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1. Introduction

Temporal networks have gained momentum in the scientific literature and now constitute a well-established 
mathematical framework to describe temporal interactions (links) among dynamical entities (nodes) in many 
real systems [1–3]. Temporal interactions are ‘reducible’, when they are uniquely explained by inherent node 
properties that do not require the dyadic nature of a network. They are ‘irreducible’ when they carry additional 
information that cannot be associated with the sole node properties [4].

This dichotomy calls for the design of network filtering algorithms to distinguish reducible from irreducible 
links, which form the so-called network backbone. For instance, when studying interactions in school or work-
place, one may seek to remove accidental interactions and identify strong social bounds that underlie friendship 
or strong work relationships [5]. Introducing reliable approaches for filtering reducible links and reconstructing 
the backbone is critical for the study of real temporal networks.
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Abstract
Filtering information in complex networks entails the process of removing interactions explained 
by a proper null hypothesis and retaining the remaining interactions, which form the backbone 
network. The reconstructed backbone network depends upon the accuracy and reliability of the 
available tools, which, in turn, are affected by the specific features of the available dataset. Here, 
we examine the performance of three approaches for the discovery of backbone networks, in the 
presence of heterogeneous, time-varying node properties. In addition to the recently proposed 
evolving activity driven model, we extend two existing approaches (the disparity filter and the 
temporal fitness model) to tackle time-varying phenomena. Our analysis focuses on the influence of 
the network size, which was previously shown to be a determining factor for the performance of the 
evolving activity driven model. Through mathematical and numerical analysis, we propose general 
guidelines for the use of these three approaches based on the available dataset. For small networks, 
the evolving temporal fitness model offers a more reasonable trade-off between the number of links 
assigned to the backbone network and the accuracy of their inference. The main limitation of this 
methodology lies in its computational cost, which becomes excessively high for large networks. In 
this case, the evolving activity driven model could be a valid substitute to the evolving temporal 
fitness model. If one seeks to minimize the number of links inaccurately included in the backbone 
network at the risk of dismissing many links that could belong to it, then the temporal disparity 
filter would be the approach-of-choice. Overall, our contribution expands the toolbox of network 
discovery in the technical literature and should help users in choosing the right network discovery 
instrument, depending on the problem considered.
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Various approaches have been proposed to discover the backbone, bringing to light salient structural features 
of complex systems. In [6], the authors propose to identify significant heterogeneities in the link weights to unveil 
a backbone that is invariant with respect to changes in the network scale. In [7], the paradigm of statistically 
valid ated networks is used to isolate links in bipartite topologies. The technique has been further applied in [8] to 
examine the evolution of motifs in mobile communications in Europe and in China. Information theory—nota-
bly the concept of maximum entropy—has been leveraged in [4] to establish an unbiased filtering and backbone 
detection algorithm for weighted networks. Other efforts have been pursued to discover the backbone in trans-
port networks [9], identify the relationship between weights and topology in weighted networks [10], recover 
significant structures in the ensemble of US airports [11], study functional networks in the brain from magnetic 
resonance data [12], highlight cores of communities in bipartite networks [13], and determine topological struc-
tures that serve as superhighways for transport phenomena in complex systems [14].

The general idea of these approaches is to aggregate all the temporal interactions and compare the resulting 
weighted network against a suitable null model. If the observed link weight exceeds the model’s prediction, the 
link is included in the backbone network, otherwise it is filtered out. This procedure is repeated for all the links to 
reconstruct the whole backbone.

Recent approaches contemplate the possibility that the generation of reducible links is mediated by time-
varying processes [5, 15–20]. Compared to earlier studies, these approaches offer a more accurate description 
of the network evolution, which improves the backbone network detection. For example, the evolving activity 
driven model (EADM) [19] is an approach inspired by the paradigm of activity driven networks [21–23]. The 
key element of this methodology is the use of a node-specific activity to represent the individual propensity of 
generating links over time [21]. Within the EADM, activities are treated as time-varying, piece-wise constant 
functions. By letting individual properties (activities) vary over time, the number of false positives (links incor-
rectly identified as a part of the backbone network) are reduced with respect to alternative schemes that keep 
node properties as constant [19].

As suggested in [19] through preliminary numerical studies, the EADM is successful in the discovery of the 
backbone structure only for large networks, thereby failing to assist in the inference of irreducible links for small 
networks. This issue is called finite-size effect and it is well known in the scientific literature on network science. 
In general terms, the finite-size effect describes a limitation in the approach that could either relate to the capabil-
ity of the method to provide reliable results or to its unsustainable computational cost. For example, mean-field 
theories are usually suitable to predict the evolution of diffusion processes on large networks [24, 25], but they 
may fail to describe aspects important at small scales. Conversely, other theories may yield successful results for 
small networks, such as those used for the inference of networks from time-series of individuals nodes [26, 27], 
while failing in large systems due to excessive computational costs.

In order to overcome the EADM finite-size effect, we introduce two new approaches: the evolving temporal 
fitness model (ETFM) and the temporal disparity filter (TDF). Both the approaches are extensions of existing 
methodologies for backbone discovery to incorporate the possibility of time-varying processes for the genera-
tion of reducible links. The ETFM extends the temporal fitness model [5], which offers a flexible framework for 
network discovery. Similar to the EADM, the ETFM assigns to each node in the network an activity, which is het-
erogeneously distributed. The TDF extends the disparity filter [6], which is currently the most popular approach 
to backbone detection and the first one to address heterogeneously weighted networks. Contrary to the EADM 
and ETFM, the TDF is not based on the use of activities, but it utilizes other node-specific properties, such as the 
node strength and degree [28, 29].

The EADM, ETFM, and TDF share the same three sequential steps: (i) determining the interval partition, (ii) 
estimating the models’ parameters, piece-wise constant over successive intervals, and (iii) implementing a statis-
tical filter, which removes all links explained by the null hypothesis and retains the backbone network. In princi-
ple, their performance may vary depending on the problem under consideration. Here, we focus on the influence 
of network size on backbone detection, which was shown to be a limitation of the EADM in [19]. Through this 
targeted effort, we aim at articulating the technical reasons why the EADM suffers from a finite-size effect and at 
determining when either the ETFM or TDF should be preferred.

First, we investigate the computational complexity of the EADM, ETFM, and TDF. The only methodology 
that is unfeasible for large networks is the ETFM, due to its excessive computational cost. Such a drawback is 
partially compensated by an improved capability to deal with small networks, whereby the ETFM estimates the 
activities in a maximum likelihood sense that allows for the study of small systems.

Next, we consider an artificial temporal network with a known backbone network following [19], toward com-
paring the performance of the EADM, ETFM, and TDF in reconstructing the backbone network. We find that 
the size of the artificial network strongly affects the performance of the approaches, measured in terms of true 
positives (links correctly included in the backbone network) and false positives (links incorrectly included in the 
backbone network). The TDF finds the least amount of false positive links among the three approaches, ensuring 
that all of them belong to the known backbone network. The main caveat of the TDF is that, in  several cases, it 
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does not identify any true positive, thus failing to detect the known backbone network. The EADM has adequate 
performance in finding the known backbone network only when the network is large, while the ETFM can tackle 
the analysis of systems of any size. The main issue of the ETFM is that it detects several false positives  when the 
known backbone network is present almost at any time step. In other words, the TDF detects the least amount of 
links (counted as the sum of false and true positives), the ETFM an intermediate value, and the EADM the largest 
amount. Further, when the network size is large, the ETFM and EADM detect the same backbone network. This is 
because, for large networks, the activity estimation of the ETFM is equivalent to the one of the EADM.

Finally, we detect the backbone network of two real systems freely available as part of the SocioPatterns pro-
ject [30]. We study the Primary School and Workplace datasets, where nodes represent students (or teachers) 
and workers, respectively, interacting over successive days. We detect the backbone network in the entire school 
and workplace, but also in each class and department. The reconstructed backbone networks are coherent with 
expectation from the analysis of artificial networks: the TDF finds the least amount of links, the ETFM an inter-
mediate value, and the EADM the largest number. Interestingly, we also observe that the EADM and ETFM detect 
the same backbone network when the real systems are sufficiently large. 

