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Abstract: Aluminum alloys are key materials in additive manufacturing (AM) technologies thanks
to their low density that, coupled with the possibility to create complex geometries of these
innovative processes, can be exploited for several applications in aerospace and automotive fields.
The AM process of these alloys had to face many challenges because, due to their low laser
absorption, high thermal conductivity and reduced powder flowability, they are characterized by
poor processability. Nowadays mainly Al-Si alloys are processed, however, in recent years many
efforts have been carried out in developing new compositions specifically designed for laser based
powder bed AM processes. This paper reviews the state of the art of the aluminum alloys used in the
laser powder bed fusion process, together with the microstructural and mechanical characterizations.

Keywords: laser powder bed fusion; additive manufacturing; aluminum; composition;
mechanical properties

1. Introduction

Additive manufacturing (AM) defines a class of production technologies that can create 3D
components layer by layer based on 2D patterns defined by slicing the 3D computer aided design
(CAD) of the component. Among the different AM technologies, powder bed technologies such as
laser powder bed fusion (LPBF) and electron beam melting (EBM) are the most used to process metallic
alloys [1]. A schematic representation of the LPBF process is reported in Figure 1.
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The advantages from a design perspective of LPBF and in general of AM processes have been
widely addressed in recent years [2,3]. However, it is important to underline that AM brings many
interesting aspects also from a material science perspective. The high cooling rate (103–106 K/s [4]) of
the melt pool generated by the successive laser scan tracks is also a key factor of the success of these
technologies. From a metallurgical point of view in fact, the rapid cooling generates the solidification
of peculiar microstructures characterized by extremely interesting features which will be discussed
more in details in the paper.

LPBF showed to be very successful with many alloys such as titanium, aluminum, nickel, steels,
and refractory materials [1]. In the case of titanium and nickel alloys, the poor machinability and
the issues related to their formability drove the success of AM processes. On the contrary, most of
the aluminum alloys can be easily formed by conventional processes. Furthermore, many studies
reported that the LPBF process of Al alloys are generally critical. One of the main issues faced when
processing Al by AM is related to difficulties in spreading the powder bed due to the poor flowability
of the powders [5]. Furthermore the LPBF process of aluminum alloys generally requires high laser
power because of the high reflectivity of the powder and the high thermal conductivity of the solidified
material [6]. Finally, the presence of a thin oxide film on the gas atomized particles and on the solidified
layers might reduce the processability as it reduces the wettability and hinders the remelting of the
previous layer, causing some porosities in the built parts [7–9]. The thickness of the oxide layer on
both, the melt pool and the particles, strongly depends on the processing conditions [10,11]. Uslan et
al. for example showed that on aluminum gas atomized particles the oxide thickness is in the range
of 2.75–2.96 nm and it is correlated to the particles size [11]. Notwithstanding these issues, the LPBF
processing of Al alloys gained much interest in recent years mainly due to the peculiar microstructure
and enhanced mechanical properties it is possible to achieve.

Among commercial aluminum alloys, mainly near eutectic Al-Si alloys, such as AlSi10Mg, Al-12Si,
A357, and A356, are generally used in AM processes and in particular in LPBF and, among them,
the most studied composition is certainly AlSi10Mg [12–16]. The success of this composition is mainly
related to the Si content, which is close to the eutectic one and hinders the solidification cracking
phenomenon. It is well-known that this cracking mechanism is related to the solidification range of the
alloy, to the fluidity of the molten phase, the solidification shrinkage and to the coefficient of thermal
expansion (CTE) of the alloy [17]. In AlSi10Mg, the presence of 10 wt.% Si implies a fine solidification
range (∆T = Tliquidus − Tsolidus) of this alloy, which was calculated to be about 30 ◦C [18]. This value is
extremely low with respect to other high strength aluminum alloys such as the 2024 (∆T = 135 ◦C) [19].
In addition, it well-known that Si improves the fluidity of molten aluminum, reduces the solidification
shrinkage and the coefficient of thermal expansion [19]. Furthermore, Sercombe et al. suggested that Si
is also fundamental for the AlSi10Mg LPBF processing because it is responsible for the laser absorption.
Silicon in fact has a low solubility in Al, and it is mainly contained in the alloy as pure particles which
are characterized by a high laser absorption (~70%) [20].

The microstructure and properties of AlSi10Mg by LPBF have been widely investigated in recent
years [12,21]. It is well-accepted that as-built AlSi10Mg LPBF microstructure is made by large columnar
grains with 10–20 microns width and hundreds of microns length (Figure 2a). These grains, which can
be detected only by electron backscatter diffraction (EBSD) analyses, are formed during the building
process thanks to the epitaxial grain growth along the building direction. It is well known that these
large columnar grains contain a fine dendritic structure, due to the rapid and directional cooling
that arises during the laser scanning and implies enhanced mechanical properties. The effect of
the laser scanning can be detected by optical or scanning electron microscope (SEM) images by a
network of interconnected melt pools that contain an extremely fine cellular structure. The size and
the morphology of the cells strongly depend on the building parameters and on the position within
the melt pool [18,22]. Kim et al. for example distinguished three regions of the melt pool defined as,
fine melt pool (FMP), heat affected zone (HAZ) and coarse melt pool (CMP) characterized by cells
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with different size and morphology (Figure 2b) [22]. EDS analyses showed that this cellular structure
is made of Al cells surrounded by Si-rich regions (Figure 2c–e).

It was demonstrated that as-built samples are characterized by higher mechanical properties with
respect to cast plus conventional solution-ageing T6 treatment samples with the same composition [23].
Hadadzadeh et al. attributed the high mechanical performances of AlSi10Mg LPBF samples to the
Hall-Petch mechanism, due to the eutectic cells boundaries, to the Orowan effect due to the presence
of Si and Mg2Si and to the dislocation hardening [24,25].

