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REFINED 1D FINITE ELEMENTS FOR THE ANALYSIS OF

SECONDARY, PRIMARY AND COMPLETE CIVIL

ENGINEERING STRUCTURE

Erasmo Carrera 1, Alfonso Pagani 2, and Marco Petrolo 3

ABSTRACT

This paper proposes the use of an advanced one-dimensional (1D) variable kinematic

model to analyze typical civil engineering structures. The model is referred to as Component-

Wise (CW) and it was originally introduced for the analysis of multilayered plate and shell

structures. The CW approach is based on the Carrera Unified Formulation (CUF). CUF can

be used for the straightforward development of a large variety of classical and refined beam

theories which are able to capture three-dimensional stress/strain states and non-classical

phenomena such as the in-plane warping of the cross-section. CUF can be seen as a hi-

erarchical formulation since it has variable kinematic features; 1D models with arbitrarily

chosen accuracy can be obtained, including the classical Euler-Bernoulli and Timoshenko

beam theories. CUF models are formulated in terms of fundamental nuclei whose expres-

sions are formally independent of the adopted hierarchical scheme. Lagrange polynomials

are used in the proposed CW models to expand the displacement field of the beam above the

cross-section. The finite element method was used in this work to obtain numerical solutions.

The conducted numerical investigation shows that CW models can be successfully applied to
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any geometries with no restrictions on the ratio between the cross-sectional dimensions and

the length of the beam. A very short C-shaped beam was therefore used to analyze a clas-

sical portal frame. Similarly, analyses of truss-structures and a full industrial-construction

were carried out. Classical beam/plate/solid finite elements as well as combinations of them

were used to obtain solutions from the commercial code MSC Nastran for comparison pur-

poses. The results show the effectiveness of the CW approach both in terms of accuracy and

computational efficiency.

Keywords: Refined Beam Theories, Finite Elements, Carrera Unified Formulation, Civil

Structures, Component-Wise.

INTRODUCTION TO REFINED 1D THEORIES

Beam models are widely used to analyze the mechanical behavior of slender bodies, such

as columns, rotor-blades, aircraft wings, towers, antennae and bridges, amongst others. The

simplicity of one-dimensional (1D) theories and their ease of application coupled with their

computational efficiency are some of the main reasons why structural analysts prefer beams

to two-dimensional (2D) and three-dimensional (3D) models.

The classical and best-known beam theories are those by Euler 1744 (hereinafter referred

to as EBBM) and Timoshenko (Timoshenko 1922a; Timoshenko 1922b) (hereinafter referred

to as TBM). The former does not account for transverse shear deformations and rotatory

inertia, whereas the latter assumes a uniform shear distribution along the cross-section of

the beam together with the effects of rotatory inertia.

If the rectangular cartesian coordinate system shown in Fig. 1 is adopted and we consider

bending on the xy-plane, the kinematic field of EBBM can be written as follows:

u = u0

v = v0 − x
∂u0

∂y

(1)

where u and v are the displacement components of a point belonging to the beam domain

along x and y coordinates, respectively. u0 and v0 are the displacements of the beam axis,
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whereas −
∂u0

∂y
is the rotation of the cross-section about the z-axis (i.e. φz) as shown in

Fig. 2a. According to EBBM, the deformed cross-section remains plane and orthogonal to

the beam axis.

EBBM neglects the cross-sectional shear deformation phenomena. Generally, the shear

stresses play an important role in several problems (e.g. short beams, composite structures)

and neglecting these terms can lead to incorrect results. One may want to generalize Eq. (1)

and overcome the EBBM assumption of the orthogonality of the cross-section. The improved

displacement field results in the TBM,

u = u0

v = v0 + x φz

(2)

TBM constitutes an improvement over EBBM since the cross-section does not necessarily

remain perpendicular to the beam axis after deformation and one degree of freedom (i.e. the

unknown rotation φz) is added to the original displacement field (see Fig. 2b).

Classical beam models yield reasonably good results when slender, solid section, homo-

geneous structures are subjected to bending. Conversely, the analysis of deep, thin-walled,

open section beams may require more sophisticated theories to achieve sufficiently accurate

results, see (Novozhilov 1961). One of the main problems of TBM is the homogeneous con-

ditions of the transverse stress components at the top/bottom surfaces of the beam are not

fulfilled, as shown in Fig. 3. One can impose, for instance, Eq. (2) in order to have null

transverse strain component (γxy = ∂u
∂y

+ ∂v
∂x
) at x = ± b

2
. This leads to the third-order

displacement field known as the Valsov beam theory (Vlasov 1961)

u = u0

v = v0 + f1(x) φz + g1(x)
∂u0

∂y

(3)

where f1(x) and g1(x) are cubic functions of the x coordinate. It should be noted that al-
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though the model of Eq. (3) has the same number of degrees of freedom (DOFs) of TBM, it

overcomes classical beam theory limitations by foreseeing a quadratic distribution of trans-

verse stresses on the cross-section of the beam.

