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MODELING RATIONALITY TO CONTROL SELF-ORGANIZATION
OF CROWDS: AN ENVIRONMENTAL APPROACH∗

EMILIANO CRISTIANI† , FABIO S. PRIULI† , AND ANDREA TOSIN†

Abstract. In this paper we propose a classification of crowd models in built environments
based on the assumed pedestrian ability to foresee the movements of other walkers. At the same
time, we introduce a new family of macroscopic models, which make it possible to tune the degree of
predictiveness (i.e., rationality) of the individuals. By means of these models we describe both the
natural behavior of pedestrians, i.e., their expected behavior according to their real limited predictive
ability, and a target behavior, i.e., a particularly efficient behavior one would like them to assume
(for, e.g., logistic or safety reasons). Then we tackle a challenging shape optimization problem, which
consists in controlling the environment in such a way that the natural behavior is as close as possible
to the target one, thereby inducing pedestrians to behave more rationally than what they would
naturally do. We present numerical tests which elucidate the role of rational/predictive abilities and
show some promising results about the shape optimization problem.

Key words. Pedestrian dynamics, conservation laws, Hamilton-Jacobi-Bellman equations, min-
imum time problem, obstacles, shape optimization

AMS subject classifications. 35L65, 49N90, 49Q10, 91D10

1. Introduction. In this paper we are concerned with the modeling of a variety
of human behaviors in crowds, characterized by a different degree of pedestrian ability
to foresee and anticipate the movements of other walkers. In addition, we investigate
the possibility to induce pedestrians to unconsciously behave more rationally than
what they would consciously do.

Although the research in pedestrian modeling is relatively young, the literature
in this field is already large. This is probably due to the fact that many models are
inspired by the vehicular traffic literature, which has been deeply investigated for
decades. Basically all kinds of models have been proposed so far: Nanoscopic, mi-
croscopic, mesoscopic, macroscopic, multiscale, cellular automata, discrete choice, in
many variants: First-order, second-order, differential, non-differential, local, nonlocal,
with or without contact-avoidance features. A number of reviews are already avail-
able, see, e.g., [6, 19]. Concerning books, we mention [29], which develops macroscopic
models for the control of pedestrian behavior in connection with the implementation
of evacuation strategies, and [17], which investigates extensively the multiscale (micro-
scopic+macroscopic) model originally proposed in [15] and presents a detailed review
of the literature, including an accurate account of seminal papers.

Pedestrians are active particles, namely they are not passively prone to external
force fields like inert matter. They observe the surroundings and elaborate a walk-
ing strategy while moving. In many cases, they have a specific target and want to
reach it either in minimal time or while optimizing some other personal performance
criterion. The question is to what extent pedestrians are able to optimize their path
and anticipate the movements of the others. Let us describe five possible behaviors
in order of increasing degree of predictive ability, say of rationality :
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2 E. CRISTIANI, F. S. PRIULI, AND A. TOSIN

Irrational. This behavior is typical of panic situations. An irrational pedestrian
is unable to plan a path, moves faster than usual, changes direction more often, and is
attracted toward people who have a clear direction. Moreover, s/he is selfish, his/her
interactions become physical and coordinated movements are lost.

Basic. A basic pedestrian decides in advance his/her path on the basis of his/her
destination and of the knowledge of the environment. For instance, s/he may follow a
minimal time path if s/he knows well the environment from repeated past experiences
and wants to leave it as soon as possible. His/Her path might be more irregular if
his/her knowledge of the environment is limited or if s/he is unhurried. Once the
path has been decided, s/he can still stray from it because of the presence of other
walkers, but usually diversions are only temporary. This is the effect of short-range
interactions among pedestrians, who typically are repulsed by crowded regions and
want to avoid mutual collisions.

Rational. Besides basic collision-avoidance maneuvers, a rational pedestrian con-
tinuously reconsiders the performance of his/her path on the basis of the current
positions of all other walkers (and obstacles, if any) in the space.

Highly rational. A highly rational pedestrian is able to forecast with no errors the
movements of the others at any later time, and decides his/her path on the basis of
his/her destination and the position of the others at both current and later times. The
assumption that all pedestrians in a crowd are highly rational leads to a differential
game-type setup, where the collective evolution has to be computed as a whole. In this
case, it is convenient to resort to well-known concepts of differential games and mean
field games, such as Nash equilibrium strategies. If a Nash equilibrium is reached, no
pedestrian can find a better path if the others keep their choice. Then the situation
is somehow “stuck”, since no one finds it convenient to change unilaterally his/her
strategy. However, a Nash equilibrium does not represent, in general, the best choice
for the players among all the possible strategies.

Optimal. This behavior applies only to crowds and not to single individuals. An
optimal crowd moves in such a way that its global payoff (to be defined) is maximized.
Individuals in the crowd can agree to penalize their own gain in favor of the group.

Note that all the behaviors described above can be actually observed. For ex-
ample, pedestrians moving in a large unfamiliar environment are likely to behave
basically, while pedestrians moving in a small and well-known environment are likely
to behave rationally or highly rationally. Soldiers can instead behave optimally, if an
optimal strategy is imposed to them.

Most of the models available in the literature are for basic pedestrians. Let us
mention, among others, the models proposed in [1, 15, 23, 40]. Models for panicky
pedestrians are less studied; see, e.g., [21]. The most popular model for rational
pedestrians is the one by Hughes [26], which was widely investigated in the recent
years, see references in [17]. Regarding highly rational pedestrians, we mention the
models [24, 25] and, in the framework of stochastic mean-field games, [10, 30]. To our
knowledge, there are no models for optimal pedestrians.

A natural issue can be posed about the classification of pedestrian behaviors set
forth above: Is it really worth modeling more-than-rational pedestrians? Lachapelle
and Wolfram, while proposing a model for highly rational pedestrians, doubt it. Quot-
ing from [30]: “We assume that [...] every individual or agent knows and anticipates
the state of everybody through the distribution of the crowd. These assumptions are
probably wrong in the real world (except in routine crowd situations, say the daily way
towards the subway exit)”. Indeed, the more rationality is assumed the higher the
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risk of simulating an unrealistic behavior. In this paper we want to adopt a different
point of view: Rational models are not used to describe but rather to control reality.
More specifically, the goal of the paper is twofold:

Modeling. We introduce a new family of first-order macroscopic nonlocal funda-
mental-diagram-free models, which allow one to turn on or off pedestrian rationality
as well as to tune its degree. In this respect, it is important to note that current
models for rational and highly rational pedestrians do not allow one to weaken or
turn off the rationality. Conversely, in our model the rationality is modeled by an
additive component of the velocity field superimposed to an always-defined interaction
component, which allows one to turn rationality on or off at will.

Optimization. By means of the model just sketched, for any given situation we
can simulate both the natural behavior of pedestrians, i.e., the behavior they are
expected to assume in reality, and a target behavior, i.e., a desired behavior we would
like them to assume (related, e.g., to logistic or safety reasons). With both behaviors
defined, we can induce the first one to align with the second one. More precisely, we
can modify the environment by means of additional (controlled) obstacles in such a
way that the natural behavior in this new environment is as close as possible to the
target one. As a byproduct, we recover the well-known Braess’ paradox [8, 27], which
basically states that adding obstacles or constraints can improve global dynamics.

In order to contextualize and compare our results with the available literature, it
is useful to recall some papers where a shape optimization of the environment with
respect to some cost criterion has already been attempted. In the framework of mi-
croscopic models, we mention the papers [28, 37], where the optimal shape is achieved
by means of a simple genetic algorithm. Numerical tests recover to some extent the
Braess’ paradox, producing obstacles of various shapes which improve the outflow
rate of pedestrians. In the framework of macroscopic models, we mention instead pa-
per [39], where a first-order and a second-order Hughes-like model are investigated. In
particular, the authors find that the first-order model is not able to reproduce Braess’
paradox, arguing that it is basically insensitive to (small) obstacles. Our results are
not in contradiction with these ones since we reproduce the paradox using the basic
behavior, whereas the authors of [39] consider a model for rational pedestrians.

After this introduction, we can describe the organization of the paper: Section 2
presents our new class of models; Section 3 deals with the environment optimization;
Section 4 presents exploratory but realistic numerical tests; finally, Section 5 discusses
analytical issues and sketches possible perspectives of further research.

