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Abstract: The partial substitution of non-renewable materials in cementitious composites with eco-9 
friendly materials is promising not only in terms of cost reduction, but also in improving the 10 
composites shielding properties. The water and carbon content of a commercial lignin-based biochar 11 
is analyzed with thermal gravimetric analysis. Cementitious composites samples of lignin-based 12 
biochar with 14wt.% and 18wt.% are realized. Good dispersion of the filler in the composites are 13 
observed by SEM analysis. The samples are fabricated in order to fit in a rectangular waveguide for 14 
measurements of the shielding effectiveness in X-band. A shielding effectiveness of 15dB was 15 
obtained at a frequency of 10GHz in the case of composites with 18wt.% of biochar. Full-wave 16 
simulations are performed by fitting the measured shielding effectiveness to the simulated shielding 17 
effectiveness by varying material properties in the simulator. Analysis of the dimensional tolerances 18 
and thickness of the samples is performed by the help of full/wave simulations.  Lignin-based 19 
biochar is a good candidate for partial substitution of cement in cementitious composites as the 20 
shielding effectiveness of the composites increase substantially. 21 

Keywords: shielding effectiveness; biochar; eco-friendly material; cementitious composites; 22 

waveguides.  23 
 24 

1. Introduction 25 

The human population has seen rapid growth in the past decades. With increasing population, 26 
the demand for construction industry has increased manifold [1]. This has resulted in increasing 27 
greenhouse gas emissions from cement production [2]. The substitution of non-renewable raw 28 
materials used in construction industry with eco-friendly materials derived from waste is promising 29 
in terms of cost and environmental protection [3]. Agriculture and forestry waste is primarily burnt on 30 
field in order to reduce the cost of disposal. When converted into biochar, this waste can be used as a 31 
partial substitute to cement resulting in a significant reduction in greenhouse gas emissions and 32 
improving the mechanical properties of concrete [4,5]. 33 
 Increasing number of devices working at microwave and millimetre wave frequencies has 34 
resulted in an overall increase in electromagnetic radiation [6,7]. Electromagnetic shields are deployed 35 
to protect sensitive devices against electromagnetic interference [8,9]. In places that are vulnerable to 36 
electromagnetic interference, shielding materials can be applied as a coating on wall surfaces [10]. A 37 
number of equipment working at microwave and millimetre wave is used in the health sector for 38 
applications like imaging, tomography etc. [11,12].  The X-band is particular is important for radar 39 
communications including air-traffic control, weather monitoring, maritime vessel traffic control, 40 
defence tracking, vehicle speed detection. The use of shielding materials in building can be helpful in 41 
isolating equipment that is sensitive to electromagnetic interferences [13,14]. Different measurement 42 
techniques can be deployed for the determination of shielding effectiveness of materials. The most 43 
common measurement techniques are reverberation chamber [15], free-space measurements in 44 
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anechoic chamber [16], coaxial and waveguide methods [17-19]. Each measurement technique requires 45 
specific samples dimensions and frequency band. The X-band is very important for applications like, 46 
satellite communications and radar. 47 
 48 
 The use of carbon based materials in epoxy composites and the analysis of their morphological 49 
and electrical properties has been vastly studied [20-23]. Conventional carbon based materials like 50 
graphene and carbon nanotubes are expensive and require a complex synthesis. In recent years, the 51 
use of biochar substituting carbon nanotubes and graphene in composites as filler is investigated [24-52 
25]. Biochar is cost effective as compared to other carbon based materials. Biochar is a porous 53 
carbonaceous material produced by thermal treatment of biomass in absence of oxygen [26]. It can be 54 
made from a number of different waste products such as agricultural, food waste or sewage sludge 55 
[27].  Until recently biochar has been used for soil amendment in agriculture and landfilling 56 
applications [28]. The use of biochar in alternative applications is being studied at a vast scale, 57 
specifically for carbon sequestration, energy storage applications [29] and in construction and building 58 
[30-31]. 59 

In this paper, lignin-based commercial biochar is used as a partial substitute to cement in 60 
composites. The water, carbon and other residues of the biochar is studied by TGA. Composites of 61 
4mm thickness with plain cement, 14 wt.% biochar and 18 wt.% biochar are fabricated with specific 62 
dimensions for measurements of the shielding effectiveness inside a waveguide working in the X- 63 
band microwave frequency. The sample with 18 wt.% biochar were cured in water for 7 days or 28 64 
days. For examining the microstructural properties of the composites and dispersion of the filler in the 65 
composite matrix, SEM is adopted Measurements of the shielding effectiveness are compared with 66 
simulated results obtained with a full-wave simulator. As expected the shielding effectiveness 67 
increases with the increase of the percentage of filler (11dB for 14wt.%, and 15dB for 18wt.% at 10GHz). 68 
Analysis of fabrication tolerances and sample thickness are performed by the help of a full-wave 69 
simulator.  70 