The above theories are not able to include any kinematics resulting from the application

of torsional moments. The simplest way to include torsion consists at considering a rigid

rotation of the cross-section around the y-axis (i.e. φy), see Fig. 4. The resulting displacement

model is:

u = z φy

w = −x φy

(4)

where w is the displacement component along the z-axis. According to Eq. (4), a linear

distribution of transverse displacement components is needed to detect the rigid rotation of

the cross-section about the beam axis.

Beam models which include all the capabilities discussed so far can be obtained by sum-

ming all these contributions. By considering the deformations also in the yz-plane, one

has

u = u0 + z φy

v = v0 + f1(x) φz + f2(z) φx + g1(x)
∂u

∂y
+ g2(z)

∂w

∂y

w = w0 − x φy

(5)

where f1(x), g1(x), f2(z), and g2(z) are cubic functions ∗. The beam models discussed so

far are not able to account for many higher-order effects, such as the second-order in-plane

deformations of the cross-section.

Over the last century, many refined beam theories have been proposed to overcome the

limitations of classical beam modelling. A commendable and comprehensive review on beam

theories con be found in (Kapania and Raciti 1989a; Kapania and Raciti 1989b). Different

∗In the case of rectangular cross-section, the cubic functions from Vlasov’s theory are

f1(x) = x−
4

3b2
x3, g1(x) = −

4

3b2
x3, f2(z) = z −

4

3h2
z3, g2(z) = −

4

3h2
z3

where b and h are the dimensions of the cross-section along the x- and z-axis, respectively.
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approaches have been used to improve the beam models, which include the use of warping

functions based on de Saint-Venant’s solution (El Fatmi 2002; El Fatmi 2007a; El Fatmi

2007b; Ladéveze and Simmonds 1998; Ladéveze et al. 2004; Rand 1994; Kim and White

1997), the variational asymptotic solution (VABS) (Berdichevsky et al. 1992; Volovoi et al.

1999; Popescu and Hodges 2000; Yu et al. 2002; Yu and Hodges 2004; Yu and Hodges 2005;

Kim and Wang 2010; Firouz-Abad et al. 2007), the generalized beam theory (GBT) (Schardt

1966; Schardt 1994; Silvestre and Camotim 2002; Silvestre 2002; Silvestre 2007; Bebiano et al.

2008). A displacement field which is able to take into account the cross-section deformation

by means of warping functions is

u = u0

v = v0 + f(x) ǫ0xy − x
∂u0

∂y
+ f(z) ǫ0yz − z

∂w0

∂y

w = w0

(6)

where f(x) and f(z) are the warping functions, whereas ǫ0xy and ǫ0yz are the transverse shear

strains measured on the beam axis. As a general guideline, one can state that the richer

the kinematic field, the more accurate the 1D model becomes (Washizu 1968). The main

disadvantages of a reacher displacement field are: the increase of equations to be solved and

the choice of the terms to be added since this choice is generally problem dependent.

The Carrera Unified Formulation (CUF) (Carrera et al. 2011a) represents a tool to tackle

the problem of the choice of the expansion terms. Let u = {ux uy uz}
T be the transposed

displacement vector. According to CUF, the generic displacement field can be expressed in

a compact manner as an N -order expansion in terms of generic functions, Fτ ,

u(x, y, z) = Fτ (x, z)uτ (y), τ = 1, 2, ....,M (7)

where Fτ are the functions of the coordinates x and z on the cross-section. uτ is the vector of

the generalized displacements, M stands for the number of terms used in the expansion. In
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line with Eq. (7), Eq.s (1) to (5) consist of MacLaurin expansions that uses 2D polynomials

xi zj as base functions, where i and j are positive integers. This class of models is referred

to as TE (Taylor-Expansion). It should be noted that Eq.s (1), (2), and (4) are particular

cases of the linear (N = 1) TE model, which can be expressed as

ux = ux1
+ x ux2

+ z ux3

uy = uy1 + x uy2 + z uy3

uz = uz1 + x uz2 + z uz3

(8)

where the parameters on the right-hand side (ux1
, uy1, uz1, ux2

, etc.) are the displacements

and the rotations of the beam reference axis. Higher-order terms can be took into account