Because of this reason, LPBF AlSi10Mg was deeply investigated in terms of post process heat
treatments, surface roughness, residual stresses, corrosion and fatigue resistance [26–29].

Despite the results obtained with AlSi10Mg showed the great potentiality of the LPBF process of
Al alloys, only other few casting alloys have been processed, without meeting the strict requirements
of high strength and ductility of the aerospace industry. In fact, most of the high strength aluminum
alloys such as 2000, 6000, and 7000 series are hardly processable by LPBF because of their solidification
cracking susceptibility. In addition, 2000, 6000, and 7000 series contain volatile alloying elements such
as Zn, Mg, and Li that can easily evaporate during the building process [17,30].
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Because of these reasons, there is a strong industrial interest in the development of high strength
aluminum alloys to be processed by LPBF. Even if the research on this topic started only a few years
ago, there has been a significant increase in the number of scientific publications on this topic. Figure 3
reports the number of publications per year on new Al alloys specifically designed for AM processes
and clearly demonstrates the increasing interest on this topic.

The purpose of this review is to discuss the approaches used in the selection of the alloy
composition and to sum up the main results obtained in recent years. The major outcomes are
here discussed as follows. At first the main methodologies used to study new aluminum alloys
compositions are discussed. Afterwards, the advantages of the rapid solidification processes to which
LPBF belongs will be presented. Then, the limitations related to the LPBF processability of high
strength aluminum alloys (e.g., 7075, 2024) will be presented together with the consequent investigated
composition adjustments. Finally, the design of new aluminum alloys obtained by the addition of rare
earth (RE) and transition metals (TM) will be examined together with Al-based metallic glasses. As a
conclusion the mechanical properties of the alloys will be compared and discussed on the basis of the
microstructural results and with emphasis on the key findings.
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2. Methodologies

One of the main issues related to the development of a new aluminum alloy for LPBF process
is the difficulty to source gas atomized powders with customized compositions. Furthermore, in
some cases, gas atomization of specific compositions might be difficult [32]. Because of these reasons,
in recent years many researchers mixed commercial powders with different chemical compositions
to obtain a batch with the final required alloying elements content [32–38]. The phenomena that
arise in the melt pool, such as the Marangoni flow and the recoil pressure effects, generally allow the
distribution of the alloying elements within the melt pool [39]. Despite this, some of the published
studies reported some alloying elements mixing issues [33,38]. Wang et al., for example, produced
Al-xCu alloys using mixed Al-4.5Cu and Cu particles and found some Cu rich areas in as-built samples
(Figure 4). The inhomogeneity of the composition is strongly undesired not only because it alters the
results, but also because it hinders the production of large samples due to the formation of some areas
rich in brittle phases.
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2018 Elsevier.

Furthermore, another critical aspect in developing a new composition is the quantity of powder
required for an LPBF build. Accordingly, some researchers used an alternative method to reduce the
powder quantity needed to investigate the processability and the properties of a new alloy: laser single
scan tracks (SSTs) [40–44]. In these experiments, the laser scans a powder bed with a single track and
thereafter the SSTs are generally cut perpendicularly to the scanning direction, polished and analyzed.
The morphological observations of the melt pool indicate the processability of the compositions, based
on the type melting and solidification phenomena. This method leads to the identification of the most
suitable scanning parameters that brings to the formation of a stable melt pool and of a continuous
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scan track. These types of track are generated when the material melts in conduction melting mode.
On the contrary, when high power associated with low scan speed are used the powder bed melts
in a keyhole mode, causing a strong evaporation of some alloy elements, the formation of deep melt
pools and many undesired effects [45]. The sets of parameters that, because of surface tension effects,
cause the rupture of the scan track into separated balls are also undesired as they strongly increase the
porosity of the final part. This morphology is generally identified as balling [46].

The main geometrical feature of the cross-section of SSTs can be evaluated in order to select the
most suitable hatching distance and layer thickness for the production of dense bulk components.
Finally, the melt pool microstructure is generally observed by SEM and EBSD analyses and the
mechanical properties are evaluated by nanoindentation measurements [41,42,47].

This approach is very useful to have a first insight on the processability, properties and
microstructures of a new alloy by LPBF. However, some aspects have to be taken into account:

• the dimension of the laser scan in a real part might be slightly larger with respect to the SSTs due
to the heat accumulated during the scanning of the previous layers;

• the microstructure of a SST might be slightly different from the real part one because it does not
undergo the intrinsic heat treatment due to the melting and solidification of the following layers.

Notwithstanding this, if these aspects are considered, the SSTs analysis showed to be a promising
methodology for the development of new alloys for LPBF. Nie et al. confirmed the applicability of
single scan methods by selecting the building parameters for the production of an Al-Cu-Mg alloy on
the basis of single and multi-tracks morphology and crack density [41].

In literature there are different methods and approaches to create the powder surface to be scanned.
Aversa et al. for example used a film depositor with a 50 µm gap to spread the powders mixed with 50
vol.% ethanol in order to facilitate the deposition [40]. In this case, in order to simulated as much as
possible a scan in a real AM part, specific attention has to be payed to the platform composition. Li et
al. slightly consolidated a pre-alloyed powder in order to be able to remove the scan track for further
analyses (Figure 5) [42]. This approach may facilitate the analyses as it does not involve the platform,
but it must be carefully used for the selection of building parameters because the partially consolidated
powder bed has a different thermal behavior with respect to the bulk material. Finally, Jia et al. did not
create a powder bed but performed SSTs on cast platforms [48]. This method has many advantages
from a homogeneity point of view; furthermore critical alloying elements can be added without too
many safety issues. However, the lack of the powder bed may modify the laser absorption and the
melting phenomena. It is well-known that the laser absorption depends on the surface quality and
strongly changes when a powder bed is used [43]. Notwithstanding this, this method is mainly useful
for the understanding of the solidification phenomena and microstructure analyses.
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3. Rapid Solidification

In recent years many studies modelled the melt pool temperature during LPBF revealing the
extraordinary temperature profile and cooling rates of these technologies [49–51]. Li et al. for example
calculated that the melt pool maximum temperature for an AlSi10Mg is in the range 1000–1800 ◦C and
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the cooling rate is in the range 1.2 × 106–6.1 × 106 K/s, depending on the main building parameters of
the LPBF system employed [49].