Finally, the effect of the curing period in water on the shielding effectiveness values is analysed 71 
for the samples with 18wt.% biochar. The shielding effectiveness increases by approximately 5dB in 72 
the whole frequency range for the sample cured in water for 28 days with respect to the sample cured 73 
in water for 7 days. 74 

 75 

2. Materials and Methods  76 

2.1. Composites preparation 77 

The composite samples produced are with 14wt. % and 18 wt.% of biochar in Portland cement. For the 78 
sake of comparison, a composite without biochar is also produced, which is referred to as plain cement 79 
composite. The biochar used to realize the samples is a commercial product provided by Carlo Erba 80 
Reagents. It is pyrolysed in the form of powder at a temperature of 750 °C for four hours in an alumina 81 
crucible. For preparation of cementitious composites ordinary Portland Cement (PC) (grade 52.5 R) 82 
compliant with ASTM C150 is used along with water and superplasticizer to form an adequate 83 
consistency of the paste. The percentages of water and superplasticizer used are equal to 60 wt.% and 84 
1.8 wt.% respectively. A mechanical mixer is used to work the mixture for a duration of 5 minutes. 85 
Silicon moulds of adequate shape and size are then used to give the composites the required shape 86 
and dimensions.  87 

Portland cement is blended with biochar by using a mechanical mixer for 5 minutes with two different 88 
percentages by weight of cement, 14% and 18%, water (60%) and superplasticizer (1.8%). Furthermore, 89 
a reference specimen is realized using only Portland cement matrix blended together with a water and 90 
superplasticizer equal to 35% and 1.5%. The obtained composite are then poured into rectangular 91 
silicone moulds for shielding effectiveness analysis. The silicon moulds are fabricated in a 3D printed 92 
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master mould of specific dimensions (see Figure 1). The reusable and flexible silicone moulds helps in 93 
easy extraction of composite samples once they are cured.  94 

 95 

  96 

Figure 1. 3D printed master mould with silicone mould and an example of composites.   97 

Initially, the composite samples are kept at a relative humidity of 90 ± 5% for 24 hours. The composites 98 
are then demoulded and immersed in water at a temperature of 20 ± 2 ° C. The samples are then cured 99 
in water for a period of 7 days. Two different curing methodologies are used for curing of the 18wt.% 100 
samples in water for 7 days and 28 days in order to evaluate the impact of water curing duration on 101 
the shielding effectiveness (see Table 1). In Table 1 the different steps of fabrication and measurements 102 
of the cement composites are reported.  103 

Table 1. Fabrication and measurements of the cement composites. 104 

Day Plain cement 14 wt. % (7 days)  18 wt.% (7 days) 18wt.% (28 days) 

0 fabrication fabrication fabrication fabrication 

1 demoulded demoulded demoulded demoulded 

1 cured in water cured in water cured in water cured in water 

7 
extracted from 

water  

extracted from 

water  

extracted from 

water  
-- 

21 SE meas. 2 weeks SE meas. 2weeks SE meas. 2 weeks -- 

28 -- -- -- 
Extracted from 

water 

42 -- -- -- SE meas. 2 weeks 

70 SE meas. 10 weeks SE meas. 10 weeks SE meas. 10 weeks -- 

98 -- -- -- SE meas. 10 weeks 

 105 
2.2 Morphological analysis 106 
 107 
Thermogravimetric analyses TG-DTA analysis is carried out in air using about 20mg  of biochar 108 

heated from room temperature to 950°C at 3°C/min. For a morphological characterization of the 109 
cement composites, a scanning electron microscope (Hitachi S-2500C) was used for the analysis of the 110 
cross section of cement composites with 18 wt.% biochar. Sections of the composite are cut and 111 
polished with measurements performed on gold plated samples to avoid any charging effects.  112 

 113 
 114 

2.3 Radiofrequency measurements 115 
 116 
The total shielding effectiveness can be defined as the ratio of the incident and transmitted field. 117 

It can be obtained from the measured transmission loss (S21), in a waveguide as: 118 
 119 
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 𝑆𝐸 = −20 𝐿𝑜𝑔(|𝑆21|)                          (1) 120 
 121 

The total shielding effectiveness of a material comprises of dissipation loss, LD, and mismatch loss, 122 