2. The models. The models we propose for pedestrian flows are first-order,
two-dimensional, macroscopic, and composed by three interconnected elements:

Small scale interactions. They describe short and medium-range influence of
nearby walkers on a generic representative individual. They take into account the
visual field of pedestrians and their sensory region [15, 17], namely a subset of the
visual field where the presence of other people actually affects the walking dynamics.

Large scale interactions and path planning. They describe how pedestrians choose
a path toward their destination according to their assumed predictive abilities (i.e.,
level of rationality).

Pedestrian-structure interactions. They describe the influence of the environment
on pedestrian movements. This includes structural elements, such as obstacles, access
or exit points.

The domain where pedestrians move, also called the walking area, is a bounded
set Ω ⊂ R2. Possible obstacles are understood as holes in it, thus Ω identifies directly
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the portion of plane actually accessible to pedestrians.
We denote the time variable by t, the space variable by x, and the spatial density of

the continuum representing the crowd by ρ = ρ(t, x). The total number of pedestrians
populating the walking area at time t is NP (t) =

∫
Ω
ρ(t, x) dx.

Crowd dynamics in Ω obey the mass conservation principle, which implies that
the density ρ satisfies

(2.1) ∂tρ+ div(ρv) = 0, ρ(0, ·) = ρ0,

for any t > 0 and x ∈ Ω, v = v(t, x) ∈ R2 being the macroscopic velocity of the crowd
and ρ0 its initial distribution. Since, as stated in the Introduction, pedestrians are
able to decide how to move by elaborating actively a behavioral strategy, we refrain
from invoking inertial principles for obtaining their velocity v (which would lead to a
second-order model). We prefer to adopt a first-order modeling approach, in which
pedestrian velocity is genuinely modeled by accounting for the superposition of two
basic contributions: On the one hand, the desire to reach a specific destination, such
as e.g., an exit point, which generates a behavioral velocity v∗b ; On the other hand,
the necessity to avoid crowded regions and collisions with other surrounding walkers,
which generates an interaction velocity vi. Hence the total velocity is written as

(2.2) v = v∗b + vi.

The interaction velocity vi is the component that pedestrians cannot control be-
cause it has to do with the effect produced by other walkers. In particular, it does
not stem from choices made by individuals but rather from external conditions the
latter undergo. The construction process will be studied in the next Section 2.1.

Instead, the behavioral velocity v∗b is the component that pedestrians can control
more directly, i.e., the one which they can effectively act on to implement their be-
havioral strategy. We have denoted it by an asterisk so as to convey the idea that
pedestrians try to choose it in a way that they perceive as optimal with respect to
some personal preference criterion. The construction process of v∗b will be studied in
detail in Section 2.2.

After being assembled as in (2.2), the total velocity v is finally corrected in order
to take into account constraints imposed by the environment, such as obstacle walls
or exit points, see Section 2.3.

Remark 2.1 (Turning off the rationality). Our model exhibits a clear separation
between the controlled and the uncontrolled part of the velocity field (2.2), making it
easy to turn on or off the rationality. This feature is also present in the microscopic
model for highly rational pedestrians [24] but not in other well-known macroscopic
models, such as e.g., [25, 26, 40].

2.1. Small scale interactions: Construction of vi. Following [15], we ex-
press vi in nonlocal form:

(2.3) vi = vi[ρ(t, ·)](x) =

∫
S(x)∩Ω

F(y − x)ρ(t, y) dy

in order to model the ability of pedestrians to scan their surroundings and react to
the distribution of other people therein. In particular, in (2.3):
• S(x) ⊂ R2 is the sensory region of the walker in x, i.e., the surrounding area within
which s/he is sensitive to the presence of other pedestrians. Usually S(x) is assimilated
to a circular sector of angular width α ∼ 170◦ – the visual angle, cf., e.g., [36] – while
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Fig. 2.1. The sensory region in the point x oriented according to the behavioral velocity v∗b .

its radius R – the sensory radius – can vary from a few to several meters depending
on the characteristic size of the environment under consideration. The orientation of
S(x) is usually defined by the instantaneous direction of the vector v∗b in the point
x, as illustrated in Fig. 2.1. This models the anisotropy of the interactions among
pedestrians, who are sensitive to what is “ahead” with respect to their target direction
of movement. In formulas:

S(x) =
{
y ∈ R2 : |y − x| ≤ R, (y − x) · v∗b (x) ≥ cos

α

2
|y − x| |v∗b (x)|

}
,

where · denotes the usual Euclidean inner product in R2;
• F : R2 → R2 models the reaction of an individual in x to another individual in y.
For collision avoidance purposes, such a reaction is a repulsion, which we model as
inversely proportional to the distance between the two individuals along the direction
connecting them. Defining r := y − x, we set F(r) = −Fr/ |r|2, where F > 0 is a
constant tuning the strength of the repulsion. As suggested in [16], a cut-off can be
applied to F in order to avoid the singularity at r = 0. Moreover, vi can be further
regularized near ∂S(x) by introducing a suitable regularization of the characteristic
function of S(x) in the integral (2.3).

Remark 2.2 (Fundamental-diagram-free model). We stress that the pedestrian
velocity (2.3) is not expressed as a function of the density by means of a fundamental
diagram, as it often happens in the literature, see e.g., [25, 26]. In our opinion this is a
merit of our model, considering that fundamental diagrams are clearly a legacy of one-
dimensional vehicular traffic models with no rigorous justification, from a kinematic
point of view, in the case of two-dimensional flows. Conversely, by modeling the
velocity field as in (2.2) with the nonlocal interaction term (2.3) we are introducing a
genuinely multidimensional model, which seems more natural for pedestrian flows.

2.2. Large scale interactions and path planning: Construction of v∗
b .

In order to model pedestrian rationality as described in the Introduction, we need a
mathematical tool able to capture the differences between basic, rational, and highly
rational behaviors. To this end we consider the behavioral velocity field as a control
function that each pedestrian chooses in a suitable set A.

In more detail, we fix a performance criterion C and assume that pedestrians
choose v∗b ∈ A so as to get the best outcome from the path they will follow, i.e. v∗b is
the C-optimal strategy. Without loss of generality, in the following we assume that the
maximal speed is normalized to 1, so that A can be defined as the set of measurable
control functions taking values in the closed unit ball B1(0) (state constraints will be
considered afterwards).

Given the crowd distribution ρ, individual pedestrians move according to the
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ordinary differential equation

(2.4) ẋ(t) = v∗b (t, x(t)) + vi[ρ(t, ·)](x(t)),

but in practice they might not have a clear picture of such dynamics. Thus, during
the process of choice of their control v∗b they might well be convinced to follow another
dynamics, in general different from (2.4), given by

(2.5) ẏ(t) = f(t, y, vb), vb(·) ∈ A,

which in the following will be referred to as “perceived dynamics”, due to their limited
ability to observe the surroundings and/or predict the behavior of other walkers in Ω.
The precise expression of the “perceived vector field” f is exactly what characterizes
the different degrees of rationality and will be discussed in detail in the following
sections. Here, it is important to stress that pedestrians do choose the field v∗b which
is C-optimal along the trajectories of (2.5) but which could be not as optimal when
the actual evolution (2.4) takes place.

The choice of the performance criterion C depends on the situation to be modeled.
To fix the ideas, we focus our attention on two different frameworks: Evacuation
problems and fixed horizon evolutions.

In evacuation problems we assume that pedestrians have a target Σ (= exits from
Ω) on the boundary ∂Ω of the domain, and that the cost criterion to be minimized is
given by the time needed to reach Σ from any initial position x ∈ Ω. This corresponds
to choosing1:

C(x, vb(·)) := min
{
t ≥ 0 : ∃ y(·) solution to ẏ(t) = f(t, y, vb) in [0, t] s.t.

y(0) = x, y(t) ∈ Σ
}
, x ∈ Ω, vb(·) ∈ A.

(2.6)

However, as pointed out in [14], evacuation problems ruled by the performance
criterion (2.6) are in some cases not enough to describe crowd behaviors observed in
real situations. Even if pedestrians have targets, and even if the density remains suffi-
ciently low in the whole domain so as to avoid deviations due to crowded regions, the
chosen paths are often not time-minimal. This suggests that the subjective perfor-
mance criterion actually adopted by pedestrians may be somehow different from (2.6)
and motivates us to consider also fixed horizon evolutions.