These results suggested that LPBF may be considered a rapid solidification process (RSP).
As reported in literature, RSPs have been deeply investigated in past years because of their many
advantages such as [52]:

• the extension of the solid solubility;
• the formation of non-equilibrium and metastable phases;
• the reduction of number and size of segregated phases;
• the changes in grain morphology such as grain refinement, location and distribution of the phases;
• the reduced phase crystallinity.

The main RSPs are the following: melt spinning (or planar flow casting), splat quenching,
laser surface melting and several types of atomization [52]. These technologies produce ribbons or
powders and have many limitations in terms of the shape and size of the final products. Nevertheless,
because of the possibility to obtain peculiar microstructures and interesting mechanical properties,
these processes and their thermodynamic phenomena received much attention in past years in
metallurgy literature [53,54]. Many studies in fact focused the attention on the selection of the most
suitable composition that can be processed by RSPs and that can take advantage of these extremely
high cooling rates [52].

Recently, Marola et al. compared the microstructure of LPBF AlSi10Mg samples with AlSi10Mg
specimens produced with common RSPs, in particular melt spinning (MS) and copper mold casting
(CMC) [55]. The comparison was carried out by means of Field Emission Scanning Electron Microscopy
(FESEM) micrographs and consequent evaluation of the eutectic percentage, X-Ray Diffraction (XRD)
and differential scanning calorimetry (DSC) analyses. This study demonstrated that the LPBF samples
have a higher extension of the Si solid solubility in Al with respect to the conventional RSPs. This result
was verified by the released enthalpy during DSC analyses. These findings confirm that LPBF can be
fully considered as a RSP and that it can therefore benefit, from a material point of view, of the above
discussed advantages of these techniques.

4. Aluminum Alloys for LPBF

4.1. Processability of High Strength Aluminum Alloys

Many studies already revealed that most of the high strength aluminum alloys are hardly
processable by LPBF as they suffer from solidification cracking during the laser scanning [17,30].
This cracking mechanism, deeply investigated in welding, arises when, during the melt pool
solidification, the thin liquid film that forms on the grain boundaries cannot accommodate the
solidification shrinkage, generating a crack [56]. It was demonstrated that solidification cracking
is mainly due to some alloy characteristics, i.e., the large solidification range, the solidification
shrinkage, the CTE value, and to the poor fluidity of the molten phase [56]. Furthermore, high strength
aluminum alloys usually contain volatile alloying elements such as Zn, Mg, and Li. These elements
can evaporate during the LPBF process causing a modification of the composition and consequently of
the microstructure and the properties. In some cases, the modification of the composition due to the
evaporation might even increase the susceptibility to the cracking mechanism [30].

The occurrence of the cracking mechanism during LPBF of high strength aluminum alloys was
demonstrated in several studies [57–59]. The processability of an Al-Cu-Mg alloy (with a composition
close to 2024) has been investigated by Zhang et al. who observed long cracks formed along the
building direction with most of the parameters [57].

Kaufmann et al. studied the LPBF process of the 7075, an aluminum alloy known thanks to its
outstanding strength [58,60]. It was demonstrated that with high power (P > 300 W) nearly dense
samples (porosity < 1%) can be obtained using a 7075 powder. However, the high cooling rate
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causes the generation of long cracks, oriented along the building direction also on samples built on a
preheated platform (T = 200 ◦C) [58]. Furthermore, in this study energy-dispersive X-ray spectroscopy
(EDS) analyses revealed that LPBF samples contain a lower Zn content with respect to the starting
powder, confirming that Zn evaporates during the building process. Qi et al. deeply studied the
cracking phenomena that arise during the laser scanning of a 7075 powder [59]. They proved that
three different types of cracks could generate in 7075 LPBF samples, all oriented along the grain
boundaries. The melting mode was also evaluated on the basis of the geometrical features of the last
layers melt pools and was correlated with the crack density. The lowest crack density was observed
in samples in which the keyhole melting mode (Figure 6a) arose due to the solidification of fine and
irregular grains [45,59]. With high energy density, therefore with high laser power and low scan speed,
the keyhole phenomenon takes place due to the evaporation of metal and the consequent creation of a
deep melt pool which enhances the laser absorption (Figure 6a) [45]. The EBSD maps of samples built
in conduction mode (Figure 6b,c) show that cracks are present along the columnar grain boundaries.
On the contrary, the keyhole melting mode causes the formation of irregular grains due to the strong
the fluctuation of the melt pool. The different microstructure causes a reduction in the crack density
(Figure 6d,e).
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4.2. High Strength Aluminum Alloys Modification

Considering the difficulties in LPBF processing high strength aluminum alloys, many studies
tried therefore to modify their composition in order to make it processable by AM [4,32,34,36,37,41,57].

