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8 Abstract: Friction between interfaces seriously affects the dynamics of structures with joints. An 

9 accurate description of the friction behavior, usually given in the form of hysteresis loops, is then a 

10 prerequisite for a successful prediction of the dynamics of joint structures. Driven by this demand, 

11 this paper proposes a new approach in the framework of the Iwan model to better simulate the 

12 nonlinear constitutive relationship of joints. The approach derives the Iwan density function from the 

13 contact pressure distribution on the joint interface, without having to assume it like traditional Iwan-

14 type models. Following this, the corresponding force-displacement expressions can be obtained. The 

15 proposed approach has been applied to two different contact geometries: sphere-on-sphere and flat-

16 on-flat. For the spherical contact, comparisons between the simulated results and the analytical 

17 solutions available in the literature show perfect agreement. Moreover, the effectiveness of the 

18 approach in flat-to-flat contact has been verified by comparing the simulated hysteresis loop with the 

19 experimental counterpart. 
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21 1 Introduction

22 Jointed components are indispensable elements in mechanical systems. Due to the presence of 

23 friction at joint interfaces, the dynamic behavior of jointed structures is nonlinear and shows stiffness 

24 softening and energy dissipation. The stiffness of jointed structures depends on amplitude of 

25 oscillatory displacements, while the energy dissipation caused by friction mechanism dominates the 

26 structural damping, even reaching a 90% of the total damping [1-3]. In addition, friction could 

27 induce stick-slip vibration which results in instability of mechanical systems with friction [4-7]. A 

28 good friction model can help in the design of controllers for eliminating the frictional instability. 

29 Therefore, a reliable constitutive model capable of representing the nonlinear feature of joint 

30 mechanism is a prerequisite for predictive simulations, design and optimization of joint structures in 

31 dynamics analysis [8].

32

33 Constitutive friction models should fulfill some significant requirements [9] to be effective: i) the 

34 model must be able to describe micro/gross slip behaviors and reproduce the dependence of friction 

35 damping on the amplitude of applied loads, ii) parameters of the model should be easily estimated 

36 and iii) the model must be easily integrated into a finite element code.

37

38 In the past decades, several constitutive friction models have been developed. The Iwan model was 

39 originally developed to reproduce elastic-plastic behavior of materials and then employed to simulate 

40 the friction hysteresis behavior of joint interfaces [10, 11]. Similarly, the Valanis model originating 

41 from plasticity mechanics was used to represent the friction behavior of a bolted joint [12]. The Dahl 



42 model was designed to simulate a symmetrical hysteresis loop observed in bearings subjected to 

43 sinusoidal excitations with small amplitudes [13, 14]. Of course, there are other contact models [15-

44 18].

45

46 Iwan model is widely used in the field of joint structural dynamics because of its ability to describe 

47 the observed friction phenomena and the simplicity of extraction of model parameters. Many 

48 improved Iwan models [19-30] have been derived by the original model. These Iwan-type models 

49 can be grouped into two sets, according to the different modeling schemes. The first scheme is based 

50 on a combination of the framework of Iwan model with tribological approach involving rough 

51 contact [19, 20]. This modeling scheme can be regarded to be physics-based. However, it is difficult 

52 to integrate these models into dynamic analysis processes, due to the complexity of the force-

53 displacement formulation.

54

55 The second scheme preserves the essence of the Iwan model and is based on the consideration of 

56 improving accuracy and completeness of the model. Segalman et al. [9] developed a four-parameter 

57 Iwan model that considers a power-law relation between energy dissipation and amplitude of applied 

58 load. A truncated power-law distribution with one Dirac delta function was applied to implement the 

59 representation of microslip and energy dissipation. As a supplement, Segalman et al. [21] presented 

60 an inversion of Masing models via continuous Iwan systems to address some uncommon cases in 

61 which displacement is expressed in terms of load history instead of load in terms of displacement 

62 history. The second derivative of the displacement expression is used to derive the Iwan density 



63 function. Song et al. [22], using the experimentally observation reported in [3], employed an 

64 additional linear elastic spring in parallel with the original Iwan model to reproduce the residual 

65 stiffness during gross slip. Based on this experimental evidence, they developed an adjusted Iwan 

66 beam element to simulate the effect of bolted joints on beam structures. Similar to Song’s work, 

67 Wang et al. [23] developed an improved Iwan model based on four-parameter Iwan model to 

68 describe both the residual stiffness during gross slip and the smooth transition of joint stiffness from 

69 microslip to gross slip conditions. Based on the four-parameter Iwan model and Song’s finding, Li et 

70 al. [24, 25] proposed a six-parameter Iwan model to model lap joints. They used a truncated power-

71 law distribution with two Dirac delta functions to consider two phenomena: the residual stiffness 

72 during the gross slip regime and the energy dissipation during the microslip regime. They compared 

73 simulations with experimental results, which show that the six-parameter Iwan model has good 

74 reproduction of hysteresis phenomena of lap joints. Brake [26] developed an improved Iwan model 

75 including “pinning” behavior to describe friction behavior at a bolted joint interface, in which the 

76 pinning stiffness is obtained analytically in accordance with Hertz theory [27]. This improvement 

77 can capture the contact between the bolt shank and the hole when the sliding distance between 

78 contact interfaces is greater than the gap between the bolt shank and the hole. Rajaei et al. [28] 

79 developed a generalized Iwan model, different from the abovementioned Iwan-type models. They 

80 considered the effect of the variation of normal load on tangential recovery force in two ways: the 

81 variations of distribution function of the critical sliding force and stiffness. The effects of these 

82 variations were observed on the hysteresis loops measured on a beam with frictional contact support. 

83 Recently, Li et al. [29, 30] proposed a modified Iwan model including a normal linear spring with 



84 “detachment” to simulate the friction contact behavior between turbine blade and underplatform 

85 damper. This model can represent both normal load variations and tangential microslip. In Ref. [30], 

86 they conducted a preliminary exploration of the Iwan density function and obtained analytical force-

87 displacement expressions for line contact.

