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Abstract: Nearly 40% of primary energy consumption is related to the usage of energy in Buildings.
Energy-related data such as indoor air temperature and power consumption of heating/cooling
systems can be now collected due to the widespread diffusion of Internet-of-Things devices.
Such energy data can be used (i) to train data-driven models than learn the thermal properties
of buildings and (ii) to predict indoor temperature evolution. In this paper, we present a Grey-box
model to estimate thermal dynamics in buildings based on Unscented Kalman Filter and thermal
network representation. The proposed methodology has been applied in two different buildings with
two different thermal network discretizations to test its accuracy in indoor air temperature prediction.
Due to a lack of a real-world data sampled by Internet of Things (IoT) devices, a realistic data-set has
been generated using the software Energy+, by referring to real industrial building models. Results
on synthetic and realistic data show the accuracy of the proposed methodology in predicting indoor
temperature trends up to the next 24 h with a maximum error lower than 2 °C, considering one year
of data with different weather conditions.

Keywords: building simulation; Unscented Kalman Filter; grey-box model; parameter estimation;
thermal dynamics

1. Introduction

Nowadays, over half of the overall world’s population lives in urban areas. United Nations
studies predict that by 2030 urban areas will hold about 68% of people, of which one-third would live
in towns with a population of at least half a million [1]. United Nations Habitat Division [2] states
that urbanizations are largely energy intensive. Approximately 75% of global primary energy ly and
50%–60% of global greenhouse gas emissions [2] are consumed and generated by cities. In particular,
roughly 40% of total energy consumption [3] is related to heating and cooling systems of buildings. In
this context, Information and Communication Technologies (ICT) and, in particular, Internet-of-Things
(IoT) technologies play a crucial role in enabling new fined-grained algorithm to monitor and optimize
energy consumption [4], thus increasing the efficiency of energy systems. This is confirmed by the
widespread diffusion in our homes and towns of heterogeneous and pervasive devices. Such IoT
devices allow large amounts of energy data to be collected (e.g., indoor air temperature) providing
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detailed information for building thermal dynamics to be derived and modelled. As shown in [5–7],
thermal building systems can be modelled through electrical circuits of Resistance-Capacity (RC),
where building thermal resistance is represented as a resistor, thermal capacity as a capacitor,
temperature as electric charge, temperature difference as voltage and heat gains as an electric current.
The complex heat exchange systems can be represented by simple equations using this clear but
powerful construction. To predict the temperature profiles, data from IoT sensors can be developed
using data-driven models such as Grey-box models. It is possible to estimate unknown parameters
as resistors and capacitors using parameter estimation techniques such as the Unscented Kalman
Filter [8] (UKF). For example, by exploiting the flexibility of electrothermal devices, the results of these
models can foster novel control strategies and tools for energy management in buildings and cities.
Heating systems in buildings can thus be included in the applications for Demand/Response [9,10]
and Demand Side Management [11,12].

On these premises, in this paper, we extend our previous work [13] and present a novel data-driven
model based on UKF to estimate thermal dynamics in buildings. It takes advantage of information
sampled by pervasive IoT devices to allow control policies for: (i) Optimal System Operating
Scheduling, (ii) Model Predictive Control, (iii) Demand Side Management and (iv) Demand/Response.
The main contribution of the paper consists on testing different Grey-box models of buildings and on
using the Unscented Kalman Filter technique to learn and predict building heating/cooling dynamics.
This paper presents several new insights and extensions, both methodological and analytical, in relation
to our previous work [13]. As in the previous article, also in this case, synthetic data have been used to
test the method. Regarding the methodology, we propose a new configuration of the RC-Model that
exploits one filter for each thermal zone in the building (hereinafter referred to as multi-filter algorithm),
instead of having one unique filter that manages, in the same calculation, the entire set of thermal
zones (hereinafter referred to as single-filter algorithm). Regarding the analysis, we provide much more
insightful experimental assessments. Because of the absence of widespread real-world data sampled
by IoT devices, a realistic data-set has been generated using the software Energy+, by referring to a
real industrial building. Therefore, we have analyzed the performance of the proposed multi-filter
algorithm on a 17-zone RC-model, increasing the building model complexity w.r.t. [13], that was up
to 5 zones. Moreover, with respect to our previous work, we analyzed the difference in treating the
heat gain of the HVAC (Heating, Ventilation and Air Conditioning) system as an input to the model or
as a disturbance.

The rest of the paper is organized as follows. Section 2 reviews literature solutions to simulate
thermal dynamics in buildings. Section 3 introduces the Unscented Kalman Filter and the proposed
methodology is presented in Section 4. Section 5 describes the different thermal representation of
the analyzed buildings and Section 6 discusses the results and performances in forecasting indoor
air temperature profile up to next 24 h. Finally, Section 7 discusses the concluding remarks and
future works.