Montero Sistiaga et al. and Aversa et al. modified the composition of the 7075 alloy increasing
the Si content, trying in this way to change the solidification range and the fluidity of the molten
phase [36,37]. In both cases, the introduction of Si has been obtained by dry mixing the 7075 powders to
Si or to a Si-rich aluminum alloy powder. It was demonstrated that Si is very effective in reducing the
cracks density of the alloy. DSC analyses confirmed the reduction of the solidification range and EBSD
analyses performed on samples with different Si contents showed that silicon also causes a strong grain
refinement. This microstructure refinement might also contribute to the improved processability of this
alloy. Based on Martin et al. [32] and Qi et al. [59] results, cracks propagated along columnar grains.
However, the effect of Si on the laser absorption has also to be taken into account. In fact, the alloy
with higher Si content might melt in a keyhole melting mode with a consequent grain refinement [59].
The microstructure of these Si modified 7075 alloys is similar to the AlSi10Mg one, consisting of fine
α-Al cells surrounded by the eutectic phase. Thanks to the high cooling rates, the as-built samples are
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constituted by an α-Al solid solution, whereas a direct ageing heat treatment allows the precipitation
of strengthening phases. The tensile tests performed on Si modified samples showed that the as-built
alloy has the yield and ultimate tensile strengths of 315 and 387 MPa, respectively, and these values
can increase up to 11% and 7%, respectively, after the appropriate ageing treatment [37].

On the other hand, Martin et al. studied a new approach, based on the refinement of the
microstructure, to produced crack-free 7075 and 6061 parts by LPBF [32]. The authors introduced
hydrogen stabilized Zr nanoparticles to the powder batches. Zr reacts with Al forming Al3Zr fine
particles which act as nucleant for the aluminum alloy. The microstructure of Zr modified alloy
consists then in equiaxed grains that can easily accommodate the solidification shrinkage allowing the
production of crack-free samples. A similar approach was used by Zhou et al. who added 1wt.% Sc +
Zr to an Al-6Zn-2Mg alloy [61]. This composition showed to have a good processability and promising
mechanical properties which can be further increased by a T6 heat treatment.

Similar approaches were used for the alloys belonging to the 2000 series. Dense and crack-free
Al-Cu-Mg samples were produced by Zhang et al. only with a reduced range of parameters; with high
scan speed, long cracks, oriented along the building direction, were observed [57]. In more recent
studies, two main ways to enlarge the process window of this alloy have been studied [4,34,35]. On one
hand, Zhang et al. added Zr to its composition in order to form Al3Zr precipitates which act as seeds
for the heterogeneous nucleation [34]. The experimental results showed that the introduction of Zr is
effective in the production of crack-free sample when high scan speed is used [34]. XRD and EBSD
analyses confirmed the precipitation of Al3Zr which act as a grain refiner for the alloy, allowing to
reach extremely high mechanical properties. The EBSD maps of the cross section of Al-Cu-Mg and
Zr/Al-Cu-Mg samples processed using different scan speeds are reported in Figure 7. The comparison
of the images clearly shows the reduction of the grain size obtained by the introduction of Zr and by
using high scan speed values. The reason for the success of the introduction of Zr to the alloy was
also clarified by Nie et al. on a similar composition, for which a reduced process windows could be
found (Al-4.24Cu-1.97Mg-0.56Mn) [35]. The authors investigated the effect of different Zr contents and
different scan speeds on the crack density, revealing that higher scan speed can be used with higher Zr
contents [41]. The solidification phenomena have been deeply investigated by EBSD and simulations,
confirming that Zr allows the crack reduction thanks to the reduction of the solidification range and
the refinement of the microstructure due to heterogeneous nucleation during solidification.

Materials 2019, 11, x FOR PEER REVIEW  8 of 19 

 

On the other hand, Martin et al. studied a new approach, based on the refinement of the 
microstructure, to produced crack-free 7075 and 6061 parts by LPBF [32]. The authors introduced 
hydrogen stabilized Zr nanoparticles to the powder batches. Zr reacts with Al forming Al3Zr fine 
particles which act as nucleant for the aluminum alloy. The microstructure of Zr modified alloy 
consists then in equiaxed grains that can easily accommodate the solidification shrinkage allowing 
the production of crack-free samples. A similar approach was used by Zhou et al. who added 1wt.% 
Sc + Zr to an Al-6Zn-2Mg alloy [61]. This composition showed to have a good processability and 
promising mechanical properties which can be further increased by a T6 heat treatment.  

Similar approaches were used for the alloys belonging to the 2000 series. Dense and crack-free 
Al-Cu-Mg samples were produced by Zhang et al. only with a reduced range of parameters; with 
high scan speed, long cracks, oriented along the building direction, were observed [57]. In more 
recent studies, two main ways to enlarge the process window of this alloy have been studied [4,34,35]. 
On one hand, Zhang et al. added Zr to its composition in order to form Al3Zr precipitates which act 
as seeds for the heterogeneous nucleation [34]. The experimental results showed that the introduction 
of Zr is effective in the production of crack-free sample when high scan speed is used [34]. XRD and 
EBSD analyses confirmed the precipitation of Al3Zr which act as a grain refiner for the alloy, allowing 
to reach extremely high mechanical properties. The EBSD maps of the cross section of Al-Cu-Mg and 
Zr/Al-Cu-Mg samples processed using different scan speeds are reported in Figure 7. The comparison 
of the images clearly shows the reduction of the grain size obtained by the introduction of Zr and by 
using high scan speed values. The reason for the success of the introduction of Zr to the alloy was 
also clarified by Nie et al. on a similar composition, for which a reduced process windows could be 
found (Al-4.24Cu-1.97Mg-0.56Mn) [35]. The authors investigated the effect of different Zr contents 
and different scan speeds on the crack density, revealing that higher scan speed can be used with 
higher Zr contents [41]. The solidification phenomena have been deeply investigated by EBSD and 
simulations, confirming that Zr allows the crack reduction thanks to the reduction of the solidification 
range and the refinement of the microstructure due to heterogeneous nucleation during 
solidification.  

 
Figure 7. EBSD inverse pole figure (IPF) maps of Al-Cu-Mg fabricated at v = 5 m/min (a) and Zr/Al-
Cu-Mg sample fabricated at v = 5 m/min (b) and v = 15 m/min (c), respectively. Adapted from [34], 
with permission from © 2017 Elsevier. 