88

89 The effective modeling of joints depends on understanding and reproducing the basic physics 

90 associated with a jointed interface. Although those abovementioned Iwan-type models can describe 

91 the observed phenomena in some experiments, an essential fact - namely the effect of normal load 

92 distribution on tangential friction behavior - has been hardly considered. Substantially, the contact 

93 pressure distribution determines the motion state of a portion of contact area, either stick or slip [31]. 

94 In practical applications, the contact pressure distribution is influenced by the geometry of contact 

95 bodies as well as roughness of surfaces which may be the main reason for the difference among some 

96 measured power-law relations of energy dissipation on the amplitude of applied force [32].

97

98 This paper presents a novel approach that aims to directly calculate the Iwan density function from a 

99 known or measured contact pressure distribution in the framework of the Iwan model and to further 

100 better describe the friction hysteresis behavior of the joint surface. Two different contact problems: 

101 spherical contact and flat contact, are treated separately. Furthermore, the effectiveness of the 

102 approach is verified by comparison with analytical solutions and experimental results. The paper is 

103 organized as follows. Section 2 describes the paradigm behind the proposed modeling approach and 

104 introduces the corresponding parameter estimation method. The proposed model is applied to two 



105 different contact geometries. Section 3 shows the case of a sphere-on-sphere contact. Results of the 

106 simulation, summarized by hysteresis loops, are compared with the analytical solution given by 

107 Mindlin [31]. Section 4 deals with a flat-on-flat contact and this case is used to validate the model by 

108 comparing simulated results with experimental hysteresis loops. Section 5 closes the paper 

109 discussing the overall approach and presenting the main conclusions.



Nomenclature G shear modulus
𝑘𝑡 tangential contact stiffness 𝑇𝑚 amplitude of tangential force
n number of Jenkins elements W dissipated energy per cycle
𝑓 ∗

𝑖 critical sliding force on the ith element r distance from the contact center
𝜑 density function 𝑛𝑒𝑞 normal force per contact width
∆ range of critical sliding force 𝛾 proportional coefficient
𝜇 friction coefficient 𝑝𝑚 mean contact pressure
N normal load w width of the plate
T tangential friction force h thickness of the plate
𝛿 tangential elative displacement lb lower bound of the integral
𝛿𝑚 amplitude of relative displacement ub upper bound of the integral
p distribution function of contact pressure 𝛼 residual stiffness coefficient
x, y spatial coordinates 𝑇norm normalized tangential force
a size of contact area 𝛿norm normalized relative displacement
t, 𝑡' tangential sliding stress (traction)
𝑝0 maximum contact pressure DF density function
𝜗 Poisson’s ratio SD sliding direction

110



111 2 Modeling approach

112 In this section, the Iwan model is briefly reviewed and the importance of the Iwan density function 

113 (DF) is emphasized. Then we put forward a novel approach that can explicitly determine the Iwan 

114 DF from the pressure distribution on the contact surface. This approach gives a physics-based 

115 explanation of the DF and does not introduce new parameters. 

116 2.1 The density function of Iwan model

117 The Iwan model [10] consists of Jenkins elements [33] in a parallel as shown in Fig. 1(a). A Jenkins 

118 element is an ideal piecewise unit which can reproduce either slip or stick. Each element is composed 

119 of a linear spring whose stiffness is  and a Coulomb slider with a critical sliding force . 𝑘𝑡 𝑛 𝑓 ∗
𝑖 𝑛

120 The stiffness  is the total tangential stiffness,  is the critical sliding force on the  element 𝑘𝑡 𝑓 ∗
𝑖 𝑖𝑡ℎ

121 and  is the number of Jenkins elements. The critical sliding force is the tangential force on a single 𝑛

122 element at the onset of sliding. It should be noted that the critical sliding force is typically different 

123 for each element. According to [10], the critical sliding force on each element can be represented by 

124 a density function  where “  is the fraction of total number of elements having 𝜑(𝑓 ∗ ) 𝜑(𝑓 ∗ )𝑑𝑓 ∗ 𝑓 ∗

125 +d ”. The original Iwan model assumes a uniform DF , as indicated in ≤ 𝑓 ∗
𝑖 ≤ 𝑓 ∗ 𝑓 ∗ 𝜑(𝑓 ∗ ) = 1/∆

126 Fig. 1(b), where  is the friction coefficient,  the normal load and  the range of .𝜇 𝑁 ∆ 𝑓 ∗

127
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128 Fig. 1. (a) Scheme of the Iwan model, (b) a uniform density function of the critical sliding force.



129

130 The total tangential force results from two groups of elements: those elements which are in slip or 

131 yield state and the elements which are unyielded or in stick state. For a small-amplitude monotonic 

132 loading case, the force-displacement relation (also called backbone function) is defined as

𝑇(𝛿) = ∫𝑘𝑡𝛿

0
𝑓 ∗ 𝜑(𝑓 ∗ )𝑑𝑓 ∗ + 𝑘𝑡𝛿∫∞

𝑘𝑡𝛿
𝜑(𝑓 ∗ )𝑑𝑓 ∗ . (1)

133 where  is the tangential force and  the relative displacement. Increasing the relative 𝑇 𝛿

134 displacement increases the tangential force. All the elements will be in a slip state once the tangential 

135 force becomes larger than the limit force associated to a given friction coefficient, . From Eq. (1), 𝜇𝑁

136 it can be seen that the DF is of great importance, which directly relates the total tangential force to 

137 the relative displacement

138

139 For a cyclic load, the tangential force during unloading is,

𝑇(𝛿) = ∫
𝑘𝑡(𝛿𝑚 ‒ 𝛿)

2

0
‒ 𝑓 ∗ 𝜑(𝑓 ∗ )𝑑𝑓 ∗ + ∫𝑘𝑡𝛿𝑚

𝑘𝑡(𝛿𝑚 ‒ 𝛿)
2

[𝑓 ∗ ‒ 𝑘𝑡(𝛿𝑚 ‒ 𝛿)]𝜑(𝑓 ∗ )𝑑𝑓 ∗

                               + 𝑘𝑡𝛿∫∞

𝑘𝑡𝛿𝑚

𝜑(𝑓 ∗ )𝑑𝑓 ∗ ,

(2)

140 where  is the maximum displacement reached at the end of the loading phase. The expression of 𝛿𝑚

141 the tangential force for reloading can be deduced in a similar way. Eq. (2) is based on the Masing’s 

142 hypothesis [9, 21] and further details can be found in Ref. [10, 11].

