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Abstract We present a poroplastic model of structural reorganisation in a1

binary mixture comprising a solid and a fluid phase. The solid phase is the2

macroscopic representation of a deformable porous medium, which exemplifies3

the matrix of a biological system (consisting e.g. of cells, extra-cellular matrix,4

collagen fibres). The fluid occupies the interstices of the porous medium and5

is allowed to move throughout it. The system reorganises its internal structure6

in response to mechanical stimuli. Such structural reorganisation, referred to7

as remodelling, is described in terms of “plastic” distortions, whose evolution8

is assumed to obey a phenomenological flow rule driven by stress. We study9

the influence of remodelling on the mechanical and hydraulic behaviour of10

the system, showing how the plastic distortions modulate the flow pattern of11

the fluid, and the distributions of pressure and stress inside it. To accomplish12

this task, we solve a highly non-linear set of model equations by elaborating13

a previously developed numerical procedure, which is implemented in a non-14

commercial Finite Element solver.15
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1 Introduction18

The remodelling, or structural reorganisation, of a biological system might19

be defined as the result of an ensemble of processes that concur to adapt its20

structure and material properties to both internal and external stimuli. In21

addition to remodelling, a biological system may also experience growth, i.e.,22

it may gain or lose mass. Growth can be appositional or volumetric. In the23

first case, new material is either removed or laid over the pre-existing one [12].24

In the second case, instead, the variation of mass can be diverted either in a25

change of volume or in a change of density of the system [31,62,63].26

In principle, a comprehensive study of growth and remodelling requires an27

interdisciplinary approach, in which genetic aspects and molecular processes28

as well as intracellular and intercellular activities are accounted for. Further-29

more, a thorough analysis of the functioning of biological systems calls for30

multi-scale and multi-level mathematical models, which should couple chem-31

ical, electrical, and mechanical phenomena. Despite these intricacies, some32

essential features of the evolution of biological systems can be captured by33

purely mechanical theories of growth and remodelling. For a given biological34

system, the starring characters of such theories are the parameters describing35

its kinematics and structural evolution, and the generalised forces conjugate36

with the selected parameters. Within a purely mechanical approach, several37

problems of growth and remodelling can be studied. Growth, in general, con-38

tributes to change the properties and internal structure of the tissue in which it39

occurs. A relevant aspect of this phenomenology is that grown tissues usually40

feature residual stresses, which means that, even though a grown tissue finds41

itself in an unloaded configuration, it is not necessarily in a stress-free state.42

For example, this is true for arteries [52]. Thus, as suggested in [90], growth43

can be thought of as the process that brings the tissue from a zero-stress state44

to a state in which residual stresses may be present even in the absence of45

external loading. As is well-known, the stress-free state of a body (which is46

also referred to as “the natural state”) is not a true configuration. Rather,47

it is a collection of relaxed body pieces, which cannot be attained by simply48

deforming the body. Consequently, growth cannot be described just in terms49

of deformation, deformation gradients, and the related measures of stress. In50

fact, one has to introduce also the concept of incompatible distortions in order51

to account for the transformation connecting the natural state of a tissue with52

the unloaded—yet not stress-free—configuration chosen as reference. The dis-53

tortions due to growth are generally non-integrable and incompatible. They54

are said to be non-integrable when they cannot be expressed as deformation55

gradients, and are said to be incompatible when they lead to the loss of flat-56

ness of the body manifold [72]. Moreover, distortions are both formally and57

conceptually distinct from deformations, which describe the global change of58
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shape of the tissue. To account for distortions, Rodriguez et al. [90] invoked59

the Bilby-Kröner-Lee (BKL) decomposition of the deformation gradient ten-60

sor, thereby separating the “elastic” part of the overall deformation from the61

“anelastic” one, which is related to growth and remodelling, and need not be62

compatible.63

The use of the BKL decomposition permits to exploit several analogies with64

the theory of Elastoplasticity. For example, in a general model of growth, the65

anelastic distortions associated with the structural reorganisation of a tissue66

were described in terms of material inhomogeneities in [31], while the concept67

of “evolving natural configurations” [89] was used for modelling tumour growth68

both in monophasic and in multiphasic materials [1,86].69

In this paper, we focus on remodelling only. This can be done because there70

exist remodelling processes that do not lead to variations of mass. Moreover,71

there exist cases in which remodelling takes place over time-scales that are72

well-separated from those characterising growth, and can be thus decoupled73

from the growth-driven evolution of the system under study. For example,74

these conditions are met in cellular aggregates and in tumour spheroids, when75

their remodelling consists of the reorganisation of the adhesion bonds among76

the cells [42]. This kind of remodelling can be described by hypothesising77

that the considered biological systems exhibit elastoplastic behaviour [4] (or,78

in some cases, elasto-visco-plastic behaviour [84]), and assuming that plastic79

distortions arise when the stress in the system exceeds a given threshold [42].80

The closeness of the present setting with the classical theory of Elastoplasticity81

(cf. e.g. [65,71]) makes it rather natural to employ the BKL decomposition in82

order to define a stress-free state for the system, and separate the plastic83

distortions due to remodelling from the elastic part of the overall deformation84

gradient. Moreover, as is the case in Elastoplasticity, also in this framework85

the plastic distortions are generally non-integrable and incompatible. For this86

reason, when referring to the distortions associated with the evolution of the87

internal structure of a body (i.e., with the process of remodelling), we shall88

use the adjectives “anelastic” and “plastic” interchangeably.89

Following [3,45], we consider a biphasic mixture comprising a solid and90

a fluid phase, and take it as an exemplification of a biological system. We91

study the evolution of the mixture in response to external loads by prescrib-92

ing that, under suitable conditions, a remodelling process of the solid phase93

occurs. To accomplish this task, we formulate a finite-deformation poroplastic94

model of the mixture, which is able to determine the deformation of the solid95

phase, the velocity of the fluid phase, and the plastic distortions associated96

with the occurrence of remodelling. To solve the problem, we elaborate a com-97

putational algorithm that aims at generalising a well-established numerical98

procedure—the Return Mapping Algorithm (RMA)—to a class of anelastic99

models not necessarily complying with all the hypotheses on which the RMA100

is based [93]. Besides testing the proposed algorithm, our main purpose is to101

evaluate the influence of remodelling on the fluid velocity, overall deformation,102

and distributions of pressure and constitutive stress in the system under study.103
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We remark that mixture theory has been largely employed in modelling104

biomechanical problems of different kind. These range from tumour growth [2],105

in which the considered mixture consists of a fluid and one or more cell popu-106

lations, to bone reconstruction [60], in which the mixture consists of the bone107

itself and some grafted bio-resorbable material.108

The issue of structural reorganisation is largely investigated in the context109

of bone biomechanics, and has recently contributed also to raise questions in110

the field of optimal control theory. For example, optimal control procedures111

have been elaborated in [5] for assessing the structural efficiency of adaptive112

materials, and in [6] for studying the adaptation of bones under mechanical113

stimuli. They have also been used for modelling the trabecular architecture114

of bones [7], and for evaluating the bone density distribution [8]. Another115

problem connected with bone remodelling, which concerns the interaction of116

bone with resorbable biomaterial, has been addressed in [9–11].117

The paper is organised as follows. In Sect. 2, we review some aspects of118

the theory of biphasic mixtures, and introduce the BKL decomposition in the119

framework of porous media. In Sect. 3, we establish the constitutive frame-120

work, study dissipation, and determine the evolution law for remodelling. In121

Sect. 4, we describe the numerical procedure elaborated for solving the model122

equations. In Sect. 5, we present and discuss the obtained results. Finally,123

in section 6, we outline some critical remarks on the employed model, and124

propose some plans for future research.125

2 Theoretical background126

For our purposes, we consider a binary system comprising a porous solid127

medium, also referred to as “matrix” hereafter, and a fluid. The region of128

space occupied by the system as a whole can be partitioned into two comple-129

mentary sub-regions. One of these regions is occupied by the solid particles130

constituting the matrix, while the other one, which is generated by the voids131

of the matrix, is assumed to be filled with the fluid. If the latter sub-region132

is connected in topological sense, it is termed “pore space”, and the fluid can133

circulate throughout it. In the following, the matrix and the fluid shall also be134

called “phases”. At a sufficiently coarse scale of observation, the system can be135

viewed as a biphasic mixture, which means that both the matrix and the fluid136

are admitted to co-exist at each point of space occupied by the system. Note137

that there may be cases in which the connectedness of the void region is not138

granted. This happens, e.g., in solid bodies with micro-periodic non-connected139

inclusions filled with fluid [26].140

2.1 Kinematics of biphasic mixtures141

We base the forthcoming description of the kinematics of biphasic mixtures on142

the theory developed in [87,88], and recently summarised in [94]. We denote by143
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Fig. 1 Graphical representation of the kinematics of biphasic mixtures. Picture redrawn
and adapted from [88]