In fixed horizon evolutions pedestrian dynamics take place over a fixed time inter-
val [0, T ] and the performance criterion consists in a running cost, accounting for the
cost of a specific path, and an exit cost, accounting for the possible failure to reach
the target at time T . Namely, we consider

(2.7) C(t, x, vb(·)) :=

∫ T

t

`
(
y(σ), vb(σ)

)
dσ+g(y(T )), (t, x) ∈ [0, T ]×Ω, vb(·) ∈ A

where ` is a positive, continuous, and bounded running cost, g is a continuous and
bounded below exit cost, and y(·) is again a solution to ẏ(σ) = f(σ, y, vb) in [t, T ]
with initial datum y(t) = x. Notice that this formulation allows one to model also
unhurried pedestrians, for instance when their travel purpose is leisure or when their
goal is an appointment at a later time T .

For both frameworks (2.6), (2.7) we now describe how to choose the perceived
vector field f in (2.5) so as to model the basic, rational, and highly rational behaviors.
Moreover, we introduce a new family of hybrid models, still described in terms of
suitable perceived vector fields, where the rationality degree can be freely tuned.

1Here and henceforth solutions to (2.5) in [a, b] ⊂ R are understood in Carathéodory sense.
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2.2.1. Basic behavior. In case of basic behavior we simply assume that each
pedestrian chooses v∗b without considering what other walkers do in the meanwhile.
Hence an individual in x ∈ Ω at time t chooses his/her strategy v∗b only on the basis of
his/her knowledge of the walking area and of the chosen cost C, ignoring completely
the crowd distribution ρ. Formally, this implies that the control value v∗b is chosen so
as to be C-optimal when the perceived dynamics (2.5) are given by ẏ(t) = vb(t), with
vb(·) ∈ A and no interaction contribution.

When dealing with evacuation problems, the construction of v∗b can proceed as
follows. We define the value function of the problem as

(2.8) φ(x) := min
vb(·)∈A

C(x, vb(·)), x ∈ Ω,

where C was given in (2.6) with f(t, y, vb) = vb, and we assume for simplicity that
φ(x) < +∞ for all x ∈ Ω. Notice that φ(x) is nothing but the minimum time needed
to reach Σ from any initial position x ∈ Ω. Then, it is well known in control theory
that φ is a bounded uniformly continuous viscosity solution to the eikonal equation

(2.9) |∇φ(x)| − 1 = 0, x ∈ Ω with φ(x) = 0, x ∈ Σ

(we refer to [20, Sect. 8.4.5] for the correct treatment of the conditions on the boundary
∂Ω\Σ). After finding φ from (2.9), the optimal behavioral velocity field can be taken
in feedback form as

(2.10) v∗b (x) = − ∇φ(x)

|∇φ(x)|
, x ∈ Ω.

Notice that v∗b is time-independent coherently with the fact that pedestrians are in-
sensitive to the evolution of the crowd.

When dealing with fixed horizon evolutions, the procedure is similar. We define
the value function for the problem as

(2.11) φ(t, x) := min
vb(·)∈A

C(t, x, vb(·)), (t, x) ∈ [0, T ]× Ω,

where C was given in (2.7) with f(t, y, vb) = vb, and we rely on control theory to find
φ as the unique viscosity solution of the following Hamilton-Jacobi-Bellman (HJB)
equation on (0, T )× Ω:

(2.12) −∂tφ(t, x) + max
vb∈B1(0)

{−vb · ∇φ(t, x)− `(x, vb)} = 0

with final condition φ(T, x) = g(x) and suitable boundary conditions (see again [20]).
After finding φ from (2.12), the optimal behavioral velocity v∗b can be selected invoking
Pontryagin maximum principle (see [5]) by constructing a feedback control such that

(2.13) v∗b (t, x) ∈ arg max
vb∈B1(0)

{−vb · ∇φ(t, x)− `(x, vb)} ∀ (t, x) ∈ [0, T ]× Ω.

Remark 2.3. Observe that, even if the vector field v∗b is computed independently
of time or if it is assigned a priori, crowd dynamics do not reduce to plain movements
along the trails given by the integral curves of v∗b . Indeed the interaction term vi[ρ]
(cf. the previous Section 2.1) is still present in (2.2) and affects both the real dynam-
ics (2.4) and the continuity equation (2.1). This is an advantageous effect of the clear
separation between the controlled part (influenced by rationality) and the uncontrolled
part of the velocity field (2.2), already pointed out in Remark 2.1.
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2.2.2. Rational behavior. In case of rational behavior we assume that at a
fixed time τ ≥ 0 each pedestrian is aware of the distribution ρ(τ, ·) in Ω and wants
to use this information to choose the optimal path to his/her destination. Then,
treating τ as a fixed parameter, we assume that the perceived dynamics (2.5) for
rational pedestrian are given by

ẏ(t) = vb(t) + vi[ρ(τ, ·)](y(t)), vb(·) ∈ A.

The nonlocal vector field vi, defined in (2.3), does not depend on time in this case,
because the density acknowledged by pedestrians is “frozen” at time τ . Hence the
individuals can adopt the same construction as before for the feedback strategy x 7→
v∗b (τ, x) in Ω, with minor adaptations. Finally, we require rational pedestrians to
solve (2.1)–(2.2) by repeating at each time t = τ such a construction of v∗b (τ, ·).

For completeness, we now sketch the precise construction of C-optimal strategies
v∗b in the two scenarios we are interested in. With respect to the basic behavior, the
main difference is that now the criterion C depends also on the fixed parameter τ ≥ 0.

In the case of evacuation problems, the cost becomes

C
(
x, vb(·); τ, ρ(τ, ·)

)
:=min

{
t ≥ τ : ∃ y(·) solution to ẏ(t) = vb + vi[ρ(τ, ·)](y) in

[τ, t] s.t. y(τ) = x, y(t) ∈ Σ
}
, x ∈ Ω, vb(·) ∈ A.

Defining the value function φ(x) = φτ (x) as in (2.8), and still assuming that φτ (x) <
+∞ in Ω, we can find φ as a bounded uniformly continuous viscosity solution to:

(2.14) |∇φτ (x)| − vi[ρ(τ, ·)](x) · ∇φτ (x)− 1 = 0, x ∈ Ω

with boundary conditions φτ = 0 on Σ. After finding φτ from (2.14), the C-optimal
feedback can be chosen as

v∗b (τ, x) = − ∇φτ (x)

|∇φτ (x)|
, x ∈ Ω,

which is completely analogous to (2.10). Notice that, at fixed τ ≥ 0, the HJB equa-
tion (2.14) is independent of the continuity equation (2.1)–(2.2) because the vector
field x 7→ vi[ρ(τ, ·)](x), thus also the optimization procedure used to compute v∗b , does
not require the knowledge of ρ at any time t 6= τ .

In the case of fixed horizon problems, the situation is completely analogous. We
treat τ as a parameter and define, for (t, x) ∈ [τ, T ] × Ω, both a cost functional
analogous to (2.7) and a value function φ(t, x) = φτ (t, x) analogous to (2.11). Then
φτ can be computed by solving in (τ, T )× Ω the HJB equation

(2.15) −∂tφτ (t, x) + max
vb∈B1(0)

{− (vb + vi[ρ(τ, ·)](x)) · ∇φτ (t, x)− `(x, vb)} = 0,

with terminal condition φτ (T, x) = g(x). Once again, this equation is independent of
the continuity equation. Finally, v∗b (τ, ·) is selected, like in (2.13), among the values
that realize the maximum of the Hamiltonian in (2.15) at time t = τ .

2.2.3. Highly rational behavior. The procedure described in the previous
section for rational pedestrians basically states that individuals, when choosing v∗b
at a certain time t, merely react to the crowd distribution at that precise moment.
Therefore, even if they continuously adapt their strategies in time, the resulting be-
havior is not globally optimal. In other words, rational pedestrians make choices that
can be good instantaneously but not really rewarding in the long run.
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In order to introduce predictive abilities in our model, we have to choose ap-
propriately the perceived vector field (2.5). Different choices are required in the two
scenarios we focus on. For fixed horizon problems, we assume that pedestrians are
aware of the crowd distribution ρ in the whole time-space [0, T ] × Ω, namely that
they seek a global optimum in both space and time. This will lead us naturally to
Nash equilibria and mean field games. Conversely, for evacuation problems we need to
extend the minimum time problem, which is intrinsically autonomous, to time-space
settings, see, e.g., [7]. Let us discuss separately the details for the two cases.