143

144 The original Iwan model [10] uses three parameters (stiffness, total “yield force”, and the range of 

145 the yield force) to describe the relationship between the force and the displacement. The ratio of the 



146 force range over the yield force is related to the DF of the critical sliding force for which Iwan 

147 assumes a uniform distribution. This ratio is usually identified by matching with experimental data 

148 and changes the shape of hysteresis curves during micro slip. Therefore, it can be seen that the DF 

149 plays a key role in the Iwan model. In the next section, a novel approach is proposed that can directly 

150 derive the Iwan DF from the contact pressure distribution on the joint surface, differently from what 

151 is done in the Iwan-type models where the DF is assumed a priori regardless of the pressure 

152 distribution.

153 2.2 Modeling process

154 Under tangential loads the contact surface shows two regions: a slip region in which corresponding 

155 contact pairs on contact surfaces undergo a relative motion and a stick region in which the relative 

156 motion is not allowed. As an example, on a sphere-on-sphere contact the slip region is the annular 

157 periphery of the contact area, where the contact pressure is lower and is not able to constrain the 

158 relative motion between contact pairs. Therefore, it is evident that the contact pressure plays an 

159 important role in defining the motion state of contact pairs. If the DF of the critical sliding force is 

160 related to pressure distribution, the obtained DF has an explicit physical significance and is no more 

161 a sheer parameter in the model.

162

163 Fig. 2 illustrates in five steps the proposed approach. Step (1) assumes a contact pressure distribution 

164 from known analytical or semi-analytical solutions, measurements or empirical formulations,𝑝(𝑥) 

𝑝 = 𝑝(𝑁, 𝑥, 𝑎),  |𝑥| ≤ 𝑎, (3)

165 where a and N denote the size of contact area and the normal load, respectively. During the whole 



166 process the contact pressure distribution is assumed independent of the relative motion.

167

168 Fig. 2. Flow chart of the proposed modeling approach and an example of a "triangle" pressure 

169 distribution.

170

171 Step (2) builds the distribution function of the tangential sliding stress t(x) (also denoted “traction”) 

172 under the assumption that the Coulomb law between pressure p(x) and traction t(x) holds at 

173 infinitesimal level. In the case of slip on the whole contact area the distribution function of traction 

174 becomes,

𝑡(𝑥) = 𝜇 𝑝(𝑁, 𝑥, 𝑎),  |𝑥| ≤ 𝑎. (4)

175 Eq. (4) cannot simulate the microslip condition. The density function  determines the 𝜑(𝑓 ∗ )



176 distribution of the critical value (or threshold) of the sliding force. This threshold defines the slip and 

177 stick regions in the contact area, which in turn determine the real tangential force.

178

179 To illustrate the procedure a simple triangular distribution of contact pressure, symmetrical about the 

180 x axis with  the maximum pressure, has been considered, see Fig. 2. In step (3), contact segments 𝑝0

181 with the same tangential pressure have been sorted in descending order, to simplify the following 

182 calculation. The sorting process does not change the total sliding force and the sorted traction 

183 distribution  is𝑡'

𝑡'(𝑥) = 2𝜇𝑝(𝑁, 𝑥, 𝑎),  0 ≤ 𝑥 ≤ 𝑎. (5)

184 The traction distribution  in the spatial domain is related to the distribution of traction  on 𝑡'(𝑥) 𝑓 ∗

185 the Jenkins elements

.𝑓 ∗ = 𝑎 ∙ 𝑡'(𝑥) (6)

186 From a statistical viewpoint,  is the probability that the critical sliding force falls within 𝜑(𝑓 ∗ )d𝑓 ∗

187 the range  and , namely the occurrence of the event  in the spatial domain𝑓 ∗  𝑓 ∗ + d𝑓 ∗ 𝑓 ∗

𝜑(𝑓 ∗ )d𝑓 ∗ =
d𝑥
𝑎 . (7)

188 Then, the distribution density  can be defined as the cotangent of the curve of the critical 𝜑(𝑓 ∗ )

189 sliding force

𝜑(𝑓 ∗ ) =
d𝑥

𝑎 ∙ d𝑓 ∗ . (8)

190 Step (5) uses the obtained DF into the Iwan model and gets the tangential force for monotonic and 

191 cyclic loading cases by Eqs. (1) and (2).



192 2.3 Parameter estimation method

193 Compared with the original Iwan model, the proposed modeling approach does not involve 

194 parameters related to the DF form, that is defined a priori. Therefore, the proposed model uses only 

195 two parameters, related to the tangential stiffness and the friction coefficient. These parameters need 

196 to be identified from experimental results.

197

198 It is well known that the tangential stiffness can be easily estimated through the force-displacement 

199 curve, denoted as hysteresis loop, see Fig. 3. The slope of the curve in the initial state (“stick” state) 

200 is the tangential stiffness, while, when the contact reaches a gross slip state, the ratio of tangential to 

201 normal force is the friction coefficient.

202
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203 Fig. 3. Typical hysteresis loops for micro-slip and gross slip cases, and schematic of contact 

204 stiffness.
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206 3 Analytical validation in a sphere-on-sphere contact

207 In this section, the proposed approach is used to simulate the tangential force against the relative 

208 displacement in the friction contact between two elastic spheres. Results predicted by the model are 

209 compared with Mindlin analytical solution [31, 34] to validate the approach.