Ms and Mf the two smooth three-dimensional material manifolds associated144

with the matrix and the fluid, respectively. The manifold Ms is embedded145

into the three-dimensional Euclidean point space S by means of the smooth146

localisation function κs : Ms → S, such that, for every solid particle Xs ∈Ms,147

there exists a reference placement X = κs(Xs) ∈ S. The set CR = κs(Ms) is148

chosen as the reference configuration for the mixture. The motion of the solid149

constituent is the one-parameter family of smooth mappings χ( · , t) :CR → S,150

where t ∈ I ⊆ R is time and I is the interval of time over which the mixture151

is observed. The set χ(CR, t) ⊂ S defines the current configuration of the solid152

phase. Each point x ∈ χ(CR, t) ⊂ S is such that x = χ(X, t), with X ∈ CR153

and t ∈ I. Similarly, the motion of the fluid is defined by f( · , t) : Mf → S,154

with t ∈ I. The map f( · , t) places a fluid particle Xf ∈Mf in the spatial point155

x = f(Xf , t) ∈ f(Mf , t), where f(Mf , t) is the region of S occupied by the fluid at156

time t. Therefore, at the same instant of time, the biphasic mixture occupies157

the set Ct = χ (κs(Ms), t) ∩ f (Mf , t) ⊂ S. By construction, solid and fluid158

particles co-exist at each point x ∈ Ct. A schematic picture of the kinematics159

of biphasic mixtures is reported in Fig. 1, which has been adapted from [88].160

We introduce the tangent spaces attached at x∈S and X∈CR, i.e., TxS and161

TXCR, the tangent bundles TS := tx∈STxS and TCR = tX∈CRTXCR (where162

t stands for “disjoint union” of sets), and their dual spaces T ∗S and T ∗CR,163

termed cotangent bundles. In addition, for any pair of natural numbers r ≥ 0164
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and s ≥ 0, we define the spaces [33]165

[TS]rs = TS⊗ . . .⊗ TS︸ ︷︷ ︸
r times

⊗T ∗S⊗ . . .⊗ T ∗S︸ ︷︷ ︸
s times

, (1a)

[TCR]rs = TCR ⊗ . . .⊗ TCR︸ ︷︷ ︸
r times

⊗T ∗CR ⊗ . . .⊗ T ∗CR︸ ︷︷ ︸
s times

. (1b)

When r is zero, we simply write [TS]0s and [TCR]0s. Analogously, when s is zero,166

we adopt the notation [TS]r0 and [TCR]r0. For the sake of generality, we adopt167

the covariant formalism [68]. In the forthcoming calculations, we employ the168

spatial metric tensor, g ∈ [TS]02, and the “material” metric tensor,G ∈ [TCR]02.169

Moreover, we adhere to the convention that the gradient of scalar fields returns170

a covector, and that all the stress tensors introduced in the following have171

contravariant components in their component representation.172

The velocity of a solid particle, Xs, passing through x = χ (κs(Xs), t) at173

time t is denoted by vs(x, t) = χ̇ (κs(Xs), t) = χ̇(X, t) ∈ TxS. Analogously,174

vf(x, t) = ḟ(Xf , t) ∈ TxS is the spatial velocity of a fluid particle, Xf , passing175

through x = f(Xf , t). The velocity of the fluid relative to the solid is given by176

vfs(x, t) = vf(x, t) − vs(x, t), with x = χ (κs(Xs), t) = f(Xf , t). Moreover, the177

acceleration of the αth phase is defined by aα(x, t) = Dαvα(x, t), where Dα178

is the substantial derivative operator with respect to vα, i.e.,179

Dαvα = ∂tvα + (gradvα)vα, α = s, f. (2)

To express the velocity of the αth phase as a function of the points X ∈ CR, we180

perform the composition uα( · , t) = vα( · , t) ◦ χ( · , t). However, from now on181

we shall omit the explicit dependence on time in the composition of functions,182

so that, for example, the velocity field uα :CR×I→ TS shall be simply denoted183

by uα = vα ◦ χ.184

The tangent map of χ( · , t) at X ∈ CR defines the deformation gradient185

tensor of the solid motion, F (X, t) = Tχ(X, t) : TXCR → TxS. In order for186

χ to be admissible, the condition J = det(F ) > 0 must be respected at all187

points and all times. The transpose, inverse, and transpose inverse of F are188

defined as FT : T ∗S → T ∗CR, F−1 : TS → TCR, and F−T : T ∗CR → T ∗S,189

respectively. It also holds that G−1FTg : TS → TCR. This combination of190

tensors shall be used in the definition of the Mandel stress tensors (cf. Sect. 3).191

The symmetric, positive definite, second-order tensor C = FTgF ∈ [TCR]02192

is the Cauchy-Green deformation tensor induced by F . For α = s, f, we also193

introduce the spatial velocity gradient `α = (gradvα) ◦ χ ∈ TS⊗ T ∗S, which194

is related to the “material” velocity gradient, Graduα ∈ TS⊗ T ∗CR, through195

Gradus = Ḟ = `sF and Graduf := `fF , respectively.196

2.2 The Bilby-Kröner-Lee (BKL) decomposition for porous media197

In this work, we study the remodelling that occurs in a biological system when,198

under appropriate loading conditions, the system is compelled to reorganise its199
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internal structure in order to sustain the applied loads. In the case of cellular200

aggregates [42], this type of remodelling manifests itself through the structural201

transformation of the actin network in the cells, and the reorganisation of the202

adhesion bonds among the cells. In soft tissues, such as articular cartilage, the203

considered remodelling might represent the rearrangement of the cross-links204

of the fibre network forming the extracellular matrix. These processes can be205

described in terms of “plastic distortions” [42]. It is important to recall that206

this kind of remodelling is characterised by time scales (in fact, those induced207

by the mechanical loads) that allow to decouple it from the structural evolution208

ascribable to growth. Growth, indeed, is due to the mitosis and apoptosis of the209

cells, which typically occur over sufficiently larger time scales. For this reason,210

we disregard growth-related aspects of remodelling in the present framework.211

To describe the deformation and the plastic distortions that accompany the212

remodelling of the biological system under study, we introduce, in addition to213

F , the “tensor of plastic distortions” Fp. This leads us to the Bilby-Kröner-214

Lee (BKL) multiplicative decomposition F = FeFp, where Fe is sometimes215

referred to as the “accommodating part” of the overall deformation gradient216

tensor. To sketch the conceptual meaning of Fp, we refer to [71]. Hence, we217

consider a body that is brought from its reference, unloaded configuration,218

CR, to the current configuration, Ct, by the action of applied loads. If this219

evolution is accompanied by a structural reorganisation, the body cannot be220

brought back to CR by removing the external loads. Rather, even though all221

external loads were removed, the system would occupy a configuration different222

from Ct and CR, in which residual stresses and residual strains may be present.223

To eliminate these, one should ideally tear the body to small disjoint pieces224

(i.e., neighbourhoods of material points), and let each of them individually225

attain a stress-free state (in doing this ideal tearing, time is kept fixed). The226

collection of all these stress-free body pieces, determined through the ideal227

tearing process, is said to be the “natural state” of the body at time t. The228

plastic distortion Fp is the distortion that has to be applied to the material229

neighbourhoods of the points in CR to obtain the body pieces collected in the230

natural state. If the material shows elastic behaviour from its natural state, the231

accommodating distortion, Fe, is the elastic distortion that has to be applied232

to the body elements in the natural state to retrieve the global configuration233

Ct. The BKL decomposition can be understood as a combination of “tangent234

bundle maps” [83], so that one can introduce a time-dependent intermediate235

map χκ( · , t) : CR → S, which constitutes the base map for Fp. However, the236

existence of χκ( · , t) does not necessarily imply that Fp is the tangent map237

of χκ( · , t). In fact, in general, Fp is neither compatible nor integrable, i.e.,238

there exists no deformation whose tangent map equals Fp. In the following,239

we call the set χκ(CR, t) = Cκ ⊂ S “intermediate configuration” (cf. Fig. 2),240

and associate it with the “natural state” of the solid phase.241

Due to the BKL decomposition, the velocity gradient of the solid phase,242

`s = Ḟ F−1, can be written as243

`s = `e + `p = `e + FeLpFe
−1 , (3)
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Fig. 2 Schematic representation of the BKL decomposition of the deformation gradient
tensor F

where `e = ḞeFe
−1 is the rate of elastic distortions, while `p = FeLpFe

−1
244

and Lp = ḞpFp
−1 are the rates of anelastic distortions associated with the245

current configuration and the natural state of the system, respectively. The246

BKL decomposition implies the identity J = JeJp, where Je := det(Fe)> 0247

and Jp := det(Fp)> 0 are referred to as the elastic and anelastic volumetric248

ratios, respectively. The rates J̇e and J̇p can be computed as J̇e = Jetr(`e) and249