Overall, we identify a strong finite-size effect in backbone detection, which suggests that care should be placed 
when selecting an approach. Further, the TDF minimizes the number of false positives, but often it does not 
detect any true positive, challenging the proper reconstruction of the backbone network. The ETFM is especially 
useful for small systems, offering a reasonable trade-off between the number of true and false positives detected. 
The EADM detects the same backbone network as the ETFM when the system is large, and should be preferred 
for the analysis of large systems due to its reduced computational burden.

The rest of the paper is organized as follows. In table 1, we summarize the acronyms used to indicate the new 
methodologies, the nomenclature of the article, and the parameters employed in the generation of the artificial 
networks. In section 2, we summarize the EADM and introduce the new approaches, namely, the ETFM (an 
extension of the temporal fitness model [5]) and the TDF (an extension of the disparity filter [6]). In section 3, we 
discuss our analytical and numerical findings for both artificial and real systems. Finally, in section 4, we draw our 

main conclusions and propose potential lines of further inquiry.

2. Significant links

In this section, we summarize the EADM to detect significant links [19] and introduce the ETFM, our extension 
of the temporal fitness model [5], and the TDF, our extension of the well-established disparity filter [6].

For all the approaches under consideration, we consider a temporal undirected network of N nodes that 
evolves in time over an observation window composed of T � 1 time steps, labeled by the discrete time index 
t = 1, ..., T . At each time t, nodes interact among themselves and form a time-varying network of interactions, 
whose interconnection links are encoded in a binary adjacency matrix A(t) that varies in time. The generic entry 
of A(t) is defined as Aij(t), where i, j = 1, . . . , N  are the indices of the nodes. Through the paper, we adopt the 
following notation: given a quantity ‘·’, we define 〈·〉 as its statistical average and E [·] as its expected value across 
multiple, independent realizations.

The EADM, ETFM, and TDF are similar in some aspects and different in others; a summary is provided in 
table 2. The approaches follow three sequential steps: (i) determining the interval partition, (ii) estimating model 
parameters, which are evolving over successive intervals, and (iii) designing a statistical filter, which removes all 
links explained by the null hypothesis and retains the backbone network. Details on the implementation of each 

of these steps and key differences among the methodologies are detailed in what follows.

2.1. Evolving activity driven model (EADM)
2.1.1. Interval partition
In our previous work [19], we demonstrated that dividing the overall observation window into successive 
intervals improves the accuracy of the reconstruction. Therein, we compared a naïve supervised partitioning 
method, which divides the time series at random, with an unsupervised one (the Bayesian Block (BB) method 
[31]). We found that the latter should be preferred for its performance over artificial network benchmarks, its 
freedom from the need of prior information about the interval partition, and its implementability on relatively 
short time series.

The BB method [31] employs maximum likelihood and marginal posterior functions to distinguish statisti-
cally significant features from random observational errors. It starts with considering the first time step t  =  1, 
and then it adds and analyzes the subsequent time instants t = 2, . . . , T , approximating the time series in piece-
wise constant segments, where a homogeneous number of links is observed. The algorithm coherently builds on 
iterations from past time steps to efficiently compute future interval partition.

In our application, the BB method analyzes the total number of temporal links created in the entire network 
at time t

J. Phys. Complex. 1 (2020) 015001
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Ωts(t) =
N∑

i,j=1;i�j

Ats
ij (t), (1)

and returns the interval partition, which divides the overall time window T into I disjoint intervals indexed 
by ∆ = 1, . . . , I , containing approximately a uniform total number of connections [31]. The superscript ‘ts’  
indicates that these variables are estimated from the time series of the individual links. From the knowledge 
of the interval partition, we determine the length, τ(∆), of the generic ∆th interval under the closure relation ∑I

∆=1 τ(∆) = T .

Table 1. Acronyms used to identify the methodologies under consideration, main variables of the article, and parameters employed in the 
generation of the artificial networks. The superscript ‘ts’ indicates that the variable is estimated from the time series of individual links.

Methodology Acronym

Evolving activity driven model EADM

Evolving temporal fitness model ETFM

Temporal disparity filter TDF

Variable Description

N Number of nodes in the system

T Total number of discrete time steps comprising the whole observation window

I Number of intervals used to partition the whole observation window

t, ∆ Indices for discrete time instants and intervals

i, j Indices for the nodes in the system

Ats
ij (t) Generic entry of the adjacency matrix at time t

Ωts(t) Total number of temporal links created in the entire network at time t

ai(t) Activity value of node i at time t

p ij(t) Probability that node i interacts with node j  at time t

tin(∆), τ(∆) Initial time instant and length of the ∆th interval

n(∆) Number of nodes that create at least a link in the ∆th interval

sts
i (∆), sts

i Number of links created by node i in the ∆th interval and in the whole observation 

window

wts
ij (∆), wts

ij Number of links exchanged between nodes i and j  in the ∆th interval and in the 

whole observation window

W ts(∆) Total number of links generated in the entire network in the ∆th interval

rts
ij (t), r

ts
ij Normalized weight of links exchanged between nodes i and j  at time t and in the 

whole observation window

k
ts

i
Degree of node i in the whole observation window

αij p-value of the EADM and ETFM

γij p-value of the TDF

NE Number of links created at least once in the whole observation window

β, β′ Univariate and multivariate threshold adopted to determine irreducible links

〈·〉, E [·] Statistical average and the expected value across multiple, independent realizations 

of a quantity ‘·’

Parameter Description

λij Preponderance of the link between nodes i and j  in the artificial backbone

F(a), G(λ) Distributions of activity values and preponderance of link in the artificial backbone

amin, λmin Lower cut-offs of the two distributions

ε Fraction of links belonging to the artificial backbone

p Autocorrelation parameter of the activity values in different intervals

Table 2. Summary of the three approaches under consideration, the evolving activity driven model (EADM), evolving temporal fitness 
model (ETFM), and temporal disparity filter (TDF).

Approaches Interval partition Parameter estimation Statistical filter

EADM BB method [31] Weighted configuration model [19, 32] Poisson distribution [5, 19]

ETFM BB method [31] Maximum likelihood [5] Poisson distribution [5, 19]

TDF BB method [31] Normalized weights [6] Disparity filter [6]

J. Phys. Complex. 1 (2020) 015001
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2.1.2. Parameter estimation
In order to detect the backbone network, we should determine the extent by which each pair of nodes i and j  will 
interact by simple chance. The EADM is based on a heterogeneously distributed parameter, the activity, which 
represents the propensity of generating links over time [21]. The probability that node i interacts with node j  at 
time t is the product of the two activities [5, 19],

pij(t) = ai(t)aj(t). (2)

Individual activities are estimated according to the weighted configuration model [19, 32].
Since the I intervals found by the BB method are disjoint, we can analyze each of them separately. For instance, 

we consider the generic ∆th time interval that starts at t = tin(∆) and ends at t = tin(∆) + τ(∆)− 1. The activ-
ity of node i at time t ∈ [tin(∆), tin(∆) + τ(∆)− 1] is computed through the following formula:

ai (t) =
sts
i (∆)√

2W ts(∆)τ(∆)
, (3)

where sts
i (∆) and W ts(∆) � 1 are the node strength and the total number of temporal links generated in the 

network in the ∆th interval, respectively. Specifically, sts
i (∆) and W ts(∆) are computed from Ats(t) through

sts
i (∆) =

N∑
j=1

tin(∆)+τ(∆)−1∑
t=tin(∆)

Ats
ij (t) and

W ts(∆) =
1

2

N∑
i=1

sts
i (∆).

 (4)

Once the activities are estimated according to equation (3), the probability in equation (2) can be computed as

pij(t) =
sts
i (∆) sts

j (∆)

2W ts(∆)τ(∆)
. (5)

2.1.3. Statistical filter
The typical objective of a statistical filter is to test whether a specific link ij can be explained by the null hypothesis. 
If it were explained by the null model, it should be filtered out, otherwise it should be included in the backbone 
network. The same statistical test has to be applied to each of the NE links that appear at least once over the entire 
observation window.