210

211 3.1 Mindlin analytical solution

212 Mindlin [31, 34] studied the friction contact of two elastic spheres pressed by a normal force  in 𝑁

213 which the contact area is circular with radius a. The contact area and pressure distribution on the 

214 surface are given by Hertz theory [27]. Mindlin results show that the contact area is divided into slip 

215 and stick region, the slip region being at the outer radius. The slip region increases with the 

216 tangential load. According to Mindlin, for a monotonic tangential loading case, the displacement-

217 force relation on the contact surface is given as

𝛿 =
3(2 ‒ 𝜗)𝜇𝑁

16𝐺𝑎 [1 ‒ (1 ‒
𝑇

𝜇𝑁)
2 3] (9)

218 where  and  denote Poisson’s ratio and shear modulus, respectively. 𝜗 𝐺

219

220 For a cyclic tangential loading case, the relationship between the tangential force and the relative 

221 displacement for the unloading and reloading are given as



𝛿 = { 3(2 ‒ 𝜗)𝜇𝑁
16𝐺𝑎 [2(1 ‒

𝑇𝑚 ‒ 𝑇
2𝜇𝑁 )

2 3

‒ (1 ‒
𝑇𝑚

𝜇𝑁)
2 3

‒ 1], 𝑇 < 0,

‒
3(2 ‒ 𝜗)𝜇𝑁

16𝐺𝑎 [2(1 ‒
𝑇𝑚 + 𝑇

2𝜇𝑁 )
2 3

‒ (1 ‒
𝑇𝑚

𝜇𝑁)
2 3

‒ 1], 𝑇 > 0,
(10)

222 where  is the maximum tangential force before reversal.𝑇𝑚

223 The curve depicted according to Eq. (10) can form a hysteresis loop. The area enclosed by the loop 

224 represents the dissipated energy per cycle 

𝑊 =
9(2 ‒ 𝜗)𝜇2𝑁2

10𝐺𝑎 {[1 ‒ (1 ‒
𝑇𝑚

𝜇𝑁)
5/3] ‒

5𝑇𝑚

6𝜇𝑁[1 + (1 ‒
𝑇𝑚

𝜇𝑁)
2/3]}. (11)

225 For a small , Eq. (11) reduces to𝑇𝑚 𝜇𝑁

𝑊 =
(2 ‒ 𝜗)𝑇 3

𝑚

36𝐺𝑎𝜇𝑁 . (12)

226 The dissipated energy is proportional to the cubic power of the maximum tangential load. It should 

227 be noted that this equation does not consider gross slip case and is valid only for small tangential 

228 loads.

229

230 3.2 Modeling sphere-on-sphere friction contact

231 According to the proposed approach the contact pressure distribution is assumed a priori, and this 

232 pressure is used to obtain the DF of the critical sliding force. For two elastic spheres in contact, the 

233 pressure distribution is given by Hertz theory [27], as shown in Fig. 4(a),

𝑝(𝑟) = 𝑝0 1 ‒ (𝑟/𝑎)2,  0 ≤ 𝑟 ≤ 𝑎, (13)

234 where  is the contact pressure,  the distance from the center of contact area, and  the 𝑝(𝑟) 𝑟 𝑝0

235 maximum contact pressure .𝑝0 = 3𝑁 (2𝜋𝑎2)



236

237 The two-dimensional distribution is converted to an equivalent one-dimensional distribution along 

238 the x axis. This step is needed to describe the pressure distribution (given in spatial coordinates) in 

239 the Jenkins elements coordinates. To achieve this conversion, the contact pressure is integrated along 

240 the y axis to give the normal force per contact width

𝑛eq(𝑥) = ∫ 𝑎2 ‒ 𝑥2

‒ 𝑎2 ‒ 𝑥2
𝑝0 1 ‒ (𝑥

𝑎)2

‒ (𝑦
𝑎)2

d𝑦 =
𝜋𝑝0

2𝑎 (𝑎2 ‒ 𝑥2), (14)

241 In this process, the circular contact area becomes a one-dimensional contact region in the domain 

242 . Fig. 4(b) shows the normal force per contact width whose maximum value is‒ 𝑎 ≤ 𝑥 ≤ 𝑎  𝑛0 = 𝜋𝑝0

243 .𝑎/2

244

245 Fig. 4. Contact pressure distribution of two elastic spheres (a) on two-dimensional space, (b) on one-

246 dimensional space.

247

248 The tangential sliding stress distribution in the slip case can be obtained by Coulomb law (see the 

249 step (2) in Fig. 2),

𝑡(𝑥) = 𝜇𝑛eq(𝑥) =
𝜋𝜇𝑝0

2𝑎 (𝑎2 ‒ 𝑥2),  ( ‒ 𝑎 ≤ 𝑥 ≤ 𝑎). (15)

250 Due to the symmetrical distribution of t(x), contact segments with the same sliding stress can be 

251 sorted giving 



𝑡'(𝑥) =
𝜋𝜇𝑝0

𝑎 (𝑎2 ‒ 𝑥2),  (0 ≤ 𝑥 ≤ 𝑎). (16)

252 Coordinates in the contact region are normalized, according to the step (3) in Fig. 2, and the sliding 

253 stress distribution is written as

𝑡'(𝑥/𝑎) = 𝜋𝜇𝑝0𝑎[1 ‒ (𝑥
𝑎)2],  (0 ≤

𝑥
𝑎 ≤ 1). (17)

254 The critical sliding force in the normalized contact coordinate is then

𝑓 ∗ (𝑥/𝑎) = 𝑎 ∙ 𝑡'(𝑥/𝑎) = 𝜋𝜇𝑝0𝑎2[1 ‒ (𝑥
𝑎)2],  (0 ≤

𝑥
𝑎 ≤ 1). (18)

255 Fig. 5(a) plots the dimensionless critical sliding force  vs. the dimensionless contact width  𝑓 ∗ /𝜇𝑁

256 x/a. Solving Eq. (18) for x/a, considering that , the following relationship is 𝑝0 = 3𝑁 (2𝜋𝑎2)

257 obtained

𝑥
𝑎 = 1 ‒

2𝑓 ∗

3𝜇𝑁
,  (0 ≤

𝑥
𝑎 ≤ 1). (19)

