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ELASTOSTATIC ASSESSMENT OF SEVERAL MIXED/ 

DISPLACEMENT-BASED LAMINATED PLATE  

THEORIES, DIFFERENTLY ACCOUNTING  FOR  

TRANSVERSE NORMAL DEFORMABILITY  

 

           

Abstract 

Several multilayered physically-based plate theories are derived under different limiting assumptions on 

displacement, strain and stress fields,  either in displacement-based or mixed Hu-Washizu and Helinger-

Reissner form, and assuming different layerwise functions. Their features are reminiscent to those of 

theories published in the literature, or are entirely new.  The present study aims to evaluate how  different 

forms of description of the transverse normal deformation and stress affect accuracy. At the same time, 

the purpose is also to see if a much broader degree of generalization of what characterizing currently 

available physically-based zig-zag theories can be achieved through a redefinition of coefficients obtained 

by imposing the fulfilment of physical constraints, namely interfacial stress compatibility and local 

equilibrium equations across the thickness through use of   symbolic calculus tool.  Besides calculating 

exactly quantities, this tool enables users to choose representation form and zig-zag functions as desired, 

keeping fixed the d.o.f. to five. Challenging benchmarks with strong layerwise effects are considered, for 

which an accurate description of the transverse normal deformation effect is important. They include 

distributed/localized step loading and different boundary conditions. Effects of constraint stresses at 

supports are accounted for. Numerical results show that whenever the whole set of physical constraints is 

enforced across the thickness to redefine coefficients, the choice of the representation form and of zig-zag 

functions is immaterial and  more importantly, accurate results are obtained with few variables and a low 

expansion order of solutions. Otherwise results are sensitive to the choices made.  

 

1. Introduction    

Laminated and sandwich composites are key materials in many engineering fields, by virtue of their 

excellent specific strength and stiffness, fatigue and energy absorption properties, better resistance to 

corrosion and greater design flexibility. In particular,  they allow to get higher speed, longer range, larger 

payloads, a reduction of pollution and better operating economy.  

However, sophisticated theoretical and computational structural models are required to ward off any 

possible catastrophic failure or intolerable loss of performance in service of structures made of them, 

which typically exhibit three-dimensional stress fields and complex failure mechanisms. Unlike non-

layered materials, their displacement field must be C
°
-continuous (zig-zag effect) so to ensure the 

continuity of out-of-plane stresses and then equilibrium. 
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So far, many multi-layered plate theories have been proposed, which can be categorized into  equivalent 

single-layer (ESL), discrete-layer (DL) and zig-zag (ZZ) theories (acronyms are explained in Table 1). A 

comprehensive review and extensive discussion are presented in the book by Reddy [1] and in the papers 

[2] to [13].  Theories further subdivide into displacement-based or mixed formulations because 

displacements, as strains and stress fields can be chosen separately from one another.  

The merit of ZZ, is to strike the right balance between accuracy and cost saving, allowing designers’ 

demand of theories in a simple already accurate form to be met. They can be distinguished into 

physically-based/ Di Sciuva’s like [14] (DZZ) or kinematic-based/Murakami’s like [15] (MZZ) zig-zag 

theories. A comprehensive discussion of MZZ, which today are the most used,  along with extensive 

applications are given by Carrera [7]-[9], Carrera and coworkers [16], [17], Demasi [10], [11] and 

Rodrigues et al. [18]. They assume zig-zag functions a priori featuring a periodic change of the slope of 

displacements at interfaces, therefore don’t care of orientation angle, material properties and thickness of 

constituent layers. Their stress fields are assumed apart within the framework of Hellinger-Reissner 

variational theorem (HR), as a consequence C° formulations suitable for development of finite elements 

are easily obtainable. Carrera’s unified formulation (CUF) [7], which  allows displacements to take 

arbitrary forms that can be chosen by the user as an input of the analysis, is able to get existing and 

arbitrary mixed, MZZ and ESL structural models as particularizations. DZZ incorporate layerwise 

contributions as the product of linear [14] or nonlinear [19] zig-zag functions and unknown zig-zag 

amplitudes, which are determined by enforcing the fulfilment of stress continuity conditions at layer 

interfaces. In short, they enrich the coarse representation of ESL through layerwise contributions without 

increasing the number of unknowns. DZZ based on a global-local superposition of displacement fields 

proposed by Li and Liu [20] and refined over the years by Zhen and Wanji [21] have coefficients of local 

groups determined by enforcing displacement and stress constraints without including explicitly zig-zag 

functions. 

Hierarchical theories (HLT) been developed within the framework of CUF to achieve greater numerical 

efficiency  by Catapano et al. [22] and de Miguel et al. [23], which also do not explicitly contain zig-zag 

functions. In these theories, a hierarchical set of locally defined polynomials ensuring the  C°-continuous  

requirement  is assumed. To mitigate the interfacial stress jumps, direct consequence of the omission of 

zig-zag functions, a high degree of expansion of variables is required, which turns out into a high number 

of unknowns. 

Also DL suffer from an excessive number of unknowns, their variables being assumed for each individual 

constituent layer. Consequently, they could overwhelm the computational capacity when structures of 

industrial interest are analysed. ESL are computationally efficient, but since they disregard the zig-zag 

effect they cannot provide accurate stress predictions. 

Examining the results of MZZ and  DZZ available in the literature and of [24], it could be noticed that the 

former do not very accurately predict through-thickness displacement fields, although they use many 

d.o.f. for each displacement (15 in Brischetto et al. [25]), while they accurately predict stresses. On the 

contrary, DZZ developed as a generalization of ZZA theory [26], whose coefficients are redefined across 

the thickness through the enforcement of stress compatibility and equilibrium (hence their appellative 
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adaptive), accurately predicts both fields with just five d.o.f. Recent studies by Gherlone [27] and Groh 

and Weaver [28], as well as those in [24] and [29]  also show that MZZ are less accurate than DZZ with 

the same degree of representation, while  Zhen and Wanji’s [30]  show that most sophisticated MZZ are 

accurate. From all this, it appears that DZZ are more accurate than MZZ with a low expansion order, but 

as the expansion order increases, the latter become accurate anyway. 

As DZZ can obtain the due accuracy with a low computational burden, it follows the utility of the studies 

that aim at increasing their degree of generality and flexibility of use. In this context it is also important 

their assessment for cases whose strong layerwise effect makes modelling demanding. 

So far, power series expansion, hierarchic polynomials, Taylor’s series, trigonometric and exponential 

functions, a combination of both, radial basis functions (see [18], [31] to [37]) and Hermite splines [38] 

[39] have been used to represent variables across the thickness, in order to find the most efficient 

formulation. However, the authors in [29] have preliminarily shown that different theories lead to the 

same result if displacement field coefficients and zig-zag amplitudes are determined in exact form by 

enforcing the same whole set of constraint conditions via symbolic calculus. Indeed, symbolic calculus 

always determines the same exact result compensating for the mutation of functions. On the contrary, 

theories with only a partial fulfillment of constraints highlights a strong sensitivity of  results from the 

assumptions made like for studies [18] and [31]-[39]. It is worth remembering that in this form symbolic 

calculus turns out to be an automatic tool enabling users to freely choose the type of representation and 

the zig-zag functions as desired.  

Mixed formulations represent a viable option to keep kinematics simple and simultaneously obtain 

accurate predictions without having to incorporate a piecewise transverse displacement to account for the 

transverse normal deformability effect, as shown e.g., by the HW theory by Zhen and Wanji [30], HR 

theories by Kim and Cho [40], Tessler et al. [41], Barut et al. [42] and Iurlaro et al. [43].   

However, given the importance of the transverse normal deformability effect (see, e.g. Icardi [19], Icardi 

and Sola [26], Shariyat [44], Carrera and Ciuffreda [45], Rekatsinas et al. [46] and Mattei and Bardella 

[47]), and the only partial accuracy of mixed models with simplified kinematics, as evidenced in [24] and 

[29], it seems that such mixed models can be used only for analysis of cases wherein the transverse 

normal deformation can just be described approximately. Such cases comprise the prediction of static 

response quantities under global distributed loading, uniform plate geometry and a slight variation of the 

elastic properties of  layers. On the contrary, studies of high-frequency vibrations, transient response 

analyses, localized loading, geometric and non-uniformity of properties require a very accurate 

description of the transverse normal deformability. 