In another recent study, Wang et al. investigated a different approach to increase the 
processability of Al-Cu-Mg alloys investigating the effect of the introduction of Si on the 
consolidation and the microstructure of the starting material [4]. This modification of the composition 
might reduce the crack density due to the increase in the fluidity of the molten phase and to the 

Figure 7. EBSD inverse pole figure (IPF) maps of Al-Cu-Mg fabricated at v = 5 m/min (a) and
Zr/Al-Cu-Mg sample fabricated at v = 5 m/min (b) and v = 15 m/min (c), respectively. Adapted
from [34], with permission from © 2017 Elsevier.



Materials 2019, 12, 1007 9 of 19

In another recent study, Wang et al. investigated a different approach to increase the processability
of Al-Cu-Mg alloys investigating the effect of the introduction of Si on the consolidation and the
microstructure of the starting material [4]. This modification of the composition might reduce the
crack density due to the increase in the fluidity of the molten phase and to the reduction in the
liquation cracking phenomena. The authors demonstrated that this new Al-3.5Cu-1.5Mg-1Si can be
successfully processed by LPBF and that dense and crack-free samples can be produced with the
optimized parameters. Concerning the microstructure, it was demonstrated that as-built samples
are made of α-Al and strengthening phases and EBSD analyses showed again that large columnar
grains are formed upon cooling. XRD and TEM analyses revealed that, in the as-built condition, the
strengthening phase is an unknown group identified as Q phase and rich in Cu, Mg, and Si. After the
T6 heat treatment, only Mg2Si and AlxMny were detected.

Finally, the LPBF processability of the alloys belonging to the 6000 series was also investigated
and results revealed that these compositions are also very critical [62–64]. Louvis et al. reported
a poor consolidation and large delamination issues in 6061 samples processed by laser-based AM
processes [65]. Fulcher et al. and Maamoun et al. compared the 6061 and the AlSi10Mg processability
showing that, because of the larger solidification range, the 6061 alloy suffers from solidification
cracking during LPBF [63,66]. In their studies, it was also demonstrated that the cracking mechanism
was related to the building parameters and thanks to the rapid cooling, the as-built 6061 microstructure
is characterized by fine Al cells and nanometric Si particles [63]. The processability of the 6061 alloy was
firstly improved by Martin et al. following the same approach used for the 7075 alloy [32]. The authors
introduced Zr nanoparticles in order to cause the precipitation of Al3Zr and control the solidification
process favoring the heterogeneous nucleation [32]. The 6061 LPBF cracking issues were also recently
overcome by Uddin et al. by increasing the building platform temperature at 500 ◦C and selecting the
most suitable building parameters [62]. However, the building platform heating completely altered the
solidification mechanism eliminating the melt pool features and leading to a reduced texture, larger
grains and precipitates.

All these studies showed that the three main approaches have been studied for the reduction
of the crack density of high strength aluminum alloys processed by LPBF. The methods, based on
different microstructural mechanisms, are summarized here:

• Control of the solidification process by the formation of nucleant phases (e.g., Al3Zr);
• Modification of the solidification processes by the reduction of the solidification range;
• Reduction of the thermal gradient by preheating the building platform.

4.3. Effect of Transition Metals and Rare Earth Elements to Aluminum Alloys

A different approach for the development of new Al-based compositions can be defined on the
basis of the results obtained with rapid solidified alloys, introducing transition metals (TM) and rare
earth elements (RE) to the alloys compositions [67–69].

It is well known that TM and RE elements are extremely suitable alloying elements for rapidly
solidified Al alloys. Because of this reason, recently, many works focused on the investigation of
the microstructure and the properties of aluminum alloys containing RE and TM processed by LPBF.
The main advantages of RE are related to the strongly coherent and stable precipitates they form with
Al that allow a grain refinement of the alloy.

The most known application of the approach based on TM and RE addition is certainly the
Scalmalloy®, a new composition developed and patented by the Airbus Group and deeply investigated
in recent years. In 2011 Schmidtke et al. proofed the applicability of an Al-Mg alloy containing Sc and
Zr through LPBF process (Al4.5Mg0.7Sc0.4Zr0.5Mn) [70].

The main idea behind this alloy is related to the obtainment of a supersaturated solid solution due
to the rapid cooling and the precipitation of Al3Sc by direct ageing. Scandium was selected because,
together with erbium and zirconium, is a promising alloying element for aluminum as it gives L12
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Al3X ordered structures strongly coherent with the Al matrix [71]. This high coherency reduces the
tendency of particles to grow, so that these precipitates are stable up to 350 ◦C. It is worthy to remind
that the most common Mg-, Si-, and Cu-based precipitates are stable only up to about 250 ◦C. Moreover,
thanks to their high coherency with aluminum, Al3(Sc,Zr) precipitates act as seed crystals for the Al
heterogeneous nucleation implying high degrees of grain refinement [72].

The peculiar microstructure and the properties of Scalmalloy® samples processed by LPBF were
investigated in various works by Spierings et al. [72–74]. The authors demonstrated that the as-built
Scalmalloy® microstructure is made of fine grain (FG) and coarse grain (CG) regions (Figure 8).
This bimodal microstructure is probably due to the formation of MgO and Al3Sc seeds that cause
the formation of fine grains. The CG region, on the contrary, is due to the lack of seeds and to
the temperature gradient that cause a columnar grain growth [73]. The authors also investigated
the effect of LPBF building parameters on Scalmalloy® microstructure and properties, revealing
that the scan speed has an important effect on microstructure and in particular on the size of Al3Sc
particles. However, this difference only slightly affects the mechanical properties of the as-built
alloy in terms of hardness and yield strength [74]. Li et al. also observed the effect of process
parameters on the microstructure of as-built LPBF samples with a composition close to the Scalmalloy®