J̇p = Jptr(Lp) = Jptr(`p). In the following, we shall assume that the anelastic250

distortions related to remodelling are volume-preserving, thereby leading to251

the constraint Jp = det(Fp) = 1, which implies tr(`p) = 0 and tr(Lp) = 0.252

For future use, we introduce η, i.e., the metric tensor associated with the253

intermediate configuration Cκ, and Bp := Cp
−1, where Cp = Fp

TηFp is the254

anelastic Cauchy-Green deformation tensor. Moreover, we shall exploit the255

kinematic identity256

1
2Ḃp = −Fp

−1
(
η−1Dpη

−1
)
Fp
−T , (4)

where Dp := sym(ηLp).257

2.3 Dynamics of biphasic mixtures258

In the absence of external body forces, growth, and mass exchange processes259

between the solid and the fluid phase, the local forms of the mass and linear260

momentum balance laws for the αth phase of the biphasic mixture (α = s, f)261

can be written as262

∂t(φα%α) + div(φα%αvα) = 0, in Ct × I , (5a)

φα%αaα = divσα +mα, in Ct × I , (5b)

ms +mf = 0, in Ct × I . (5c)

In (5), φα and %α denote, respectively, the volumetric fraction and the true263

mass density of the αth phase, σα is the Cauchy stress tensor, and mα is264

the rate of linear momentum exchange between the αth phase and the other265
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one. Equation (5c) expresses that the mixture is closed with respect to linear266

momentum.267

If we assume that the pore space of the matrix is completely filled with268

the fluid, the volumetric fractions φs and φf are constrained by the saturation269

condition φs+φf = 1, which has to be respected at all times and at all points of270

the mixture. In the following, %s and %f shall be assumed to be given constants.271

Moreover, it will be hypothesised that the inertial terms φα%αaα are negligible.272

This latter hypothesis leads to a quasi-static formulation of the problem, in273

which the only sources of time evolution for the system are provided by time-274

varying boundary conditions, a (slowly) time-evolving deformation, and the275

presence of the time-dependent reorganisation of the tissue’s internal structure.276

By accounting for (5c), and summing (5b) over α = s, f, we obtain277

div(σs + σf) = 0 , in Ct × I , (6a)

divσf +mf = 0 , in Ct × I . (6b)

Transforming (5a) by the backward Piola-transformation induced by the solid278

motion χ( · , t), and writing the transformed equation once for α = s and once279

for α = f, it is possible to show that, after some manipulations, the mass280

balance laws for the solid and the fluid phase reduce to [44,45]281

φs(χs(X, t), t) =
φsR(X)

J(X, t)
, in CR × I , (7a)

J̇ + Div
[
(J − φsR)F−1ufs

]
= 0, in CR × I , (7b)

with ufs = uf − us = vfs ◦ χ. In (7a), φsR(X) represents the volumetric282

fraction of the solid phase in the reference configuration. Since φsR does not283

depend on time in the present framework, it can be chosen as a referential284

value for φs. We remark that, in the presence of growth, or in the case of285

non-isochoric plastic distortions, the condition Jp = 1 does not necessarily286

apply, which means that φsR is not time-independent in general. Rather, in287

the presence of density-preserving growth [62,63], it can only be inferred that288

the volumetric fraction associated with the intermediate configuration, i.e.,289

φsn(X) := Je(X, t)φs(χ(X, t), t), is constant in time.290

3 Constitutive framework and remodelling law291

If the solid phase exhibits hyperelastic material behaviour from its natural292

state, and if the fluid phase can be regarded as macroscopically inviscid, then293

admissible expressions of the Cauchy stresses σs and σf are given by294

σs = −φsp g
−1 + σsc , (8a)

σf = −φfp g
−1 , (8b)
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where σsc is the constitutive part of the Cauchy stress associated with the295

solid phase, i.e.,296

σsc ◦ χ =
1

Je
Fe

(
2
∂Ŵsκ

∂Ce
(Ce)

)
Fe

T . (9)

In (9), Ŵsκ is the strain energy density function of the solid phase, expressed297

per unit volume of the intermediate configuration, and Ce = Fp
−TCFp

−1 is298

the elastic Cauchy-Green deformation tensor. In this work, we assume that299

Ŵsκ is of the Holmes-Mow type [57], i.e.,300

Ŵsκ(Ce) = α0 {exp (Ψ(Ce))− 1} , (10a)

Ψ(Ce) = α1[Î1(Ce)− 3] + α2[Î2(Ce)− 3]− β log[Î3(Ce)] , (10b)

where α0, α1, α2, and β are model parameters, while Î1, Î2, and Î3 are the301

invariants of Ce, i.e.,302

I1 = Î1(Ce) = tr(η−1Ce) = tr(BpC) , (11a)

I2 = Î2(Ce) = 1
2

{
[I1(Ce)]2 − tr[(η−1Ce)2]

}
= 1

2

{
I2
1 − tr[(BpC)2]

}
, (11b)

I3 = Î3(Ce) = det(Ce) = J2
e = J2 , (11c)

where the last equality in (11c) is due to the hypothesis of isochoric plastic303

distortions, i.e., Jp = 1. The strain energy density function Ŵsκ describes304

a material exhibiting isotropic elastic properties with respect to the natural305

state. In general, if the model of the considered tissue is inhomogeneous, the306

parameters α0, α1, α2, and β depend on material points. Sometimes, however,307

for computational simplicity, or because of lack of experimental data, it is as-308

sumed that only one of these parameters is variable. For instance, in modelling309

articular cartilage [46], α0 was expressed by fitting experimental data taken310

from the literature as a third-order polynomial function of the axial coordinate311

parameterising the depth of a cylindrical specimen of tissue, whereas all the312

other material parameters were assumed to be constant.313

The expressions of σs and σf reported in (8a) and (8b) can be found in314

many works based on Mixture Theory (cf. e.g. [25,81,91]). Here, they have315

been adapted from [15,56] to the case of an incompressible, single-constituent316

fluid phase, as previously done in [34,35,45,94]. By substituting (8a) and (8b)317

into (6a) and (6b), the momentum balance laws for the mixture as a whole318

and for the fluid phase become [56]319

div(−p g−1 + σsc) = 0 , in Ct × I , (12a)

− g−1 (φfgrad p) +
(
mf − p g−1gradφf

)
= 0 , in Ct × I . (12b)

To determine the material form of the momentum balance law for the mixture320

as whole, i.e., the material counterpart of (12a), we introduce the first Piola-321

Kirchhoff stress tensors322

Ps = JσsF
−T = −φsRp g

−1F−T + Psc , (13a)

Pf = JσfF
−T = −(J − φsR)p g−1F−T , (13b)
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where Psc = JσscF
−T is the constitutive part of Ps, and perform the Piola-323

transformation of (12a), i.e.,324

Div
(
−Jp g−1F−T + Psc

)
= 0, in CR × I. (14)

By adopting the strain energy density function Ŵsκ specified in (10a) and (10b),325

Psc can be expressed constitutively as a function of F and Bp, i.e.,326

Psc = P̂sc(F ,Bp) = 2b1FBp + 2b2 (I1FBp − FBpCBp) (15)

+ 2b3I3g
−1F−T ,

where bi = b̂i(F ,Bp) = ∂Ŵsκ

∂Ii
(F ,Bp), i = 1, 2, 3, are constitutive functions of327

the invariants of Ce, and can be thus written as functions of F and Bp. Hence,328

the overall stress P := Ps + Pf , which has to be substituted into (14), reads329

P = P̂ (p,F ,Bp) = −Jp g−1F−T + P̂sc(F ,Bp). (16)

For future use, we also introduce the Kirchhoff stress tensor τ = PFT and330

the Mandel stress tensor Σ = G−1FTgτF−T, i.e.,331

τ = τ̂ (p,F ,Bp) = −Jp g−1 + τ̂ sc(F ,Bp) , (17a)

Σ = Σ̂(p,F ,Bp) = −JpG−1 + Σ̂sc(F ,Bp) . (17b)

In (17a) and (17b), the constitutive parts of τ andΣ, given by τ sc = τ̂ sc(F ,Bp)332

and Σsc = Σ̂sc(F ,Bp), respectively, read333

τ sc = τ̂ sc(F ,Bp) =(2b1 + 2b2I1)FBpF
T − 2b2FBpCBpF

T (18a)

+ 2b3I3g
−1 ,

Σsc = Σ̂sc(F ,Bp) =(2b1 + 2b2I1)G−1CBp − 2b2G
−1CBpCBp (18b)

+ 2b3I3G
−1 .