In light of the above considerations, boundary conditions, loadings and lay-ups giving rise to stronger 

layerwise effects from those used in the past are required to thoroughly test theories. Clamped edges are 

particularly interesting [17], [41] since kinematic variables should vanish without incorrectly resulting 

into a vanishing transverse shear force resultant, as erroneously predicted by traditional plate models.  

It becomes important from the previous discussion to clarify whether adaptive DZZ, like those of [24] and 

[29], can really provide an equivalent degree of generality as MZZ, hierarchical axiomatic/asymptotic 

theories and CUF under strong layerwise effects. It also becomes important to verify whether the 
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potential advantage of DZZ of requiring a low expansion order of variables and  few d.o.f. for being 

accurate occurs in practice. Moreover, it is important to check on a wide range of applications if indeed 

DZZ are adaptable case by case, given that the choice of their zig-zag and representation functions can be 

arbitrary, as preliminarily observed for the benchmarks considered in [29] and [48]. 

In light of the previous discussion, the intended aim of this paper is to thoroughly  show by numerical 

assessments  that adaptive theories [24], [29], [48] and new ones developed in this paper as their 

generalizations or mutations, (i) can allow an arbitrary choice of the displacement field and of zig-zag 

functions without the result changing, (ii) whenever physical constraints are satisfied in a point-wise 

sense across the thickness through the redefinition of coefficients. 

In order to prove this, zig-zag functions that are arbitrarily chosen in a different way one from the other 

and representation functions that differ for each displacement and from region to region across the 

thickness are considered. Also variants wherein zig-zag functions are omitted,  their role being played by 

coefficients redefined across the thickness, are considered. Lower-order theories, whose features are 

reminiscent to ones published in the literature, are considered for sake of comparison. For these and for 

the theories that only partially enforce the set of constraints the aim is to prove that the solution loses 

accuracy and becomes strongly dependent on the choices made.  

A further purpose of this study is also to demonstrate that adaptive theories  can reach a degree of 

generality and flexibility of use similar to that of axiomatic/asymptotic theories and CUF, requiring a  

much lower number of unknowns to get the same accuracy even for challenging cases with strong 

layerwise effects. 

Challenging benchmarks retaken from the literature or new are used to test the accuracy of theories 

(Table 2 provides a quick reference pattern of all cases considered in the paper). Whenever available, 

exact solutions are considered as reference solutions, otherwise FEA 3-D is used.  

 

2. Laminated plate theories of this paper  

Hereafter the theoretical framework of structural models is discussed starting from basic notations and 

assumptions, then how closed-form solutions are obtained and the specific features of each theory are 

examined. However, to limit the length of the paper, just displacements, strain and stress fields are 

discussed into details since governing equations can be derived in a in a straightforward way from 

variational theorems. 

 

2.1 Notations 

The study is restricted to laminated plates subject to small deformations. Cell-scale effects of honeycomb 

core being disregarded, sandwiches are described as multi-layered structures. As usual for this type of 

study, constituent layers are assumed to have a uniform thickness 
kh ,  linear elastic orthotropic 

properties and are perfectly bonded to each other and bonding interlayer film is disregarded.  
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A rectangular, right-handed Cartesian coordinate reference system ( , , )    is assumed as reference 

frame on the middle reference plane  , ),(   being assumed as the in-plane coordinates and therefore 

  as the thickness coordinate ( [ / 2; / 2]h h   , h  being the overall thickness). The position of the 

upper and lower surfaces of the generic layer k are denoted by 
( )k  

 
and 

( )k  
z-, respectively, while

 

k  represents the coordinate of layer interfaces. L  and L  symbolize the plate side-length in the   

and   directions.  Subscripts k and superscripts 
k
  indicate that a quantity belongs to the layer k , while 

u
 and l mark the properties at upper and lower faces of the laminate. Elastic in-plane and transverse 

displacement components are indicated  as u and u , while in-plane and out-of-plane strain and stress 

components are indicated respectively as ij ,  ,   and ij ,  ,  (   2 ). 

To distinguish their origin, strains are further specified as )(21 ,, ijji

u

ij uu   and  

klijklij E   1)(  , respectively if they come from kinematic 
u[.]  or stress-strain 

[.] relations 

klijklij E    , being
1)(  ijklijkl EC  . 

Einstein summation convention is used throughout the paper and a comma is used to indicate spatial 

derivatives, e.g. ,(.) = (.) , ,(.) (.)    . As usual, the prismatic plate volume V  is assumed 

to be bounded by a surface S  that is split into a surface tS on which surface tractions are prescribed and 

a surface uS  on which surface displacements are prescribed. Body forces ib  on V , prescribed surface 

tractions it
~

on tS  and prescribed displacements iu~ on uS are assumed to act.
 

 

2.2  Brief reminder of variational theorems used in this study 

Theories wherein displacements, strains and stresses are assumed as primary variables are developed 

using a generalized version HW
g
 of Hu-Washizu canonical functional whose primary displacement 

boundary condition link is weakened as 0)~(  dSnuu ijji
S

i
u

  ( ji, coincide in turn with  , or  

 ) and which generates the following variational statement: 

0])~[(

~
])()[(









dsunnuu

dsutdvub

ijijijji

S

i

i

S

iii

u

ijijijij

e

ijijij

u

ij

V

g

HW

u

t





                      (1)               

 

The components of the external unit normal to the volume bounding surface are represented by jn , ib  are 

the components of body forces and terms dvijij

u

ij

V

  )(  , dv
V

ijij

e

ij   )(  constitute the 
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compatibility relations that ensure the consistency of assumed strain and stress fields with their 

counterparts obtained from stress-strain and strain-displacement relations. 

Theories assuming displacement and stress fields as primary variables are developed using Hellinger-

Reissner  HR canonical functional: 

 3 3 3 33 33 33
ˆ( ) ( ) ]

[( ) ] 0

t

u

u u u

HR ij ij i i i i i i i

V S

i i j ij ij j i

S

b u dv t u ds

u u n n u ds

        

 

             

    

 

             

  (2)

    

 

The following definitions apply: yxji ,2,1,  ; z3 ; )33)(3()33)(3( 2 iijiij   ; 

)(/1ˆ
3333333333

u

ijijCC    .   

Theories in displacement-based form are derived using the Total Potential Energy functional.  

The middle-plane displacement components 
0u , 

0v , 
0w  in the , ,     directions  and the rotations of 

the normal ),(0      ,

0 ),(w , ),(0   
 ,

0 ),(w  are assumed as the 

only functional degrees of freedom.   

 

2.3 Trial functions                                               

Closed form solutions are obtained within the framework of Rayleigh-Ritz method, in conjunction with 

Lagrange multipliers method. Accordingly, d.o.f. are expressed as a truncated series expansion of 

unknown amplitudes 
iA  and trial functions ),( i

 
that individually satisfy the prescribed boundary 

conditions:   

 

),(
1

i
m

i

iA  




                                                                                                                             (3)            

where   symbolises in turns 
0u , 

0v , 
0w , 

0

 , 
0

 . The trial functions are explicitly defined in Table 

3 for each specific case along with the expansion order and normalizations used. As a consequence, an 

algebraic system is obtained, whose solution provides the numerical value of each amplitude, from which 

displacement, strain and stress fields can be constructed. 