(Al-6.2Mg-0.36Sc-0.09Zr). The authors demonstrated that the building parameters have an effect on
the texture and on the Mg content of LPBF samples [75]. In particular high energy density caused the
evaporation of Mg from the melt pool and a reduction of the Al lattice parameter and the solidification
of a structure characterised by a weaker texture [75]. Shi et al. studied the relation between the building
parameters and the microstructure and the properties of this composition in the aged condition [76].
It was demonstrated that a balance between the low densification obtained at low energy density and
the low supersaturated solid solution obtained at high energy density has to be found in order to reach
the highest mechanical performances [76].
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A similar bimodal microstructure was observed by Griffiths et al. in Sc-free Al-Mg-Zr
(AddalloyTM) LPBF samples [77]. The authors focused the attention on the effect of laser rescanning
on the microstructure of AddalloyTM observing a refinement of the microstructure thanks to the
remelting of columnar grains and the precipitation of Al3Zr seeds. Croteau et al. also investigated the
strengthening mechanisms of Al-Mg-Zr alloys processed by LPBF [78]. The results suggested that the
Mg acts as solid solution strengthener while Zr strengthens the alloy based on two main mechanisms,
i.e., grain refinement thanks to the precipitation of coherent Al3Zr phase during solidification and by
precipitation strengthening.

Because of the extremely promising results obtained with Scalmalloy®, various works followed
the same idea. Jia et al., for example, investigated the laser processability and the microstructure of
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Al-Sc-Zr and Al-Er-Zr alloys [48]. Sc and Er form similar L12 precipitates with Al, both extremely
coherent with the Al lattice structure [71]. Despite this, the microstructure analyses showed that these
compositions have an extremely different behavior: Er has, in fact, a lower solubility in Al with respect
to Sc and this causes the reduced thermal stability of these precipitates that easily grow with ageing
treatments. Furthermore, EBSD maps confirmed that Er has a different effect with respect to Sc on the
solidification mechanisms of Al alloys, implying the solidification of larger grains.

Zheng et al. investigated the microstructure and the properties of the FVS0812 alloy
(Al-8.5Fe-1.3V-1.7Si) processed by LPBF [79]. This alloy, developed by Allied Signal Inc., was deeply
studied in the 1990s by RSP and powder metallurgy, reaching elevated strengths at high temperature
due to the nanoscale Al12(Fe,V)3Si precipitates [80,81]. Zheng et al. stated that dense and crack-free
FVS0812 samples can be successfully produced by LPBF and that as-built samples have a hardness
value similar to the planar flow casting one. In the as-built sample microstructure three zones can be
recognized: the laser melted zone made of α-Al and fine and round Al12(Fe,V)3Si, the melt pool border
made of fine Al13Fe4 precipitates and the heat affected zones (Figure 9a) [82].
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Figure 9. SEM images of (a) FVS0812, adapted from [82], with permission from © 2015 Cambridge
University Press; (b,c) Al-Si-Ni-Fe water quenched and aged at 250 ◦C for 5 h, adapted from [83],
with permission from © 2019 Elsevier; (d,e) Al-Si-Ni, adapted from [33], with permission from © 2017
Elsevier; and (f) Al-20Si-Fe-Cu-Mg adapted from [68], with permission from © 2016 Elsevier.

Manca et al. recently proofed the potentiality of a new Al-Si-Ni-Fe alloy containing Cu
minor addition, which presented not only a good LPBF processability but also high mechanical
performances [83]. The high hardness value of this alloy (186 HV) was attributed to the fine Si, Al5Fe
(Ni,Cu), and Al3(Ni,Cu) phases (Figure 9b,c).

Aversa et al. studied the processability and the properties of an Al-Si-Ni alloy with a composition
close to the ternary eutectic one using AlSi10Mg and Ni particles [33]. From a microstructural point of
view, the as-built samples are constituted by α-Al cells surrounded by the eutectic and Al3Ni particles.
Similarly to what was observed on the FVS0812 alloy, slightly larger precipitates were recognized at the
melt pool boundary (Figure 9d,e). The hardness measurements revealed that the introduction of 5 wt.%
Ni to the AlSi10Mg composition caused an increase of 23% in Vickers hardness. Nanoindentation
measurements were then used to demonstrate that the high hardness value is induced by the presence
of fine Al3Ni particles.

On the other hand, Ma et al. studied the effect of Fe, Cu, and Mg addition on the microstructure
of an Al-20Si alloy processed by LPBF [68]. It was demonstrated that the microstructure consists of
α -Al, Si bulk particles, Al-Si eutectic and coarse acicular δ-Al4FeSi2 phase (Figure 9f). The size of
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these phases is strongly lower with respect to the cast ones thanks to the high cooling rate of the LPBF
process. Furthermore, the presence of Fe, Cu, and Mg hinders the growth of Si phase.

Wang et al. investigated the microstructure and the properties of Al-Cu samples with different
Cu contents (4.5–40 wt.%) produced by LPBF starting from mixed Al and Cu particles [78].
The microstructures of the low Cu content alloys were made of an Al matrix and Al2Cu particles.
Moreover, the microstructure became fine eutectic as the Cu content increases. The highest mechanical
properties, evaluated by compression tests, were recorded in the case of the compositions closest to the
eutectic (Al-33Cu). Despite the sensitivity of Al-Cu alloys to cracking mechanisms, no consolidation
issues of these alloys were reported in this paper.

These studies showed that the success of the Scalmalloy® composition is related not only to the
precipitation of L12 coherent strengthening phases but also to the strengthening effect of Mg which
is contained in a supersaturated solid solution in the α-Al matrix. Subsequent studies on the effect
of other RE elements such as Er demonstrated that the relatively high solubility of Sc in Al is also a
key-point for the success of AlMgScZr compositions.