We remark that, although Σsc is not symmetric in general, the assumption of334

isotropic hyperelastic response of the solid phase, which leads to (18b), implies335

the symmetry conditions [69]336

BpGΣsc = (BpGΣsc)T , (19a)

GΣscBp
−1 = (GΣscBp

−1)T . (19b)

3.1 Dissipation inequality337

The local form of the dissipation inequality characterising the biphasic system338

under investigation can be written as follows339

Dm = −
{
mf − p g−1gradφf

}
.vfs + σsc : g`p ≥ 0 , (20)
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where Dm is the dissipation function of the mixture as a whole, written per340

unit volume of Ct (cf. [15,44,56] for details). Note that, more rigorously, and341

for consistency with (3), we should write σsc : g(`p ◦ χ−1) in (20). However,342

for the sake of a lighter notation, we shall omit the composition of maps in343

the forthcoming calculations. Since `p has vanishing trace, only the deviatoric344

part of σsc contributes to the dissipation Dm. Following [15,56,94], mf can be345

written as346

mf = mfd + p g−1gradφf , (21)

where mfd and p g−1gradφf represent, respectively, the dissipative and the347

non-dissipative contribution to mf . By substituting (21) into (12b), we obtain348

mfd = g−1 (φfgrad p) . (22)

Moreover, the dissipation inequality (20) takes on the form349

Dm = Dflow +Drem = −mfd.vfs︸ ︷︷ ︸
Dflow

+σsc : g`p︸ ︷︷ ︸
Drem

≥ 0 . (23)

The inequality (23) states that, within a purely mechanical framework, the350

only two sources of dissipation for the considered biphasic system are given by351

Dflow := −mfd.vfs, i.e., the power expended by the dissipative forcemfd, which352

is power-conjugate with the relative velocity vfs, and by Drem := σsc : g`p,353

i.e., the power expended to trigger the evolution of the internal structure of354

the solid phase.355

3.1.1 Darcy’s law356

We assume that the dissipative force mfd can be expressed constitutively as a357

linear function of the filtration velocity q := φfvfs [14], i.e.,358

mfd = −g−1r φfvfs , (24)

where r ∈ [TS]02 is the tensor describing the resistivity of the porous medium359

to fluid flow [56]. By substituting (24) into (23), the following expression of360

dissipation is obtained361

Dm = Dflow +Drem = sym(r) : φf (vfs ⊗ vfs)︸ ︷︷ ︸
Dflow

+σsc : g`p︸ ︷︷ ︸
Drem

≥ 0 , (25)

where sym(r) is the symmetric part of r. A direct consequence of (25) is that,362

if sym(r) is positive semi-definite, Dflow is always non-negative, i.e., Dflow ≥ 0,363

for any possible realisation of the relative velocity vfs. Typically, the resistivity364

tensor r is assumed to be symmetric and positive definite, so thatmfd vanishes365

if, and only if, vfs is null. Under these assumptions, and the further hypothesis366

that mfd is linear in vfs, the standard form of Darcy’s law is obtained. Indeed,367

by substituting (24) into (22), and solving for φfvfs, the filtration velocity is368

found to be369

q = φfvfs = −k grad p , (26)
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where k = φf r
−1 ∈ [TS]20 is the hydraulic conductivity tensor of the system.370

By performing a Piola transformation of (26), we obtain the material form371

of Darcy’s law:372

JF−1(φfufs) = (J − φsR)F−1ufs = −KGrad p . (27)

The material second-order tensor K = JF−1kF−T is the material hydraulic373

conductivity tensor, and is determined by means of the Piola transformation374

of k with respect to the solid motion. Substituting (27) into (7b) yields375

J̇ −Div [KGrad p] = 0 . (28)

The constitutive law defining the hydraulic conductivity, k, should comply376

with the material symmetries of the considered tissue (e.g., isotropy, trans-377

verse isotropy, or orthotropy). Recently, a review on several constitutive laws378

expressing k as a function of the tissue deformation has been given in [13]. An379

expression of k suitable for articular cartilage was determined by employing380

upscaling arguments in the small deformation regime [36,37], and subsequently381

adapted to the finite-deformation framework in [34,35,94]. If the hydraulic re-382

sponse of the mixture is isotropic, and the hypothesis is made that the isotropy383

of the hydraulic conductivity does not change with the deformation, the ten-384

sors k and K can be expressed constitutively as385

k = k̂(J) = k̂0(J)g−1 , (29a)

K = K̂(F ) = Jk̂0(J)C−1 , (29b)

where the scalar hydraulic conductivity function k̂0 is given by386

k̂0(J) = k0R

(
J − φsR

1− φsR

)m0

exp
[m1

2
(J2 − 1)

]
, (30)

and m0 and m1 are material parameters [57]. According to (29a) and (30),387

the deformation influences the hydraulic conductivity through the volumetric388

ratio J only. When the condition J = 1 is met, the identity k̂0(1) = k0R is389

obtained, which means that the scalar hydraulic conductivity becomes equal390

to the referential one, k0R. In general, k0R, m0, and m1 depend on material391

points. The constitutive choice of the hydraulic conductivity tensor permits to392

express Dflow constitutively as393

Dflow = D̂flow(J, grad p) = k̂(J) : grad p⊗ grad p ≥ 0 , (31)

with D̂flow being quadratic in grad p, and highly non-linear in J .394
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3.1.2 Law of remodelling395

In this section, we introduce the fundamental hypotheses that lead to the law396

of remodelling adopted in our work. We recall that, as announced in Sect. 2.2,397

we are considering a type of structural evolution that can be interpreted in398

terms of isochoric plastic distortions. Therefore, the first hypothesis is that Fp399

is restricted by the constraint Jp = det(Fp) = 1. This implies that the rates400

of plastic distortions, `p or Lp, are deviatoric, i.e., tr( p̀) = 0, and tr(Lp) = 0.401

A direct consequence of these facts is that the part of the dissipation function402

related to remodelling, i.e., Drem, can be written as403

Drem = σsc : g`p = J−1
e Σscκ : ηLp ≥ 0 . (32)

The tensor Σscκ := Jeη
−1FT

e gσscF
−T
e is the constitutive part of the solid404

phase Mandel stress tensor as computed with respect to the natural state, and405

represents the measure of stress power-conjugate to Lp. The prescription on406

the non-negativeness of Drem is due to the Principle of Maximum Dissipation407

(cf. e.g. [53]), which is based on the requirement that the overall dissipation408

function, Dm, be non-negative for all possible realisations of the generalised409

velocities φfvfs and `p (or Lp). Thus, in the case in which the fluid filtration410

velocity is null, which implies Dflow = 0, it must hold that Dm = Drem ≥ 0.411

We remark that the expression of Drem given in (32) appears quite naturally in412

all the theories of anelastic processes constructed on the BKL decomposition413

(cf. e.g. [22,65,69] for the case of finite strain Elastoplasticity, and [31,40,42,414

45,48,49,61,64] for the case of growth and remodelling of biological tissues),415

and stems from the hypothesis that the strain energy density of the solid416

phase, Ŵsκ, can be written as a constitutive function of the elastic part of417

the overall deformation alone, Ce, as done in (9). By relating Fp with the418

production of material inhomogeneities in uniform bodies [31], a rationale for419

this constitutive hypothesis is obtained by invoking the Principle of Material420

Uniformity [29–31,83].421

The second hypothesis is that the solid phase exhibits isotropic elastic422

behaviour from its natural state. Since this property implies the symmetry of423

Σscκ, Drem can be rewritten as Drem = J−1
e Σscκ : Dp. Hence, by exploiting424

the kinematic identity (4), recalling the relation JpΣscκ = η−1F−T
p GΣscF

T
p425

that links Σscκ with Σsc, and accounting for the symmetry condition (19b),426

it is possible to show that Drem admits the equivalent form427

Drem = − 1

2J

(
GΣscBp

−1
)

: Ḃp . (33)

Moreover, since the condition Jp = 1 can be rephrased as Bp
−1 :Ḃp = 0, only428

the deviatoric part of Σsc contributes to Drem. Consequently, Drem becomes429

Drem = − 1

2J

[
G dev(Σsc)Bp

−1
]

: Ḃp ≥ 0 , (34)

with430

dev(Σsc) = Σsc − 1
3 tr[GΣsc]G−1 . (35)
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Note that a direct consequence of the hypothesis of isotropy is that the plastic431

flow rule can be expressed in terms of Bp, rather than Fp. If, on the one hand,432

this leads to a loss of information, on the other hand, computations become433

much lighter.434

The third hypothesis concerns the type of remodelling addressed in this435

paper. As anticipated in Sect. 2.2, we assume that the considered system re-436

models when the stress induced by external loading exceeds a characteristic437

threshold, thereby triggering the onset of plastic distortions. Hence, as we438

would do in the theory of Elastoplasticity, we search for an evolution law for439

the remodelling variable Bp in the form of a generalised plastic “flow rule”. To440

this end, following [42], we imitate the theory of associative, rate-independent441