258 Finally, the DF  of the critical sliding force  is carried out according to its 𝜑(𝑓 ∗ ) 𝑓 ∗ (𝑥/𝑎)

259 definition

𝜑(𝑓 ∗ ) = |d(𝑥/𝑎)
d𝑓 ∗ | =

1

3𝜇𝑁(3𝜇𝑁 ‒ 2𝑓 ∗ )
. (20)

260 Fig. 5(b) plots the dimensionless density function  vs. the dimensionless critical sliding 𝜑(𝑓 ∗ )𝜇𝑁

261 force .𝑓 ∗ /𝜇𝑁



262
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.4

0.8

1.2

1.6

D
im

en
si

on
le

ss
 c

rit
ic

al
 sl

id
in

g 
fo

rc
e,

 f* /μ
N

Dimensionless contact width, x/a

(a)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
0

3

6

9

12
(b)

D
im

en
si

on
le

ss
 d

en
si

ty
 fu

nc
tio

n,
 φ

(f* )μ
N

Dimensionless critical sliding force, f*/μN

263 Fig. 5. (a) Dimensionless critical sliding force  vs. dimensionless contact width x/a; (b)  𝑓 ∗ /𝜇𝑁

264 Dimensionless density function  vs. dimensionless critical sliding force . 𝜑(𝑓 ∗ )𝜇𝑁  𝑓 ∗ /𝜇𝑁

265

266 Substituting Eq. (20) into Eq. (1) yields the tangential force,

𝑇 = 𝜇𝑁 ‒
(3𝜇𝑁 ‒ 2𝑘𝑡𝛿)3 2

3 3𝜇𝑁 . (21)

267 For a cyclic loading, the expression of the tangential force is obtained according to the Masing’s 

268 hypothesis,

𝑇(𝛿) = { ‒ 𝑇(𝛿𝑚) + 2𝑇(𝛿𝑚 + 𝛿
2 ), 𝛿 > 0 

𝑇(𝛿𝑚) ‒ 2𝑇(𝛿𝑚 ‒ 𝛿
2 ), 𝛿 < 0

. (22)

269 3.3 Comparison with analytical solution

270 The proposed approach has been applied to two identical elastic spheres in contact and the results 

271 have been compared with the Mindlin’s analytical solution. Material properties, friction coefficient, 

272 contact radius and normal load used in the simulation are listed in Table 1.

273 Table 1 Analytical model parameters



Shear modulus Poisson’s ratio Friction coefficient Contact radius Normal load
27GPa 0.33 0.5 2mm 500N

274

275 The tangential stiffness to be used in the model is the slope of force-displacement curve when the 

276 body are at rest and start moving. To be consistent, this stiffness has been computed using the 

277 Mindlin solution

𝑘𝑡 = lim
𝛿→0

∂𝑇
∂𝛿 = lim

𝛿→0

8𝐺𝑎
2 ‒ 𝜗[1 ‒

16𝐺𝑎𝛿
3(2 ‒ 𝜗)𝜇𝑁]

1 2

=
8𝐺𝑎
2 ‒ 𝜗, (23)

278

279 A harmonic displacement  was applied to one of the contact bodies to compute the tangential force 

280 . Two cases were studied: a small relative displacement for which the sliding condition is not 𝑇

281 reached (maximum tangential force 200N) and a large relative displacement up to full  𝑇𝑚 < 𝜇𝑁 =

282 sliding conditions (maximum tangential force 250N). Fig. 6 shows that the proposed  𝑇𝑚 = 𝜇𝑁 =

283 method is equivalent to the Mindlin’s analytical solution; as can be easily verified by substituting Eq. 

284 (23) into Eq. (21).

285
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286 Fig. 6. Comparison of hysteresis loops predicted by the proposed model with Mindlin solution, (a) 

287 200N; (b) 250N.𝑇𝑚 = 𝑇𝑚 =



288

289 Fig. 7 compares the dissipated energy per cycle and confirms the equivalence of the two methods. 

290 The proposed model can also be used to simulate friction behavior for several contact geometries. In 

291 the next section, two flat contact bodies will be modeled with the proposed approach and compared 

292 with experimental data.
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294 Fig. 7. Comparison of predicted energy dissipation per cycle with Mindlin’s solution.
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296 4 Modeling friction for lap joint plates

297 Lap joints are unavoidable in assembled structures such as bolted and riveted joints. Friction contact 

298 at the joint interfaces has a significant effect on the dynamic behavior of assembled structures, in 

299 which non-linearities originate at the contact. Therefore, the development of a reliable friction model 

300 for flat-on-flat contact can contribute to accurately predict the forced-responses of these structures. In 

301 this section, the proposed approach is used to simulate contact behavior in lap joints and then 

302 validated by comparison with measured results. 

303

304 4.1 Representation of friction between lap joints

305 It is challenging to obtain a distribution function of contact pressure for flat-on-flat contact because 

306 of asperities and waviness that affect the real contact area. Moreover, cyclic loading modifies the 

307 contact because surfaces change their topography and pressure is redistributed on the contact area. 

308 These phenomena, more evident in flat contact than in point contact, could limit the application of 

309 the proposed model.

310

311 To overcome this limit, a quadratic function with a variable parameter  was assumed to describe the 

312 distribution function of the contact pressure. This variable parameter was denoted ‘proportional 

313 coefficient’ and defined as the ratio between the peak pressure  and the mean pressure 𝑝0 𝑝𝑚

𝛾 =
𝑝(0)
𝑁 𝑎𝑤

. (24)

314 This quadratic function can represent three typical distribution forms widely employed to 

315 approximate real cases, namely “concave”, “convex”, and “uniform” distribution [13]. According to 



316 the proposed approach, a unified friction model including the variable parameter is developed for 

317 flat-on-flat contact. The optimal choice of this parameter can be inferred from the measured 

318 hysteresis loops.

319

320 Fig. 8 shows two plates pressed together by a normal load  and excited by an oscillating tangential  𝑁

321 displacement . The nominal contact area length is a. The cross section of the plate is a rectangle of  𝛿

322 width w and thickness h. The normal load along the transverse direction is assumed to be uniformly 

323 distributed. 