The same boundary conditions and the same representation are shared by all theories, in order to compare 

them under the same conditions. In details, at the clamped edge of cantilever beams, hereafter assumed at 

0  by way of example, the following conditions are enforced  

 

0)0,0(0 u  ;     0)0,0(0 w   ;   0)0,0( ,

0 w  ;   0)0,0(0                                                     (4)               
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In order to simulate that (4) holds identically across the thickness, the following further conditions are 

enforced: 

 

,(0, ) 0u    ;   ,(0, ) 0u    ;  ,(0, ) 0u                                                                              (5)                  

 

Using Lagrange multipliers method, it is further enforced  

                                                    
/2

/2
(0, )

h

h
d T  


                                                                        (6)                          

 

to ensure that the transverse shear stress resultant force equals the constraint force, while at the free edge 

 =L  ( L  is the beam length) this resultant force is enforced to vanish 

                                                      
/2

/2
( , ) 0

h

h
L d  


                                                                      (7) 

 

No conditions are enforced on bending moments, but if necessary they could be coerced choosing a 

sufficient expansion order in (3).  

At the clamped edge of propped-cantilever beams, the previous boundary conditions still hold, while at 

  =L the following support condition is enforced at the lower face / 2h    

                                                         
0 ( , 2) 0w L h                                                                           (8) 

while condition (7) is reformulated as:  

                                                         
/2

/2
( , )

h

h
L 

 Ld T                                                               (9) 

Instead, at simply-supported edges, the following boundary conditions are enforced  

 

0),0(0 w  ; 0),(0 Lw ; 0),0( ,

0 w  ; 0),( ,

0  Lw  

0)0,(0 w  ; 0),(0  Lw ; 0)0,( ,

0 w  ; 
0

,( , ) 0w L                                          (10)                          

 

on the reference mid-plane of the plate. With appropriate simplifications, corresponding ones for simply-

supported beams are obtained.  

As specified below, symbolic calculus is used for generating governing equations. An advantage offered 

by this technique is that loading does not require to be expressed as a series expansion like variables (3), 

just its mathematical formula being used, so a computational advantage is achieved irrespective it is 

continuous, discontinuous, or locally applied. 
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2.4 The ZZA displacement-based theory     

Hereafter the theoretical framework of ZZA [26] is briefly expounded, being the basis for theories 

developed and assessed in this paper. The through-thickness displacement field is postulated as:  

 

   

 

0 0 0

, 0

1 1

( , , ) ( , ) ( ( , ) ( , ) ) ( , , )

( , )( ) ( ) ( , ) ( )
i

u

i

n n
k j

k k u j c
k j

u u w F

H C H

    

 

            

       


 

     

   
                                  

u(x, y, z) = u0(x, y) + z(γx
0(x, y)-w,x) + Cx

i (x, y)z2 + Dx
i (x, y)z3 + (Oz4… ) +

+∑ Φx
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cu

k(x, y)Hk
ni

k=1

v(x, y, z) = v0(x, y) + z(γy
0(x, y)-w,y) + Cy

i (x, y)z2 + Dy
i (x, y)z3 + (Oz4… ) +

+∑ Φy
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cv

k(x, y)Hk
ni

k=1

    



0

0
1

2

1 1

( , , ) ( , ) ( , , ) ( , )( ) ( )

( , )( ) ( ) ( , ) ( )

i

i

n
k

k ki
k

n n
k j

k k j c
k j

u w F H

H C H







            

       




 

     

  



                     (11) 

Three kinds of contributions are incorporated, namely lower-, and higher-order ones, i.e. 
0

[...] ,  
i

[...]  

respectively, and layerwise functions 
c

[...] .  Contribution  
0

[...]  , which is linear in u  and uniform 

across the thickness in u ,  contains the only five functional degrees of freedom. 

Functions   
i

uF ,  
i

F 
 aren’t just depending on ς because  apexes and subscript 

u

 , 


   

represent the functional dependence on the d.o.f. that themselves are  function of in-plane coordinates. 

Such functions are expressed as a series expansion of functions of ς (assumed as desired)  and unknown 

coefficients, as described  immediately after. 

Any combination of independent functions could be assumed, however to include theory [19] as a 

particular case of ZZA, the following power series expansion is chosen:  

 

       2 3 4 4

3
( , , ) ( , ) ( , ) ( ...) (.) ( ...)u i i

i i i i
F C D O O                            

   2 3 4 5( , , ) ( , ) ( , ) ( , ) ( , ) ( ...)i i i i

i i
F b c d e O                        

 
4

(.)
i      5( ...)

i
O                                                                                                           (12) 

Higher-order contributions  4( ...)
i

O ,  5( ...)
i

O  are characteristic of  ZZA , while  

 
i)

~
(.

3
,  

4
(.)

i  are the same as in the previous model [19].  



9 

 

The contributions by (12) are indicated as 
iU , 

iU and are rearranged in the following way:  

2 3 4

2 3 4( , , ) [ ] ...i n

nU A A A A              
 

2 3 4 5

1 2 3 4 5( , , ) [ ] ...i n

nU A A A A A A                    
                                       (13)        

 

in order to obtain exact expressions of coefficients via symbolic calculus. Ones under square brackets are 

determined by enforcing the fulfilment of boundary conditions  

0,      ;   
0

( )p                                                                                                          (14)                             

Here 
0

( )p   represents the distributed transverse loading acting on upper 
0

( )p   and lower 
0

( )p   faces. 

Of course, also non-homogeneous conditions 0;   could be enforced without any additional 

difficulty.  The expressions of remaining contributions of (13) outside square brackets are obtained by 

enforcing the fulfilment of local equilibrium equations 

 

, , b         ;   , , b                                                                                              (15) 

 

at selected points across the thickness (where appropriate, only a partial set). The in-plane position where 

(15) are computed can be chosen suitably for each case.  

Higher-order contributions (13) enable a variable-kinematics representation keeping the overall number 

of d.o.f. fixed to five, irrespective of the number of  constituent or computational layers. A single 

computational layer proved to be effective in the numerical applications, as it already supplies a suitable 

number of equilibrium points. 

The expressions of zig-zag amplitudes 
k

 , 
k  and 

k   included into contributions 
c

[...]  are 

determined by enforcing the stress compatibility conditions 

( ) ( )( ) ( )k k

      ;  
( ) ( )( ) ( )k k

      ; 
( ) ( )

, ,( ) ( )k k

                   (16) 

at physical and mathematical layer interfaces, which directly follow from (15). 
k

  enable the continuity 

of transverse shears, while 
k , 

k  enable the continuity of the transverse normal stress and of its 

gradient. All together provide the right slope changes of displacements at the interfaces of layers with 

different material properties and/or orientation. Note that ( )k kH   in (11)  is Di Sciuva’s zig-zag 

function [14] while 
2( )k kH   is Icardi’s parabolic zig-zag function [19], Hk being the Heaviside unit 

step function (Hk=0 for  k  , while Hk=1 for k  ). The enforcement of the stress compatibility 

conditions (16) yields to a system of algebraic equations at each interface that is solved using symbolic 

calculus. In this way, closed form expressions of zig-zag amplitudes are obtained once and for all in terms 

of elastic properties of layers and of d.o.f. derivatives. The technique of construction of  structural model 

via symbolic calculus is described in the Appendix. If just material properties and/or the orientation of 
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layers change, not their number, symbolic expressions remain the same and therefore need not be 

recalculated.  

Layerwise contributions 
j

uC  and 
jC  restore the continuity of displacements at physical or 

mathematical layer interfaces: 

( ) ( )( ) ( )k ku u    ;  
( ) ( )( ) ( )k ku u                                                                               (17)       

Since the expressions of the initially unknown coefficients appearing in (11) are all redefined across the 

thickness, as outlined above, ZZA and the theories with this same characteristic considered hereafter are 

named "adaptive" theories, as they can adapt to the variation of solutions across the thickness. 

In conclusion, it should be noted that SEUPT technique [49] may be used to obtain a C° formulation of 

the ZZA and of the following theories suitable for development of finite elements. 