The EADM requires to compare the total number of connections between node i and node j , wts
ij , observed in 

the entire observation window with its expected quantity, E
[
wij

]
. The observed number of connections can be 

computed from Ats
ij (t) as

wts
ij =

I∑
∆=1

wts
ij (∆) =

I∑
∆=1

tin(∆)+τ(∆)−1∑
t=tin(∆)

Ats
ij (t). (6)

The expected number of connections between nodes i and j  in the time window T is calculated as the sum of the 
binomial random variables given in equation (2) [19]

E
[
wij

]
=

T∑
t=1

pij(t). (7)

The sum of non-identical binomial random variables in equation (7) is a Poisson binomial distribution, which is 
usually approximated by the Poisson distribution [33–35], due to a lack of closed-form expression.

The confidence that the observed weight, wts
ij , could be explained by its corresponding expected weight, E

[
wij

]
 

in equation (7), is computed according to the cumulative function of the Poisson distribution

αij ≡ 1 −
wts

ij −1∑
x=0

P
(
x; E

[
wij

])
, (8)

where P
(
x; E

[
wij

])
 indicates the Poisson distribution with random variable x and expected value E

[
wij

]
. 

Equation (8) represents the p-value, αij , that the observed link ij can be explained by the null hypothesis of being 
extracted from a Poisson distribution. If the p-value is below a pre-defined threshold, then the link is deemed as 
significant and retained in the backbone network.

J. Phys. Complex. 1 (2020) 015001
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From equation (8), a total of NE p-values are computed, one for each link created at least once in the over-
all network evolution. The interval partition begets better estimation of the expected number of links between 
nodes i and j , in equation (7), thereby improving on the estimation of the p-values through equation (8).

2.2. Evolving temporal fitness model (ETFM)
As detailed in table 2, the interval partition is carried using the BB method [31], thereby following section 2.1.1. 
Similarly, the statistical filter is equivalent to the one of the EADM, explained in section 2.1.3. Here, we detail the 
main difference between the EADM and ETFM, which pertains to the activity estimation.

Similar to the EADM, the probability that node i interacts with node j  at time t is the product of the two indi-
vidual activities, as given in equation (2). However, the ETFM estimates the activities in a maximum likelihood 
sense, based on the approach introduced in [5]. Specifically, given that the intervals returned from the BB method 
are disjoint, we can apply the maximum likelihood presented in [5] to each of the I intervals. The input param-
eters of the maximum likelihood are computed according to the EADM in equation (3).

For instance, in the ∆th interval, starting at t = tin(∆) and ending at t = tin(∆) + τ(∆)− 1, indi-
vidual activities are assumed to be constant and estimated according to equation (3). Some nodes in the net-
work, however, do not generate nor receive connections. These nodes have an activity equal to zero and they 
should be discarded in the maximum likelihood computation. Hence, from the set of all possible activities at 
time t, a(t) = (a1(t), . . . , aN(t)), the maximum likelihood estimation is applied only to those entries with 
ai(t)  >  0. Assuming that there are n(∆) � N  of these nodes, we indicate the reduced set of optimal activities as 

a∗(t) =
(

a∗1 (t), . . . , a∗n(∆)(t)
)

.

The estimation of the optimal activity values is carried similar to [5], whereby

n(∆)∑
j=1;j �=i

wts
ij (∆)− τ (∆) a∗i (t) a∗j (t)

1 − a∗i (t) a∗j (t)
= 0,

a∗i (t) ∈ (0, 1) , i = 1, . . . , n (∆) .

 (9)

All the individual activities are constant (between zero and one) within the ∆th interval, and wts
ij (∆) is given 

by equation (6). Once the optimal values for the activities are estimated from equation (9), they can be used to 
estimate the probability in equation (2).

2.3. Temporal disparity filter (TDF)
According to table 2 and similar to the EADM and ETFM, the interval partition is carried out through the BB 
method implemented on the time series of the individual links [31]. The parameter estimation and the statistical 
filter are different from the EADM and they are explained in the following.

2.3.1. Parameter estimation
In the TDF, parameters are estimated directly from the time series, without relying on any expected quantity 
like the activities for the EADM and ETFM. For instance, in the ∆th interval that starts at t = tin(∆) and 
ends at t = tin(∆) + τ(∆)− 1, a number of connections between node i and node j  are observed, wts

ij (∆), in 
equation (6). Similar to the disparity filter [6], two normalized quantities are computed by dividing wts

ij (∆) 

either by the strength of node i, sts
i (∆), or node j , sts

j (∆), in equation (4), respectively, such that

rts
ij (t) =

wts
ij (∆)

sts
i (∆)

. (10)

These quantities must satisfy the closure condition 
∑

j rts
ij (t) = 1 ∀t ∈ [tin(∆), tin(∆) + τ(∆)− 1]. Note that 

while wts
ij (∆) = wts

ji (∆), in general rts
ij (t) �= rts

ji (t) since the strengths of nodes i and j  can be different.

Over the entire time window T, the normalized weight, rts
ij , is computed using a weighted time average start-

ing from the results of equation (10), yielding

rts
ij =

1

T

I∑
∆=1

wts
ij (∆) τ (∆)

sts
i (∆)

. (11)

Here, the longer is the interval, the greater is its contribution to the overall average. If only one interval is returned 
by applying the BB method to the time series, equation (11) reduces to the estimation of the classical disparity 
filter [6].

J. Phys. Complex. 1 (2020) 015001
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2.3.2. Statistical filter
The TDF statistical filter takes two quantities as input: the normalized weights computed according to 

equation (11) and the observed degree of either node i, k
ts

i , or node j , k
ts

j , over the entire network evolution. The 

node degree is computed from equation (6) as

k
ts

i =
N∑

j=1

H
[
wts

ij − 1
]

, (12)

where H is the Heaviside function that takes a value equal to one when wts
ij � 1, and zero otherwise.

The TDF null hypothesis is that a node connects uniformly at random with all its neighbours. For node i 

with degree k
ts

i , the TDF considers as a baseline that node i exchanges an equal number of connections with 

all its neighbors, which results in all normalized weights from equation (11) being equal to 1/k
ts

i . Irreducible 

links included in the backbone network have a normalized weight rts
i  greater than the expectation from the null 

hypothesis.
The advantage of the TDF with respect to the original disparity filter [6] is that it accounts for time-variations 

in node properties, through equation (10). The disparity filter in its original incarnation can be only applied to 
weighted networks. A p-value has to be associated with any link in the network. We use the same formula pro-
posed for the disparity filter [6], namely,

γij ≡ 1 −
(

k
ts

i − 1
)∫ rts

ij

0
(1 − x)k

ts
i −2 dx, (13)

where γij is the p-value. In general, equation (13) may yield a different result if it is specialized to node i or node j , 
even for undirected networks. Therefore, it is necessary to consider an additional p-value for the undirected link 
ij, by focusing on node j  rather than i, such that we compute γji in lieu of γij. If at least one of the two p-values γij 
or γji is lower than a pre-defined threshold, the undirected link ij is included in the backbone network. If only one 
interval is returned by applying the BB method to the time series, the TDF becomes equivalent to the disparity 
filter [6].

Similar to equations (7) and (8), the temporal partition is used to estimate the network weights and a p-value 
is associated with each link of the network that appeared at least once during the overall network evolution. 
Graphical representations of the ETFM and TDF are given in figure 1.

2.4. Multiple tests comparison
In all of the three approaches under consideration, a statistical test is carried out for all the NE links observed at 
least once in the evolving network. The EADM and ETFM use equation (8), while the TDF employs equation (13). 
Since multiple hypotheses are tested, a multiple hypothesis test correction is required [36]. Here, we choose the 
Bonferroni correction [37]. It computes the multivariate threshold equal to β′ = β/NE, where β is the univariate 
threshold, usually set equal to 0.01. This correction assures that no false positives will be included in the backbone 
network with probability 1 − β. An alternative to the Bonferroni correction might be the false discovery rate 
(FDR) [38], which is a less restrictive option because it ensures that the fraction of false positive is less than β.

3. Results

Here, we discuss how finite-size effects influence the performance of the EADM, ETFM, and TDF, toward the 
ultimate objective of informing the selection of the most appropriate approach as a function of the size of the 
network.