324

325 Fig. 8. Lap joint plates model and cross section of the plate

326

327 In this paper, we define the quadratic function assuming that i) the real contact area is the nominal 

328 contact area and ii) the extreme value of the quadratic function is in the center of the contact area 

𝑝(𝑥) =
𝑁

𝑎𝑤[12(1 ‒ 𝛾)𝑥2

𝑎2 + 𝛾],  (𝑥 ≤ |𝑎2|) (25)

329 where  is the proportional coefficient varying in the range [0, 1.5]. For the case , Eq. (25) is a 𝛾  𝛾 < 1

330 concave distribution function, while for the case , it is a convex distribution function.  𝛾 > 1

331 Proportional coefficient  means that the distribution of contact pressure is constant. Fig. 9 𝛾 = 1

332 shows dimensionless contact pressure, , against the normalized contact coordinate, ,  𝑝(𝑥)𝑎𝑤/𝑁 𝑥/𝑎

333 for different proportional coefficients. For a real lap joint, the corresponding pressure distribution 



334 function is approximately represented by selecting a suitable proportional coefficient.
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336 Fig. 9. Dimensionless contact pressure distribution, , vs. normalized contact coordinate,  𝑝(𝑥)𝑎𝑤/𝑁

337 , for different proportional coefficients.𝑥/𝑎

338

339 According to the proposed model, section 2, the tangential sliding stress distribution can be derived 

340 as

𝑡(𝑥) = 𝜇𝑝(𝑥) =
𝜇𝑁
𝑎𝑤[12(1 ‒ 𝛾)𝑥2

𝑎2 + 𝛾],  (𝑥 ≤ |𝑎2|). (26)

341 Then, the distribution function is reordered, and the spatial coordinate normalized, 

𝑡'(2𝑥/𝑎) =
2𝜇𝑁
𝑎𝑤 [3(1 ‒ 𝛾)(2𝑥

𝑎 )2

+ 𝛾],  (0 ≤
2𝑥
𝑎 ≤ 1). (27)

342 The critical sliding force in the normalized contact coordinate is

𝑓 ∗ (2𝑥/𝑎) =
𝑎𝑤
2 ∙ 𝑡'(2𝑥

𝑎 ) = 𝜇𝑁[3(1 ‒ 𝛾)(2𝑥
𝑎 )2

+ 𝛾]. (28)

343 According to the definition of the Iwan DF in Eq. (8), it can be obtained by deriving the normalized 

344 contact coordinate with respect to the critical sliding force,



𝜑(𝑓 ∗ ) = |d(2𝑥/𝑎)
d𝑓 ∗ | =

1

2𝜇𝑁 3(1 ‒ 𝛾)(𝑓 ∗

𝜇𝑁 ‒ 𝛾)
.

(29)

345 Fig. 10 shows a group of dimensionless density functions of critical sliding force  with 𝜑(𝑓 ∗ )

346 different proportional coefficients. For the concave distribution, the DF goes to infinity when the 

347 critical sliding force approaches its minimum, , whereas for the convex distribution, the DF 𝛾𝜇𝑁

348 goes to infinity when the critical sliding force approaches its maximum, 𝛾𝜇𝑁.
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350 Fig. 10 Dimensionless density function,  vs. dimensionless critical sliding force,2𝜇𝑁𝜑(𝑓 ∗ ),  𝑓 ∗ /𝜇𝑁

351 , for different proportional coefficients.

352

353 The force-displacement expression is obtained from integral in Eq. (1) 

𝑇(𝛿) = ∫𝑘𝑡𝛿

𝑙𝑏
𝑓 ∗ 𝜑(𝑓 ∗ )d𝑓 ∗ + 𝑘𝑡𝛿∫𝑢𝑏

𝑘𝑡𝛿
𝜑(𝑓 ∗ )d𝑓 ∗ . (30)

354 setting the proper upper and lower bounds that are different between the concave and convex 

355 distributions and are listed in Table 2. Details can be found in Appendix A.

356



357 Table 2. Upper and lower bounds of the concave and convex distributions, and corresponding force-

358 displacement expressions

Concave distribution ( )𝛾 < 1 Convex distribution ( )𝛾 > 1
𝑙𝑏 = 𝛾𝜇𝑁, 𝑢𝑏 = (3 ‒ 2𝛾)𝜇𝑁 𝑙𝑏 = (3 ‒ 2𝛾)𝜇𝑁, 𝑢𝑏 = 𝛾𝜇𝑁

𝑇(𝛿) = 𝑘𝑡𝛿,  (𝛿 ≤
𝛾𝜇𝑁

𝑘𝑡 )
𝑇(𝛿) = 𝑘𝑡𝛿 +

2(𝛾𝜇𝑁 ‒ 𝑘𝑡𝛿)
3

𝑘𝑡𝛿 ‒ 𝛾𝜇𝑁
3(1 ‒ 𝛾)𝜇𝑁,

(𝛾𝜇𝑁
𝑘𝑡

< 𝛿 ≤
(3 ‒ 2𝛾)𝜇𝑁

𝑘𝑡 )
𝑇(𝛿) = 𝜇𝑁,  (𝛿 >

(3 ‒ 2𝛾)𝜇𝑁
𝑘𝑡 ).

𝑇(𝛿) = 𝑘𝑡𝛿,  (𝛿 ≤
(3 ‒ 2𝛾)𝜇𝑁

𝑘𝑡 )
𝑇(𝛿) = 𝜇𝑁 ‒

2(𝛾𝜇𝑁 ‒ 𝑘𝑡𝛿)
3

𝑘𝑡𝛿 ‒ 𝛾𝜇𝑁
3(1 ‒ 𝛾)𝜇𝑁,

((3 ‒ 2𝛾)𝜇𝑁
𝑘𝑡

< 𝛿 ≤
𝛾𝜇𝑁

𝑘𝑡 )
𝑇(𝛿) = 𝜇𝑁,  (𝛿 >

𝛾𝜇𝑁
𝑘𝑡 ).