 

2.4.1 New theories derived from ZZA  

New displacement-based theories that derive from ZZA are developed hereafter with the purpose to 

investigate the effects of the choice of representation and zig-zag functions on accuracy. The first theory, 

here referred as ZZA1,  postulates the following displacement field: 

 

  


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( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( , )
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 
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    


      

 
        

u(x, y, z) = u0(x, y) + z(γx
0(x, y)-w,x) + Cx

i (x, y)z2 + Dx
i (x, y)z3 + (Oz4… ) +

+∑ Φx
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cu

k(x, y)Hk
ni

k=1

v(x, y, z) = v0(x, y) + z(γy
0(x, y)-w,y) + Cy

i (x, y)z2 + Dy
i (x, y)z3 + (Oz4… ) +

+∑ Φy
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cv

k(x, y)Hk
ni

k=1

   
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0 2 3 4

0

2

1 1 1

( , , ) ( , ) ( , ) ( , ) ( , ) ( , )
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i
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k k k k j c
k k j
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H H C H





                

            


  

     

        
    (18) 

The transverse displacement is the same of ZZA, while zig-zag functions of in-plane displacements are 

omitted because coefficients ( , )i

   and ( , )i

uC   , can be determined through the enforcement of 

(16) to (17). On the other hand, ( , )iC    and ( , )iD    are calculated by imposing (14) and (15), so, 

the full set of physical constraints is enforced.  

The purpose of this study is to demonstrate that results that are indistinguishable from those of ZZA can 

be obtained, thus proving that the choice of zig-zag functions is immaterial whenever the whole set of 

constraints (14) to (17) is enforced and exact relations are computed via symbolic calculus. 

To corroborate the previous conclusions, another new theory, called ZZA2,  is developed from ZZA as: 



11 
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    (19) 

In-plane displacements are the same as ZZA, while zig-zag contributions are omitted within the 

transverse displacement because their role is played by redefining coefficients ( , )ib    and ( , )ic    

across the thickness through the enforcement of  (16) (for layers with 1i  ). ( , )jC    are calculated 

by imposing (17), while the remaining coefficients are determined by enforcing (14) and (15). So (19) can 

be viewed  as the dual form of (18), due to the exchange of displacements that do not contain zig-zag 

contributions. 

Numerical applications will prove that also (19) gives results coincident with those of ZZA, although 

having different piecewise contributions, so again it will be demonstrated that the choice of zig-zag 

functions is immaterial whenever the whole set of constraints (14) to (17) is enforced. 

A further theory called ZZA3 is developed as: 

   
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  
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        
 (20)

 

which derives from (11) through a different choice of the representation functions across the thickness. 

Such functions are chosen as a mixture of trigonometric and exponential functions randomly selected, 

since studies [18] and [31]-[39] have highlighted this choice can considerably affect accuracy. On the 
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contrary, results by [29] and [48] indicate that this choice is immaterial if exact expressions of 

coefficients are obtained via symbolic calculus and the full set of constraints (14) to (17) is enforced. This 

will also be confirmed by the numerical results of (20), therefore that the choice of the representation 

functions is also immaterial. On the contrary, the results of theories that only partially satisfy (14) to (17) 

show a strong sensitivity of results accuracy, as in [18] and [31]-[39]. 

In order to corroborate this, two more theories are considered in the numerical illustrations. The first one, 

which is retaken from [19] and is called ZZ_NA1, has the following displacement field: 

 

   

 

0 0 0 2 3

, 0

1

( , , ) ( , ) ( ( , ) ( , ) ) ( , ) ( , )

( , )( ) ( )
i

i

n
k

k k c
k

u u w C D

H

     



               

    


      

 
            

u(x, y, z) = u0(x, y) + z(γx
0(x, y)-w,x) + Cx

i (x, y)z2 + Dx
i (x, y)z3 + (Oz4… ) +

+∑ Φx
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cu

k(x, y)Hk
ni

k=1

v(x, y, z) = v0(x, y) + z(γy
0(x, y)-w,y) + Cy

i (x, y)z2 + Dy
i (x, y)z3 + (Oz4… ) +

+∑ Φy
k(x, y)(z-zk)Hk

ni

k=1
+∑ Cv

k(x, y)Hk
ni

k=1

   

 

0 2 3 4

0

2

1 1

( , , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , )( ) ( ) ( , )( ) ( )
i i

i

n n
k k

k k k k c
k k

u w b c d e

H H

                 

         
 

     

      
     (21)

 

Differently to previous theories, higher-order coefficients within 
i

[...] are not recomputed across the 

thickness, but zig-zag amplitudes are still recomputed by imposing (16). So, differently to ZZA and 

ZZA1 to ZZA3 not all terms are redefined across the thickness. For this reason, (21) is only capable of 

partially satisfying (14) to (17), consequently its results are inaccurate unless many computational layers 

are used. 

Another theory, called ZZ_NA2 is proposed that considers a further different kind of representation 

across the thickness as: 
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Like ZZ_NA1, higher-order coefficients are not redefined for each layer, while  zig-zag amplitudes are 

still recomputed by imposing the stress compatibility conditions (16). Because of this, ZZ_NA1 and 

ZZ_NA2 only partially satisfy the constraints. The results will show that ZZ_NA1 is more accurate than 

ZZ_NA2. In subsequent sections, authors’ previously developed theories and used for comparison in the 

numerical applications are briefly reviewed. 

 

2.5 HWZZ mixed theory   

Displacements of HWZZ [24] derive from those of ZZA neglecting the contributions of 
k ,  which 

brings usually smaller contributions than 
k

  , 
k  , which however are not negligible from the 

standpoint of the slope change at interfaces. Higher-order and adaptive contributions 

4

4 ... n

nA A     , 
5

5 ... n

nA A   
 
are also neglected from displacement fields and no 

decomposition into mathematical layers is allowed, i.e. contributions by 
j

uC , 
jC  are omitted, so a 

single-layer zig-zag representation is adopted for displacements.  

Out-of-plane strains are constructed assuming  the representation (11) by ZZA, while in-plane strains are 

derived from kinematics [24]. Membrane stresses  ,  ,    are obtained in a straightforward 

way from stress-strain relations.  Expressions of out-of-plane stresses are obtained from expressions of 

membrane stresses by  integrating local equilibrium equations.  In this way, stress jumps resulting from 

omission of contributions by 
k  are recovered and it is prevented that displacement and stress fields fit 

their counterparts from kinematic assumptions, yielding to no improvements.  

 

2.6 HWZZM adaptive theory with modified Murakami’s zig-zag functions 

This theory, retaken from [29], is a HW mixed theory where 0[...] and [...]i  are the same as ZZA (11), 

but different layerwise functions [...]c  are assumed. Layewise contributions to in-plane displacements 

and the first contribution of the transverse displacement are the same of Murakami’s based theories 

except that a multiplier coefficient is applied constituting the zig-zag amplitude, whose expression is 
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determined by enforcing the compatibility of out-of-plane shear and normal stresses at material layer 

interfaces. So, differently to Murakami’s based models  in the literature, layerwise contributions, [...]c  

have amplitudes no longer assumed a priori and no longer uniform across the thickness. An additional 

contribution is incorporated in the transverse displacement, which involves second order powers of  , 

whose amplitude is determined by enforcing the continuity of the transverse normal stress gradient. 

Membrane stresses are obtained from stress-strain relations and used to compute out-of-plane master 

stresses by integrating local equilibrium equations.  

The purpose of this theory is to test whether results with the same accuracy of ZZA and HWZZ can be 

effectively obtained although zig-zag functions are chosen in a different way. 

Modified versions of HWZZM are also considered whose amplitudes  of zig-zag functions are assumed 

and then are kept uniform across the thickness (see Table 4), in order to clarify the importance of the 

redefinition of coefficients on accuracy. 

 

2.6.1 Murakami’s like theories 

Theories HWZZMA,  HWZZMB, HWZZMC, HWZZMB2, HWZZMC2 and HWZZM0 are derived from 

HWZZM as outlined forward. 

- ( )
u

kA   , ( )
u

kA    and ( )
u

kB   of HWZZMA are assumed uniform and coincident with those of  

HWZZM at the first interface from below.  

( )
u

kA   ,  and ( )
u

kB   of of HWZZMB are assumed like in HWZZMA while ( )
u

kA  
 
is calculated like 

in HWZZM theory.  