The introduction of TM to the LPBF alloys compositions can be then considered a promising
method to improve the mechanical properties of the alloy by maintaining a good processability.
The composition studied up now were mainly based on the most promising alloys processed by
RSP. The microstructural and mechanical investigations demonstrated that, due to rapid cooling, fine
microstructures and by high mechanical properties can be achieved by LPBF.

4.4. Metallic Glasses and Nanocrystalline Materials

Metallic glasses (MGs) and nanocrystalline materials (NCMs) are two class of materials that
received great attention in recent years thanks to their unique properties due to the lack of a
conventional metal structure characterized by long-range order [84]. The LPBF processability of
a few materials belonging to these class was studied in recent scientific publications.

Prashanth et al. studied the microstructure and the properties of thermally stable Al85Nd8Ni5Co2

nanocrystalline material produced by pre-alloyed gas atomized powder. The authors reported a
composite like microstructure made of Ni, Nd and Co-rich sub micrometric platelets like intermetallic
precipitates [85]. These particles implied an increase in the mechanical properties of the alloys and
a reduction of the microstructure coarsening. Furthermore, the elongated particles, characterized
by a strong interface with the matrix, were very effective in deflecting cracks and increasing the
mechanical strength.

Li et al. investigated the possibility to process an Al-based metallic glass (Al86Ni6Y4.5Co2La1.5)
by LPBF [42]. The authors firstly performed SSTs and observed that some process parameters caused
cracks within the SSTs. It was also demonstrated that the microstructure and the hardness strongly
depend on the position within the melt pool: some areas crystallize due to a different thermal history.
In a second study, the same authors investigated the effect of low energy density rescanning in the
processing of bulk metallic glass composites (BMGCs) [86]. It has been demonstrated that for these
materials rescanning with low power allows the reduction of residual stresses.

5. Mechanical Properties

The main mechanical properties of the above-described alloys in terms of hardness (HV and
HB), yield strength (YS), ultimate tensile strength (UTS) and elongation (ε) are reported in Table 1.
Undoubtedly, the heat treated Scalmalloy® samples showed the highest YS and UTS values together
with a high elongation. The authors attributed this extraordinary mechanical strength to Sc and
Zr which form Al3Sc and Al3(ScxZry), to Zr that creates a shell around Al3Sc particles, and mainly
to the presence of Mg which causes a solid solution strengthening effect [70]. It is important to
underline that the post processing heat treatment plays a crucial role in determining the properties of
the alloy [76], it can be noticed indeed that the as-built Scalmalloy® properties are similar to the as-built
AlSi10Mg ones [76]. The comparison of the Scalmalloy® with the Al-Sc-Zr confirms the relevance
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of both strengthening effects. Furthermore Jia et al. demonstrated that Er does not imply the same
strengthening effect of Sc on LPBF Al alloys mainly because of the large size and reduced volume
fraction of the strengthening phase [48].

Table 1. Mechanical properties of modified aluminum alloys processed through LPBF. Hardness (HV
and HB), yield strength (YS), ultimate tensile strength (UTS) and elongation (ε).

Composition Heat
Treatment HV HB YS [MPa] UTS

[MPa]
ε

(%) Reference

AlSi10Mg H 135.0 ± 0.9 128.6 ± 1.9 270 ± 10 460 ± 20 9 ± 2 [33]
AlSi10Mg H S.R. ~95 93 ± 3 230 ± 15 345 ± 50 12 ± 2 [12]
Scalmalloy® - - 100–115 276–287 403–427 14–17 [74]
Scalmalloy® 325 ◦C 4 h ~180 - 520 530 14 [70]
AlScZr L.R. 5 h 300 ◦C 113 HV0.5 - - - - [48]
AlErZr L.R. 2 h 300 ◦C 91 HV0.5 - - - - [48]
AlCuMgMn - - 276.2 ± 41 402.4 ± 9.5 6 ± 1.4 [57]

Zr/AlCuMgMn - - 446 ± 4.3 451 ± 3.6 2.7 ± 1.1 [34]
Zr/AlCuMgMn - 153.6 464.06 ± 2 493.30 ± 10 4.76 ± 1 [35]

2219 - 94 ± 6.6 [87]
2219 T6 147 ± 2.3 [87]

Al-3.5Cu-1.5Mg-1Si - 223 ± 4 366 ± 7 5.3 ± 0.3 [4]
Al-3.5Cu-1.5Mg-1Si T6 368 ± 6 455 ± 10 6.2 ± 1.8 [4]

7075+Zr T6 130–140 - 32–373 383–417 3.8–5.4 [32]
Si mod. 7075 6 h 150 ◦C ~170 - - - - [36]
Si mod. 7075 6 h 160 ◦C 140–150 350 415 - [37]

Al-8.5Fe-1.3V-1.7Si - 135–175 - - - - [79]
AlSiNi - 158.7 ± 3.0 179.5 ± 3.0 - - - [33]

Al-3.60Mg-1.18Zr 400 ◦C 8 h - - 353 ± 5 386 ± 3 18.6 ± 0.9 [78]
Al-3.66Mg-1.57Zr 400 ◦C 8 h - - 365 ± 11 389 ± 4 23.9 ± 4.4 [78]

6061 - 67–84 246.7 392 [63]
6061 500 ◦C platform - 54 ± 2.5 66–75 133–141 11–15 [62]
6061 500 ◦C platform T6 119 ± 6 282–290 308–318 3.5–5.4 [62]

* H = Horizontal, S.R. Stress Relieved (300 ◦C 2 h), L.R. Laser remelted.