Due to a lack of real-world data sampled by Internet of Things (IoT) devices, a realistic data-set
has been generated9using the softwareEnergy+, by referring to real industrial building models.

2. Related Works

A strong research effort has been made in the last years to model buildings ’ thermal energy
consumption. In particular, models have been developed, [14,15], to describe the thermal dynamics
in buildings, whether residential or commercial. Those models can be grouped into three macro
categories: (i) White-box, (ii) Black-box, and (iii) Grey-box.

White-box models have a complete knowledge and description of (i) physical phenomena,
(ii) structural and thermal parameters of buildings (e.g., thermal capacity of each element like walls
and windows). Energy+ [16] is one of the most famous solutions in this category that requires thermal
capacity, thermal resistance and material thickness to run simulations [17]. In [18], the authors
present a methodology for realistically simulating building thermal behaviors by integrating Building
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Information Models with data sampled by IoT devices to monitor indoor air temperature and by
replacing Test Meteorological Year information with real weather station-sampled by meteorological
data. However, even if most of the fundamental parameters and settings are known, White-box models
are not error free. Indeed, it is most likely to find a mismatch between actual and expected thermal
performances of the building. This may arise due to a wrong knowledge of construction materials, or to
the lack of detailed building’s blueprints (e.g., historical and old buildings). Furthermore, some other
parameters are commonly unknown, like inhabitant behaviors and weather conditions (e.g., window
openings and temporary cloud covering, respectively) and they can significantly affect the thermal
behavior.

Black-box models are empirical models based on statistical data that neglect information on
physical phenomena, structural and thermal parameters of buildings. Black-box models aim to
find a relationship between the variables of input and output. In [19,20], the authors present two
solutions based on neural networks techniques to estimate and predict indoor air temperature in
buildings. The main limitation of this approach is the short term horizon of its forecasting (e.g., one
or two hours). Generally, such a time-horizon is not sufficient for building temperature forecasting
purposes. Moreover, such solutions exploit a data-set of about six years with information sampled
by IoT devices deployed in a real-world building. A consistent data-set like the one used in the cited
paper is not available for the majority of building.

Grey-box models are a combination of both White- and Black-box, combining statistical information
with physical, structural and thermal parameters of buildings. A number of studies show that a
building’s thermal behavior can be modelled as an RC circuit [5–7,21]. In this analogy with electric
circuits, walls and air mass are represented by resistors and capacitors, temperature by electric voltage,
and heat flow by electric current.

In [22,23], the authors proposed a model that couples a set of continuous time stochastic
differential equations with a set of discrete time measurement equations. In the model, temperature
variation may be affected by disturbance that can not be directly measured, such as window openings,
presence of people, industrial equipment, heating systems and solar gain.

Techniques like Kalman filters and genetic algorithms are used to estimate the effects of
unmeasured disturbances on the dynamics of state variables. In [24], the authors conducted a virtual
and mini test-bed experiment to test Kalman filters’ ability to detect process disturbance. They have
summed up solar heat gain and losses from internal sources together in the estimation process.

The Extended Kalman Filter was applied by Fux et al. [25] to a 1R1C (one Resistance and one
Capacity) circuit that models a commercial construction. This self-adaptive thermal model provides
estimations of inhabitants’ unmeasured heat flows, predicting indoor air temperature with an error
ranging from 0.5 °C to 3 °C for 3 and 48 h in the future, respectively.

Kalman filters has been applied also to design a Parameter-Adaptive Building model by
simultaneously tuning the parameters of the model and estimating the states of the system [26].

Using the Unscented Kalman Filter, Radecki et al. [27] defined the state parameters of a multi-zone
thermal network validating their results with the use of Energy+ simulations. To learn the constant
parameters, this model is first trained with a 7-day data-set consisting of known loads; then it can
characterize the unknown loads (i.e., sun radiance). Temperature trends are predicted fairly accurate.

Juhl et al. [28] exploited the Stochastic Differential Equations to represent the state-space model
and maximum likelihood techniques for parameter estimation, model identification and validation.

Finally, in our previous work [13], we estimated the effects of solar heat gain and HVAC systems
on the building indoor air temperature evolution. We have tested the performance of the algorithm in
a 5-zone thermal network, for a certain number of different situations. In particular, solar heat gain was
modelled alternatively as a disturbance or as input to the system by re-projecting the solar radiation
on the building façades. Moreover, we tested the different performance of the filter in estimating the
Thermal Resistance and Capacity of the building as single separate values or as a coupled product
of themselves. Finally, we have tested the difference of analysing a single zone in terms of one or
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two nodes (where a node represents the exact point in the room where the temperature is measured).
The first node represents the indoor air in the middle of the room and the second node represents
the wall with its thermal resistance, capacity and temperature. From the results, we have highlighted
that the filter provides better performances: (i) by treating solar radiation as a disturbance to the
system; (ii) by estimating thermal resistance and capacity values as product of themselves and not as
single values; and (iii) by not considering the single zone as two nodes system, this is because there
were no measurements of the wall temperature and the system would have lost the identifiability
guarantee [29,30].