- For HWZZMC, only ( )
u

kB    amplitudes are assumed uniform across the thickness and coincident with 

those at the first interface from below. ( )
u

kB   contributions are neglected for HWZZM0 , while 

( )
u

kA   , ( )
u

kA    are assumed in the same way of HWZZMB.  

- HWZZMB2 and HWZZMC2 theories are similar to HWZZMB and HWZZMC, respectively, but 

currently amplitudes are assumed coincident with those of HWZZM at the first interface from above. 

With the exception of the parameters explicitly indicated, all the rest remains the same as HWZZM. 

However, since the amplitudes are not redefined, the results will show that accuracy is lost, therefore they 

are not convenient even though a processing time saving by 10% is obtained. 

Anticipating the numerical findings, the most accurate theories of this group will prove to be ZZA, ZZA1, 

ZZA2, ZZA3, HWZZ and HWZZM, being the only ones able to achieve results comparable to those of 

FEA 3-D for all the examined cases. Because the zig-zag functions of HWZZM differ from those of ZZA 

and HWZZ when, in fact, their results are indistinguishable, there is evidence that the choice of such 

functions is immaterial. 
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3. Lower-order theories  

Lower-order theories in HW and HR forms are considered in the numerical assessments, which assume 

either a uniform or a polynomial description of the transverse displacement. They are considered for 

assessing whether and for which application they can be as accurate as their higher-order counterparts of 

section 2. 

 

3.1 MHR, MHR±, MHRO theories     

A cubic-quartic mixed zig-zag theory referred as MHR [24], is considered for comparisons which just 

incorporates Murakami’s zig-zag function ( )kM  as the layerwise function within in-plane 

displacements: 
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    (23) 

Coefficients C , D , a , b , c , d  are calculated by enforcing the fulfilment of stress boundaries 

conditions (14), while terms E  are calculated by enforcing the fulfilment of first and second 

equilibrium equations (15) at the middle-plane of the laminate. In this case, a unique computational layer 

is assumed across the whole laminate thickness. Because transverse shear and normal stresses cannot be 

continuous at layer interfaces due to the assumptions made, their expressions within the framework of HR 

variational theorem (2) must be obtained integrating local equilibrium equations. 

A refined version of MHR, here referred as MHR± is retaken from [29] where the sign of Murakami’s 

zig-zag function is determined on a physical basis, instead of being forced to reverse at interfaces. The 

correct slope sign is determined at each interface comparing whether out-of-plane stresses are more 

accurate assuming a positive or a negative slope, namely which choice produces the lowest norm of the 

residual force from the three local equilibrium equations.  

Another new theory referred as MHRO is considered, whose  displacement field is the same of (23) but

E   are assumed as an additional d.o.f. Results by MHRO will be only provided for case d, as an 

example just to show that, despite an additional d.o.f. is considered, no advantage is achieved because the 

same accuracy of MHR is obtained. 

 

3.2 MHR4, MHWZZA, MHWZZA4 and MHR4± theories 

The following theories derived from MHR are further considered for comparison purposes. Theory 

MHR4 [24] is derived assuming the following fourth-order through-thickness piecewise variation of the 

transverse displacement:    
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In this case, e  is calculated by enforcing the fulfilment of the third local equilibrium equation at the 

middle-plane.  

A supplementary version of MHR indicated as MHWZZA [24] is considered, which was developed from 

the HW theorem assuming as master displacement-field the same of MHR, the same master strain and 

master stress fields of HWZZ. In an attempt of improving accuracy, ZZA is used as the post-processor.   

Another  theory used for comparison purposes is MHWZZA4 [24], which was derived from the HW 

variational statement assuming the in-plane displacements by MHR, the transverse displacement by ZZA 

and as master strain and stress fields those of the HWZZ model. So, the only substantial difference of 

MHWZZA and MHWZZA4 with respect to HWZZ and ZZA is the use of Murakami’s like instead of Di 

Sciuva’s like zig-zag function within  a simplified displacement field. 

Finally, theory MHR4±  derived from MHR4 is considered, where similarly to MHR± the sign of 

Murakami’s zig-zag function is determined on a physical basis following the same process described in 

section 3.1. 

 

3.3 HRZZ and HRZZ4 theory 

Another lower order theory used in the numerical applications for comparison purposes is HRZZ [24],  

which was developed from the HR statement (2) postulating a uniform transverse displacement and a 

cubic zig-zag representation of in-plane displacements:  
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The transverse normal stress 33  is assumed the same of ZZA model, while transverse shear stresses 3i  

are derived from equilibrium equations starting from membrane stresses obtained from kinematics. A 

version of HRZZ indicated as HRZZ
 
PP is particularized, wherein the ZZA model is used as the post-

processor in order to improve accuracy.   

Another theory HRZZ4 is considered for comparison purposes, which assumes a fourth-order polynomial 

approximation of the transverse displacement as: 
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(26)

 

and the same stress field of HRZZ (note that 33

u
 
is no longer null as in HRZZ). This latter theory is 

aimed at improving accuracy of HRZZ when the properties of constituent layers largely vary across the 

thickness.  
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4. Numerical assessments and discussion 

The accuracy of previous theories is assessed considering challenging benchmarks with strong layerwise 

effects resulting from elastic properties, lay-up, loading and boundary conditions.  

Benchmarks a to g and i to k are retaken from [24], [29], while h is considered for the first time in this 

paper. Throughout the body of numerical results, the reference solutions consist of exact results, 

whenever available, or FEA 3-D results [50].  

Material properties, lay-up, loading and boundary conditions, trial functions, expansion order, FEA-3D 

meshing, normalizations and length-to-thickness ratios considered are reported in Tables 2, 3 and 5 

respectively. Symbols *, ⸸ and § of Table 2 indicate when Murakami’s slope rule fails for displacements

u , u  or u . Positions where displacements and stresses are reported are explicitly defined in Table 3. 

The processing time required to carry out computation for each case examined is reported in Table 6. It 

comprises post-processing operations carried out for recovering stresses, in the cases where they are 

applied. In all cases examined, the number of equilibrium points considered is equal to ( 1) 2l un    , 

where l  is the number of computational or physical layers and un  is the expansion order of the in-

plane displacement, (in this paper 3un  ).  

 

4.1 Preliminary tests  a to c for assessing the correct implementation of theories 

Results of these cases are reported in Tables 7a to 7c. In addition to verify the correct implementation of 

theories, they also serve to ascertain whether there can be a certain diversification of  predictions of 

theories, despite these cases are not particularly demanding. 

Displacements and stresses of case a [51] (Table 7a) obtained by “adaptive” theories HWZZ, HWZZM, 

ZZA1, ZZA2, ZZA3 and ZZA whose coefficients are redefined across the thickness prove to be  

indistinguishable from each other and very close to exact solution.  

So it starts to be already demonstrated that  the choice of zig-zag functions is immaterial and they can be 

changed or omitted without any loss of accuracy. The results by  ZZA3 also starts demonstrating that 

other functions than power series can be used within adaptive theories in order to represent the transverse 

variation of displacements, without any loss of precision. For this reason from now on, the results of 

adaptive theories will be merged in Figures and Tables. Anyway it should be noticed that present theories 

obtain very accurate results with only five d.o.f., unlike non-physically-based theories in literature. The 

results reported in Table 7b  for case b [22] confirm what previously stated, while the results for case c 

require a detailed discussion. Such case, which is retaken from [19],  refers to a sandwich beam with a 

transversally soft  lower face (E3 reduced by a factor of 10
-2

), which is simulated as an eleven layers 

laminate (five for each face and one for the core). Transverse shear stress assume an opposite sign across 

the faces, which  is a very interesting and challenging feature to capture. The results for this case reported  

in Table 7c confirm the absolute equivalence of the adaptive theories and that the choice of representation 

and zig-zag functions is immaterial. Vice-versa, the accuracy of the theories that impose only a partial set 
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of physical constraints results to be largely dependent upon their choices and highly susceptible to the 

variation of layer thickness and elastic properties assumed.  