LM [32]: 123 

𝑆𝐸 = 𝐿𝐷 + 𝐿𝑀                                  (2) 124 

where LM can be calculated from the reflection scattering parameter by:  125 

𝐿𝑀 = −10 𝑙𝑜𝑔10(1 − |𝑆11|2)                      (3) 126 

𝐿𝐷 = −10𝑙𝑜𝑔10 (
|𝑆21|2

1−|𝑆11|2)                      (4) 127 

 128 
The scattering parameters of the composites are measured in a WR90 rectangular waveguide from 129 

8GHz to 12GHz using a setup similar to [33]. The samples are fabricated in order to fit the rectangular 130 
waveguide cross section (a=22.86mm, b=10.16mm). The thickness of the samples is 4mm. The setup is 131 
shown in Figure 2. It consists of a two-port Vector Network Analyzer (VNA) (Agilent E8361A); two 132 
coaxial cables connected to the two ports of the network analyzer; two coaxial to waveguide adapters 133 
and two rectangular waveguides. Between the waveguides flanges is inserted a spacer holding the 134 
sample. Before the measurements, a two-port calibration (short, matched load, thru) is performed. The 135 
reference planes are at the ends of the spacer. 136 

 137 

 138 
Figure 2. WR90 waveguide measurements setup.  139 

 140 
2.4 Finite element simulations 141 
 142 
A commercial finite element modelling tool, Ansys HFSS is used to simulate the waveguide with 143 

the composite sample as shown in Figure 3. The material properties of the composite inserted in the 144 
waveguide are chosen by fitting the simulated shielding effectiveness values to the measured shielding 145 
effectiveness values. The composite dimensions and thickness are varied to analyze the impact of 146 
fabrication tolerances and thickness on the values of shielding effectiveness.  147 

 148 
 149 
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 150 
Figure 3. Geometry of the simulated waveguide with composite (left panel). Geometry for the 151 

dimensional analysis (right panel).   152 
 153 

2.5. Dimensional tolerance analysis 154 

In order to take into account the dimensional tollerance of the cement composite, simulations were 155 
performed based on varying the two dimensions along the x and y axis (see Figure 3). In case of plain 156 
cement composites, it was found that there is negligible variation of the transmission properties by 157 
varying the ax dimension of the sample, while the impact of a variation of bx is significant. A variation 158 
of 0.5mm in bx  results in a variation of almost 1dB in the transmission coefficient as shown in Figure 159 
4. It has been ensured that the tollerance in the dimensions of the cement composites is below this 160 
value. 161 

    162 

Figure 4. Analysis of fabrication tolerances of the plain cement composites.  163 

3. Results 164 

3.1. Biochar and composites characterization 165 

The water and carbon content of the biochar is investigated by TG-DTA experiments. TGA curve 166 
of biochar is reported in Figure 5. Below 100 °C, the weight loss is about 16%, due to the evaporation 167 
of the physically adsorbed water. From 350°C to 500°C the weight loss is due to the combustion of the 168 
graphitic carbon fraction (about 74% of the total weight of the sample). At 950 °C, a residue of around 169 
5 % in weight is observed respect to the initial amount.  170 
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 171 

Figure 5. TGA curve of biochar filler. 172 

Figure 6 illustrates the SEM image of composites with the highest content of biochar (18wt.%) recorded 173 

with secondary electrons. The black structures shown in the SEM image are the carbonaceous particles. 174 

The expected elongated structure of the particles is due to the fiber origin of the biochar. The particles 175 

show a good dispersion in the matrix. 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

Figure 6. SEM Micrograph of cement containing biochar 18% at 1000x magnification. 189 

3.2 Shielding effectiveness analysis 190 

Shielding effectiveness can be found from the measured transmission coefficient, S21, in a waveguide 191 

(see Figure 2) as defined in equation (1). The measured shielding effectiveness of the plain cement used 192 

as reference sample, sample with 14wt.% and 18wt.% filler cured in water for 7 days and measured 193 

after 10 weeks are shown in Figure 7. At the center frequency of 10GHz, the shielding effectiveness of 194 

plain cement is almost 5dB, which increases to 11dB for the samples with 14wt.% of biochar. The 195 

maximum shielding effectiveness measured for the sample with 18wt.% is around 15dB. These results 196 

are obtained with 4mm thick samples. The shielding effectiveness values can be further increased by 197 

increasing the sample thickness and/or the percentage of biochar. The shielding effectiveness of the 198 

plain cement composites decreases with frequency. This behaviour is similar to other cement 199 