As a solution to the main limitations of the previous literature solutions, in this paper we extend
our previous work [13] presenting a novel methodology based on a different structure of the filter
architecture. In particular, we evaluate the model performances by splitting the filter in many filters as
the number of zones in the building. Furthermore, we tested the performance of the previous model
with respect to the new implementation in a much larger building that has 17 thermal zones, while the
building under analysis in [13] had 5 thermal zones. Both buildings are virtual buildings, but if the
former was a completely synthetic case-study, the latter wants to be a more realistic one, representing
the geometry and the division in thermal zones of a real industrial building. Finally, with respect to
our previous work, we test the difference in treating the heat gain of the HVAC system alternatively as
a known-input or as a unknown-disturbance.

3. Unscented Kalman Filter

Kalman filters belongs to Bayesian filters family. They describe a general probabilistic approach for
estimating an unknown probability density function recursively over the time. They use a mathematical
model to describe a phenomena and real control measurements to validate the model. Kalman filters
results particularly efficient when a dual estimation is needed, i.e., when they have to estimate both
state and parameters [8].

Unscented Kalman Filter (UKF) is based on the assumption that a probability distribution function
is easier to be approximated than an arbitrary non linear function [31]. Therefore, the distribution
is approximated by the Gaussian density, and it is represented by a set of deterministic chosen
samples. These so called sigma points completely get the true mean and co-variance of the Gaussian
distribution. When propagated through nonlinear systems, they get the true mean and covariance
accurately to the second order (Taylor series expansion) of any non-linearity. The core of UKF is the
Unscented Transform that allows, with a nonlinear transformation, to compute statistics of a random
variable. The n-dimensional random variable x, with mean x̂(k|k) and co-variance matrix P(k|k) for
kth iteration, is approximated by the following equations through 2n + 1 weighted sigma points and
correlated weights:

χ0(k|k) = x̂(k|k) i = 0

W(0)
m =

κ

(n + κ)

χi(k|k) = x̂(k|k) +
(√

(n + κ)P(k|k)
)

i
i = 1, ..., n

W(0)
c =

1
2(n + κ)

(1)

χi(k|k) = x̂(k|k)−
(√

(n + κ)P(k|k)
)

i
i = n + 1, ..., 2n

W(i)
m = W(i)

c =
1

2(n + κ)

where n represents the state dimension, κ is a scaling parameter such that κ + n 6= 0 with n, κ ∈ R.
Wi is the weight associated to ith point, and it can be associated to the mean weight (Wm) or to the
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co-variance (Wc). Weights are then normalized, so they satisfy ∑2n
i=0 Wi = 1. These sigma vectors are

propagated through the nonlinear function f (·) yielding a transformed set of points.

Øi
k+1|k = fk

(
χi
(
k|k
))

(2)

The Prediction Step calculates the a-priori mean and co-variance as follows:

x̂(k + 1|k) =
2N

∑
i=0

W(i)
m χi

k+1|k

Px(k + 1|k) = (3)
2N

∑
i=0

W(i)
c [χi

k+1|k − x̂(k + 1|k)][χi
k+1|k − x̂(k + 1|k)]T + Q

where Q represents a noise term.
The Update Step is performed in measurement space. Thus the sigma points are transformed

into Y through the measurement function h(·):

Y i
k+1|k = hk(Ø

i
k+1|k) (4)

and the a-posteriori mean and co-variance are calculated as follow:

ŷ(k + 1|k) =
2N

∑
i=0

W(i)
m Y i

k+1|k

Py(k + 1|k) = (5)
2N

∑
i=0

W(i)
c [Y i

k+1|k − ŷ(k + 1|k)][Y i
k+1|k − ŷ(k + 1|k)]T + R

where R represents the measurement noise. Then, the residual of the measurement is computed by the
following equation:

y = z− ŷ(k + 1|k) (6)

Cross co-variance of state and measurement is calculated by:

Pxy(k + 1|k) = (7)
2N

∑
i=0

W(i)
c [Øi

k+1|k − x̂(k + 1|k)][Y i
k+1|k − ŷ(k + 1|k)]T

Then, the Kalman gain (K) is computed as:

Kk = Pxy(k + 1|k)P−1(k + 1|k) (8)

Finally, the UKF estimation, and its co-variance, is calculated as follows:

x̂(k + 1|k + 1) = x̂(k + 1|k) + Kky (9)

P(k + 1|k + 1) = Px(k + 1|k)− KkPy(k + 1|k)KT
k

Algorithm 1 summaries the steps involved in the Unscented Kalman filter.
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Algorithm 1 Unscented Kalman Filter.