Since the main goal of these approaches is to infer the backbone network in real datasets, we begin by briefly 
summarizing the features of the Primary School dataset under consideration, freely available as part of the Socio-
Patterns project [30]. In appendix C, we analyze the Workplace dataset, also part of the SocioPatterns project 
[30], in a similar way.

Upon concluding the analysis of the Primary School dataset, we illustrate the features of the generative algo-
rithm for the synthetic networks examined in this study. Our generative mechanism entails the creation of artifi-
cial networks with arbitrary distributions of both the activity of the network nodes and of the link weight in the 
network backbone. In the main text, we consider the case of a heterogeneous activity distribution and homoge-
neous backbone, similar to our previous work [19]. In appendix A, we contemplate three additional cases: (i) 
heterogeneous activity distribution and heterogeneous backbone, (ii) homogeneous activity distribution and 
homogeneous backbone, and (iii) homogeneous activity distribution and heterogeneous backbone.
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Later, we study the computational complexity of the EADM, ETFM, and TDF, concluding that the ETFM is 
too demanding for application to large networks composed of several hundreds or more nodes, while the EADM 
and TDF are scalable approaches, suitable for large networks.

Next, we evaluate the error of the EADM and ETFM, by comparing expected with observed quantities. This 
analysis cannot be carried out for the TDF, because it does not compute any expected quantity and its filter takes 
as input only observed quantities (such as the node strength and degree). We determine that the ETFM optimizes 
the activities in a maximum likelihood sense and its results are always more accurate than those of the EADM. 
However, the error of the EADM decreases with the inverse of the size of the network so that the error is reason-
ably low for many applications on large systems.

In order to more precisely estimate how finite-size effects influence the EADM, ETFM, and TDF perfor-
mance, we consider an artificial network, where the backbone network is a-priori known [19]. We find that the 
TDF brings to zero the false positives (links incorrectly identified as part of the backbone network). However, 
most of the links that truly belongs to the backbone network are not identified by the TDF. The ETFM offers a 
more flexible framework that allows for detecting most of the links belonging to the backbone network, without 
yielding an excess of false positives. The EADM has equivalent performance to the ETFM for networks with a 
hundred nodes or more, but performs poorly for smaller networks. Overall, we find that the TDF detects the least 
amount of true backbone links among the considered approaches. The ETFM finds an intermediate value and 
the EADM begets the largest number.

Finally, we illustrate our numerical arguments by studying the Primary School and Workplace datasets. We 
find that the TDF has the most restrictive null hypothesis, which allows for including in the backbone network 
only a few links. This approach should be used only if we must avoid false positives at all costs. The ETFM detects 
more links than the TDF and affords to study features of the backbone network that would have been lost other-
wise, in agreement with prior studies [5]. When the network contains at least one hundred of nodes, the ETFM 
and EADM perform similarly, so that the EADM should be preferred from its reduced computational burden. 

∆
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Figure 1. Schematic representation of the new backbone detection approaches: the evolving temporal fitness model (ETFM in the 
top row) and the temporal disparity filter (TDF in the bottom row). From the sole knowledge of the time series (left graphic), these 
approaches allow for finding the backbone network (right graphics), through three steps. (i) Find the interval partition by applying 
the Bayesian block method to the time series [31] (horizontal red segments). (ii) Estimate the model’s parameter. In the ETFM 
individual activities are evaluated in a maximum likelihood sense (top), according to equation (9). In the TDF normalized weights 
are estimated from the time series (bottom), according to equation (10). (iii) Statistically verify whether links observed from the 

time series can be explained by the null hypothesis. In the ETFM the link is significant if its weight, wts
ij , is above the threshold wts

ij (β
′) 

(top), according to equation (8). In the TDF the link is significant if the observed normalized weight, rts
ij , is above the threshold 

rts
ij (β

′) (bottom), and according to equation (13). As a result, the backbone networks are extracted from the temporal network (right 

graphics).
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Further, in appendix D, we compare the TDF with its basic version, the disparity filter, showing that the two 
approaches yield different predictions for the Primary School and Workplace datasets. 

3.1. Data processing
Here, we describe in detail our approach to the analysis of the freely available Primary School dataset [30], a 
similar analysis is carried out for the Workplace dataset [30] in appendix C. Our approach is inspired by previous 
efforts [5, 19]. In the original dataset, person to person interactions are recorded every 20 seconds; however, in 
reality, interactions might last longer than this pre-defined temporal resolution. In order to remove redundancies 
in the collected data and confounds associated with a particular resolution [5, 19], we study two temporal 
resolutions of 5 and 15 min, and remove multiple connections at the same temporal resolution. We remove the 
time interval between the last connection of a day and the first one of the following day.

In order to explore the role of network size, we study different temporal networks from the Primary School 
dataset and detect a backbone network for each of them. Specifically, we focus on the temporal interactions 
occurring in each classroom (10 in total), the body of the teachers, and the entire school. A data summary is pro-

vided in table 3.

3.2. Generative mechanisms of artificial networks
We present a generative mechanism for temporal networks with known backbone network and arbitrary 
distribution of reducible and irreducible links. The mechanism extends the one introduced in [19], where 
temporal networks with heterogeneous activity distribution and homogeneous backbone are generated.

Artificial temporal networks are generated from the superposition of reducible and irreducible links. Reduci-
ble links are created according to equation (2) and evolve over the whole observation window composed by T time 
steps, partitioned into I intervals. Nodes have interval-dependent (piece-wise constant) activities ai(t), drawn from 
the activity distribution F(a). Between two consecutive intervals, t1 ∈ [tin(∆− 1), tin(∆− 1) + τ(∆− 1)− 1] 
and t2 ∈ [tin(∆), tin(∆) + τ(∆)− 1], the activity values vary according to

ai(t2) = ai(t1) p + y(1 − p), (14)

where p  is an autocorrelation parameter and y  a random number extracted from F(a). Among all the links 
observed at least once, a fraction ε of them is arbitrarily assigned to the backbone network. The preponderance 
of a link between nodes i and j  is λij, such that if λij = 0, the link appears according to the product of activity 
values, as in equation (2), while increasing λij makes the backbone network easier to discover. The values of λij are 
extracted from the distribution G(λ). More details about the generative algorithm can be found in appendix A1.

In the main text, we consider the case of a heterogeneous activity distribution, F(a) ∼ a−2.1 and a ∈ [amin, 1], 

and homogeneous backbone network, G(λ) ∼ δ
(
λ− λ̂

)
, that is, λij = λ̂ for all link in the backbone network, 

where δ (·) is the Dirac delta distribution. In appendix A, we examine three more cases: (i) heterogeneous activity 
distribution and heterogeneous backbone, (ii) homogeneous activity distribution and homogeneous backbone, 
and (iii) homogeneous activity distribution and heterogeneous backbone.

Table 3. Data summary of the Primary School dataset. The temporal networks evolve over successive time steps of length equal to either 
5 or 15 min and all multiple links within that temporal resolution are removed. The ‘# temporal links’ column indicates the number 
of temporal links retained in the dataset for their respective temporal resolutions, in brackets. The ‘# static links’ column indicates 
the number of aggregated links, which corresponds to links appearing at least once in the overall temporal evolution. The ‘All’ dataset 
corresponds to the whole Primary School, the ‘Teachers’ dataset correspond to the interactions between teachers, and all the other datasets 
are named with the respective class-section in the Primary School. We always remove the time interval between the last connection of a day 
and the first one of the following day.

Data # nodes # temporal links [5 min]—[15 min] # static links

1A 23 3295—2435 249

2A 23 3665—2549 246

3A 23 3933—2815 252

4A 21 3173—2228 209

5A 22 3556—2560 225

1B 25 6299—4137 299

2B 26 4193—2832 315

3B 22 4233—2906 229

4B 23 2033—1471 239

5B 24 3601—2543 270

Teachers 10 83—65 29

All 242 55 046—39 583 8317
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3.3. Computational complexity
All approaches determine the interval partition using the BB method, which requires a computational time of 
O(I2

max). Here, Imax represents the number of times in which the total number of temporal links in the entire 
network at time t, as computed in equation (1), is different from what observed at t  +  1, Ω(t) �= Ω(t + 1) for 
t = 1, . . . , T − 1, and O is the Landau symbol. Similarly, the statistical filters in equations (8) and (13), share 
a similar computational cost that scales as O(NE), where NE is the number of links observed at least once in the 
temporal evolution.