359

360 4.2 Model validation

361 Hysteresis loops measured on flat-on-flat contacts have been used to extract the contact parameters 

362 (namely tangential stiffness , friction coefficient , residual stiffness coefficient  and  𝑘𝑡  𝜇  𝛼

363 proportional coefficient ) and to validate the proposed model. Details of the test rig and  𝛾

364 experimental operation can be found in [35, 36]. Fig. 11 shows the specimens, denoted to as Fixed 

365 and Mobile respectively, used in the experimental tests and the corresponding contact area.

366

367 Fig. 11. (a) Specimens and contact surface of fretting tests, (b) contact area in black and sliding 

368 direction (SD).



369

370 Three cases, with different normal loads 87 N, 164 N and 254 N, were tested. Fig.12 shows typical 

371 measured hysteresis loops, in blue solid line, during ten periods. The three stages (Ⅰ ) stick, (Ⅱ ) 

372 micro-slip, and (Ⅲ) gross slip are indicated in the loops. The slope of the stick portion is regarded as 

373 the tangential stiffness. The friction coefficient is extracted from the ratio of tangential force over 

374 normal force at the onset of the gross slip stage. The residual stiffness coefficient is expressed as the 

375 ratio of the slope of the gross slip portion over the tangential stiffness. The proportional coefficient, 

376 used to effectively reproduce micro-slip, can be estimated with the best fit on the measured loop. All 

377 estimated parameters are listed in Table 3. Results illustrate the three normal loads share the same 

378 proportional coefficient in this experiment. Fig. 12 shows the comparison between the simulated and 

379 the experimental hysteresis loops with the proposed model. It can be seen that simulations match 

380 well with experimental results. Figure 12(a) shows that there are slight differences between the 

381 simulation and the experiment when the load is reversed. This is due to the inconsistent tangential 

382 stiffness during the loading and unloading phases, which sometimes occurs in the test. Figure 12(b 

383 and c) shows that there are two uncommon bulges in the measured hysteresis loops. The first one 

384 occurred at the transition from the stuck to the micro-slip state. This may be caused by local 

385 interactions between the asperities on contact surfaces. The second occurred at the end of the gross 

386 slip stage. This phenomenon has been observed in many tests [35, 37, 38], however, the physical 

387 reason for it is not yet fully understood. Two possible reasons are “velocity effect” and interactions at 

388 contact edges. These uncommon behaviors observed in the experiment were not captured by the 

389 proposed method.



390

391 Due to the existence of waviness and roughness of contact surfaces, it is difficult to analytically 

392 obtain the contact pressure distribution of flat-on-flat contact. Besides, the dispersion of contact 

393 pressure distribution by measurement may be significant. Even so, the obtained Iwan DF based on a 

394 quadratic distribution depending on a proportional coefficient can give satisfactory results. This is a 

395 more practical application of the proposed method. 

396

397 Table 3 Applied normal loads and estimated contact parameters in tests

Normal load, 
N (N)

Tangential stiffness, 
𝑘𝑡 (N/μm)

Residual stiffness 
coefficient, 𝛼

Friction coefficient, 
𝜇

Proportional 
coefficient, 𝛾

87 30.5 0.0427 0.48 0.2
164 113.7 0 0.68 0.2
254 133.7 0.0445 0.65 0.2

398
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402 Fig. 12. Comparison between numerical and experimental hysteresis loops for two normal loads, (a) 

403 N=87 N, (b) N=164N, (c) N=254N.

404

405 4.3 Effect of the proportional coefficient

406 The proposed contact model introduces a proportional coefficient whose range varies in the range [0, 

407 1.5]. The effect of this proportional coefficient is to change the shape of the hysteresis loop, then 

408 modelling different contacts. To study the effect that the proportional coefficient has on the 

409 hysteresis loops a normalization procedure is introduced. The relative displacement and tangential 

410 friction force are normalized as  and . The obtained 𝛿norm = 𝛿 𝛿max_stick = 𝑘𝑡𝛿 𝜇𝑁 𝑇norm = 𝑇 𝜇𝑁

411 dimensionless backbone function is then



𝑇norm = {𝛿norm +
2(𝛾 ‒ 𝛿norm)

3
𝛿norm ‒ 𝛾
3(1 ‒ 𝛾) , 0 ≤ 𝛾 ≤ 1

1 ‒
2(𝛾 ‒ 𝛿norm)

3
𝛿norm ‒ 𝛾
3(1 ‒ 𝛾) , 1 < 𝛾 ≤ 1.5

. (31)

412 Fig. 13 shows a group of dimensionless hysteresis loops with different proportional coefficients and 

413 the same others contact parameters. The imposed displacement is a sinusoidal motion with a 

414 normalized amplitude of 2 and a frequency of 1 Hz. It is evident that the proportional coefficient 

415 controls the micro-slip region and the global shape of hysteresis loops. When , the predicted 𝛾 < 1

416 micro-slip effect gradually weakens as the proportional coefficient increases. While it is opposite 

417 when . 𝛾 > 1
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420 Fig. 13. Evolution of hysteresis loops (dimensionless friction force  vs. dimensionless relative  𝑇/𝜇𝑁

421 displacement ) with the increase of proportional coefficient , (a)  in the range [0, 1]; (b)   𝑘𝑡𝛿/𝜇𝑁  𝛾 𝛾 𝛾

422 in the range [1, 1.5].

423

424 Correspondingly, the proportional coefficient has an influence on the dissipated energy per cycle. 

425 Fig. 14 depicts the evolution of the normalized energy dissipated (enclosed area divided by its 

426 maximum value) with increasing the proportional coefficient under different displacement 

427 amplitudes. The normalized energy dissipated is not monotonic and shows dependence on 

428 amplitudes of displacement. For a relatively small displacement amplitude, there is a bandwidth of 

429 the proportional coefficient at which the corresponding model predicts zero energy dissipation. In 

430 this case, the stuck regime dominates the motion of contact surfaces. And the smaller the 

431 displacement amplitude, the wider this bandwidth. While for a relatively larger displacement 

432 amplitude, the energy dissipation shows a maximum when =1. As the proportional coefficient 𝛾

433 increases, the normalized energy dissipated increases first and then drops slightly. In addition, the 

434 difference in the dissipated energy among different proportional coefficient decreases with the 

435 increasing proportional coefficient. This is due to the gradual dominance of the gross slip regime.