Initialisation
Initialise the belief in the state

Prediction
Generate Ø and Wm, Wc
Project Ø to f (·) creating Y = f (Ø)
Compute mean and co-variance of the prior
x̄− = ∑ WmY
P̄− = ∑ Wc(Y − x̄−)(Y − x̄−)T + Q

Update
Project Y to h(·) creating Z = h(Y)
Compute mean and co-variance of the posterior
x̄+ = ∑ WmZ
P̄+ = ∑ Wc(Z − x̄+)(Z − x̄+)T + R
Compute residual y = z− x̄+
Compute K =

[
∑ Wc(Y − x̄+)(Z − x̄+)T]P−1

+
Update mean and co-variance of the UKF estimation
x = x̄− + Ky
P = P̄− + KP̄+K

4. Methodology

In this section, we present our novel methodology used to forecast indoor air temperature trend in
buildings. To perform such a forecast, we take advantage of a Grey-box modelling method that exploits
an Unscented Kalman Filter techniques to learn the model parameters. As explained by authors in [5–7],
thermal building systems can be modelled through RC electric circuits (see Figure 1). The RC circuit
model approximates a building as a finite number of interconnected zones. Each connection between
two zones is called node, and represent a wall, a window or the air mass. Figure 1a shows a single-zone
RC circuit of a building where Rin and Cin represents, respectively, the resistance and the capacity of all
the elements interposed between the internal and the external zone of the building. The curved arrow
represents the direct input heat source applied to each node (e.g., solar radiation, air-heating system
and lights). Buildings can be represented by a single-zone RC circuit with one node (see Figure 1a)
or with a single-zone RC circuit with two nodes (see Figure 1b) or with a multi-zone RC circuit (see
Figure 1c); this depends on the amount of information available to describe the building, hence to
develop the model. Regarding the last aforementioned point, a short discussion is required. As we
have observed in the previous article [13], considering the wall temperature as a variable of the system
state-space outperforms the filter capabilities. In the Kalman filter method, identifiability is addressed
with the view of observability [29,30]. A system is said to be observable if the initial state can be
uniquely identified from the output data at any given point in time. All temperature and heating
profiles, which are directly measured or generated by simulation software (e.g., Energy+), represent the
observable reference functions and they guarantee the identifiability of the system. Instead, real wall
temperature profiles are not available, thus they cannot be integrated as a measurement function
to correct the forecasting model: identifiability is no longer ensured and the parameter estimation
fails. In a single-zone model, the possible heat exchanges are expressed by the external environment
source and by the internal gain sources, while the proposed multi-zone model also considers the heat
exchanges with the adjacent zones.

The variation of temperature at node i is determined by heat exchange with adjacent zone(s) j
and by external/internal heat ly. This can be represented with the Equation (10):

Ci
dTi
dt

= ∑
j

Tj − Ti

Ri,j
+ AiQradi

+ Q̇inti (10)

where Ci is the thermal capacity (J/◦C) of zone i; Ti is the air temperature (◦C), and can represent both
the zone i, and the external environment; Ri,j is the thermal resistance (◦C/W) between zone i and
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zone j; Ai represents the fraction of wall and windows irradiated by solar radiation (m2); Qradi
is the

solar radiation (W/m2); Qinti is the interior heat ly applied to zone i (W).

Figure 1. Thermal networks representation. (a) single-zone 1-node; (b) single-zone 2-node; (c)
multi-zone 1-node.

Equation (10) represents the state transition function used in the Unscented Kalman Filter to
calculate temperature evolution. Together with the measurements data-set, this allows UKF to
reproduce the true building thermal evolution, and to estimate unknown parameters and disturbances.
Heat transfer equations describing the physical system yield the following set of continuous time
differential equations:

ẋ = f (x, u, d, p)

z = h(x, u)
(11)

where f (·) and h(·) represents the same function described in Section 3 representing respectively state
transition and measurement function; x ∈ Rn is the state vector representing the temperature of
the state and ẋ is the state temperature rate of change; u ∈ Rm is the input vector (e.g., outdoor
temperature or zone-connected temperature); d is the disturbance vector (e.g., solar load, heater loads,
infiltration); p is the selected uncertain model parameters (e.g., resistance and capacitance); z ∈ Rm is
the output vector of the system and represents the temperature of the subjected thermal zone.