Fixed horizon problems. In this case we assume that pedestrians are able to pre-
dict exactly the evolution of the density ρ during the whole time horizon [0, T ] where
crowd dynamics take place. In other words, we assume that they can assess the long
term effect of their choices on the other walkers and that they choose accordingly the
strategy (t, x) ∈ [0, T ]×Ω 7→ v∗b (t, x) so as to get their best outcome at time T . With
this behavior we are thus describing perceived dynamics (2.5) of the form

ẏ(t) = vb(t) + vi[ρ(t, ·)](y(t)), vb(·) ∈ A,

where the interaction velocity field has now to be regarded as a function of time and
space because ρ is not “frozen” as it is in the rational behavior. Note that, in this
case, once the optimal behavioral velocity is taken the perceived and the real dynamics
coincide. As a cost functional we consider C(t, x, vb(·)) = C(t, x, vb(·) ; ρ(·, ·)) of the
form (2.7) and assume that pedestrians construct the C-optimal feedback v∗b along the
lines of the previous cases. They solve an HJB equation for the value function (2.12),
which takes the form:

(2.16) −∂tφ(t, x) + max
vb∈B1(0)

{−(vb + vi[ρ(t, ·)](x)) · ∇φ(t, x)− `(x, vb)} = 0,

equipped with the final condition φ(T, x) = g(x). After finding φ from (2.16), the
optimal feedback control v∗b (t, x) is recovered like in (2.13). Notice that this time
the HJB equation is coupled to the continuity equation (2.1)–(2.2), because the op-
timization procedure used to compute v∗b requires the knowledge of ρ at all times.
Therefore modeling the highly rational behavior implies dealing with the following
forward-backward system of PDEs:

(2.17)



∂tρ(t, x) + div
((
v∗b (t, x) + vi[ρ(t, ·)](x)

)
ρ(t, x)

)
= 0

−∂tφ(t, x) + max
vb∈B1(0)

{−(vb + vi[ρ(t, ·)](x)) · ∇φ(t, x)− `(x, vb)} = 0

v∗b (t, x) ∈ arg max
vb∈B1(0)

{−(vb + vi[ρ(t, ·)](x)) · ∇φ(t, x)− `(x, vb)}

with initial condition ρ(0, ·) = ρ0 and final condition φ(T, ·) = g in Ω. The system is
fully coupled because of the presence of the whole density ρ in the second equation as
well as of v∗b in the first one.

Mathematically, such a system can be interpreted as a first-order mean field game
along the lines of [31], see also [12]. This allows us to justify rigorously the choice of
the terminology “highly rational” for describing such a behavior. Indeed, a solution
pair (ρ, φ), when it exists, represents the crowd distribution and the corresponding
performance outcome for pedestrians who reach a Nash equilibrium among themselves.
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Evacuation problems. In this case we need to recast the problem in a time-space
domain, so as to be able to include the evolution of the density ρ into the problem,
with minor modifications to the equations themselves. To this end, we define the
time-space domain and the time-space target by setting Ω′ := {t > 0} × Ω and
Σ′ := {t ≥ 0} × Σ. We also extend the velocity field as

v′(t, x) :=

(
1

v(t, x)

)
=

(
1

vb(t) + vi[ρ(t, ·)](x)

)
, (t, x) ∈ Ω′, vb(·) ∈ A,

and we assume that the perceived dynamics for the new variable z ∈ Ω′ are given by

(2.18) ż(s) = v′(z(s)).

In other words, the time variable is seen as an additional space variable and a fictitious
time s is used to move pedestrians in the time-space. Note that pedestrians move in
time with fixed speed 1, namely they are passively carried toward the future (time
traveling will be attacked in a forthcoming paper). To complete the description of the
behavior, we assume that highly rational pedestrians choose v∗b by solving an ordinary
minimum time problem on Ω′ with target Σ′. Since advection in time is not controlled,
any optimal control for this extended problem corresponds to a time-optimal control
in Ω with target Σ.

With respect to the case of rational pedestrians, the main difference is that here
the whole evolution of ρ in Ω′ is needed for the construction of v∗b . Let us define

C(t, x, vb(·); ρ(·, ·)) :=min
{
s ≥ 0 : ∃ z(·) solution to (2.18) in [0, s] s.t.

z(0) = (t, x), z(s) ∈ Σ′
}
, (t, x) ∈ Ω′, vb(·) ∈ A

and the corresponding value function like in (2.11). The associated HJB equation is
given by

(2.19) max
vb∈B1(0)

{− (1, vb + vi[ρ(t, ·)](x)) · ∇t,xφ(t, x)− 1} = 0, (t, x) ∈ Ω′ \ Σ′,

with boundary conditions φ(t, x) = 0 on Σ′, ∇t,x denoting the gradient w.r.t. both
time and space variables. After finding φ from (2.19), the optimal feedback control
v∗b (t, x) can be chosen as usual among the values which realize the maximum in (2.19).
Consequently, modeling the highly rational behavior requires solving the following
forward-backward system of PDEs:

(2.20)



∂tρ(t, x) + div
((
v∗b (t, x) + vi[ρ(t, ·)](x)

)
ρ(t, x)

)
= 0

max
vb∈B1(0)

{− (1, vb + vi[ρ(t, ·)](x)) · ∇t,xφ(t, x)− 1} = 0

v∗b (t, x) ∈ arg max
vb∈B1(0)

{− (1, vb + vi[ρ(t, ·)](x)) · ∇t,xφ(t, x)− 1}

for t > 0, x ∈ Ω, with initial condition ρ(0, ·) = ρ0 in Ω and boundary condition
φ(t, x) = 0 on Σ′. The second equation in (2.20) is said to be backward because
characteristic curves flow backward in time, from the future to the past. Note that,
like in the case of system (2.17), system (2.20) is fully coupled.
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2.2.4. θ-rational behavior. Using the machinery introduced above, we can
also define hybrid behaviors between the rational and the highly rational ones in both
scenarios we are interested in. To this end, let us introduce a new parameter θ, which
is taken in [0, T ] for fixed horizon problems and in [0,+∞) for evacuation problems.
Such a parameter serves to span the whole family of behaviors, from the rational one,
corresponding to θ = 0, to the highly rational one, corresponding to θ = T (resp.,
θ → +∞) if the finite horizon cost (2.7) (resp., the minimum time cost (2.6)) is
employed.

In more detail, we define the θ-rational behavior by assuming that pedestrians do
have predictive abilities however limited in time, in particular extending only up to
a time θ in the future. To set the model, we adopt a strategy similar to the one we
used for rational pedestrians. Namely, we prescribe a procedure for constructing the
feedback v∗b (τ, ·) in Ω at any fixed time τ ≥ 0, then for every time t we repeat the
process with τ = t.

Thus, fixing any time τ , we do not only assume that pedestrians are aware of the
current density distribution ρ(τ, ·) in Ω but also that they can forecast the evolution
of ρ up to time τ + θ. In other words, we assume that pedestrians are aware of the
distribution ρθτ : [τ, τ + θ] × Ω → R resulting from (2.1) with initial datum ρ(τ, ·) at
time t = τ and that they prolong it by setting ρθτ (t, x) := ρθτ (τ+θ, x) for every t > τ+θ
and x ∈ Ω. Using such an auxiliary density ρθτ : [τ,+∞)× Ω→ R, pedestrians adopt
the following perceived dynamics (2.5):

ẏ(t) = vb(t) + vi[ρ
θ
τ (t, ·)](y(t)), t > τ, vb(·) ∈ A,

which they use to choose the behavioral field v∗,θb entering in turn the equation for ρθτ .
The model construction is analogous to that performed for highly rational pedestrians
and finally leads to a fully coupled system very similar to (2.17) (resp., (2.20)) but
defined on the time interval [τ, T ] (resp., [τ,+∞)) instead of [0, T ] (resp., [0,+∞))
and featuring a continuity equation for the auxiliary density ρθτ rather than for ρ.
For brevity we provide details only for the evacuation problem, the fixed horizon
problem being completely analogous. In this case, by defining Ω′τ := {t > τ}×Ω and
Σ′τ := {t ≥ τ} × Σ, we obtain the following system of PDEs:
(2.21)

∂tρ
θ
τ + div

(
ρθτ (v∗,θb + vi[ρ

θ
τ ])
)

= 0 in (τ, τ + θ)× Ω

max
vb∈B1(0)

{
−
(
1, vb + vi[ρ

θ
τ (t, ·)](x)

)
· ∇t,xφθτ (t, x)− 1

}
= 0 in Ω′τ

v∗,θb (t, x) ∈ arg max
vb∈B1(0)

{
−
(
1, vb + vi[ρ

θ
τ (t, ·)](x)

)
· ∇t,xφθτ (t, x)− 1

}
in Ω′τ

with additionally ρθτ (t, x) = ρθτ (τ + θ, x) in {t ≥ τ + θ}×Ω, to extend ρθτ to the whole
domain Ω′τ , and conditions ρθτ (τ, x) = ρ(τ, x) in Ω and φθτ (t, x) = 0 in Σ′τ for the
forward-backward equations.