The estimation of model parameters is different across the EADM, ETFM, and TDF. In the EADM, activi-
ties are estimated through equation (3), which scales linearly with the number of intervals, I, and the number 
of links created in each interval. The complexity of this approach is O (cNI), where c � N  for sparse networks 
and c ∼ N  for dense networks. A similar reasoning applies for the estimation of the TDF’s parameters in equa-
tions (10) and (11), yielding a complexity of O (cNI).

In the ETFM, activity values are optimized in a maximum likelihood sense, which requires to recursively 
solve equation (9). Hence, the ETFM computational cost depends on three factors: the number I of intervals, the 
number of nodes in the ∆th interval, n(∆), and the number m of recursions. The computational cost grows lin-
early with the number of intervals I, since it has to be applied independently to each interval, and with m, which 
is the number of iterations for the maximum likelihood to converge. On the other hand, it is quadratic in n (∆), 
because of equation (9). Overall, the ETFM complexity hits O (mIN2) in the worst case scenario, while in the best 
case scenario, when only one interval is present, it is O (mN2), like in the temporal fitness model [5].

By comparing the EADM and TDF complexities, O (cNI), with the ETFM complexity, O (mN2I), we observe 
that the bottleneck is the size of the network. For large networks, the EADM and TDF are much faster procedures 
than the ETFM.

3.4. Accuracy
Our study involves the mathematical analysis of the model accuracy, which is verified through numerical 
simulations using the artificial networks described in section 3.2 and appendix A.1. In the main text, we focus on 
the case of heterogeneous activity distribution and homogeneous backbone network; in appendix A.2 we explore 
the case of heterogeneous backbone and in appendix A.3 the case of homogeneous activities.

The TDF statistical filter in equation (13) uses quantities that are computed directly from the time series, 
without relying on any expected value, which is otherwise needed for the EADM and ETFM. Therefore, the fol-
lowing analysis can be carried out only for the EADM and ETFM, since  it involves comparison between expected 
and observed quantities. We focus on both microscopic and macroscopic quantities, including the observed 
node strength, sts

i , compared to its expected value, E[sts
i ]; and the observed average strength, 〈sts〉, compared with 

its expected value, E[〈sts〉].

3.4.1. Mathematical analysis
The analysis of the ETFM is trivial, since, by definition, the maximum likelihood in equation (9) returns optimal 
activity values, a∗i (t) for i = 1, . . . , N , for an optimal representation of observed values. Hence, we expect that 
the ETFM provides the most accurate estimation of the backbone network. We focus on both global and local 
quantities, which we report here, and successively compare to the results of the EADM. In the ETFM, the expected 
individual strength of node i is computed by summing over the entire time-window and over all possible 
connections that node i may have

E [si] =

N∑
j=1;j �=i

T∑
t=1

a∗i (t) a∗j (t) . (15)

In equation (15), we use the product of activities to be consistent with the probability that two nodes randomly 
connect, given in equation (2). The expected average strength is the simple average of equation (15) among all 
possible nodes in the network and reads

E [〈s〉] = 1

N

N∑
i,j=1

T∑
t=1

a∗i (t) a∗j (t) . (16)

The analysis of the EADM is more challenging. The node strength is a key quantity to compute the indi-
vidual activities, in equation (3), to estimate the link weights, in equation (7), and to determine whether links 
are explained by our null model or they belong to the backbone network, in equation (8). From equation (7), we 
compute the expected individual strength for node i in the whole observation window by summing over all the 
possible connections that node i can make, excluding self-loops that are not allowed in the model. This reads
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E [si] =
N∑

j=1;j �=i

I∑
∆=1

sts
i (∆) sts

j (∆)

2W ts(∆)
. (17)

By changing the order of the two summands and using the definition of the total number of links in the ∆th 
interval, W ts(∆) in equation (4), we obtain

E [si] =

I∑
∆=1

sts
i (∆)

∑N
j=1;j �=i sts

j (∆)
∑N

k=1 sts
k (∆)

. (18)

By summing and subtracting sts
i (∆) from the numerator, we get

E [si] =
I∑

∆=1

sts
i (∆)

[
1 − sts

i (∆)∑N
k=1 sts

k (∆)

]
, (19)

which can be rewritten as

E [si] = sts
i −

I∑
∆=1

[sts
i (∆)]

2

∑N
k=1 sts

k (∆)
, (20)

where E [si] and sts
i  represent the expected and observed individual strengths, respectively. We observe that 

the EADM underestimates the observed strength, sts
i , by a quantity that only depends on the self-loops. The 

contribution of self-loops is inversely proportional to the size of the network and scales as 1/N. This result 
generalizes the proof in [39], based on the static configuration model, to temporal networks.

As a consequence, macroscopic quantities, such as the expected average strength, should become more accu-
rate in the EADM as the size of the network increases. By averaging equation (20) for all nodes in the network we 
obtain

E [〈s〉] = 〈sts〉 − 1

N

N∑
i=1

I∑
∆=1

[sts
i (∆)]

2

∑N
k=1 sts

k (∆)
, (21)

which scales as 1/N. In other words, since the EADM error comes from self-loops only, the observed quantities, 
sts
i  and 〈sts〉, become equivalent to expected quantities if self-loops are included in both equation (20) and 

equation (21). We indicate these adjusted quantities as

Esl [si] = sts
i , Esl [〈s〉] = 〈sts〉, (22)

where the superscript ‘sl’ indicates that these sums include self-loops into equations (20) and (21).
In order to properly assess the error of the EADM, we consider two metrics: the relative error and the nor-

malized root mean squared error. The relative error determines whether our estimators are unbiased, while the 
normalized root mean squared error is needed to ensure that the variance of our estimators is bounded. The 
theoretical relative error and normalized root mean squared error of the EADM are obtained by properly com-
bining equations (20)–(22)

RE =

∣∣∣∣∣1 − E[〈s〉]
Esl [〈s〉]

∣∣∣∣∣,

NRMSE =

√∑N
i=1 [E

sl [si]− E [si]]
2

NEsl [si]
2 .

 (23)

3.4.2. Numerics
The mathematical analysis above suggests that the ETFM error is minimized, while the error of the EADM should 
decay as the inverse of the size of the network, 1/N, and coincide with predictions from equation (23).

The numerical relative error and normalized root mean squared error are computed as follows:

RE =

∣∣∣∣∣1 − E[〈s〉]
〈sts〉

∣∣∣∣∣,

NRMSE =

√∑N
i=1 [s

ts
i − E [si]]

2

N〈sts〉2
,

 (24)

where we substitute the expected quantities, Esl [si] and Esl [〈s〉], in equation (23), with their observed values, sts
i  

and 〈sts〉. The remaining expected quantities in equation (24) can be either equations (15) and (16) for the ETFM 
numerics, or equations (20) and (21) for the EADM numerics.
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In our numerics, shown in figure 2, we consider artificial networks having a homogeneous backbone with 
λ̂ = 0.7, as introduced in appendix A.1, and real systems, as presented in table 3. The cases of artificial networks 
having either a homogeneous backbone with λ̂ = 0.02 or heterogeneous backbone are explored in appendix A.2. 
We determine that, for both artificial and real systems, our theoretical arguments hold. Specifically, we find that the 
theoretical error of the EADM comes from self-loops only and it scales as the inverse of the network size. Further, 
we show that the ETFM improves the EADM estimation, lowering the relative and normalized root mean squared 
errors. However, the ETFM estimation is challenged by the excessive preponderance of backbone network, in 
terms of the normalized root mean squared error. This is due to the fact that the maximum likelihood approach of 
the ETFM in equation (9) estimates the activity values without considering the presence of the backbone network.

Interestingly, we find that in both artificial and real systems, the relative EADM errors are about 1% when 
networks reach one hundred of nodes. This amount of error is acceptable for many practical applications. On the 
contrary, when the artificial and real systems are smaller, the relative EADM error may reach up to 10%, challeng-
ing its usability for many practical purposes.