436

437 From a certain point of view, the proposed method is a generalized Iwan model, which starts with the 

438 contact pressure distribution and shows how to derive the Iwan DF. In applications where it is 

439 difficult to obtain the pressure distribution function, the proportional coefficient, which indirectly 

440 reflects the pressure distribution, can be easily estimated from experimental results.
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443 Fig. 14. Normalized energy dissipation (enclosed area divided by its maximum value) vs. 

444 proportional coefficient  under different displacement amplitudes. 𝛾
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446 5 Conclusions

447 This work presents a new friction modeling approach based on the framework of the original Iwan’s 

448 model. The aim of this new approach is to better describe the relationship between the friction force 

449 and the relative displacements. The proposed approach was employed to simulate the friction 

450 behavior of a sphere-on-sphere contact in which the pressure distribution has been assumed as in the 

451 Hertzian contact. The approach was validated by comparison with the Mindlin’s analytical solution. 

452 In addition, the approach was applied to a flat-on-flat contact of lap joints where the pressure 

453 distribution is known with great approximation. A proportional coefficient is introduced, which 

454 controls the micro-slip region and the global shape of hysteresis loops.

455

456 The application of this method to contacts with different normal loads showed a great variation of the 

457 contact parameters such as contact stiffness, friction coefficient, and residual stiffness. On the other 

458 hand, the proportional coefficient remained the same or showed a non-appreciable variation. The 

459 main outcome of this paper is that even if the pressure distribution is not known, for the specific 

460 contact, it can be replaced by the density function whose distribution is well represented with the 

461 proportional coefficient. Experimental evidence has shown that the proportional coefficient, that is 

462 related to the density function distribution, remains constant for contacts with the same geometry but 

463 different contact conditions. The method described in this paper is then useful for improving the 

464 prediction performance of dynamics of jointed structures in many engineering applications and for 

465 the optimal design of components of assemblies, and to simulate wear between contact surfaces.

466
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476 Appendix A

477 Considering the upper and lower bounds (the integral limits in Eq. (1)) of critical sliding force are 

478 different between the concave and convex distributions, the corresponding force-displacement 

479 expressions are derived respectively. For the concave distribution, the critical sliding force falls 

480 within the range . When the relative displacement is lower than , all  [𝛾𝜇𝑁, (3 ‒ 2𝛾)𝜇𝑁] 𝛾𝜇𝑁/𝑘𝑡

481 Jenkins elements are in stick state. That is, the recovery force behaves linearly with respect to 

482 relative displacement,

𝑇(𝛿) = 𝑘𝑡𝛿,  (0 < 𝛿 ≤
𝛾𝜇𝑁

𝑘𝑡 ) (A.1)

483 When the relative displacement falls with the range [ ], the recovery force is 𝛾𝜇𝑁/𝑘𝑡, (3 ‒ 2𝛾)𝜇𝑁/𝑘𝑡

484 obtained by substituting the DF into Eq. (1),

𝑇(𝛿) = ∫𝑘𝑡𝛿

𝛾𝜇𝑁
𝑓 ∗ 𝜑(𝑓 ∗ )𝑑𝑓 ∗ + 𝑘𝑡𝛿∫(3 ‒ 2𝛾)𝜇𝑁

𝑘𝑡𝛿
𝜑(𝑓 ∗ )𝑑𝑓 ∗

= 𝑘𝑡𝛿 +
2(𝛾𝜇𝑁 ‒ 𝑘𝑡𝛿)

3

𝑘𝑡𝛿
𝜇𝑁 ‒ 𝛾

3(1 ‒ 𝛾)
,  (𝛾𝜇𝑁

𝑘𝑡
< 𝛿 ≤

(3 ‒ 2𝛾)𝜇𝑁
𝑘𝑡 ).

(A.2)

485 When the relative displacement is larger than , all Jenkins elements are in slip state (3 ‒ 2𝛾)𝜇𝑁/𝑘𝑡

486 and the recovery force equals .𝜇𝑁

487

488 For the convex distribution, the critical sliding force falls within the range .  [(3 ‒ 2𝛾)𝜇𝑁,  𝛾𝜇𝑁]

489 When the relative displacement is lower than , the recovery force is (3 ‒ 2𝛾)𝜇𝑁/𝑘𝑡

𝑇(𝛿) = 𝑘𝑡𝛿,  (0 < 𝛿 ≤
(3 ‒ 2𝛾)𝜇𝑁

𝑘𝑡 ). (A.3)



490 When the relative displacement falls with the range , the recovery force is [(3 ‒ 2𝛾)𝜇𝑁/𝑘𝑡,  𝛾𝜇𝑁/𝑘𝑡]

𝑇(𝛿) = ∫𝑘𝑡𝛿

(3 ‒ 2𝛾)𝜇𝑁
𝑓 ∗ 𝜑(𝑓 ∗ )𝑑𝑓 ∗ + 𝑘𝑡𝛿∫𝛾𝜇𝑁

𝑘𝑡𝛿
𝜑(𝑓 ∗ )𝑑𝑓 ∗

= 𝜇𝑁 ‒
2(𝛾𝜇𝑁 ‒ 𝑘𝑡𝛿)

3

𝑘𝑡𝛿
𝜇𝑁 ‒ 𝛾

3(1 ‒ 𝛾)
,  ((3 ‒ 2𝛾)𝜇𝑁

𝑘𝑡
< 𝛿 ≤

𝛾𝜇𝑁
𝑘𝑡 ).

(A.4)

491 Similarly, when the relative displacement is larger than , the model is in gross slip state and  𝛾𝜇𝑁/𝑘𝑡

492 the recovery force equals . For cyclic loadings, the force-displacement relation can be obtained by  𝜇𝑁

493 Masing hypothesis.

494
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