Whenever a solution pair (ρθτ , φ
θ
τ ) to (2.21) is found, the feedback (t, x) 7→ v∗,θb (t, x)

is defined for all (t, x) ∈ [τ,+∞)×Ω and we can just set v∗b (τ, x) = v∗,θb (τ, x) for x ∈ Ω.
The process is then repeated for every time t, with τ = t.

2.3. Pedestrian-structure interactions. The influence of structural elements,
mainly obstacles, on pedestrian behavior is modeled in terms of boundary conditions
for the total velocity v = v∗b + vi. We recall that obstacles are understood as holes of
Ω, therefore their edges are inner boundaries of the domain. Denoting by n = n(x) an
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outer normal vector to ∂Ω in the point x, we impose the “impermeability” condition:

(2.22) v · n ≤ 0,

meaning that the total velocity given by (2.2) has to be corrected near an obstacle
or near the outer boundary of Ω so that the crowd scrapes against the walls without
penetrating them. In the case of a piecewise regular boundary ∂Ω, we require (2.22)
to hold for all vectors n in the (Bouligand) tangent cone to Ω in the point x ∈ ∂Ω.

On the whole, what we do technically is to project the velocity field (2.2) onto the
space of admissible fields, which are precisely those fulfilling (2.22) on ∂Ω. With this
choice, the domain is viable, i.e., any pedestrian trajectory starting from Ω remains
in Ω for positive times and cannot cross any portion of the boundary ∂Ω.

2.4. Nondimensionalization of the equations. It is useful to rewrite model
(2.1)–(2.3) in dimensionless form so as to work with equations which are independent
of the orders of magnitude of the physical variables. Some of such variables indeed
vary from case to case (for instance the size of the domain and the sensitivity radius),
while dimensionless equations can be implemented and solved always in the same
manner, converting back dimensionless to dimensional results a posteriori.

Let L, V , % be characteristic values of length, speed, and density, whence we
deduce also the characteristic time L/V . For instance, the engineering literature in-
dicates that pedestrians in normal conditions (i.e., no panic) walk at V = O(1 m/s),
which corresponds to a packing % = O(1 ped/m2). We introduce the following dimen-
sionless variables, functions, and parameters:

x̃ =
x

L
, t̃ =

V

L
t, ṽ(t̃, x̃) =

1

V
v

(
L

V
t̃, Lx̃

)
, ρ̃(t̃, x̃) =

1

%
ρ

(
L

V
t̃, Lx̃

)
, F̃ =

F%L

V

to discover that (2.1) becomes ∂t̃ρ̃ + d̃iv(ρ̃ṽ) = 0, where d̃iv denotes the divergence
operator with respect to x̃. Moreover, from (2.2)–(2.3) we get

ṽ(t̃, x̃) = ṽ∗b (t̃, x̃) +

∫
S̃(x̃)∩Ω̃

F̃(ỹ − x̃)ρ̃(t̃, ỹ) dỹ,

where F̃(r̃) = −F̃ r̃/ |r̃|2, and S̃(x̃) = 1
LS(Lx̃) and Ω̃ = 1

LΩ are the dimensionless
L-homothetic versions of the sensory region and the walking area, respectively.

In the rest of the paper we will always consider the equations in their dimensionless
form, but to avoid unnecessarily heavy notations we will drop the symbol˜over the
dimensionless variables.

2.5. Numerical approximation. The conservation law (2.1) is discretized by
means of the scheme firstly proposed in [34] and then used extensively in [15, 16, 17].
It is a truly two-dimensional first-order reasonably fast conservative scheme, which
has been proved to converge to a weak solution of (2.1), see [33, 38], and to describe
adequately the main features of pedestrian flow, including merging and splitting,
although it exhibits a non-negligible numerical diffusion (its one-dimensional version
coincides with the classical upwind scheme).

The HJB equations (2.9) and (2.14) are discretized by means of an iterative first-
order semi-Lagrangian scheme. The interested reader can find a complete introduction
to the topic in the recent book [20] (see also [5]). The scheme used here is described
(with complete references) in [11]. The unit ball B1(0) is discretized with 32 points, all
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placed on the boundary. The reconstruction of the values of the solution at non-mesh
points is obtained by means of a three-point linear interpolation. The Fast Sweeping
technique (see again [11] for explanations and references) is used to speed up the
convergence. The HJB equation (2.19) is discretized by means of a generalization of
the scheme used for (2.14), extending both the grid and the interpolation to the time
dimension, cf. [13].

For all equations the space domain is discretized by means of a structured grid
with 100× 100 nodes.

3. Environment optimization. After modeling the various pedestrian behav-
iors, we can use them to control the movement of the crowd, steering the dynamics
toward a desired behavior. To this end, we have to define the natural behavior of
pedestrians, i.e., the behavior they are expected to assume in reality, and a target
behavior, i.e., a desired behavior we would like them to assume, which is considered
optimal with respect to some given criterion. The natural behavior will be typically
the irrational/basic/rational one, while the target behavior will be typically the ratio-
nal/highly rational/optimal one. Correspondingly, for t > 0 and x ∈ Ω, we denote by
ρn(t, x) (resp., ρt(t, x)) the density evolution according to the natural (resp., target)
behavior.

3.1. Main ingredients. The two main ingredients of the environment opti-
mization problem are the environmental control and the environmental cost. They
are defined as follows.

The environmental control. We assume that one can introduce in the domain
additional obstacles denoted by Oλ, where λ ∈ RNO for some NO ∈ N is any minimal
set of parameters which determines univocally these obstacles. Thus, the spatial
domain that pedestrians can actually access is Ω\Oλ. Note that the set of parameters
will be in general constrained, hence we will have λ ∈ Λ ⊂ RNO for a suitable set
Λ of admissible parameters. Constraints can be dictated by either modeling needs
(e.g., the fact that obstacles be completely contained in Ω), compatibility conditions
(such as, e.g., excluding obstacles overlapping with the initial crowd distribution ρ0),
or practical convenience (e.g., too large obstacles might not be desirable). In the
following, we will say that an obstacle Oλ is admissible if λ ∈ Λ.

The environmental cost. By varying λ in Λ we modify the environment in such a
way that the natural behavior in the new controlled environment is as close as possible
to the target one in the original environment. For any t > 0 and x ∈ Ω \ Oλ, let
ρn,λ(t, x) be the density evolution according to the natural behavior in the controlled
environment. The cost criterion ∆(λ), used to measure the distance between the two
behaviors, and to be minimized, can be defined in several ways. Here we list three of
them.
1. We define the evacuation time according to the controlled natural behavior as

(3.1) tn,λevac := min{t > 0 : ρn,λ(t, x) = 0 ∀x ∈ Ω \ Oλ},

and the evacuation time according to the target behavior as

(3.2) ttevac := min{t > 0 : ρt(t, x) = 0 ∀x ∈ Ω}.

Then we define ∆1 to be the difference between the two evacuation times, i.e.,

(3.3) ∆1(λ) :=
∣∣tn,λevac − ttevac

∣∣ .
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2. Let e1, e2, . . . , eNe
be the exits of the domain, whose total number is Ne, and P (ek)

the number of pedestrians leaving the domain through the exit ek, for k = 1, . . . , Ne.
We introduce the vector Pe :=

(
P (e1), P (e2), . . . , P (eNE

)
)

and define ∆2 as

(3.4) ∆2(λ) :=
∥∥(P n,λ

e )− (P t
e )
∥∥
RNe

,

where, as before, the superscripts denote the considered behavior.
3. We define ∆3 to be the difference between the maximum densities observed in the
controlled natural and the target behavior, i.e.