The comparison of the YS values of Al-Cu-Mg-Mn and Zr-Al-Cu-Mg-Mn highlights the positive
effect of Zr on the mechanical properties of as-built materials. In this case, the increase in the high
mechanical properties was attributed to the grain refinements and to the strengthening effect of the
precipitates [34,35]. On the other hand, the increase in the processability obtained by adding Si to the
Al-Cu-Mg-Mn composition also allows a slight increase in YS and UTS values, especially after a T6
heat treatment [4]. In this case the strengthening effect was mainly attributed to the Q phase, in the
as-built state, and to the Mg2Si and AlxMny precipitation in heat-treated samples [4]. Contrarily, Zr and
Si showed to have a similar strengthening effect on the 7075 composition [32,36]. The comparison of
the 6061 properties suggests that similar YS and UTS can be obtained by as-built 6061 (T = 200 ◦C) and
T6 6061 built at 500 ◦C [62,63]. The high mechanical properties obtained by processing materials with
lower building platform temperatures are related to the fine microstructure that solidifies thanks to the
rapid cooling. However, it must be pointed out that in this case the authors reported the presence of
small micro-cracks in as-built samples.

Finally, the strengthening effect of the transition metals can be clearly seen by comparing the
Vickers hardness values of AlSi10Mg with the AlSiNi and Al-8.5Fe-1.3V-1.7Si ones. In both cases the
high mechanical properties were attributed to the fine Al3Ni, Al12(Fe,V)3Si, and h-Al13Fe phases.

6. Conclusions

This review aims to demonstrate the strong interest and the great possibilities related to new
alloys development specifically designed for AM processes, and in particular Al alloys for LPBF
process. It could be stated that, up to now, the several approaches based on the following effects have
been used:

1. The reduction of the solidification cracking mechanism of commercial high strength aluminum
alloys (e.g., 7075, 2024, and 6061) thanks to the modification of the melting behavior. This effect
was obtained mainly by the introduction of Si which increases the fluidity of the molten phase
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and reduces the alloy melting range, its coefficient of thermal expansion and its solidification
shrinkage. The decisive effect of Si was demonstrated on the 7075 and 2024 compositions.

2. The reduction of the solidification cracking obtained thanks to the reduction of the grain size of
commercial high strength aluminum alloys achieved as a result of the precipitation of strongly
coherent phases. Zr was mainly employed in order to obtain fine coherent Al3Zr particles which
act as nucleant during the solidification process. This method demonstrated to be promising for
the processability of 7075, 2024, and 6061 alloys.

3. The reduction of the solidification cracking by the increase in the building platform temperature.
This method implies a reduction of the thermal stresses and therefore of the cracking density.
The high temperature of the building platform causes however a reduction in the cooling
rate and precludes the solidification of fine microstructures. This method was however
successfully applied to the 6061 composition which could achieve high mechanical properties in
the T6 condition.

4. The introduction of rare earth and transition metallic elements to standard Al alloys compositions,
which implied a strong increase in the mechanical properties of LPBF samples. The most
promising composition was undoubtedly produced by the introduction of Sc and Zr to an
Al-Mg alloy leading to the patented Scalmalloy® composition. The high mechanical properties
of this alloy are mainly due to the precipitation of coherent Al3(Sc,Zr) particles and to the Mg
solid solution strengthening effect. Furthermore, this composition resulted to be stable up to high
temperatures thanks to the Al3(ScZr) poor tendency to grow. On the basis of the success of this
composition, many authors focused on the study of similar compositions containing Sc, Er, and Zr
and obtained promising results. The introduction of less expensive TM elements seems to be also
a promising approach for the production of high strength LPBF Al alloys. The rapid solidification
achieved during the laser scanning allows the precipitation of extremely fine strengthening
phases and therefore high mechanical properties.

5. The production of metallic glass and nanocrystalline materials. Thanks to the rapid solidification
that arises as a consequence of the laser scanning, it seems that the LPBF process might be a
promising production technology for these materials. However, because of the peculiar thermal
history to which the material undergoes, different microstructures can be obtained. This aspect
has to be carefully taken into account if complex parts have to be built.

The analyses of the mechanical properties of newly designed alloys showed that it is possible to
produce high strength Al alloys by LPBF. The mechanical performances of LPBF Al alloys are mainly
due to the fine microstructure and the supersaturated solid solution obtained by the rapid solidification
and by the strengthening effect of fine strongly coherent particles. It must also be underlined that,
in most of the cases, non-standard heat treatments were used on these materials because of the peculiar
microstructure of as-built components.

Furthermore, the results highlight that the microstructure and the properties of LPBF compositions
strongly depend on the building parameters used during the AM process. On the basis of this
consideration, it is important to underline that a promising composition must be coupled together with
the most suitable parameters that allow the solidification of a fine microstructure and a supersaturated
solid solution in order to achieve the highest mechanical properties.

The industrial scalability of these compositions also has to be taken into account. The cost of
some elements such as Sc, Er, and Zr, used as grain refiners, has to be considered when evaluating
the applicability of these compositions. In AM however, unlike conventional processes, the usage
of more expensive materials is admitted thanks to a low buy-to-flight ratio close to 1. Furthermore,
as demonstrated by the Scalmalloy® example, the high mechanical performances achieved by these
compositions can often justify the high cost of the powder. On the other hand, the introduction
of silicon is certainly a less expensive modification; however a complete characterization of this
composition is necessaire. Finally, when considering the increase in the building platform temperature
for the production of crack-free high strength Al alloy parts, the technological limit of this approach
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has to be considered. Up to now, in fact, most of the commercial systems do not reach sufficiently
high temperatures.

To conclude, it must be pointed out that, up to now, data about advanced characterizations,
such as fatigue and high temperature properties, on these materials are not available in scientific
publications. This knowledge is extremely important to meet the strict requirements of the aerospace
industry. This lack of data might be due, on the one hand, to the novelty of these studies and, on the
other hand, to the strong industrial interest in this topic which causes to the non-disclosure of specific
materials properties. Only advanced mechanical characterizations will allow the definition of the best
approach for improving strength and fatigue values of Al alloys for LPBF.
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