As described in [27], to allow the parameter estimation with UKF, the state x in
Equation (11) has been augmented combining together temperatures T̄ with uncertain parameters
p̄ = [(RC)1 · · · (RC)k]

T and disturbances d̄ = [AwQrad/C Qint/C]T . The result is the augmented
state vector x̄:

x̄ =

[T̄

p̄

d̄

]

Multiplying p̄ and d̄ parameters through the state variables T̄ and u causes the state update
function f (x̄(k), u(k)) to become non-linear. This non-linearity rises up the necessity of exploiting
non linear filtering techniques such as UKF to predict the state equations. To implement the filter,
Equation (11) needs to be discretized. The definition of the time interval depends on the measurement
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data-set to deal with. In this work, the discretization has been done with a 1-min interval steps Euler
integration. The full discrete-time stochastic system becomes as follow:

x̄(k + 1) = f (x̄(k), u(k)) + ω̄1(k)

p̄(k + 1) = p̄(k) + ω̄2(k)

d̄(k + 1) = d̄(k) + ω̄3(k)

z̄(k + 1) = h(x̄(k), u(k)) + v̄(k)

(12)

where ω̄1,2,3 and v̄ represent process and measurements noise, respectively. In particular ω̄1(k)
represents process noise for temperatures, ω̄2(k) represents estimation uncertainty in RC parameters
and ω̄3(k) represents process noise for disturbances. They are assumed to be zero mean, multivariate
and white Gaussian noises. Specifically, ω̄1,2,3 belongs to Q co-variance matrix (ω̄ ≈ N(0, Q)), and v̄
belongs to R co-variance matrix (v̄ ≈ N(0, R)).

Measurement noise size is correlated with the accuracy of the measurement data-set used to
study the system. In our case, this is represented by the uncertainty of the temperature sensors.
Temperature process noise is correlated with the accuracy of the equation that defines the state.
The more the law is accurate and involves all the possible sources of heat, the smaller has to be the
noise value. Parameter process noise must be set to a value greater than zero to allow the filter to vary
its estimation over the time. Disturbance process noise is also a value that has to be set greater than
zero, but is more complex to tune, because it involves several unknown phenomena that affect the
system. A common use rule establishes that the noise level for RC parameters should be much smaller
than for disturbances [27]. This difference come from the fact that RC values should be fairly constant
over the time, while disturbance bias may change over the day.

Another important parameter to be initialized is the co-variance matrix P. It represents the
uncertainty on the x̂0 initial state estimation and, in contrast to measurement noise co-variance,
it cannot be estimated experimentally. In this work, we apply the approach proposed in [32,33] to
initialise P0 as follows:

P0 = diag((x̂0 − x0)
T(x̂0 − x0)) (13)

The exact value of state x0 is rarely known in practice, but more often are known upper (xu) and
lower (xl) bounds that are used to approximate x̂0. Using this approximation, it is possible to set
x̂0 = 0.5(xu + xl) and x̂0 − x0 = 0.5(xu − xl).

Taking advantage from the investigation done in our previous work [13], to solve Equation (10),
we have considered p parameters as the multiplication of resistances and capacitances, rather than
considering them as divided terms. Indeed, as observed in our previous work [13], splitting R and
C in two different state-space variables worsens the filter performances. This can be related to the
excess of variables to determine, causing recognition problems. Moreover, since we obtain better
results by using a single node model in this paper we do not take into account the wall temperature.
Indeed, to consider the wall temperature as a state-space of the equation without having a measured
temperature evolution invalidate the identifiability principle and decreases the filter performances.

All the works presented in Section 2 have applied grey-box modelling techniques only in small
RC-circuit with no more than 5 zones. Potentially, with the RC-circuit modelling approach it is possible
to describe as many zones as wanted if measurement data are available. Moreover, each zone can be
divided in infinite sub-zones. The higher the building split into sub-zones is, the better the resolution
and the representation of the system. However, a question that arises increasing the number of thermal
zones is the growing needs of detailed information about the whole system. There is a certain amount
of parameters that are often not easily accessible, either because the case in the study is an old industrial
building and is devoid of simple control systems (several factories do not know the amount of heat
that each HVAC system produces), or because the equipment they need to be measured are expensive
(e.g., windows opening or presence of people sensors). For that reason those phenomena must be
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treated as disturbances. The more detailed the information available (e.g., time scheduling), the easier
their determination and forecast will be. A specific observation must be made in regard to the solar
radiation. Indeed, there exist some equipment able to measure the solar radiation, but there are no
meteorological services able to forecast it. For that reason in this paper, we assume to treat the solar
radiation as a disturbance.

As long as we consider several thermal zones, it becomes more difficult to model all the unknown
phenomena as disturbances (e.g., solar radiation, heating systems, people heating gain), otherwise the
filter becomes is longer able to differentiate what comes from one source rather than another. The more
we increase the number of thermal zones or sub-zones, the more we increase the number of unknown
parameters that the filter needs to estimate and the number of known inputs needed, such as heat
sources instead of unknown disturbances. Such an increase in the state-space of the filter might limit
its ability to estimate all the unknown parameters.