(3.5) ∆3(λ) :=
∣∣max
t,x

ρn,λ(t, x)−max
t,x

ρt(t, x)
∣∣.

Note the the maximum density is strictly related to pedestrian compression, which,
in turn, is often responsible for injuries or death [22].

In all of the cases above we aim at finding a minimizer λ∗ such that

(3.6) ∆(λ∗) = min
λ∈Λ

∆(λ)

along with the corresponding optimally controlled natural behavior ρn,λ∗(t, x).
Remark 3.1. Let us stress that the result of any environment optimization is

necessarily affected by both the domain Ω itself and the initial crowd distribution ρ0.
This is possibly the main limitation of the proposed crowd control approach. However,
we believe that when the walking freedom is limited, as in structured environments like
theaters or stadiums, controlling crowds by mean of environmental design can provide
an effective improvement for the cost criteria ∆ described above.

3.2. Minimum search. Solving problem (3.6) is a hard task. Analytical meth-
ods based on the computation of shape derivatives are not applicable here, due to
the complexity of the problem and to the limited stability results available in the
context of multidimensional conservation laws. Moreover, as we will see in Section 4,
the environmental value function ∆ is far from being differentiable, therefore methods
based on the (numerical) evaluation of its gradient should be discarded. Among the
derivative-free methods, we consider two options.

Exhaustive method. We define Λ̄ to be a discrete finite approximation of the set of
admissible parameters Λ and we simply evaluate the function ∆ for any λ ∈ Λ̄. This
approach can be pursued only if the dimension of Λ is low, say at most 2. In Section 4
we will consider the case of a single controlled obstacle with rectangular shape and
fixed sides, described by means of the coordinates of its barycenter, which we denote
by (xO, yO). This way we have Λ ⊂ Ω ⊂ R2. Then we compute ∆ on the same grid
used for approximating the density ρ, except for some additional constraints related
to the admissibility of the obstacle. Namely, we impose that the controlled obstacle
can neither overlap the initial pedestrian distribution ρ0 nor overhang the boundaries
of the domain. We also require it to not completely clog the entrance or the exit, if
only one of them is present.

Modified compass search. Starting from some initial guess λ0, this method gen-
erates a sequence {λ1, λ2, . . .} converging to a (local) minimum of ∆. The controlled
obstacle Oλ is moved in consequence of small random variations of the current value of
λ. If the variation is advantageous, i.e., if ∆ decreases, the variation is kept, otherwise
it is discarded. In Section 4 we will consider again the case of a single rectangular
obstacle, but with variable sides. Namely, the control parameters are given by the
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Fig. 4.1. Density evolution in case of basic behavior.

barycenter of the rectangle plus the length of its two sides, hence Λ ⊂ Ω× R2
+ ⊆ R4.

As a consequence, variations of the parameter λ imply displacements of the obstacle in
Ω and/or changes of its size. The same admissibility constraints as above are imposed
on the obstacles Oλ. In order to select a new value of λ, we first extract a random
integer p ∈ {1, 2, 3, 4, 5}, then we randomly apply one of the following 8 rules:
R1.–4. Move the obstacle p cells rightward/leftward/upward/downward;
R5.–6. Stretch/shrink the obstacle of 2p cells horizontally;
R7.–8. Stretch/shrink the obstacle of 2p cells vertically;

On the whole, we consider 5×8 = 40 rules. Furthermore, in order to avoid remaining
trapped in local minima, we complement the above rules with the simulated annealing
technique.

4. Numerical tests. In this section we compare the evacuation (minimum time)
problem for basic, rational, and highly rational behaviors by means of some numerical
experiments. Then, we face the challenging shape optimization problem.

Note that all parameters used in the simulations are meant to be realistic but
exploratory. In particular, they do not stem from any real measurement. Moreover,
we consider here crowded but not panic situations.

In all figures, exits are colored in red, entrances (if any) in black, fixed obsta-
cles (i.e., obstacles possibly already present in the domain independently of the con-
trol/optimization procedure) in dark gray, and controlled obstacles (i.e., obstacles
purposely added for control) in yellow. Pedestrian density ranges from light green,
corresponding to low crowding, to dark blue, corresponding to high crowding.

4.1. Basic, rational, and highly rational behaviors. In order to compare
the basic and rational behaviors, we consider a square room with ten exits on the
upper side separated by pillars. The area of the domain is 50 × 50 m2. We set
α = 170◦, R = 1.5 m, and F = 8 m2/s. At the initial time, a density corresponding
to NP = 43 pedestrians is in the room.

Figure 4.1 shows the basic behavior of the crowd. The group, initially arranged
in a rectangular formation, points toward the nearest two exits (namely, e4 and e5),
regardless of the fact that this choice will surely cause a congestion near them.

Figure 4.2 shows instead the rational behavior of the crowd. In this case the
group spreads out immediately, because people tend to avoid congested paths. After
a while, two groups of people find it convenient to reach the exits e3 and e6, the way
to them being completely clear. Once exits e3 and e6 become congested, two other
groups split, that point toward exits e2 and e7.

Three main differences are worth being noted between the two behaviors, see
also Table 4.1: First, basically behaved pedestrians use two exits, rationally behaved
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Fig. 4.2. Density evolution in case of rational behavior.

Table 4.1
Comparison between basic and rational behavior

Behavior Used exits tevac [s] ρmax [ped/m2]

Basic 2 44.55 1.93
Rational 6 40.95 0.80
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Fig. 4.3. Density evolution in case of rational behavior.

ones use six exits. Second, the evacuation time slightly decreases in the rational case,
because the splitting of the crowd turns out to be advantageous. Third, the maximal
density is higher in the basic case, because of the congestion at exits e4 and e5.

In order to compare the rational and highly rational behaviors we consider a
room with no obstacles and two exits on the lower wall. The area of the domain is
50 × 25 m2. We set α = 170◦, R = 1.5 m, and F = 8 m2/s. At the initial time two
groups of pedestrians are in the room, precisely Group 1 (NP = 15 people) located
at the bottom and Group 2 (NP = 25 people) located along the right wall.

Figure 4.3 shows the rational behavior of the crowd. Most pedestrians point
immediately toward the right exit, which is the nearest one. A small amount of
people from Group 1 walk instead leftward, finding the way between them and the
right exit too congested, hence not convenient. In this case people are not assumed
to be able to foresee the evolution of the crowd at future times, therefore they cannot
predict the congestion which will inevitably form near the right exit.

Figure 4.4 shows instead the highly rational behavior of the crowd. Group 1
splits immediately, about half of it pointing leftward. In this case people foresee the
future congestion at the right exit and take countermeasures. Note also the different
behaviors of the two subgroups of Group 1. The one moving to the left naturally
points toward the left exit, while the other one reaches the right exit from above,
sharing the exit with Group 2. The latter, in turn, reaches the exit flattened to the
wall. In conclusions, in this case the flows through the two exits are quite balanced.

An improvement in the evacuation time is also observed: 32.5 s for highly rational
pedestrians and 36 s for rational pedestrians.
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Fig. 4.4. Density evolution in case of highly rational behavior.
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4.2. Environment optimization. Here we consider again the evacuation prob-
lem and, from now on, we assume that the natural behavior coincides with the basic
one, while the target behavior coincides with the rational one. Of course, other com-
binations are possible. Nevertheless, we believe that considering these two behaviors
is well representative of the main modeling ideas of the paper while allowing us to
avoid excessively demanding numerical computations.

4.2.1. Room with a fixed obstacle. In this test we consider a square room
with one entrance, two exits, and one fixed obstacle. The overall area of the room is
50 × 50 m2, while the dimension of the obstacle is 7.5 × 17 m2. We set α = 170◦,
R = 1.5 m, and F = 8 m2/s. Pedestrians enter the room continuously for 25 s at a
rate of 3.5 ped/s.

We first compute the natural and target behaviors, then we test the effect on the
dynamics of an additional controlled obstacle with fixed shape, running an exhaustive
optimum search. Finally, we use the compass search to find the best shape of the
controlled obstacle.