This becomes evident by comparing the results by non-adaptive theories ZZ_NA1 and ZZ_NA2, where 

only zig-zag amplitudes are recomputed across the thickness. Indeed, the first one, that assume a 

polynomial representation, shows a superior accuracy than its counterpart ZZ_NA2, which uses a 

combination of sinusoidal, power and exponential functions across the thickness. However, because only 

a partial set of physical constraints is imposed, precision of adaptive theories cannot be obtained, so, their 

results won’t be reported in the following much challenging cases for sake of brevity. 

In all cases a to c, the superior efficiency of adaptive theories  ZZA, ZZA1, ZZA2, ZZA3, HWZZ and 

HWZZM is clearly shown by the processing time reported in Table 6. 

 

4.2 Case d – Cross play laminated beam 

A simply supported [0/-90/0/-90] laminated beam in cylindrical bending under sinusoidal loading is now 

considered. Retaken from [52] and [53], this case is interesting because strong layerwise effects rise as a 

result of the stacking. Henceforth Tables will show the quantities that are not shown in the figures (if 

any), in order not to present redundant data. In Tables 8a to 8h reporting the results for this case, as also 

forward for the remaining ones, theories MHR, MHR4, MHR± and MHR4± are merged (♦) for sake of 

brevity if not explicitly reported, because their results  differ by only 3 % to 8% each other. In this and 

following cases, the results of the theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ, HWZZM (♠) are grouped 

together, as their results are practically coincident. This fact must be understood as the demonstration that 

the choice of the representation and zig-zag functions is immaterial for adaptive theories of sections 2.4 to 

2.6. 

The effects of support reactions is shown in Tables 9a to 9g. To consider this effect, a transverse normal 

stress   (with the magnitude specified case by case) is applied at a distance less that 1% of the length 

away from the supports, because the trigonometric trial functions identically vanish at the supports.  

Results show that a periodical stack-up not necessarily implies a slope sign reversal at interfaces, contrary 

to what postulated by Murakami’s zig-zag function. Furthermore it is noted that only adaptive theories 

can accurately predict u  and  , while all theories (except MHR, MHR4, MHWZZA and 

MHWZZA4 at the first interface from above)  quite accurately capture  , 
 
and u . Anyway, major 

errors are committed by HWZZMB and HWZZM0, while MHRO prove in this case to be as accurate as 

MHR, therefore it doesn’t benefit from the extra d.o.f. Results by MHR± and MHR4± show no 

improvement as regards the accuracy of the  transverse displacement, which appears the most difficult 

quantity to determine. HRZZ can’t even predict the average value of this displacement also when post-

processed by ZZA (results indicated as HRZZ PP).  

As regard the effects of supports, (in this case the application of 00.1 up    ), Table 9a shows that 

an inappreciable variation of u  is induced across the thickness, but despite this, the errors committed by 

lower-order and Murakami’s based theories increases. Instead,  the effects of support reactions on 
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transverse normal stress is predicted with an excellent agreement by all theories, accordingly is not 

reported.  

Adaptive theories  ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM  again prove to be the most efficient 

ones as shown in  Table 6. It is noted that  simplified theories based on Hellinger-Reissner and Hu-

Washizu variational theorem neither are accurate, nor can save overall costs in this case. 

 

4.3 Case e  - Simply supported rectangular sandwich plate  

A simply supported rectangular sandwich plate under bi-sinusoidal loading is retaken from Brischetto et 

al. [25], since strong layerwise effects rise due to the stiffer and thinner lower face. In this case, the slope 

of in-plane displacements reverses at the lower interface as postulated by Murakami’s zig-zag function, 

but not at the upper one. This explains why the errors made by plate theories using Murakami’s zig-zag 

function grow up from the bottom to top, as shown in Table 8b. For compensating such errors, a higher 

degree of expansion of the variables would be required (e.g., over the 7-th order [25]). However, it should 

be noted that the low expansion order used for all theories allows adaptive theories to provide already 

very accurate results. 

In details, the results of Table 8b show that no advantages are gotten in this case by MHR± which 

determined the right slope sign because of its still too poor kinematics. Owing to less limiting  kinematic 

assumptions, MHR4  gets better transverse shear stresses than MHR4±. 

As in all previous cases, adaptive theories achieve the best results and always in perfect agreement with 

each other, demonstrating again that the choice of representation and zig-zag functions is immaterial for 

them and that  the latter can even be explicitly omitted without any accuracy loss.  

In this case, also all theories with a priori assumed zig-zag functions that are not redefined through 

imposition of constraints, prove to be fairly accurate. However ones of lower order appear inaccurate at 

some point across the thickness.  

All lower order theories using Murakami’s zig-zag function provide an incorrect prediction after the first 

interface from below (Figure 1 and Table 9b) when the effects of constraint stresses  are considered (

00.1 up     at supported edges). Moreover, results  by theories HWZZMA, HRZZ, HRZZ PP, 

HRZZA4 and MHR and MHR4 are not reported for this case, being too inaccurate. 

Also in this case, adaptive theories  ZZA1, ZZA2, ZZA3, HWZZ and HWZZM  prove to be the most 

efficient ones (see Table 6).  

 

4.4 Cases f, g and h  - Propped cantilever sandwich beams 

Currently, a propped-cantilever sandwich beam (clamped at 0  and restrained on the lower face at 

 L ) [24], [47] is considered, which is loaded by a uniform transverse distributed loading on the 

upper face. Lower (l) and upper 
(u) 

faces are assumed to be tl = c/2 and tu=c/4 thick, respectively, c being 

the thickness of core. The following ratios of elastic moduli of faces Eu/El=1.6 and core Eu/Ec=166.6 are 

assumed (all constituent materials have a Poisson’s ratio 3.0 ). Initially, the length-to-thickness ratios 
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714.5/ hL  is considered (case f), than a ratio of 20  (case g).  Subsequently, the position of the 

support is moved to  L9.0  with 714.5/ hL  (case h). The peculiar characteristic is that for 

these cases the through-thickness variation of the transverse normal displacement and stress need to be 

very accurately reproduced at the restrained edge, otherwise a wrong transverse shear stress field is 

predicted. Like for case c,  another challenging feature is that the transverse shear stress assumes an 

opposite sign across upper and lower faces at the supported edge. This benchmark is also challenging 

because at the clamped edge the shear force resultant cannot vanish, as erroneously predicted by many 

theories in the literature. Add those interesting features up, this benchmark turns out to be a pretty tough 

case for assessing the accuracy of theoretical models. 

 

4.4.1 Case f. Results by Figure 2 and Table 8c prove that Murakami’s hypothesis is not valuable. As a 

direct consequence, MHR and MHR4 erroneously predict the through-thickness distribution of  

displacements and also non-adaptive theories MHWZZA, MHWZZA4, HRZZ, HRZZ PP and HRZZ4 

cannot be as accurate as adaptive ones. It could be noticed that results by MHR, MHR4, MHR± and 

MHR4± differ from each other by only 3% but they make mistakes up to 180% compared to adaptive 

theories and to FEA 3-D. 

The results of ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM again coincide with each other and are in 

excellent agreement with FEA 3-D, confirming that the choice of representation and zig-zag functions is 

immaterial and that even the latter can be omitted if other coefficients can play their role. 

Once the effect of the constraint stress are accounted for at the supported edge ( 05 up    ),   

considerably decreases across the core and at the lower interface, while constraint stresses have no effects 

on the in-plane stress distribution (Figure 3 and Table 9c). It is noted that also for this case lower order 

theories results show a greater dispersion because an imprecise representation of   at supports 

undermines their accuracy.  