Therefore, to overcome this issue we investigate the possibility of not considering the whole set
of zones together in the same state-space of the filter. In our previous work, we discovered that most
of the divergence problems we have encountered were determined by the surplus of variables to
handle. Hence, in this paper we have decided to separate the number of filters and to create an ad hoc
Kalman filter for each zone (i.e., multi-filter algorithm), instead of having a unique filter responsible for
managing the whole set of thermal zones (i.e., single-filter algorithm). For each zone the contribution of
the nearby areas is considered as an input parameter, in the same way as it is considered the external
temperature.
The temporal iteration loop used to run the filter is structured as follows:

• 3-day loop: in a first iteration, the filter runs only for night hours to have disturbances equal to
zero (e.g., solar gain), and to better estimate RC parameters. In this iteration, the disturbance
process co-variance Q is set equal to zero to not estimate solar radiation gains.

• 4-day loop: in a second iteration, which immediately follows the 3-day loop, the filter runs
considering also day hours to estimate both RC parameters and solar radiation. Q co-variance
term referred to solar radiation is inflated to allow the disturbance parameters to change over
the time and follow the real behavior of the phenomena. In the case where the HVAC system is
also considered as a disturbance, also co-variance term referred to the heating system is inflated,
following the exact HVAC time schedule. By doing so the filter is able to allocate each thermal
contribution (e.g., solar radiation and heating system) to the correct phenomena, and the amount
of other absorbed disturbance is minimized.

• 24-h prediction: both the determined patterns are used together to predict the indoor air
temperature trends for the subsequent 24 h.

With this configuration, after having learnt one week of data, the model is able to predict indoor
air temperature profile for the day after. This loop is performed for all the filters at each step and new
data, sent by IoT devices deployed in the building, can feed the model even in (near-)real-time.

5. Case Study

This section presents two different case-study buildings in Turin, Italy, that have been used to
test the proposed methodology (see Section 4). The considered buildings are similar in terms of
purpose of use and construction specifications, but they differ from each other in terms of area and
thermal network discretization. The amount of thermal zones is an indicator for the refinement of the
grid and for the system complexity, but not necessarily for the building area extension. The thermal
zone subdivision choice must be done considering the physical configuration of the building, but
also the final use of different building areas, or the space thermal evolution, grouping together those
areas of the building that have similar temperature evolution trends. For the 5-zone case, we have
considered a squared geometry. The thermal grid can be refined as much as possible: the whole area
can be considered as a point (single-zone), or can be subdivided into many different areas (multi-zone).
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The represented configuration is an example of multi-zone thermal division, it is not a general model.
We have decided to consider a second building, which presents an increased thermal grid refinement,
in order to enhance the system complexity and hence to stress more the proposed methodology. In
order to be more realistic, we have represented a real industrial building. In that case we have assumed
the real internal zone subdivision of the building.

Each case-study is compared to the results obtained in our previous work [13]. Due to a lack of
real-world data sampled by IoT devices, we generated a realistic data-set, one for each case-study
building, with Energy+ following the methodology proposed in [18]. These data-sets report both
indoor air temperature trends of each zone in the buildings and the heating system outputs with
15 min sampling time. In order to give a more realistic connotation to our synthetic data-set, Energy+
structure has been designed with the aim to include, as random phenomena, disturbing variables
affecting the system like human factors, infiltration, or industrial equipment. Weather conditions (i.e.,
outdoor temperature and solar radiation) are retrieved by real-world weather stations in Turin and
given as an input to the Energy+ by replacing the default Typical Meteorological Year file. We analyzed
the period from October 10th, 2017, to April 4th, 2018, i.e., an entire winter season. The data-set has
been employed following the temporal iteration loop described in Section 4. Thereby, the first 7 days
of each calculation corresponds to the training-set, and the following day is used to test the algorithm
and actually forecast the indoor temperature profile.

As shown in Figure 2a, the first case-study building taken under consideration consists on a 5-zone
thermal network building (hereinafter referred to as 5-zone building). It consists of a simulated building,
with an area of 10,000 m2, and it presents the same thermal structure that has been used in [13].
The 5-zone building is our benchmark to evaluate the difference of using the proposed multi-model
algorithm compared to our previous work [13]. Figure 2b shows thermal connections between the
zones. As explained in Section 4, the electric resistance symbol indicates the thermal resistance between
two connected zones, instead the electric capacitor symbol indicates the thermal capacitance of each
zone. For the sake of simplicity, each connection with the external environment was not graphically
represented. Instead, heating system injections have been depicted for each zone (refers to arrow
curves in Figure 2b). To be consistent with our previous work [13], in this system architecture, this
building is completely heated through a HVAC heater in each zone. However to forecast temperature
profiles both for heated and unheated zones with this configuration, we need to run two simulation
with Energy+: the first considering the heating system turned on, the second with the heating system
switched off.