Elastoplasticity [22,93], and articulate in two steps the determination of the442

flow rule. In the first step, we postulate that a yield surface exists in the space443

of the deviatoric Kirchhoff stress tensors, which can be defined by the equation444

f(τsc) := ϕ(τsc)−
√

(2/3) τy = 0 . (36)

Here, τy > 0 is a scalar measure of stress playing the role of the “yield stress”445

of the considered material, and ϕ(τ sc) is given by446

ϕ(τsc) := ‖dev(τ sc)‖ =

√
tr
[
(gdev(τ sc))

2
]
. (37)

In the second step, we require that the plastic flow is orthogonal to the yield447

surface. This leads to the “normality rule” [92,93]448

Lvs
be = −2γpngbe , (38)

where Lvsbe is the Lie derivative of be = F eη
−1FT

e = FBpF
T (i.e., the449

elastic left Cauchy deformation tensor) with respect to the velocity of the solid450

phase, vs, γp ≥ 0 is a non-negative function of stress, and n is the normalised451

Kirchhoff stress tensor, orthogonal to the yield surface, defined by452

n[ := gng =
∂f

∂τ sc
(τ sc) , n :=

dev(τ sc)

‖dev(τ sc)‖
. (39)

Finally, by exploiting the identity Lvsbe = FḂpF
T, and rewriting (38) as an453

evolution law for Bp, we obtain the equivalent flow rule454

Ḃp = −2γp
BpGdev (Σsc)

‖dev(τ sc)‖
, (40)

where, coherently with [42], we set455

γp := λ
[
‖dev(τ sc)‖ −

√
(2/3)τy

]
+

= λ [f(τ sc)]+ . (41)

In (38), (40), and (41), γp is a non-negative “plastic” multiplier, λ is a strictly456

positive model parameter, and the operator [ · ]+ is such that, for any real457

number A, [A]+ = A, if A > 0, and [A]+ = 0 otherwise. The physical units458
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of γp and λ are [γp] = s−1 and [λ] = (s ·MPa)−1, respectively. Equation (40),459

which represents a stress-driven evolution law for the plastic variableBp, is the460

remodelling law sought for. We remark that it complies with the prescription461

Drem≥0. Indeed, by substituting (40) into (34), we obtain462

Drem = D̂rem(F ,Bp) =
γp

J
‖dev(τ sc)‖ ≥ 0 . (42)

If, for a given choice of the model parameters, F and Bp are such that the463

condition f(τ sc) ≤ 0 applies (which amounts to say that the Frobenius norm of464

τ sc is such that ‖dev(τ sc)‖ ≤
√

(2/3)τy), then it holds that [f(τ sc)]+ =0 and,465

consequently, the plastic multiplier γp vanishes identically, thereby implying466

that Drem = 0. In this situation, no remodelling occurs, and the material467

deforms while preserving its internal structure. However, when ‖dev(τ sc) ‖468

exceeds the threshold stress
√

(2/3)τy (i.e., when f(τ sc) > 0), remodelling469

takes place, and Bp evolves as prescribed by (40). In this case, Drem becomes470

Drem =
λ[f(τ sc)]+

J
‖dev(τ sc)‖ > 0 . (43)

A relevant difference between the model presented so far and the standard471

model of associative, rate-independent J2-plasticity is that γp does not stem472

from any optimality condition of the Karush-Kuhn-Tucker type [22,93]. Rather,473

γp is defined phenomenologically, and, in the biological context analysed in [42],474

it expresses the fact that a cellular aggregate, in which the stress exceeds a475

prescribed threshold value, reorganises its internal structure by breaking the476

adhesion bonds connecting the cells. Note also that no hardening is considered477

in this biological problem.478

3.2 Summary of the mathematical model479

The mathematical model presented in this paper is grounded on the mass480

balance law (28), the balance law of linear momentum (14), and on the flow481

rule (40). Thus, in summary, we have to solve the following set of equations:482

J̇ −Div
[
K̂(F )Grad p

]
= 0 , (44a)

Div
(
−Jp g−1F−T + P̂sc(F ,Bp)

)
= 0 , (44b)

Ḃp + R̂(F ,Bp) = 0 , (44c)

in which K̂(F ) and P̂sc(F ,Bp) are defined in (29b) and (15), respectively,483

R̂(F ,Bp) stands for484

R ≡ R̂(F ,Bp) := 2γp
BpGdev(Σsc)

‖dev(τ sc)‖
, (45)

and γp is specified in (41). The model equations (44a)–(44c) are equivalent485

to a set of ten scalar equations in the ten unknowns represented by the three486
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components of the solid phase motion, χ, pressure, p, and the six indepen-487

dent components of the symmetric second-order tensor Bp. The model is thus488

closed. Moreover, it is completed by the following boundary conditions:489

χ = χb, on ΓχD , (46a)(
−Jp g−1F−T + P̂sc(F ,Bp)

)
.N = fR, on ΓχN , (46b)

p = pb, on Γ pD , (46c)(
−K̂(F )Grad p

)
.N = Qb, on Γ pN . (46d)

In (46), N is the unit vector normal to ∂CR, i.e., the boundary of the reference490

configuration CR, and the sets ΓχD and Γ pD are the Dirichlet-portions of ∂CR, on491

which the deformation, χ, and the pressure, p, are equal to the prescribed data492

χb and pb, respectively. Analogously, ΓχN and Γ pN are the Neumann-portions493

of ∂CR, on which the contact force, fR, and the fluid flux, Qb, are supplied,494

respectively. It holds that ∂CR = ΓχD t Γ
χ

N = Γ pD t Γ
p

N . The values assigned to495

χb, pb, fR, and Qb are problem-dependent and should be discussed on a case-496

by-case basis. In the following, however, we shall restrict our formulation to497

a problem obeying Neumann-zero boundary conditions on ΓχN and Γ pN, which498

implies Qb = 0 and fR = 0. Finally, initial conditions are needed because (44a)499

and (44c) feature the time derivatives of the volumetric ratio, J , and of the500

anelastic deformation tensor Bp, respectively. Here, we assume the following501

initial conditions:502

J(X, t0) = 1, ∀ X ∈ CR , (47a)

Bp(X, t0) = G−1, ∀ X ∈ CR . (47b)

For the sake of simplicity, we assume now that the tissue is homogeneous.503

Thus, all the elements of the sets of parameters {α0, α1, α2, β} and {m0,m1},504

which characterise, respectively, the strain energy density function, Ŵsκ, and505

the hydraulic conductivity, k, are regarded as constants. We assume that also506

φsR and k0R are constants. Clearly, the hypotheses of homogeneity and isotropy507

provide a poor approximation of real tissues. Nonetheless, they are useful508

hypotheses at this stage, since they help to better visualise the influence of509

remodelling on the mechanical and fluid dynamic properties of the specimen.510

4 Numerics511

The numerical procedure elaborated in this paper to solve (44a)–(44c) is based512

on the Finite Element Method. Therefore, it is necessary to start with the weak513

formulation of (44a) and (44b). Although there exist numerical strategies that514

perform finite element discretisations also for the plastic flow rule [32], we515

prefer here to keep (44c) in local form. This is legitimate since it involves516

no partial derivative with respect to space coordinates. Before proceeding,517

we notice that the particular choice of the constitutive law expressing the518
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hydraulic conductivity, K = K̂(F ), is such that the mass balance law (44a)519

does not contain Bp. This weakens the coupling among the model equations,520

as will be discussed in Sect. 6. Our procedure, however, can be generalised to521

the cases in which constitutive laws of the type K = K̂(F ,Bp) are employed.522

4.1 Weak Formulation523

The weak form of (44a) and (44b) is given by524

Fp(p, χ, p̃) := −
∫
CR

{
(Grad p̃)

[
K̂(F )Grad p

]
+ p̃ J̇

}
= 0 , (48a)

Fχ(p, χ,Bp, ũ) :=

∫
CR

P̂ (p,F ,Bp) : gGrad ũ = 0 , (48b)

where P̂ (p,F ,Bp) is defined in (16), and we introduced the space of test525

functions526

P̃× Ṽ := {(p̃, ũ) ∈ H1
0 (CR)×H1

0(CR) : p̃
∣∣
ΓpD

= 0 , ũ
∣∣
ΓχD

= 0} . (49)