3.5. Performance comparison on artificial networks
Going further in the comparison between the EADM, ETFM, and TDF, we examine the performance of the 
three approaches in detecting backbone networks as a function of the size of the network. We use the artificial 
network introduced in our prior work [19]. We analyze two different cases, resembling two realistic situations: 
one in which the backbone network is barely present, where we set λ̂ = 0.02, and another in which the backbone 
network appears almost at every time step, where we set λ̂ = 0.7. In this analysis, we set the univariate threshold 
β equal to 0.01 [15, 19], and then correct it according to the Bonferroni correction as detailed in section 2.4, to 
obtain the β′ used to filter out links explained by the null models.

The performance of the three approaches is determined through the analysis of the algorithms’ precision and 
recall [40]. The former corresponds to the ratio between the number of true positives (all the links discovered 
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Figure 2. Comparison between the theoretical relative error (RE) and normalized root mean squared error (NRMSE) of the EADM, 
in equation (23), with the numerical results of both the EADM and ETFM, in equation (24). Artificial networks with λ̂ = 0.70 
are studied as a function of the size of the network: the relative error in panel (a) and the normalized root mean squared error in 
panel (b). Curves are generated as the average of 102 independent simulations, 95% confidence interval is displayed in gray. In 
panels (a) and (b), we also plot the expected scaling behavior of 1/N with solid lines. Other parameter values are: T  =  5000, I  =  20, 

〈τ(∆)〉 = 250, ε = 0.1, amin = [
√
〈τ(∆)〉]−1, and p   =  0.4. Primary School dataset evolving with a temporal resolution set equal 

to 5 min are studied in panels (b) and (e), while networks evolving with a temporal resolution of 15 min are studied in panels (c) 
and (f). First five data-points are the classes of section A, indicated with ‘section A’, the second five data-points are the classes of 
section B, indicated with ‘section B’, the body of teachers is indicated with ‘T’, and the totality of the classes with ‘A’.
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that truly belong to the backbone network) divided by the number of all the detected links (true and false posi-
tives). The latter metric corresponds to the ratio between the true positives divided by the sum of true positives 
and false negatives (all the links in the irreducible backbone).

As shown in figures 3(a) and (c), when the backbone network is barely present, the TDF does not detect any 
link (recall is zero and precision is not defined). The ETFM outperforms the EADM, while it falls behind the 
EADM in terms of recall. In other words, the EADM detects more links than the ETFM and, some of them are 
false positive that belong to the known backbone network. When the size of the network reaches about one hun-
dred nodes, the EADM and ETFM are equivalent. When the backbone network is present almost in every time 
step, the TDF has the highest precision among the three methodologies, but its recall goes rapidly to zero when 
the size of the network increases, as shown in figures 3(b) and (d). In this case, the EADM and ETFM perform 
similarly in terms of precision and recall, and they are accurate only when the size of the system reaches about one 
hundred nodes. If links in the backbone network appear in almost all time steps, they significantly modify the 
activity estimation in equations (3) and (9), which lowers the performance of the EADM and ETFM.

The analysis of artificial networks suggests that the TDF does not detect false positive, while often missing major 
parts of the backbone network. Failing to detect most of the backbone network may be due to two main aspects: (i) 
the use of the Bonferroni correction [37], which increases the methodology’s precision and lowers its recall; and (ii) 
the heterogeneous distribution of activity values, whereby in appendix A.3 we determine an improvement in the 
number of true positives when dealing with a homogeneous activity distribution. The ETFM offers adequate per-
formance in many situations, scoring poorly only when links in the backbone network are present at almost every 
time step. The EADM becomes equivalent to the ETFM when the size of the network reaches about one hundred 
nodes. Since the EADM is faster than the ETFM, it should be preferred for the study of large networks.

3.6. Network backbone discovery in real systems
Detecting the backbone in real systems yields more challenges than the study of artificial networks. The main 
limitation is that the backbone network is not known a-priori and performance can only be assessed through 
comparison. A possible way to circumvent such a limitation is to observe whether or not results from real systems 
are coherent with findings on artificial networks.
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Figure 3. Performance comparison between the EADM, ETFM, and TDF on the artificial networks with time-varying activities 
and known backbone network introduced in [19]. Results for precision and recall by setting λ̂ = 0.02 are in panels (a) and (c), while 
those for λ̂ = 0.7 are shown in panels (b) and (d). We always use the univariate threshold β = 0.01. Curves are generated as the 
average of 102 independent simulations; 95% confidence bands are displayed in gray. Other parameter values are: T  =  5000, I  =  20, 

〈τ(∆)〉 = 250, ε = 0.1, amin = [
√
〈τ(∆)〉]−1, and p   =  0.4.
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According to our results on artificial networks, the TDF has the most restrictive null hypothesis, which leads 
to the least  number of links detected in the backbone network. The ETFM finds smaller backbone networks than 
the EADM when the networks under examination have only tens of nodes, while they tend to become equivalent 
for larger systems. To confirm this claim in real systems, we compare the set of irreducible links detected by the 
three methodologies, using the EADM as reference. We compare the sets of links discovered by the TDF, LTDF, 
and by the ETFM, LETFM, with that of the EADM, LEADM. The dimension of a set is indicated with | · |. We use two 
metrics: the ratio of the number of links |Lx|/|LEADM| and the Overlap index [41], defined as

Overlap(LEADM, Lx) =
|LEADM ∪ Lx|

min (|LEADM|, |Lx|)
, (25)

where x  =  {ETFM, TDF}.
The ratio |Lx|/|LEADM| is useful to quantify whether the EADM detects more links than the ETFM and TDF. 

The Overlap coefficient in equation (25) measures the fraction of shared links between the two methodologies, 
thereby helping ascertain whether the ETFM and TDF find a subset of the links detected by the EADM. In order 
to properly compare the EADM with the ETFM, we consider a series of values for the univariate threshold β and 
indicate with a vertical black line the multivariate threshold β′, properly modified according to the Bonferroni 
correction.

In figure 4, we show that the TDF detects less links than the ETFM, which, in turn, finds less links than the 
EADM, as expected. The fact that the TDF detects the least amount of links is due to its more restrictive null 
hypothesis, which ensures that no false positives are identified, but it misses many links that belong to the back-
bone network. ETFM and EADM results are affected by the network size; but when the entire school (formed by 
a few hundreds of nodes) is analyzed, the two methodologies become equivalent. This result is in line with the 
analysis of artificial networks.

In figure 5, we show that, for most of the real datasets studied herein, the Overlap coefficient is close to one. 
This result implies that the ETFM and TDF share the same core of the backbone networks with the EADM. The 
few cases in which the Overlap coefficient is lower than one pertain to the comparison between the EADM and 
TDF, due to the difference in their null hypotheses.

(a)

1A

10−6 10−4 10−2
0.0

0.2

0.4

0.6

0.8

1.0

β

|L
x
|/

|L
E

A
D

M
|

(b)

4A

10−6 10−4 10−2

β
(c)

5A

10−6 10−4 10−2

β
(d)

2B

10−6 10−4 10−2

β

Legend
x = ETFM
[5 min]
[15 min]

x = TDF
[5 min]
[15 min]

(e)

3B

10−6 10−4 10−2
0.0

0.2

0.4

0.6

0.8

1.0

β

|L
x
|/

|L
E

A
D

M
|

(f)

4B

10−6 10−4 10−2

β
(g)

5B

10−6 10−4 10−2

β
(h)

All

10−6 10−4 10−2

β

Figure 4. Backbone networks identified in the Primary School dataset by applying the EADM, ETFM, and TDF to the time series. 
We compare the number of links detected by either the ETFM or TDF with those found by the EADM. Results are presented for a 
series of values of the univariate threshold β; the multivariate Bonferroni correction is the vertical black line. We consider temporal 
resolutions of 5 and 15 min. For the sake of clarity, we present only 8 of the 12 datasets previously described in table 3, the others yield 
consistent results and are detailed in appendix B through figure B1.
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By combining the results of figures 4 and 5 we draw two main conclusions. First, the TDF has the most restric-
tive null hypothesis and detects the smallest backbone network. Second, the ETFM finds a subset of the links 
detected by the EADM only when a classroom (composed of only tens of nodes) is studied, while it identifies the 
same backbone network when the entire school (composed of only hundreds of nodes) is analyzed. Since the 
EADM is faster than the ETFM, it should be used to discover backbone networks in larger systems.