Figure 2. 5-zone thermal subdivision of the building.
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As shown in Figure 3a, the second case-study is a model representing a real industrial building,
with an area of 120,000 m2, which presents a 17-zone thermal network subdivision (hereinafter referred
to as 17-zone building). In this case, the refinement of the grid is augmented and, thus, the number
of thermal sensors increased. Figure 3b reports the thermal connections between zones, where both
the external environment resistances and the zone capacitance are not depicted to not complicate too
much the graphical representation. In Figure 3b, HVAC systems are represented by the curved arrows.
As can be noted, only 8 zones over 17 are heated. We decided to not heat every single zone in the
building, having left part of the building avoid of heating system. In such a way we halved the number
of calculations w.r.t. the 5-zone building, and now is enough to run one unique Energy+ simulation and
therefore one unique filtering simulation to cover all configurations, forecasting temperature profiles
both for heated and unheated zones.

Figure 3. 17-zone thermal subdivision of the building.

6. Results

This section presents the experiential results of the proposed methodology (see Section 4) for the
two different case-study buildings (see Section 5). For each case-study, we have performed a long-term
prediction, calculating the indoor temperature evolution up to the next 24 h. For all the performed test,
we compared the proposed multi-filter algorithm with the single-filter [13], in order to highlight how
splitting the model in many different filters affects the performance in forecasting indoor temperature
profiles. In both case-studies, we considered the solar radiation gain as a disturbance, since nowadays
there are no meteorological services able to forecast the solar radiation. Moreover, to evaluate the
impact of HVAC information on our models’ performance, we also performed two different types
of tests where the HVAC were considered as a disturbance first and then as an input to the model.
Both single- and multi-filter algorithms have been implemented in Python 2.7. Then, all the tests were
executed on a desktop computer equipped with an Intel Xeon 8 cores, 3.5 GHz and 32 GB of RAM.

To evaluate the accuracy of our results compared with Energy+ simulations (i.e., the test-set
described in Section 5), we adopted the following performance indicators:

• Mean Absolute Error (MAE) is defined as the average of the absolute difference between the state
estimation and the reference data.

• Root Mean Square Error (RMSE) is the standard deviation of differences between forecast and
observed values.
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• Coefficient of Determination (R2) represents the strength of the correlation between forecast and
observed trends. Its values range between 0 and 1.

Each performance indicator compares, throughout the 24 h of temperature forecasting, the results
given by both single- and multi-filter algorithms with the reference synthetic data generated by Energy+.

Table 1 reports the values of the performance indicators as mean of all the zone in both case-study
buildings for all the tests that have been performed. Considering first the 5-zone building, both
single- and multi-filter algorithms provide very good performance when the HVAC is turned off
(max RMSE < 0.4 ◦C, min R2 = 0.99). Remaining in the 5-zone building, but considering the presence
of the HVAC system, we can notice that multi-filter outperforms single-filter. Indeed, the single-filter
algorithm generates higher errors with a lower correlation index. In particular the case where the
HVAC system is considered as a disturbance obtains the best result (RMSE = 0.21 ◦C, R2 = 0.99).
Increasing the grid complexity to 17 zones produces an observable decrease of performance indicators
for both the multi- and the single-filter algorithms. However, it is shown that the multi-filter algorithm
that treats the HVAC system as a disturbance provides acceptable results with RMSE and MAE under
2 °C and a correlation of nearly 0.96. In general, the disturbance case reaches better performances,
due to the presence of those phenomena that are very difficult to determine analytically, like human
factors, infiltration or industrial equipment. As explained in Section 5, Energy+ simulations have been
performed by including a certain amount of random noise, to take into account the aforementioned
phenomena. Treating the HVAC system as a disturbance leads the filter to bring together those
variables without being able to determine them analytically.

Table 1. Performance indicator for the four tests.

Building Test RMSE [°C] MAE [°C] R2

5-zone building

no HVAC single-filter 0.37 0.29 0.99

multi-filter 0.25 0.22 0.99

HVAC
single-filter 1.24 0.90 0.98

multi-filter input 0.58 0.48 0.99

disturbance 0.21 0.19 0.99

17-zone building

no HVAC single-filter 1.86 1.61 0.92

multi-filter 1.19 0.83 0.95

HVAC
single-filter 2.71 2.25 0.94

multi-filter input 2.84 2.09 0.94

disturbance 1.90 1.81 0.96

Figures 4 and 5 show the prediction for the future 24 h of indoor air temperature for the 5-zone
building. Figure 4 reports the indoor temperature for a zone where the HVAC is turned off. The black
continuous line shows the temperature profile simulated with Energy+. The red dotted line shows
the predicted air temperature with the multi-filter algorithm, where we have one filter for each
zone. The blue dotted/dashed line represents the single-filter algorithm, where we have all the
zone temperatures managed by a single filter. The filter, in both configurations, is able to reconstruct
the real temperature profile when no heating system is present. In this situation, the shape of the
temperature profile is only modified by input terms (external and nearby temperatures) and solar
radiation gain. As we can notice, for a non-heated zone, to combine together or to split the zones
does not affect the result pretty much. For the 5-zone case-study, the computation time needed by the
desktop computer to run the simulation is about 444 s with the single-filter algorithm, and about 183 s
with the multi-filter algorithm.
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Figure 4. 5-zone building: 24-h prediction of a non-heated zone.