In (48) and (49), p̃ and ũ denote the test pressure and the test velocity. As such,527

both fields satisfy homogeneous Dirichlet boundary conditions. The functional528

spaces H1
0 (CR) and H1

0(CR) are, respectively, the Sobolev spaces of all scalar-529

valued and vector-valued functions vanishing on Γ pD and ΓχD , square-integrable530

in CR, and whose weak derivatives of order m ≤ 1 are all square-integrable in531

CR too. We recall that (48a) and (48b) are obtained by multiplying (44a) by532

p̃ and (44b) by ũ, and applying Gauss’ Theorem [59]. By construction, the533

functionals Fp and Fχ are linear in p̃ and ũ, respectively. For the sake of a534

lighter notation, we omit the explicit dependence of Fp and Fχ on the test535

fields p̃ and ũ in the forthcoming discussion. This dependence is, however,536

understood. Finally, we notice that the use of Darcy’s law to describe the fluid537

flow implies that both Fp and Fχ are affine with respect to the pressure p.538

4.2 Time-discrete setting539

The time-discrete version of (48a), (48b) and (44c) is obtained by performing540

an implicit Euler finite difference scheme. To this end, we discretise the time541

interval I, over which the system is observed, into N disjoint subintervals542

[tn−1, tn], with n ≥ 1, n∈N, and replace the derivatives J̇ and Ḃp with the543

expressions (Jn− Jn−1)/∆tn and (Bpn−Bp(n−1))/∆tn, where ∆tn is the size544

of the nth time-step. From here on, given an arbitrary function f of space and545

time, the notation fn(X), or simply fn, stands for f(X, tn), for all values of546

n.547

The initial instant of time t0 corresponds to the reference, undeformed548

configuration, CR, in which J0 = J(X, t0) = 1. We also set Bp0 = Bp(X, t0) =549

G−1, thereby implying that no plastic distortion is associated with the initial550
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state of the solid phase. At the nth instant of time, n ≥ 1, the time-discrete551

model equations become:552

Fp(pn, χn) := −
∫
CR

{
(Grad p̃) [KnGrad pn] + p̃

Jn − Jn−1

∆tn

}
= 0 , (50a)

Fχ(pn, χn,Bpn) :=

∫
CR

P̂ (pn,Fn,Bpn) : gGrad ũ = 0 , (50b)

G(χn,Bpn) := Bpn −Bp(n−1) +∆tnR̂(Fn,Bpn) = 0 . (50c)

The notation G(χn,Bpn) means that the time-discrete form of the plastic553

flow rule is a function of Bpn, and a “functional” of the deformation, χn,554

through the deformation gradient tensor, Fn [19]. Equations (50a)–(50c) are555

now solved sequentially for varying n ≥ 1. Apart from (50c), the formulation556

of (50a) and (50b) largely follows the procedure presented in [44].557

4.3 Linearisation and Finite Element Discretisation558

In this section, we demonstrate in detail the computational procedure, adapted559

from [47], that is used to solve numerically (50a)–(50c). We search for solutions560

to the problem (50a)–(50c) by means of a linearisation algorithm based on the561

Newton method, and articulated in two stages. In addition to n, we introduce562

two other subscripts: For each n, l ∈ N and k ∈ N count the iterations with563

respect to Bpn and the pair (pn, χn), respectively. Consequently, we construct564

the sequences565

χn,k = χn,k−1 + hn,k, (51a)

pn,k = pn,k−1 + πn,k, (51b)

Bpn,l = Bpn,l−1 +Φpn,l , k, l ≥ 1 (51c)

with hn,k, πn,k, and Φpn,l being the increments associated with χn, pn, and566

Bpn, respectively. Moreover, for conciseness, we adopt the notation567

wn := (pn, χn) , (52a)

Θn,l−1 := (χn,Bpn,l−1) , (52b)

Λn,l−1 := (pn, χn,Bpn,l−1) . (52c)

In the first stage of the algorithm, we linearise (50b) and (50c) with respect to568

Bpn only. The linearisation is done in a neighbourhood of Λn,l−1 and Θn,l−1,569

respectively, and leads to the approximated expressions570

F(1)
χ (Λn,l−1,Φn,l) := Fχ(Λn,l−1) +DBp

Fχ(Λn,l−1)[Φn,l] , (53a)

G(1)(Θn,l−1,Φn,l) := G(Θn,l−1) + Y(Θn,l−1) : Φn,l , (53b)
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where DBpFχ(Λn,l−1)[Φn,l] denotes the Gâteaux derivative of Fχ, computed at571

Λn,l−1 along the direction of the plastic increment Φn,l [19,93], and Y(Θn,l−1)572

is the fourth-order tensor defined by573

Y(Θn,l−1) =
∂G

∂Bpn
(Θn,l−1) ∈ [TCR]22 . (54)

Note that Y(Θn,l−1) is pair-symmetric, i.e., in its component representation,574

it holds that575

[Y(Θn,l−1)]ABCD = [Y(Θn,l−1)]BACD , (55a)

[Y(Θn,l−1)]ABCD = [Y(Θn,l−1)]ABDC . (55b)

We remark that also Fp has to be linearised in the same fashion as Fχ in576

the cases in which it involves Bpn among its arguments (e.g., if the hydraulic577

conductivity depends on Bp).578

We now set G(1)(Θn,l−1,Φn,l) = 0, and solve for Φn,l, thereby obtaining579

Φn,l ≡ Φ̂(Θn,l−1) = −[Y(Θn,l−1)]−1 : G(Θn,l−1) . (56)

In this way, the increment Φn,l is written as a function of χn. This allows to580

eliminate statically Φn,l from F
(1)
χ . Indeed, by substituting the right-hand-side581

of (56) into (53a), we obtain the new functional582

F(2)
χ (Λn,l−1) = Fχ(Λn,l−1)− L(Λn,l−1) , (57)

where the auxiliary quantity L(Λn,l−1) reads583

L(Λn,l−1) := DBp
Fχ(Λn,l−1)

[
[Y(Θn,l−1)]−1 : G(Θn,l−1)

]
. (58)

In (56), the inversion of Y is performed as follows. Let d denote the dimension584

of the tangent space TXCR at X ∈ CR (e.g., d = dim(TXCR) = 3). Since Y is585

a fourth-order tensor, it has d4 components in the representation586

Y = Y ABCDEA ⊗EB ⊗EC ⊗ED ,

where {EM}dM=1 ⊂ TXCR and {EM}dM=1 ⊂ T ∗XCR are bases of TXCR and587

T ∗XCR, respectively. Now, the set of d4 scalars [Y ABCD] is identified with a588

d2 × d2 matrix [Y], which can be inverted by means of standard methods. In589

this work, we used a LU-decomposition. We remark that, due to the spatial dis-590

cretisation of the Finite Element Method, this LU-decomposition needs to be591

performed at every integration point of an element. The inverse matrix [Y−1]592

is thus a representation of the fourth-order tensor Y−1. Note that, in (56), the593

second-order tensor G is represented as a vector-like column array G with d2
594

entries.595

Now, for fixed Bpn,l−1, with l ≥ 1, we determine pressure and deformation596

by solving iteratively the sub-problem597

F(2)
χ (Λn,l−1) = 0 , (59a)

Fp(wn) = 0 . (59b)
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At the kth iteration, k ≥ 1, we define598

wn,k := (pn,k, χn,k) , (60a)

Θn,k,l−1 := (χn,k,Bpn,l−1) , (60b)

Λn,k,l−1 := (pn,k, χn,k,Bpn,l−1) , (60c)

and apply a Newton method to (59a) and (59b). That is, we solve the linearised599

set of equations600

a(hn,k, ũ)− b(ũ, πn,k) = −F(2)
χ (Λn,k−1,l−1) , (61a)

−c(hn,k, p̃)− d(πn,k, p̃) = −Fp(wn,k−1) . (61b)

In (61a) and (61b), the bilinear forms a( · , · ), b( · , · ), c( · , · ) and d( · , · ) are601

defined by means of the Gâteaux derivatives of the functionals F
(2)
χ and Fp:602

a(hn,k, ũ) =DχF
(2)
χ (Λn,k−1,l−1)[hn,k] (62a)

=

∫
CR

gGrad ũ : A(2)
n,k−1,l−1 : Hn,k ,

−b(ũ, πn,k) =DpF
(2)
χ (Λn,k−1,l−1)[πn,k] (62b)

=

∫
CR

{
−Jn,k−1πn,k F

−T
n,k−1 : Grad ũ

}
,

−c(hn,k, p̃) =DχFp(wn,k−1)[hn,k] (62c)

=−
∫
CR

{(Grad p̃) [(Kn,k−1 : Hn,k) Grad pn,k−1]}

− b(hn,k, p̃)

∆tn
,

−d(πn,k, p̃) =DpFp(wn,k−1)[πn,k] (62d)

=−
∫
CR

(Grad p̃) [Kn,k−1Gradπn,k] ,

where Hn,k = Gradhn,k, and the tensors A(2)
n,k−1,l−1, Kn,k−1 and Kn,k−1 are603

given by604

A(2)
n,k−1,l−1 =− Jn,k−1pn,k−1g

−1F−T
n,k−1 ⊗ F

−T
n,k−1 (63a)