 

4.4.2 Case g. Figure 4 and Table 8d show the result for this case highlighting that  is strongly 

asymmetric across the two faces as a consequence of different properties and thickness of faces. It is also 

noted the inaccuracy of MHWZZA and MHWZZA4 compared to adaptive theories ZZA, ZZA1, ZZA2, 

ZZA3, HWZZM and HWZZ, which again show all similar results, confirming that the choice of 

representation and layerwise functions is immaterial for these theories. Anyway, discrepancies are 

reduced when u  and  are considered, though lower-order theories remain not very accurate. In this 

case, MHR, MHR4, MHR± and MHR4± differ again from each other by 3% but they make mistakes up 

to 90% compared to adaptive theories and to FEA 3-D. The obvious conclusion is that even for a length-

to-thickness ratio of 20 an accurate description of the through-thickness transverse displacement variation 

u
 
is still of primary importance, so it is necessary to resort to higher-order theories.  
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Constraint stresses considerably modify the through-thickness distribution of   across the core and 

nearby the lower interface (Figure 5), while they don’t cause changes to the in-plane stresses. Again   

is no longer vanishing at the lower interface, where its magnitude is assumed to be 05 up    .    Like 

for the previous thick case f, a large dispersion of results is shown by lower-order theories, therefore their 

inadequacy is confirmed.  

 

4.4.3 Case h. The results for this case are reported in Table 8e. Again accurate results very close to FEA 

3-D ones are obtained by adaptive theories ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM, so it is 

confirmed that the choice of zig-zag is immaterial and that  they can be also omitted if the procedure of 

(2.4) is used.  In addition, it is confirmed that functions representing the variation of  displacements 

across the thickness can be arbitrarily chosen under the same conditions. Lower order theories, in 

particular ones that incorporate standard Murakami’s zig-zag function as layerwise function, appear still 

inadequate, at least with regards the prediction of u ,  and  . 

Regarding the effect of constraint stresses, the application of 05 up   
 
at the supported edge induces 

a mutation of the trend  of transverse shear and normal stresses across the core and across the upper face 

(Table 9d), which is incorrectly calculated by lower-order theories  

Adaptive theories  ZZA1, ZZA2, ZZA3, HWZZ and HWZZM once again prove to be the most accurate 

and efficient theories (see Table 6) for all cases f, g and h. 

 

4.5 Case i - Sandwich with stiff core and damaged lower face    

In this case, a sandwich plate having the same geometric characteristics of case e but a much stiffer core 

and a damaged lower face [24] (E1111 E1122 E2222 E1212 are reduced by 2·10
-1

 for Layer 1) is considered. 

Because of geometric and material asymmetries act jointly extolling each other, layerwise effects 

becomes stronger. 

From Table 8f, which shows displacements and stresses predicted by all theories, an appreciable degree 

of accuracy emerges. However, theories based on Murakami’s zig-zag function as the layerwise function 

turn out to be less accurate, because the slope of in-plane displacements reverses at the lower interface but 

not at the upper one like for case e. Because of this, lower-order theories MHR± and MHR4± obtain 

results similar to those of their counterparts MHR and MHR4, so not benefiting from the physical 

redefinition of the slope sign and also MHWZZA and MHWZZA4 are inaccurate despite having a higher-

order kinematics. 

The effect of the support reaction, namely the application of 00.1 up     at the lower face takes 

place through a sharp rise of  across the core, that doesn’t change u and u  whereas it changes 

considerably transverse shear stresses (Table 9e). The most evident effect of this is the increased 

disagreement among the predictions of lower and higher-order theories. 
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The accuracy and efficiency (see Table 6) of the adaptive theories are confirmed for this case, along with 

the possibility of arbitrarily choosing representation and zig-zag functions.  

 

 

4.6 Case j -Simply-supported sandwich plate with damaged thick core and face 

A modified version of the three-layer, simply-supported sandwich plate under sinusoidal loading formerly 

considered by Zhen and Wanji [52] is now retaken assuming a damaged and thinner lower face (E1111 

E1122 E2222 E1212 reduced by 1·10
-2

) and a thicker core (that is partially damaged up to 0.15h from below, 

E1122 E2222 E1212 E1313 E2323 are reduced by 2·10
-1

). Due to such  assumptions, this case extols the layerwise 

effects, similarly that in  [24]. Transverse shear stresses reported in Table 8g show that the reduction of 

elastic moduli results into a totally different behaviour from that of the undamaged case, while mild 

variations occurs for the other stresses and for displacements. Because, only an infinitesimal part of the 

bending stress is borne by the lower face,  transverse shear stresses are strongly asymmetric across the 

thickness. Accordingly, the incorporation of layerwise functions able to accurately represent displacement 

and stress fields and the redefinition of  coefficients across the thickness  assume a primary importance. 

As the sign of  reverses near the lower face and that of   exhibits a through-thickness change, 

capturing these stress fields is rather challenging. For this reason, strong discrepancies appear between the 

predictions of the lower-order theories. Because Murakami’s rule of a reversing slope at material 

interfaces fails, theories using Murakami’s zig-zag functions fail to be accurate. In this case, quite 

accurate results for   are provided by HWZZMB, HWZZMB2, HWZZMC, HWZZMC2, while 

HWZZMA and HWZZM0 cannot be equally effective. Also in this case it is confirmed that zig-zag 

functions can be arbitrarily chosen or even omitted and that also the representation can be arbitrarily 

chosen without any loss of accuracy.  

Unlike for the previous cases, the effect of constraint stresses ( 00.1 up    ) does not change 

significantly the through-thickness distribution of transverse shear stresses and in-plane displacements 

(Table 9f). Also in this case adaptive theories  ZZA1, ZZA2, ZZA3, HWZZ and HWZZM appear as the 

most efficient theories as shown by Table 6, since they have a high accuracy and low computational costs. 

 

4.7 Case k - Sandwich plate with thin faces 

As last case, a simply-supported sandwich plate with thin faces is considered, which is undergoing a 

uniform locally applied load at the centre of its upper face (load from / 4L   to 3 / 4L   and 

from / 4L   to 3 / 4L  ) [24]. All constituent materials are assumed to be isotropic. Figure 6 

and Table 8h show the through-thickness distribution of displacements and stresses for this case. 

Structure and loading being symmetric, it occurs that
   , 

   ,  uu   on the 

respective sides. For this case, results by MHR, MHR±, MHWZZA, MHWZZA4, HWZZMB and 

HWZZMB2 are merged together in Figure 6, for sake of brevity, because their findings are very similar.  
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Adaptive theories  ZZA, ZZA1, ZZA2, ZZA3, HWZZ and HWZZM as well as theories HWZZMB and 

HWZZMB2 prove to accurately predict all through-thickness stress and displacement fields. 

Although a better agreement among the predictions of  lower order theories is shown than in the previous 

cases, lower order theories still appear rather inaccurate. MHR4 misestimates the magnitude of 

displacements and stresses, due to the incorrect representation of the slope sign variation at interfaces. 

However, accuracy does not increase for MHR4±, as a consequence of their still too poor kinematics. 

Instead, transverse shear stress is quite accurately predicted by MHR and MHR±. HWZZMA is 

inaccurate because the recalculation of zig-zag amplitudes at each interface is omitted. From this fact and 

given the high accuracy of adaptive theories is proven again that the choice of zig-zag functions is 

immaterial and moreover that any function can be used in order to express transverse displacements 

without any loss of accuracy only for adaptive theories.  

Here again the support reaction ( 00.02 up    ) leaves unchanged displacements and in-plane 

stresses, while it considerably changes the transverse shear stresses across the thickness (Figure 7 and 

Table 9g). In this case, HWZZMC2, MHWZZA and MHWZZA4 give results that are in very good 

agreement with HWZZ, ZZA, ZZA1, ZZA2, ZZA3, HWZZ. On the contrary HWZZMB, HWZZMB2, 

HWZZMC and HWZZM0 provide inaccurate results. Results by HRZZ, HRZZPP, HRZZA4, MHR and 

MHR4 are again to poor, so they are not reported in Figure 7. 

Adaptive theories  ZZA1, ZZA2, ZZA3, HWZZ and HWZZM  prove to be the most efficient ones also 

for this case (see Table 6).  