Figure 4.5 shows the natural behavior of the crowd. People point toward the
upper exit e1 on the right wall of the domain. While passing by the fixed obstacle
pedestrians slow down a bit, because their mutual repulsion pushes some of them
against the wall.

Figure 4.6 shows instead the target behavior of the crowd. Similarly to the case
of the natural behavior, pedestrians point initially to the upper exit e1. After a
while, however, the group splits, because some individuals find it more convenient
to reach the lower exit e2, the way to it being completely clear. In conclusion, the
space occupancy turns out to be more balanced. The group splitting is even better
understood looking at the behavioral velocity field v∗b . Figure 4.7 shows both v∗b for
the natural behavior (which coincides with v∗b for the target behavior at the initial
time) and v∗b for the target behavior at a later time. A discontinuity line in the
velocity field is clearly visible, which coincides with the curve of nondifferentiability
of the minimum time function φ. Such a line divides the domain in two regions:
Above the line it is more convenient to point to the upper exit e1, below the line it
is instead more convenient to point to the lower exit e2. Along the discontinuity line
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Table 4.2
Comparison between pedestrian behaviors.

Behavior Used exits tevac [s] ρmax [ped/m2]

Natural 1 120.60 3.35
Target 2 95.85 2.37
Controlled natural 2 99.00 2.24

either optimal path toward e1 or e2 can be indifferently chosen.

The differences between the natural and target behaviors are summarized in the
first two rows of Table 4.2. In this test we observe a larger difference between the
two evacuation times, due to the fact that the congestion forming near the upper
wall of the obstacle slows down considerably the naturally behaved pedestrians. The
maximal density is also different, being lower in the target case for the same reason.

Let us now try to make pedestrians behave more rationally than they usually do.
We choose the evacuation time as the cost criterion for the environment optimization,
i.e., the environmental cost function is ∆1 defined in (3.3). We consider first the
exhaustive method described in Section 3.2, with a square-shaped controlled obstacle
of fixed area 5 × 5 m2, and we denote the coordinates of its barycenter by (xO, yO).
Then, for any admissible position of this obstacle we compute the controlled natural
evacuation time, see (3.1).

Figure 4.8 shows the function ∆1(xO, yO), which gives the distance between the
controlled natural behavior and the target one. We immediately see that ∆1 is con-
stant (and equal to tnevac − ttevac=120.60 s - 95.85 s = 24.75 s, cf. Table 4.2) in a large
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Fig. 4.9. A manually-tuned initial guess for the controlled obstacle (left), and the corresponding
natural behavior (right).

part of the domain, since there the obstacle is noninfluential. For instance, obstacle
locations close to the bottom wall of the room are well outside the crowd path. Con-
versely, locations along the path joining the entrance and the upper exit e1 heavily
affect the dynamics, see the “grand canyon”. On the top of the fixed obstacle, a high
“wall” is visible, meaning that pedestrians are notably slowed down by obstacles in
those positions, because only narrow passages remain open for walking. By looking
at ∆1 from below, we clearly see one local minimum (to the left of the fixed obstacle)
and one global minimum (to the right of the fixed obstacle).

We now run the compass search method described in Section 3.2. Inspired by
the function ∆1, we choose the controlled obstacle depicted in Fig. 4.9-left as initial
guess for the descent. It is close to the global minimum but not exactly on it, and it
is rectangular. The evacuation time in case of natural behavior with this additional
obstacle is 125.55 s, higher than the purely natural one, see Table 4.2. As shown in
Fig. 4.9-right, such a controlled obstacle is able to split the group of pedestrians but
does not improve the evacuation time, because of the high congestion which forms on
the top of the obstacle and at the upper exit.

Starting from such an initial guess, the compass search converges to a new con-
trolled obstacle which is quite different in both shape and size, see Fig. 4.10-left. The
position of the optimized obstacle is strategical: the obstacle turns out to be able to
split the group in three parts, in such a way that pedestrians use both exits e1, e2

giving rise to a lower congestion in front of them. A screenshot of the dynamics is
shown in Fig. 4.10-right. The evacuation time in case of such a controlled natural
behavior is 99 s (cf. the third row of Table 4.2), which is rather close to the target
one. This is one of the most interesting results of the paper which also reproduces,
as a byproduct, the Braess’ paradox.
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Fig. 4.11. Density evolution in case of natural behavior. Click on the image to see the simulation.
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Fig. 4.12. Density evolution in case of target behavior. Click on the image to see the simulation.

4.2.2. “Sapienza” campus. In this test we consider a simplified reproduction
of the campus area of “Sapienza” University of Rome with seven exits. The area of
the domain is 450× 450 m2. We set α = 170◦, R = 13.5 m, and F = 12 m2/s. At the
initial time, NP = 3500 pedestrians are in the campus.

Figure 4.11 shows the natural behavior of the crowd in the predefined structural
arrangement of the campus. The group immediately splits in two parts, forming an
important congestion around one corner of the building placed near exit e1. At the
end, people actually use only exits e1 and e4 for their evacuation.

Figure 4.12 shows instead the target behavior of the crowd. This time pedestrians
split in three groups, since people in the bottom part of the initial formation are able
to estimate the slowing effect produced by the rest of the mass. After a while, the exit
e1 becomes congested and some individuals split again, pointing toward exit e7. At
the end, people actually use exits e1, e3, e4, and e7, the other exits being completely
unused. The differences between these behaviors are summarized in the first two rows

http://www.emiliano.cristiani.name/attach/Sapienza_paper_irraz.avi
http://www.emiliano.cristiani.name/attach/Sapienza_paper_raz.avi
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Table 4.3
Comparison between pedestrian behaviors.

Behavior
Used tevac ρmax % e1 % e3 % e4 % e7exits [s] [ped/m2]

Natural 2 599.40 2.87 92.40 0.00 7.60 0.00
Target 4 429.30 1.58 60.95 9.47 14.88 14.70
Controlled natural 4 571.05 2.21 59.95 12.48 18.23 9.34
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Fig. 4.13. The function ∆2(xO, yO) (left), zoom around the downward spikes (right).

of Table 4.3, which also reports the percentages of pedestrians choosing each exit.

In order to tackle the environment optimization, in this case we choose the pedes-
trian distribution at the exits as a cost criterion, namely the environmental cost
function is ∆2 defined in (3.4). We start with the exhaustive method, considering a
square-shaped controlled obstacle of fixed area 22.5× 22.5 m2. As before, we denote
the coordinates of its barycenter by (xO, yO) and for any of its admissible positions we
simulate the controlled natural behavior of the crowd and compute the correspond-
ing controlled natural cost. Figure 4.13 shows the result of the exhaustive minimum
search, i.e., the function ∆2(xO, yO), which gives the distance between the controlled
natural behavior and the target one. We see that ∆2 is constant in a large part of the
domain, meaning that there the obstacle is noninfluential. Conversely, along the paths
joining the initial crowd density and exits e1, e4, respectively, the obstacle affects the
dynamics. In particular, a series of downward spikes are visible near exit e1.

The controlled obstacle corresponding to the global minimum of ∆2, see Fig. 4.14-
left, serves as an initial guess for the compass search. The method converges to the
optimized obstacle depicted in Fig. 4.14-right, which is larger than the initial guess
and closer to exit e1. Such an optimal obstacle turns out to have very nice effects
on the density evolution in this scenario, see Fig. 4.15. Surprisingly, the controlled
obstacle is able to split the group in four parts (cf. the third row of Table 4.3), thereby
determining an effective usage of the available exits which is rather close to the one
of the target behavior. Moreover, the evacuation time and the maximal density are
comprised between the natural and the target case.

5. Open problems and research perspectives. Each level of “rationality”
presented in this paper leads to a different analytical framework where the correspond-
ing model can be naturally set, but all of them present some common challenges.