+ Jn,k−1pn,k−1g
−1F−T

n,k−1⊗F
−1
n,k−1

+
(
Asc
n,k−1,l−1 − Ln,k−1,l−1

)
,

Kn,k−1 =
∂K̂

∂F
(Fn,k−1) , (63b)

Kn,k−1 = K̂(Fn,k−1) . (63c)

In particular, Asc
n,k−1,l−1 is the constitutive acoustic tensor computed at the605

lth iteration in Bpn and at the kth iteration in χn, i.e.,606

Asc
n,k−1,l−1 =

∂P̂sc

∂F
(Fn,k−1,Bpn,l−1) , (64)
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while Ln,k−1,l−1 is a fictitious acoustic tensor, introduced by the algorithm,607

and induced by the Gâteaux derivative of the functional L with respect to the608

deformation (cf. (58)), i.e.,609

DχL(Λn,k−1,l−1)[hn,k] :=

∫
CR

gGrad ũ : Ln,k−1,l−1 : Hn,k . (65)

It is important to remark that the effective acoustic tensor610 (
Asc
n,k−1,l−1 − Ln,k−1,l−1

)
should be positive definite (cf., for example, [17,18]). Although our numerical611

simulations produced reasonable results, we have not formulated theorems yet,612

which predict when this condition fails to be satisfied.613

The algorithm proposed in this paper requires a linearisation with respect614

to χn and one with respect to Bpn. Therefore, compared with the classical615

RMA [93], an additional linearisation iteration is performed. This increases the616

computational effort, but makes our algorithm more flexible and suitable for617

various types of remodelling laws, which could also be much more complicated618

than the one given in (41).619

The numerical method presented in this work has been implemented in620

UG4, a novel version of the software framework UG (“Unstructured Grids”)[96].621

Its algebra, discretisation and grid libraries as well as its massive-parallel622

solvers for coupled partial differential equations served as a basis for com-623

puting a benchmark problem of the presented poroplastic model.624

5 Results625

The unconfined compression test is a very common experimental procedure626

that is performed to determine the mechanical and fluid dynamic properties627

of hydrated soft tissues, such as articular cartilage [51]. In this benchmark, a628

sample of tissue is inserted between two rigid and impermeable parallel plates,629

and compressed according to some prescribed loading protocol, which can be630

either in force- or in displacement-control. During compression, the parts of631

the specimen’s boundary that are not in contact with the plates, and through632

which the interstitial fluid can escape, can expand freely.633

For our simulations, we consider a cylindrical specimen of biphasic material634

characterised by initial height H0 = 1 mm and initial radius R0 = 1.5 mm.635

The lower boundary of the specimen is clamped at the lower plate of the636

experimental apparatus and kept fixed. The upper boundary, instead, is in637

contact with the moving plate and is assumed to expand without friction in638

axial-symmetric way. Finally, the lateral boundary of the specimen is traction-639

free and permeable to fluid flow. The above description of the experiment can640

be translated into mathematical formulae as follows: let Γl, ΓL, and Γu be641

the lower, lateral, and upper boundaries of the specimen in its undeformed642
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configuration (which is taken coincident with the reference configuration), i.e.,643

∂CR = Γl ∪ ΓL ∪ Γu. Then, for all t ∈ I ≡ [0, T ], we prescribe:644

on Γl,

{
χ(X, t) = χ(X, 0) = X ∈ Γl,
(−KGrad p) .N = 0,

(66a)

on ΓL,

{ (
−Jp g−1F−T + Psc

)
.N = 0,

p = 0,
(66b)

on Γu,

{
χz(X, t) = χzb(t) [Θ(t)−Θ(t− T0)] + χzb(T0)Θ(t− T0),
(−KGrad p) .N = 0,

(66c)

where Θ is the Heaviside function (here defined such that Θ(ξ) = 1, if ξ ≥ 0,645

and Θ(ξ) = 0, if ξ < 0), χzb is the axial compressive deformation imposed at646

the upper boundary, i.e.,647

χzb(t) = H0/2− uT
t

T0
, (67)

T0 ∈ (0, T ) is the final instant of time of the loading ramp, and uT > 0 is648

the target displacement (here, we took uT = 0.15 mm). To observe how the649

perturbed system relaxes towards a stationary state, we took T0 = 30 s and650

T = 80 s. Looking at (66a)–(66c), it is clear that the Dirichlet- and Neumann-651

like subsets of ∂CR associated with the deformation, ΓχD and ΓχN , are given by652

ΓχD = Γl ∪ Γu and ΓχN = ΓL, respectively, while it holds that Γ pD = ΓL and653

Γ pN = Γl ∪ Γu for the pressure.654

The material parameters used for this test are reported in Table 1. The655

elastic coefficients for the Holmes-Mow strain energy density given in (10a)656

are selected in such a way that β = α1 + 2α2 = 1 [57].657

Table 1 material parameters

elastic coefficient α0 0.125 N/mm2

elastic coefficient α1 0.78
elastic coefficient α2 0.11
elastic coefficient β 1.0
referential hydraulic conductivity k0R 3.7729 · 10−3 mm4/(N · s)
material parameter m0 0.0848
material parameter m1 4.638
referential solidity φsR 0.2
initial yields stress τy 0.002 N/mm2

coefficient in the plastic flow rule λ 0.5 mm2/(N · s)

The results of our numerical tests, reported in Figs. 3-5, are plotted on a658

section of the specimen containing the symmetry axis.659

To highlight the influence of the plastic distortions on the mechanical and660

fluid dynamic response of the specimen, we compared the radial and axial661

components of the fluid filtration velocity, the pressure distribution, and the662

first invariant of the constitutive part of the Mandel stress tensor obtained in663
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the poroelastic case (left column of Fig. 3) with those obtained in the presence664

of plastic distortions, i.e., in the poroplastic case (right column of Fig. 3). To665

characterise the poroelastic case, we simulated an unconfined compression test666

in which the yields stress, τy, which determines the onset of plastic flow, was667

set equal to a value that is never reached by the stress in the tissue. More668

precisely, we chose τy = 2000.00 N/mm2, a value that led to a purely elastic669

material response. In this situation, it holds that Bp = G−1 at all times of the670

observation time interval. In the poroplastic case, instead, Bp is determined671

by means of the numerical procedure reported in Sect. 4. Figures 5(a) and 5(b)672

show the first and second invariant of Bp at the end of the loading ramp, i.e.,673

at t = 30 s. We found that the higher values of these invariants are attained674

at the points of the specimen’s boundary corresponding to the intersection of675

Γl and ΓL.676

Before commenting our results, we recall that, in this paper, remodelling677

is entirely described in terms of “plastic” distortions. Thus, plotting figures in678

which plastic distortions are switched off actually means to show the results679

in which no remodelling occurs.680

Looking at Fig. 3, we notice that the influence of remodelling manifests681

itself through the modulation of the fluid filtration velocity, the change of682

the pore pressure distribution, and the lowering of the constitutive part of683

the stress of the solid phase. In particular, Figs. 3(a) and 3(b) show that the684

magnitudes of the radial and the axial filtration velocity, computed according685

to Darcy’s law, i.e., φfvfs = −kgrad p, decrease in the poroplastic case. In686

Figs. 3(a) and 3(b), the arrows represent the local direction of the flow. The687

decrease of the magnitude of the filtration velocity characterising the poro-688

plastic case is related to the decrease of the pore pressure (see Fig. 3(c)) and689

the decrease of stress, which in Fig. 3(d) is accounted for by the first invariant690

of Σsc. The values of the first invariant of Σsc are computed with respect to691

the reference configuration. However, in a visualisation post-process, the ref-692

erence configuration is deformed by the motion map, so that the previously693

computed values of the first invariant are visualised in the deformed config-694

uration. We remark that the onset and evolution of plastic distortions affect695

both quantitatively and qualitatively the time trend of pressure. Indeed, in696

Fig. 4, where pressure is evaluated at the midpoint of the lower boundary of697

the specimen, one can see that at least three facts distinguish the evolution of698

pressure in the poroplastic case (i.e., when remodelling occurs) from that per-699

taining the poroelastic one. Firstly, the maximum value of pressure attained700

in the absence of remodelling is much higher than the maximum reached in701

the presence of remodelling (it should be noticed, however, that in both cases702

the maxima are attained at the end of the loading ramp, i.e., at t = 30 s).703

Secondly, the rate with which the pressure tends towards the stationary state704

is much higher in the poroplastic case than in the poroelastic one. Thirdly,705

pressure seems to be a convex function of time over the interval [0, T0] in the706

poroelastic case, and to become concave in the poroplastic case. A possible707

explanation for the change of the pressure’s behaviour could be given by the708

following argument: The pressure and the deformation are determined by the709
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coupled equations representing the mass and linear momentum balance laws,710

i.e., (44a) and (44b). In particular, the balance of momentum (44b) relates the711

pressure, p, to the constitutive part of the first Piola-Kirchhoff stress tensor,712