B1

0 

25 m 
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composites [34]. The different behaviour in frequency of the biochar composites with respect to plain 200 

cement composites can be attributed to the presence of entrapped water in the biochar [35]. 201 

 202 

 203 

Figure 7. Measured and simulated Shielding effectiveness values for plain cement, sample with 204 

14wt.% of biochar and sample with 18wt.%. Samples cured for 7 days in water. Measurements 205 
performed after ten weeks ageing.  206 
 207 

In Figure 7 the simulated shielding effectiveness obtained with full-waves simulations are reported 208 

(dashed lines). The values of complex permittivity are varied to fit the simulated shielding 209 

effectiveness values to the measured shielding effectiveness values and a good correlation between the 210 

measured and simulated data is obtained.  211 

 There is a strong correlation between the curing period in water and the mechanical strength of 212 

cement composites [30]. In order to evaluate the effect of the curing period in water on the shielding 213 

effectiveness values, samples with 18wt.% biochar cured in water for a period of 7 days and 28 days 214 

are analysed. The shielding effectiveness of the cement composite with 18wt.% biochar cured in water 215 

for seven days and 28 days measured after 2 weeks and 10 weeks are shown in Figure 8. It can be seen 216 

that the sample cured in water for 28 days has higher shielding effectiveness when measured both 217 

after 2 weeks and 10 weeks. The variation of the shielding effectiveness over time of the cement 218 

composite cured for 28 days is also higher than the one cured in water for seven days. This shows that 219 

the shielding effectiveness is increased due to the presence of water, the loss of water from the sample 220 

over time results in a reduced value of the shielding effectiveness value.  221 

 222 
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      223 

Figure 8. Measured shielding effectiveness of cement sample with biochar 18wt. % cured in water for 7days (left 224 

panel) and 28 days (right panel). Measurements performed after 2 weeks and 10 weeks.  225 
 226 

4. Discussion 227 

In order to evaluate the impact of the presence of biochar in the cement composites on the shielding 228 

effectiveness, a comparison has been performed with other works in literature (see Table 2). The case 229 

considered in this comparison is filled with 18wt.% biochar cured in water for 7 days and measured 230 

after ten weeks. The thickness of the samples considered is 4mm which provide a shielding effectiveness 231 

value of almost 14dB. In comparison with literature, other cement samples reported gives higher 232 

shielding effectiveness values due to a higher value of thickness. In order to evaluate the impact of the 233 

thickness on the shielding effectiveness values, simulations are performed with higher thickness values. 234 

The results are shown in Figure 9. As expected the shielding effectiveness increases considerably 235 

increasing the thickness of the sample.  236 

Table 2. Comparison with literature 237 

Ref. Frequency 

Measured 

after 

(days) 

Thickness 

(mm) 

Shielding 

effectiveness 

(dB) 

Materials 

[34] 3 GHz 36 100 17.5 cement 

[36] 10 GHz 95 150 20 cement 

This work 10 GHz 70 4 15 
cement+18wt.% 

biochar 

 238 

 239 

Figure 9. Simulated results for cement composites with 18wt.% biochar with different thicknesses. 240 
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5. Conclusions 241 

Biochar is obtained by thermal treatment of waste products. It has been vastly used for soil 242 
amendment. More recently, it has been used for applications as energy storage, carbon sequestration 243 
and construction. The effect of a commercial biochar on the shielding properties of cement composites 244 
is investigated in X-band. The conclusions drawn based on the results presented can be extended to 245 
other microwave frequencies. Cementitious composites with ordinary Portland Cement (PC) were 246 
prepared without biochar and with biochar as filler (14 wt.% and 18wt.%). Samples are prepared in 247 
order to fit a WR90 waveguide (8-12 GHz). With the help of a full-wave simulator, the fabrication 248 
tolerances of the samples are analysed. A variation of ±0.5mm results in a change of the shielding 249 
effectiveness of ±1dB. Shielding effectiveness can be obtained from the measurements of scattering 250 
parameters.  Samples with 14wt.% and 18wt.% biochar as filler are cured in water for 7 days. As 251 
expected the shielding effectiveness increases with the increase of the percentage of filler (11dB for 252 
14wt.%, and 15dB for 18wt.% at 10GHz). In order to evaluate the effect of the curing period in water 253 
on the shielding effectiveness values, different curing period are analysed.  Samples with 18wt.% 254 
biochar are cured in water for a period of 7 days and 28 days. The shielding effectiveness increases by 255 
approximately 5dB in the whole frequency range for the samples cured in water for 28days as 256 
compared to samples cured in water for 7 days.  257 
 258 
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