The first one comes from control theory. Indeed, models presented in Section 2
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Fig. 4.15. Density evolution in case of natural behavior with the best controlled obstacle result-
ing from the compass search. Click on the image to see the simulation.

require pedestrians to optimize the perceived dynamics (2.5) w.r.t. a given perfor-
mance criterion C (typically of the form (2.6) or (2.7)) and to construct a C-optimal
feedback v∗b on the whole domain Ω. This is actually a nontrivial problem, because
optimal feedbacks are generally neither Lipschitz continuous nor even continuous.
Consider, for instance, the case of basic behavior with cost (2.6): In this case v∗b is
given by (2.10) but φ is usually at most Lipschitz continuous, thus v∗b is expected to
be only in L∞(Ω). In turn, such a lack of regularity makes unclear the sense in which
the resulting closed loop system obtained by (2.5) with the feedback v∗b , i.e.,

(5.1) ẏ(t) = f
(
t, y(t), v∗b (y(t))

)
admits a solution, given that Carathéodory solutions do not generally exist for arbi-
trarily discontinuous vector fields.

A possible way to overcome this issue is to relax the optimality requirement with
nearly optimality for the given cost C. Indeed, in several cases one can construct ε-
optimal feedbacks v∗b whose discontinuities are tame enough to guarantee the existence
of Carathéodory solutions to (5.1) for every initial datum and to ensure good stability
properties, see [4, 9]. However, conditions have to be imposed on ∂Ω to both the vector
field f and the cost functions `, g in order to ensure that (2.22) holds.

A second problem is a consequence of the aforesaid lack of continuity at the
level of the conservation law (2.1). When the vector field v in (2.2) is not Lipschitz
continuous, the solution to (2.1) evolves as a measure concentrated on the whole set
of trajectories of the control system (2.4), which are in general not unique. Then one
has to combine the techniques from [38] for nonlocal velocities with those from [3] for
vector fields with low regularity, and take into account (2.22).

http://www.emiliano.cristiani.name/attach/Sapienza_paper_irraz_ctrld.avi
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For highly rational behaviors, there is the additional difficulty of the coupling
between the PDEs in (2.17) and (2.19). A generalization of the results in [31] to the
case treated in our model, with the presence of the additional coupling term vi[ρ], is
given in [35]: In particular, it is shown that a solution pair (ρ, φ) exists provided the
interaction velocity field vi and the cost functions `, g are smooth enough. Even in
this context, however, the case of a bounded domain Ω with impermeability boundary
condition (2.22) is still completely open. The uniqueness of Nash equilibria, when they
exist, is open as well: standard techniques fail due to the presence of the nonlocal
vector field in the HJB equation, and analogies with other differential game contexts
where uniqueness fails (see [18, Section 1.3] and references therein), strongly suggest
that only additional conditions on the dynamics and on the interaction terms might
lead to a unique Nash equilibria.

Other forms of rationality may be also taken into account, linked e.g., to cooper-
ation in subgroups of individuals (cf. the notion of social groups [32]). For instance,
during evacuation people may tend to seek out friends and family members rather
than acting selfishly. This clearly impacts on their egress strategy, namely on their
choice of v∗b . Modeling such an attitude would possibly require the use of multiscale
techniques, such as those developed in [15, 17], in order to catch the partly singular
behavior of few individuals with respect to the rest of the anonymous collective crowd.

Regarding research perspectives, one could apply the ideas presented above to
other phenomena where the evolution of a macroscopic quantity is influenced by
(optimal) choices of single individuals at microscopic level. In [18], the first and
second authors consider the same rationality degrees introduced in section 2.2 in the
context of traffic flow models on a network of roads. In such a situation, drivers can
decide their own path at each crossroad, based on different amounts of information,
and this reflects heavily into the resulting macroscopic flow of the car density.

Finally, we note that this paper promotes a way to indirectly control crowds: By
using environmental controls, the natural behavior of single pedestrians is preserved
while surrounding conditions are changed. Following the same broad idea, paper [2]
proposes, as an alternative, to “hide” in the crowd a few special individuals, who
are suitably trained to steer the mass toward a specific target. These special indi-
viduals are not recognized as such by other people, thereby preserving the natural
(unaware) behavior of the crowd. New models and experiments with real pedestrians
are presented to validate this approach.
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[6] N. Bellomo and C. Dogbé, On the modeling of traffic and crowds: A survey of models,
speculations, and perspectives, SIAM Rev., 53 (2011), pp. 409–463.



24 E. CRISTIANI, F. S. PRIULI, AND A. TOSIN

[7] O. Bokanowski and H. Zidani, Minimal time problems with moving targets and obstacles, in
Proceedings of the 18th IFAC World Congress, 2011, pp. 2589–2593.

[8] D. Braess, A. Nagurney, and T. Wakolbinger, On a paradox of traffic planning, Transport.
Sci., 39 (2005), pp. 446–450.

[9] A. Bressan and F. S. Priuli, Nearly optimal patchy feedbacks, Discrete Contin. Dyn. Syst.
Ser. A, 21 (2008), pp. 687–701.

[10] M. Burger, M. Di Francesco, P. A. Markowich, and M.-T. Wolfram, Mean field games
with nonlinear mobilities in pedestrian dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19
(2014), pp. 1311–1333.

[11] S. Cacace, E. Cristiani, and M. Falcone, Can local single-pass methods solve any stationary
Hamilton-Jacobi-Bellmann equation?, SIAM J. Sci. Comput., 36 (2014), pp. A570–A587.

[12] P. Cardaliaguet, Notes on mean field games.
[13] E. Carlini and F. Silva, A fully discrete semi-Lagrangian scheme for a first order mean field

game problem, SIAM J. Numer. Anal., 52 (2014), pp. 45–67.
[14] Y. Chitour, F. Jean, and P. Mason, Optimal control models of goal-oriented human loco-

motion, SIAM J. Control Optim., 50 (2010), pp. 147–170.
[15] E. Cristiani, B. Piccoli, and A. Tosin, Multiscale modeling of granular flows with application

to crowd dynamics, Multiscale Model. Simul., 9 (2011), pp. 155–182.
[16] , How can macroscopic models reveal self-organization in traffic flow?, in Proceedings

of the 51st IEEE Conference on Decision and Control, Maui, HI, USA, December 2012,
pp. 6989–6994.

[17] , Multiscale Modeling of Pedestrian Dynamics, Modeling, Simulation & Applications,
Springer, 2014.

[18] E. Cristiani and F. S. Priuli, A destination-preserving model for simulating Wardrop equi-
libria in traffic flow on networks, To appear in Netw. Heterog. Media.

[19] D. C. Duives, W. Daamen, and S. P. Hoogendoorn, State-of-the-art crowd motion simula-
tion models, Transportation Res. C, 37 (2013), pp. 193–209.

[20] M. Falcone and R. Ferretti, Semi-Lagrangian approximation schemes for linear and
Hamilton-Jacobi equations, SIAM, 2014.

[21] D. Helbing, I. Farkas, and T. Vicsek, Simulating dynamical features of escape panic, Nature,
407 (2000), pp. 487–490.

[22] D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An em-
pirical study, Phys. Rev. E, 75 (2007), pp. 046109/1–7.

[23] D. Helbing and P. Molnár, Social force model for pedestrian dynamics, Phys. Rev. E, 51
(1995), pp. 4282–4286.

[24] S. P. Hoogendoorn and P. H. L. Bovy, Simulation of pedestrian flows by optimal control
and differential games, Optim. Control Appl. Meth., 24 (2003), pp. 153–172.

[25] , Dynamic user-optimal assignment in continuous time and space, Transportation Res.
B, 38 (2004), pp. 571–592.

[26] R. L. Hughes, A continuum theory for the flow of pedestrians, Transportation Res. B, 36
(2002), pp. 507–535.

[27] , The flow of human crowds, Annu. Rev. Fluid Mech., 35 (2003), pp. 169–182.
[28] A. Johansson and D. Helbing, Pedestrian flow optimization with a genetic algorithm based

on boolean grids, in Pedestrian and Evacuation Dynamics 2005, N. Waldau, P. Gatter-
mann, H. Knoflacher, and M. Schreckenberg, eds., Springer-Verlag Berlin Heidelberg, 2007,
pp. 267–272.

[29] P. Kachroo, S. J. Al-nasur, S. A. Wadoo, and A. Shende, Pedestrian dynamics. Feedback
control of crowd evacuation, Understanding Complex Systems, Springer-Verlag, Berlin
Heidelberg, 2008.

[30] A. Lachapelle and M.-T. Wolfram, On a mean field game approach modeling congestion
and aversion in pedestrian crowds, Transportation Res. B, 45 (2011), pp. 1572–1589.

[31] J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), pp. 229–260.
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