In table 4, we synoptically present the take-home message of the comparisons conducted throughout this 
paper. While, the EADM should be used for large networks and ETFM for small networks, the TDF can be applied 
to any network. The EADM and ETFM can be successful in identifying many irreducible links, but this may come 
at the cost of some of the reducible links being inaccurately assigned to the backbone. The TDF allows to filter out 

almost all the reducible links, but it tends to miss most of the irreducible links.

4. Discussion

In this paper, we introduce two new approaches that account for time-varying individual properties: an extension 
of the temporal fitness model [5], the evolving temporal fitness model (ETFM), and an extension of the disparity 
filter [6], the temporal disparity filter (TDF). We critically compare the performance of these approaches with 
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Figure 5. Fraction of irreducible links found by the EADM that are discovered by the ETFM and TDF in the Primary School dataset. 
Results are presented for a series of values by the univariate threshold β; the multivariate Bonferroni correction is the vertical black 
line. We consider temporal resolutions of 5 and 15 min. For the sake of clarity, we present here only 8 of the 12 datasets previously 
described in table 3, the others yield consistent results and are detailed in appendix B through figure B2.

Table 4. Range of validity of each methodology (top row) and their main advantage and disadvantage (bottom row).

Evolving ac-

tivity driven 

network

Evolving 

temporal fit-

ness model

Temporal 

disparity 

filter

Network size Small � �

Large � �

Advantage  

(Disadvantage)

Detection of many irreducible links (Some reducible 

links inaccurately ascribed to the backbone)

� �

No reducible links is inaccurately identified as part of the 

backbone (Many of the irreducible links are not detected)

�
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the evolving activity driven model (EADM) [19], an approach we recently proposed to account for time-varying 
individual properties. Our analysis focuses on the network size, toward an improved understanding of finite-size 
effects in backbone detection.

Our study involves the analysis of both artificial and real systems. From the analysis of artificial networks, 
we find that the TDF proposes the most restrictive null hypothesis and the discovered backbone networks con-
tain the smallest amount of links among the three methodologies. This approach ensures that no false positives 
(links incorrectly identified as part of the backbone network) are detected, but most of the times it misses links 
that truly belong to the backbone network. The ETFM offers a trade-off between the number of detected links 
and the likelihood that they belong to the backbone network. From our study, we determine that false positives 
are detected only when links in the backbone network are present in almost any time step and the size of the net-
work is of the order of ten nodes. When the network contains hundreds of nodes, the number of false positives is 
reduced to zero. Interestingly, for networks with at least one hundred nodes, the ETFM has the same performance 
of the EADM. Given that the EADM has a smaller computational burden, it should be preferred to the ETFM in 
this case. Comparing the three approaches, we observe that the TDF has the most restrictive null hypothesis, and 
it detects the least amount of irreducible links. The ETFM identifies an intermediate number of irreducible links, 
which becomes equivalent to the EADM when the networks have at least one hundred nodes.

Our results on real systems confirm the insight gathered from artificial networks. When detecting the back-
bone network for the Primary School and Workplace datasets [30], we determine that the EADM, ETFM, and 
TDF detect a different number of irreducible links. In most cases, the TDF finds a subset of the links of the ETFM, 
which detects a subset of the links of the EADM, thereby validating the same core of the backbone network.

The size of the network plays a critical role on the proper determination of the backbone network. On the one 
hand, large systems can only be studied by the EADM and TDF. On the other hand, the ETFM requires a large 
computational power, but it offers the best trade-off between the number of detected links and the fraction of 
them that actually belongs to the backbone network.

In summary, we suggest to use the TDF if the objective of the study is to minimize the number of false posi-
tives, at the cost of failing to detect many irreducible links. Employing the Bonferroni correction, the TDF could 
detect most of the irreducible links only if the distribution of activity values is homogeneous, a scenario that is 
in contrast with several empirical observations [42–44]. Instead, if finding as many irreducible links as possible 
is the main goal, then the ETFM is preferable for small networks. When networks count several hundreds, thou-
sands, or even more nodes, the ETFM and EADM become equivalent; thus, we propose to use the latter, since it 
is faster.

These methodologies are not free of limitations and our work identifies possible choices depending on the 
problem considered. For instance, an interesting line of research may entail improving the estimate of the inter-
val partition, which now is common to all the nodes in the network. It is possible that each node in the network 
evolves according to its own pattern, which would result in considering different interval partitions, one for each 
node in the network.

The TDF can be applied to systems of any size, if the main objective of the study is to minimize the number of 
false positives. Instead, the other two approaches are highly affected by the size of the network. Real examples of 
human social systems in which the ETFM should be used are: classrooms and small departments (as done in our 
work), small organizations, bars, or small conferences. Instead, real examples of social systems that would benefit 
of the EADM are: entire schools or work environments (as in our work), entire universities, large companies, or 
large conferences. These approaches do not have to be limited to social systems but they can be applied to animal 
groups [45], the world wide web [46], financial markets [47], brain circuits [48], and many others. 
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Appendix A. Artificial networks

A.1. Generation of artificial temporal networks with arbitrary distributions of activity values and links in 
the backbone
We present here an extension of the generative algorithm proposed in our previous work [19]. Specifically, we 
introduce a mechanism to create a temporal network with known backbone network and arbitrary distribution 
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Figure A1. Comparison between the theoretical relative error (RE) and normalized root mean squared error (NRMSE) of the 
EADM, in equation (23), with numerical results of both the EADM and ETFM, in equation (24). Homogeneous backbone networks 
with λ̂ = 0.02 are studied in panels (a) and (d); homogeneous backbone networks with λ̂ = 0.7 are examined in panels (b) and 
(e); and of heterogeneous backbone networks with λmin = 0.02 are considered in panels (c) and (f). Curves are generated as the 
average of 102 independent simulations; 95% confidence bands are displayed in gray. Other parameter values are: T  =  5000, I  =  20, 

〈τ(∆)〉 = 250, ε = 0.1, amin = [
√
〈τ(∆)〉]−1, and p   =  0.4.
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Figure A2. Performance comparison between the EADM, ETFM, and TDF on the artificial networks presented in appendix A.1 
with heterogeneous activity distribution and heterogeneous backbone. Results for precision are in panel (a), while for recall in 
panel (b). We always use the univariate threshold β = 0.01. Curves are generated as the average of 102 independent simulations; 

95% confidence bands are displayed in gray. Other parameter values are: T  =  5000, I  =  20, 〈τ(∆)〉 = 250, ε = 0.1, λmin = 0.02, 

amin = [
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〈τ(∆)〉]−1, and p   =  0.4.
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of reducible and irreducible links. The distribution of reducible links is regulated by the activity distribution 
F(a), while the distribution of irreducible links is controlled by the preponderance of the backbone network, 
G(λ). The case of heterogeneous activity distribution F(a) ∼ a−2.1, with a ∈ [amin, 1], and homogeneous 

backbone network G(λ) ∼ δ
(
λ− λ̂

)
 is already described in our previous work [19].

The procedure is as follows.
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Figure A3. Performance comparison of the TDF on the artificial networks presented in appendix A.1, with homogeneous activity 
distribution â =

√
0.001. Results for precision and recall of a homogeneous backbone by setting λ̂ = 0.02 are displayed in panels (a) 

and (d), while those for λ̂ = 0.7 are shown in panels (b) and (e). Results for precision and recall of a heterogeneous backbone with 
λmin = 0.02 are displayed in panels (c) and (f). We always use the univariate threshold β = 0.01. Curves are generated as the average 
of 102 independent simulations; 95% confidence bands are displayed in gray. Other parameter values are: I  =  1, τ(1) = T = 5000, 
ε = 0.1, and p   =  0.4.
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Figure B1. Backbone networks identified in the Primary School dataset by applying the EADM, ETFM, and TDF to the time series. 
We compare the number of links detected by either the ETFM or TDF with those found by the EADM. Results are presented for a 
series of values of the univariate threshold β; the multivariate Bonferroni correction is the vertical black line. We consider temporal 
resolutions of 5 and 15 min.
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 (i)  We generate a temporal network unfolding over an observation window of length T, partitioned into 
I consecutive intervals. We manually set the initial time of the first interval at the beginning of the time 
series, tin(1) = 1, and randomly draw without replacement the I  −  1 initial time of the remaining 
intervals in {2, ..., T}, which we sort as tin(2) < tin(3) < · · · < tin(I). The generic interval ∆ has length 
τ(∆), and the average length of the intervals is 〈τ(∆)〉 = T/I.