Figure 5 lays out the temperature profile for a heated zone of the 5-zone building. Here the
two implementations of the multi-filter algorithm are reported: the red dashed line represents the
prediction in which the HVAC system is considered as a disturbance. The green dotted line represents
the prediction where the HVAC is considered as an input. As we can notice in both cases, the proposed
algorithm generates acceptable results (RMSE < 0.6 ◦C). However, considering the HVAC system
as a disturbance enhances the forecasting precision. Figure 5 shows also the single-filter algorithm
temperature prediction with a dot-dashed blue line. By comparing the two version of the algorithm,
it is possible to notice that the multi-filter, having a filter for each zone, leads to better results than the
single-filter presented in [13].

Figure 5. 5-zone circuit: 24-h prediction of a heated zone, considering heating system both as a
disturbance and as an input.

Figures 6 and 7 show the prediction for the future 24 h of indoor air temperature for the 17-zone
building. Just as for the previous case, initially we have investigate the behavior of the filter for an
unheated zone (Figure 6). In this case, we tested both the single-filter method to construct the filter
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(the blue dot-dashed line), and the new one that splits the state-space in 17 different UKFs (the red
dotted line). Results of single-filter are much worst than those obtained with multi-filter. For the 17-zone
case-study, the computation time needed by the machine to run the simulation is about 277 s with the
single-filter algorithm, and about 124 s with the multi-filter algorithm.

Figure 6. 17-zone building: 24-h prediction of a non-heated zone.

Figure 7 shows the indoor air temperature trend for a heated zone of the 17-zone building. As for
the 5-zone building, two implementation of the multi-filter algorithm are reported: the red dashed line
represents the case in which the HVAC system is considered as a disturbance, while the green dotted
line represents the case where the HVAC is considered as an input. As we can notice, with respect to
the single-filter algorithm, both of the new structures lead to improved results. However, as for the
5-zone building, considering the HVAC system as a disturbance leads to better results.

Figure 7. 17-zone building: 24-h prediction of a heated zone, considering heating system both as a
disturbance and as an input.
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To conclude, in both case studies, having a dedicated filter for each thermal zone enhances
the accuracy of the results. Indeed, the use of this method changes dramatically the number of
variables that the filter has to manages. In the 17-zone building case-study, the single-filter algorithm
has to estimate, in the same step, the temperature of 17 zones, 83 RC-products and 17 solar radiation
disturbances, managing a state-space vector with an overall length of 117 parameters (that become
134 when the HVAC system is considered as a disturbance). For the same case-study, the multi-filter
algorithm has to estimate the temperature of 1 zone, 6 RC-products and 1 solar radiation disturbance,
managing a state-space vector with an overall length of 9 parameters (that become 10 when the HVAC
system is considered as a disturbance).

7. Conclusions

In this paper, we extended our previous work [13] by presenting a novel Grey-box model to predict
indoor air temperature in buildings by learning their thermal characteristic and dynamics. First,
we discussed the motivation that drives the development of such models and presented the literature
solution for such a problem. Then, we presented the formulation of the UKF filter and the methodology
used to test several thermal networks. The Grey-box model is trained using the UKF to learn parameters
of the thermal network and the disturbances due to solar gain and HVAC systems. With this work we
have attempted to reproduce a more realistic case, reproducing a real industrial site and respecting the
internal thermal zone distribution. Moreover, in generating the synthetic data with Energy+, we have
considered random noise both in the temperature and in the heating ly profiles, trying to simulate
the sensors’ inaccuracy with the former and the disturbance phenomena (e.g., windows opening and
industrial equipment) with the latter. With respect to our previous work [13], the new methodology
foresees the use of a dedicated UKF for each of the thermal zones that are present in the RC-model of
the building. The experimental results show the methodology presented in this paper outperforms the
previous approach in forecasting indoor air temperature trends. As future work, we plan to test this
method with real world data on filed measurements in complex buildings with more detailed thermal
networks and compare the accuracy of different learning algorithms. With the present extension of the
previous work we have verified the reliability of the methodology, which has proven to provide good
results even in more complex and realistic scenarios.
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Abbreviations

The following abbreviations are used in this manuscript:

HVAC Heating Ventilation and Air Conditioning
ICT Information and Communication Technology
IoT Internet-of-Things
MAE Mean Absolute Error
RC Resistance-Capacity
RMSE Round Mean Square Error
R2 Coefficient of Determination
TMY Typical Meteorological Year
UKF Unscented Kalman Filter
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