 

5. Concluding remarks       

Accuracy of various theories, some of which are new while others are retaken from previous papers by 

the authors, have been assessed. They derive from the ZZA 3-D zig-zag theory [26] under steadily 

growing limiting assumptions on displacement, strain and stress fields. As they differ by the choice of 

through-thickness functions representing variables and of zig-zag layerwise functions, the aim of the 

present study is to demonstrate numerically that the choice of such functions can be immaterial whenever 

their coefficients are recomputed across the thickness by enforcing the same whole set of constraint 

conditions (e.g., stress compatibility at interfaces, stress boundary conditions and fulfillment of local 

equilibrium equations), provided that their expressions are obtained in exact form via symbolic calculus. 

As the symbolic calculus tool used  finds once and for all closed-form expressions of coefficients, it  

constitutes an automatic support that enables users to choose the coarse representation and the zig-zag 

functions as desired. Its use enables a variable-kinematic representation while keeping fixed the number 

of functional d.o.f., here assumed coinciding with the classical five middle-plane displacements and 

rotations of the normal (but any other combination could be used). 

Challenging benchmarks with strong layerwise effects, where an accurate description of the normal 

transverse deformation is required, are considered for testing theories. They present a quite large variation 

of mechanical properties of constituent layers, a low length-to thickness ratio (but results for rather 
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slender cases are also presented), different lay-ups, loadings and simply-supported or clamped edges (in 

the first case also the effects of support stresses are considered). 

Closed form solutions to elastostatic problems considered are obtained using the same trial functions and 

the same type and order of expansion of the in-plane representation for all theories, to compare them 

under the same conditions. As regards the representation across the thickness, the expansion order is 

limited to the third-order for the in-plane displacements and to the fourth-order for the transverse one. 

This because the redefinition of coefficients makes superfluous  use of higher orders, fact that makes the 

present theories very efficient.  

The numerical results prove the thesis of this paper and precisely that that if all the physically admissible 

constraint conditions are enforced, theories with different zig-zag functions lead to the same results.  

The same holds as regards the choice of the representation functions. So the choice of the functions used 

to represent variables across the thickness and of zig-zag functions can be arbitrary assumed without the 

results showing inaccuracies. Zig-zag functions can even be omitted when a number of unknown 

coefficients equal to the number of zig-zag amplitudes is incorporated, whose expressions are determined 

by enforcing the fulfillment of interfacial stress compatibility conditions. 

Vice-versa, the accuracy of the theories that impose only a partial set of physical constraints are largely 

dependent upon the choice of the aforementioned parameters, the accuracy of results being highly 

susceptible to the variation of layer thickness and elastic properties assumed. 

Theories based on Murakami's like zig-zag function as the layerwise function  appear less accurate than 

physically-based counterparts with the same order of expansion across the thickness, as in many of the 

cases considered the slope of displacements doesn't always reverse at interfaces. 

Numerical results show unequivocally that more accurate predictions of through-thickness displacement 

and stress fields are achieved by the theories incorporating a piecewise zig-zag variation of the transverse 

displacement. Physically-based theories of this paper get through-thickness displacement and stress fields 

as accurately as theories by other researchers, which assume an order of expansion of the variables across 

the thickness much higher. A simplified uniform or polynomial representation of the transverse 

displacement is shown ineffective even when strain and stress fields retaken from more accurate models 

are incorporated into mixed theories.  

The previous considerations remain valid even when slender cases are considered, because although 

transverse normal deformability effects are no longer dominant, the shortcomings of lower-order theories 

are magnified by the increased magnitude of deflection. 

The support reaction   could change considerably the through-thickness filed of transverse shear 

stresses even when having a small magnitude,  while it leaves virtually unchanged in-plane stresses and 

displacements. 
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Appendix – Symbolic calculus tool 

Here, the steps for constructing the structural model is discussed. Note that the procedure is valid 

irrespective of the theory because the only thing that sets apart theories is the formulation of the 

displacement field starting from which the calculation proceeds automatically according to the 

instructions given below. The process is completely automatic and allows the user to choose the functions 

of representation and zigzag functions, as well as loadings at will, always obtaining an exact formulation 

of the model coefficients. In this framework, every sort of theory can be developed including those with 

only partial satisfaction of constraints. This allows users to compare many theories and understand which 

ones are advantageous. Program is developed under MathWorks-CAMPUS WIDE (Politecnico di 

Torino).  

 

%% CREATION OF SYMBOLIC VARIABLES (example refers to a beam) 

    for i=1:M     %M is the number of terms of in-plane expansion 

        vettAmn(i)=sym(strcat('Amn_',num2str(i)),'real'); 

        vettCmn(i)=sym(strcat('Cmn_',num2str(i)),'real'); 

        vettDmn(i)=sym(strcat('Dmn_',num2str(i)),'real'); 

    end 

dofRR=[vettAmn,vettCmn,vettDmn]'; 

%example for a beam 

p0u=sym('p0u','real');    %symbolic loading 
0

up   

z=sym('z','real');        %transverse coordinate ς 

x=sym('x','real');        %in-plane coordinate α 

… 

…   % (This apply for all variables) 

… 

  end 

     end     

       end 

    %      u= u
      w= u
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%% USER  

 

% Next steps are carried out automatically 

 

%% CONSTRUCTION OF STRAIN AND STRESS FIELDS  

%diff: Differentiate symbolic expression or function respect the indicate variable 

epsx=diff(u,x);     %   epsx=
  

… 

epsz=diff(w,z);    %   epsz=
  

… 

epsxz=diff(u,z)+diff(w,x);    %   epsxz=
  

 

 for i=1:nl 

    mia_Q=Q(:,:,i); 

    epsilon=[epsx(i) … ]'; 

    sigmax(i)=(mia_Q(1,:)*epsilon)';       %   sigmax=
         sigmaxz=

          sigmaz=
  

    … 

end  

 

%% ENFORCEMENT OF PHYSICAL CONSTRAINTS 

%e.g. sigmaxz=0 at upper and lower layers 

 %posxz_x: definition of in-plane position where constraint is imposed (numerical variable) 

cont=1;  %counter 

sigmaxzL=sigmaxz(1); 

F(cont,1)=sigmaxzL;  %equivalent to imposition of sigmaxzL=0; 

F(cont,1)=subs(F(cont,1),x,posxz_x); 

F(cont,1)=subs(F(cont,1),z,-0.5*h); 

cont=cont+1; 

  

sigmaxzU=sigmaxz(nl); 

F(cont,1)=F(cont,1)+sigmaxzU;  

F(cont,1)=subs(F(cont,1),x,posxz_x);   

F(cont,1)=subs(F(cont,1),z,+0.5*h); 

cont=cont+1; 

%Repeat for other constraints 

%F will contain all the boundary, compatibility and equilibrium equations  

  

%% CALCULATION OF COEFFICIENTS BY CONSTRAINTS 

 %Cost_sist contains the coefficients that are calculated  by imposing the fulfillment of conditions F 

 %The number and which coefficients are contained in Cost_sist is chosen by user. 

 %Number of equations of F must be the same of Cost_sist 

 F=subs(vpa(F), p0u,p0u_num  );  %p0u_num is the numerical value of load  

solut=vpasolve(F,Cost_sist);  

This is the only things that user must specify, which is the only thing that characterizes theories 
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Procedure continues building the functional. The example refers to Total potential energy functional. 

 

 %% SOLUTION BY RR METHOD 

 %TOT_POT: total potential energy  

%Symbolic integration may be carried out by int function, but a 

%numerical approach is equally accurate and requires a lower effort. 

%dofRR contains the remaining unknown amplitudes that are not yet  

%determined by solving the previous system of equations F. 

  cont=1; 

 for i=1:length(dofRR) 

     F2(cont,1)=diff(TOT_POT,dofRR(i)); 

     cont=cont+1;  

 end 

 F2=subs(vpa(F2),p0u,p0u_num); 

soluz=vpasolve(F2,dofRR);    

  

The problem is solved and the results can be plotted. 

 

Actually the displacement field is completely defined, by substituting back expressions solut. 