 (ii)  Each node in the network has a time-varying, piece-wise constant, individual activity, ai(t), which is 
extracted according to the following procedure.
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Figure B2. Fraction of irreducible links found by the EADM that are discovered by the ETFM and TDF in the Primary School 
dataset. Results are presented for a series of values by the univariate threshold β; the multivariate Bonferroni correction is the vertical 
black line. We consider temporal resolutions of 5 and 15 min.
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   •  For the first interval, ∆ = 1, we extract N activities, one for each node in the network, from the 
activity distribution F(a). These values are held constant in the interval.

   •  When 2 � ∆ � I , we may observe correlations between the activities in the present interval 
and the previous one, that is, between [tin(∆− 1), tin(∆− 1) + τ(∆− 1)− 1] and 
[tin(∆), tin(∆) + τ(∆)− 1], respectively. Activities vary according to ai(t2) = ai(t1)ρ+ y(1 − ρ), 
where y  is a random number extracted from F(a), and ρ  is an autocorrelation parameter.

 (iii)  In the whole observation window [1, T], we generate a temporal network where both reducible and 
irreducible links are present.

   •  Reducible links are created according to equation (2).
   •  Once reducible links are formed, we appoint a fraction ε of them that appeared at least once 

in the overall temporal evolution as the irreducible links. For each of these irreducible links ij 
of the backbone network, we record the time instants where the adjacency matrix is zero and 
with probability λij, we create a temporal link in that time instant, that is, we switch Aij to 1. The 
parameter λij, extracted from G(λ), measures the preponderance of the link during the whole 
observation window, such that larger values of λij favor the association between the link and the 
backbone network.

A.2. Results for artificial temporal networks with heterogeneous activity distribution
As in the main text, we consider the case of heterogeneous activity distribution F(a) ∼ a−2.1 with 

amin = [
√
〈τ(∆)〉]−1. The backbone networks considered in figure A1 are three: (i) a homogeneous backbone 

with a low value of λ, G(λ) ∼ δ (λ− 0.02) in panels (a) and (d); (ii) a homogeneous backbone with a high 
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Figure C2. Backbone networks identified in the Workplace dataset by applying the EADM, ETFM, and TDF to the time series. 
We compare the number of links detected by either the ETFM or TDF with those found by the EADM. Results are presented for a 
series of values of the univariate threshold β; the multivariate Bonferroni correction is the vertical black line. We consider temporal 
resolutions of 5 and 15 min.
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value of λ, G(λ) ∼ δ (λ− 0.70) in panels (b) and (e); and (iii) a heterogeneous backbone G(λ) ∼ λ−2.3 and 
λ ∈ [0.02, 1] in panels (c) and (f). We find that the ETFM provides better estimations than the EADM, whose 
error scales as the inverse of the size of network. Further, the ETFM is challenged by the excessive preponderance 
of the backbone network, whereby λ̂ = 0.70 yields a normalized root mean squared error that is comparable to 
the one of the EADM.

We corroborate the results in the main text regarding precision and recall of the EADM, ETFM, and TDF, by 
analyzing the case of a heterogeneous backbone network with G(λ) ∼ λ−2.3 and λ ∈ [0.02, 1], in figure A2. For 
small systems, the highest precision is given by the TDF, then by the ETFM, and finally by the EADM; with respect 
to recall, we find the opposite scenario. For large systems, all methodologies yield the same precision; the recalls of 
EADM and ETFM are similar, and they are both much higher than the TDF.

A.3. Results for artificial temporal networks with homogeneous activity distribution
To shed some light into the reasons for the small recall in the TDF, we consider the case a homogeneous activity 

distribution, F(a) ∼ δ
(
a −

√
0.001

)
. Activities are time invariant as we consider a single interval, I  =  1, with 
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Figure C3. Fraction of irreducible links found by the EADM that are discovered by the ETFM and TDF in the Workplace dataset. 
Results are presented for a series of values by the univariate threshold β; the multivariate Bonferroni correction is the vertical black 
line. We consider temporal resolutions of 5 and 15 min.

Table C1. Data summary of the Workplace dataset. Similar to the Primary school dataset in table 3, we consider two temporal resolutions 
(in brackets). All multiple links within a single time step are removed and the ‘# temporal links’ column reports the retained links in the 
temporal network. The ‘# static links’ column indicates the number of aggregated links. We indicate the various departments with capital 
letters, while the ‘All’ label represent the entire Workplace. We do not consider the SFLE department, since only 4 nodes are present. We 
always remove the time interval between the last connection of a day and the first of the following day.

Data # nodes # temporal links [5 min]—[15 min] # static links

SRH 13 856—614 63

SFLE 4 9—8 2

DSE 34 1007—787 212

DMCT 26 561—453 151

DISQ 15 418—327 64

All 92 3538—2737 755
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length equal to the whole observation window, that is, τ(1) = T = 5000. The backbone networks considered in 
figure A3 are three: (i) a homogeneous backbone with a low value of λ, G(λ) ∼ δ (λ− 0.02) in panels (a) and 
(d); (ii) a homogeneous backbone with a high value of λ, G(λ) ∼ δ (λ− 0.70) in panels (b) and (e); and (iii) a 
heterogeneous backbone G(λ) ∼ λ−2.3 with λ ∈ [0.02, 1] in panels (c) and (f). In all the cases, both precision and 
recall shown close to one, suggesting that the low recall shown in figures 3 and A2 may be due to heterogeneity 
in the activity distribution. Another reason for the low recall observed in figures 3 and A2 may be the use of the 
Bonferroni correction [37], which increases the precision of the methodology and lowers its recall.

Appendix B. Primary school dataset

B.1. Significant links
In figure B1, we report the missing results of figure 4 in the main text concerning the fraction of links detected by 
the ETFM or TDF over the EADM, |Lx|/|LEADM|.

B.2. Overlap
In figure B2, we report the missing results of figure 5 in the main text concerning the Overlap index between 
either the ETFM or TDF and the EADM, Overlap (LEADM, Lx).

Appendix C. Workplace dataset

Following the main text, we analyze another real network from the Sociopattern project [30]: the Workplace 
dataset. We provide a data summary in table C1; analyze the EADM and ETFM accuracy in figure C1; compare 
the number of links detected by the ETFM or TDF with those found by the EADM in figure C2; and display the 
Overlap coefficient according to equation (25) in figure C3. All the results support the claims in the main text: (i) 
the TDF has the most restrictive null hypothesis and finds the smallest amount of links in the backbone network; 
(ii) the ETFM detects less links than the EADM when the system is composed of few tens of nodes, and (iii) the 

ETFM and EADM yield equivalent results when the system reaches one hundred nodes.
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Figure D1. Jaccard index between the TDF and DF backbone networks in the Workplace dataset. Black vertical lines represent the 
multivariate threshold computed according to the Bonferroni correction.
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Appendix D. Temporal disparity filter and disparity filter: a comparison

In the case of both the Workplace, in figure D1, and Primary School, in figure D2, datasets, the TDF finds a 
different backbone network than the disparity filter [6]. We use the Jaccard index [52] defined as

J(LTDF, LDF) =
|LTDF ∩ LDF|
|LTDF ∪ LDF|

, (D.1)

where LDF represents the set of irreducible links detected by the disparity filter. A Jaccard index equal to one 
implies that the two methodologies yield the same backbone network, while a lower value indicates a difference 
in the two detected backbone networks.
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Figure D2. Jaccard index between the TDF and DF backbone networks in the Primary School dataset. Black vertical lines represent 
the multivariate threshold computed according to the Bonferroni correction.
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