxx. In fact, at each time step, a number
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of measurements is computed as a linear combination of the
samples coming from all input signal channels sampled at that
time step. Mathematically, at time step k, we get the generic
measurement

y =

p−1∑
j=0

aaajx
(j)

(
k
Tw
n

)
(12)

Then, all measurements generated at the k-th time step are
collected by the reconstruction algorithm and joined to all
measurements generated for all other time steps belonging to
I(l). During reconstruction, both sparsity (on the time domain)
and correlation (on the spatial domain) are used to improve
the input signal reconstruction quality.

Computing measurements with a multiply-and-accumulate
operation in the spatial domain only as in (12) has a twofold
advantage.

On the one hand, this avoids the time continuity problem
described so far. At a generic time step k the input signal is
sampled, and each sample is multiplied by aaaj and accumulated
to get y as in (12). The measurements have to be quantized
and dispatched before the end of the time step. This approach
imposes time constraints tighter with respect to a standard
approach and due to the necessity to deal at the same time with
p different input signals (the time available for all the required
operations is Tw/n instead of Tw). However, at the end of the
time windows all measurements have already been converted
and dispatched, and no additional actions are required between
the end of a time windows and the beginning of the next one.

On the other hand, this approach makes the computation
of y independent of the length of Tw. As observed in [37], a
Tw that is too long (that is actually a common situation for
biomedical signals such as ECG or EEG) may lead to leakage
problems in analog implementation due to the discharge of
the capacitors. In the light of this, an architecture where
performance of the integrator is independent of Tw is a sure
advantage.

G. Dynamic CS approaches

In many cases, it may be useful to tune some parameters
of a CS system on the particular input signal. For example,
in biomedical signal acquisition, the dictionary DDD used for
reconstruction can be trained on the particular patient for
improving performance. The training phase, however, cannot
be done by using compressed measurements, but needs to be
established before the starting of the CS operating mode.

Such an approach is considered in [50]. The interesting
aspect from the circuital point of view is that the designed
system works with a feedback signal generated by the recon-
struction algorithm capable of enabling or disabling the CS
operating mode. Initially, the CS mode is disabled (i.e., the
device is working as a standard Nyquist-rate converter) and
the uncompressed input EEG signal is sent to the receiver side
which analyses it. When enough data is collected to allow a

good estimation of a trained dictionary, a signal is sent to the
acquisition device to start the CS operating mode. 8

A different case is taken into account in [52], where no
CS architectures are considered. Indeed, the design of a low-
power companion chip capable of detecting features of the
input signal is presented. The aim of the work is to identify
the type of the input signal among many possible biosignals.
In this way, it should be possible to adapt parameters of the
CS (for example, the number of measurements m, the time
windows Tw, the number of samples n per time window, and
so on) to that of the input signal, with advantages in terms
of reconstruction quality and/or energy required to sample the
input signal.

VIII. CONCLUSION

CS is often thought of as a technique in which adaptation
cannot play a significant role. Yet, a careful scan of the litera-
ture reveals that many methods have been developed to adjust
either the encoding or the decoding side of CS depending on
the class of signals that has to be acquired. Moreover, every
hardware implementation has to adapt the general paradigm
to cope with realization constraints or resource budgets.

Our review shows that these designs are able to yield
significant improvements that cannot be predicted by classical
theoretical guarantees dealing with worst-case analysis.

Yet, the possibility of substantially increasing the compres-
sion ratio while obeying to the same requirements in terms
of quality of the recovered signal, is a key point to allow the
effective introduction of CS in application in which resources
must be carefully administrated. From this point of view,
adapted CS is definitely worth pursuing whenever designing
the low-resources, autonomous, ubiquitous sensing subsystems
that will be the backbone of future IoT applications.
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