Psc. The plastic distortions, represented by Bp, have a direct influence on Psc,713

since it holds that Psc = P̂sc(F ,Bp), and, through the balance of momentum,714

they also have an indirect influence on p.715

The coarsest computational grid consists of 144 prismatic elements. A regu-716

lar refinement is performed three times, so that the finest grid provides 163300717

degrees of freedom for the deformation and the pressure. Both the deforma-718

tion, χ, and the pressure, p, are approximated by linear ansatz functions. As719

a numerical solver a Newton-method is applied. Within the Newton iteration,720

a Bi-CGSTAB-method, preconditioned by an ILU-decomposition, solves the721

linearised sub-problems. The non-linear convergence is ensured by the appli-722

cation of a line-search method.723

6 Conclusions724

In this work, we considered a biphasic, solid-fluid mixture as an idealisation of725

a biological system, and studied its mechanical and fluid dynamic behaviour726

by simulating an unconfined compression test. Our fundamental hypothesis727

was that the mechanical loads applied to the mixture, besides leading to a728

global change of shape, also induce a structural reorganisation of the solid729

phase, which manifests itself through plastic distortions. In order to describe730

this physical picture, we used the poroplastic model reported in (44a)–(44c),731

which results into a set of coupled, and highly non-linear equations. We recall732

that all our calculations have been run under the assumptions that the solid733

phase exhibits hyperelastic response and that the fluid obeys Darcy’s law.734

Equations (44a)–(44c) were solved numerically by applying a numerical735

procedure recently developed for monophasic continua [47], and adapted to the736

biphasic framework in this paper. The results of our simulations, performed737

with our own code, and implemented in the non-commercial software UG [96],738

are reported in Sect. 5. It is shown that the plastic distortions, described byBp,739

influence the overall deformation, the stress distribution in the medium, and740

the fluid filtration velocity. This influence can be observed by comparing the741

results obtained in the poroplastic case with those pertaining the poroelastic742

one (see Figs. 3(a)–5(b)). We found that the reorganisation of the medium’s743

internal structure has repercussions on the magnitudes of both the axial and744

the radial component of the Darcy’s filtration velocity, which are smaller in the745

poroplastic case than in the poroelastic one, and has the effect of decreasing746

the fluid pressure as well as the magnitude of the constitutive stress in the747

tissue.748

Our results could contribute to estimate the mechanical conditions leading749

to the onset of remodelling, and seem to suggest some possible consequences750

of the structural reorganisation of hydrated soft tissues. Moreover, they may751

provide indications about the mechanical conditions regulating the health of752
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(a) Darcy’s filtration velocity in radial direction [mm/s] without remodelling (left) and with
remodelling (right).

(b) Darcy’s filtration velocity in axial direction [mm/s] without remodelling (left) and with
remodelling (right).

(c) Pressure isolines [N/mm2] without remodelling (left) and with remodelling (right).

(d) First invariant of Σsc [N/mm2] without remodelling (left) and with remodelling (right).

Fig. 3 Comparison of the results of the unconfined compression test in the absence (left
column) and in the presence (right column) of remodelling. All quantities are plotted in the
deformed configuration of the sample at time t = 30 s
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Fig. 4 Comparison of the time evolution of pressure, evaluated at the midpoint of the lower
boundary of the sample, between the case without remodelling and the case with remodelling

(a) First invariant of Bp [ — ] (b) Second invariant of Bp [ — ]

Fig. 5 First and second invariant of Bp in the presence of remodelling. The invariants
are computed at time t = 30 s with respect to the reference configuration. However, in a
visualisation post-process, the reference configuration is deformed by the motion map, and
the invariants are visualised in the deformed configuration.

tissues. For example, in the case of articular cartilage, the health of the tis-753

sue depends on the mechanical environment in which chondrocytes live (the754

chondrocytes are the cells that synthesise extracellular matrix, cf. [54,55,73,755

74] and references therein). Finally, the mathematical model presented in this756

paper could be generalised to include also growth [45] and damage [23,24,41].757

Indeed, both processes have many features in common with remodelling, and758

can be described by extending the BKL decomposition as follows [71]759

F = FeFgFpFd , (68)

where Fg and Fd denote the tensors of anelastic distortions related to growth760

and damage, respectively. A mathematical model based on (68) would require761



28 Alfio Grillo et al.

the introduction of two other independent evolution laws, one for Fg and762

one for Fd, which would call for further adapting the numerical procedure763

presented in Sect. 4. This is part of our current investigations. We remark that764

the order with which the tensors Fg and Fd appear in (68) is not unique, but765

it becomes irrelevant if Fg and Fd are assumed to be purely volumetric [43].766

Equations (44a) and (44b) are rather standard and constitute the starting767

point for both poroelastic and poroplastic models of solid-fluid mixtures. They768

are obtained on the basis of a series of assumptions that require: the intrinsic769

incompressibility of both the solid and the fluid phase, the fluid phase to be770

macroscopically inviscid (this implying that it can only sustain hydrostatic771

stresses), the hyperelastic behaviour of the solid phase, and the validity of772

Darcy’s law. The latter involves the hydraulic conductivity tensor, which was773

specified in this work by means of the simplest constitutive law for isotropic774

materials (cf. (29a)). Although many of these hypotheses are physically sound,775

it could be interesting to investigate the consequences of relaxing some of them.776

This could lead to more general models that, on the one hand, would stimulate777

the development of more flexible and efficient computational algorithms, and,778

on the other hand, might capture some physical aspects (such as, e.g., the pore779

scale interactions between the solid and the fluid), which are often neglected780

in the standard theory.781

From the computational point of view, assuming that k is proportional to782

g−1 introduces the great advantage of weakening the coupling among (44a)–783

(44c). Indeed, since Bp does not feature in the mass balance law (44a), the784

linearisation of the functional Fp needs to be performed only with respect785

to pressure and deformation (we recall that, actually, Fp is affine in p, and786

that the linearisation of Fp with respect to the pressure is done to get the787

set of equations (61a) and (61b), whose algebraic form leads to a “generalised788

saddle-point problem” [16,44]). In other circumstances, however, Fp has to be789

linearised according to the same procedure as Fχ. This happens, for instance,790

if the hydraulic conductivity is isotropic, but its constitutive expression is of791

the type792

k = k̂(F ,Bp) = k0g
−1 + k1FBpF

T . (69)

In this case, indeed, the coupling among the model equations is due to both793

χ and Bp.794

The evolution of the plastic distortions depends strongly on the physics795

of the anelastic phenomenon that has to be described, and, even when the796

“same” phenomenon is investigated, it can vary considerably depending on the797

accuracy of the mathematical model, on the strength of the coupling between798

the rate of anelastic distortions and the other variables, and on the intrinsic799

features of the anelastic process (which could be either rate-dependent or rate-800

independent, either associative or non-associative). In this paper, we chose to801

describe the evolution of Bp by means of (40) because this plastic flow rule802

has already been successfully employed in [42] to model the reorganisation of803

cellular aggregates. Equation (40), however, can be generalised to include a804

great variety of physical situations.805
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The major limitation of our model is that it is isotropic and homogeneous.806

Indeed, both the strain energy density, Ŵsκ, and the hydraulic conductivity,807

k, are isotropic (see (10a) and (29a)), and all the parameters appearing in808

their constitutive expressions, including the referential volumetric fraction of809

the solid phase, φsR, are set equal to constants. If, on the one hand, the model810

could be acceptable for studying the structural evolution of tumour tissues,811

which are often assumed to be elastically and hydraulically isotropic [1,42,84],812

it fails to be accurate for tissues, such as articular cartilage, in which the pres-813

ence of reinforcing collagen fibres induces anisotropy [35,78,79,94], and the814

constitutive laws are strongly dependent on material points. In these cases,815

whereas the balance laws (44a) and (44b) only need to account for the con-816

tribution of the fibres to the strain energy density and hydraulic conductivity,817

the plastic flow rule (44c) should be reformulated. Some of our plans for the818

future include the specification of the numerical techniques put forward in [39,819

75] to anisotropic and inhomogeneous porous media.820

One of the projects of our future research is to extend the theoretical821

and computational framework outlined in this paper to models accounting822

for phase transitions [28], to theories that describe the reorganisation of the823

internal structure of a body by augmenting its kinematics [21,27,45,50], and to824

the more general context of biomechanical models of growth and remodelling825

that involve, among plasticity [80], damage [81], and pre-stress effects [82], also826

higher order gradients of the deformation [66,67].827
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