according to Eq.(7). For instance, the displacement fields of Eq.s (3) and (5) can be seen as

particular cases of the third-order (N = 3) TE model

ux = ux1
+ x ux2

+ z ux3
+ x2 ux4

+ xz ux5
+ z2 ux6

+ x3 ux7
+ x2z ux8

+ xz2 ux9
+ z3 ux10

uy = uy1 + x uy2 + z uy3 + x2 uy4 + xz uy5 + z2 uy6 + x3 uy7 + x2z uy8 + xz2 uy9 + z3 uy10

uz = uz1 + x uz2 + z uz3 + x2 uz4 + xz uz5 + z2 uz6 + x3 uz7 + x2z uz8 + xz2 uz9 + z3 uz10

(9)

The possibility of dealing with any-order expansion makes the TE CUF able to handle

arbitrary geometries, thin-walled structures and local effects as it has been shown for both

static (Carrera et al. 2010; Carrera et al. 2012d) and free-vibration analyses (Carrera et al.

2011b; Carrera et al. 2012c; Petrolo et al. 2012).

Recently, a new class of CUF models has been developed by the first author and his co-

workers (Carrera and Petrolo 2012a; Carrera et al. 2012b). In this class of models, Lagrange-

like polynomials are used to discretize the displacement field on the cross-section. These

models are referred to as Component-wise (CW). Static analyses on isotropic (Carrera and

Petrolo 2012a) and composite structures (Carrera and Petrolo 2012b; Carrera et al. 2012a)

have revealed the strength of CW models in dealing with open cross-sections, localized
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boundary conditions and layer-wise descriptions of composite structures. Moreover, both

static (Carrera et al. 2013a) and dynamic (Carrera et al. 2013b) analysis of reinforced-shell

wing structures by 1D CW models have been carried out and the results have shown the

enhanced capabilities of CW in obtaining 3D accuracy with very low computational costs.

In the present paper, CW models are extended to the static analysis of secondary, primary

and complete civil constructions. In the next section CW models are formulated by using

CUF. 1D refined elements are then obtained by classical finite element (FE) approximation.

Numerical results are subsequently discussed. Finally, the main conclusions are outlined.

THE COMPONENT-WISE APPROACH VIA CUF

The degrees of freedom of the TE models (displacements and N-order derivatives of dis-

placements) described above are defined along the axis of the beam. The unknown variables

are only pure displacements if Lagrange polynomials are adopted as expansion functions

(Fτ ) in Eq. (7). The resulting approach is referred to as Component-wise since Lagrange

elements are used to model the displacement variables in each structural component at the

cross-sectional level.

In this work, three types of cross-sectional polynomial sets were adopted as shown in

Fig. 5: three-point elements (L3), four-point elements (L4), and nine-point elements (L9).

The isoparametric formulation was exploited to deal with arbitrary shaped geometries. The

Lagrange polynomial expansions can be found in (Oñate 2009). The interpolation functions

in the case of an L4 element are, for example,

Fτ =
1

4
(1 + r rτ )(1 + s sτ ) τ = 1, 2, 3, 4 (10)

where r and s vary from −1 to +1, whereas rτ and sτ are the coordinates of the four points

whose numbering and location in the natural coordinate frame are shown in Fig. 5b. The
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displacement field given by an L4 element is

ux = F1 ux1
+ F2 ux2

+ F3 ux3
+ F4 ux4

uy = F1 uy1 + F2 uy2 + F3 uy3 + F4 uy4

uz = F1 uz1 + F2 uz2 + F3 uz3 + F4 uz4

(11)

where ux1
, ..., uz4 are the displacement variables of the problem and represent the transla-

tional displacement components of each of the four points of the L4 element. For further

refinements, the cross-section can be discretized by using several L-elements as in Fig. 6,

where two assembled L9 elements are shown. This is one of the main feature of the CW

approach.

Most of the engineering structures are composed by different components, such as columns

and walls or flanges and webs in the case of typical civil constructions. However, these

components usually have different geometries and scales. The CW models each typical

component of a structure through the 1D CUF formulation. In a finite element framework,

this means that different components are modelled by means of the same 1D finite element,

i.e. the same stiffness matrix is used for each component.

The CW methodology allows us to tune the capabilities of the model by (1) choosing

which component requires a more detailed model; (2) setting the order of the structural

model to be used. Moreover, via the CW approach, FE mathematical models can be built by

using only physical boundaries; artificial lines (beam axes) and surfaces (plate/shell reference

surfaces) are no longer necessary.

FINITE ELEMENT FORMULATION

Preliminaries

Referring to the coordinate frame shown in Fig. 1, let the cross-section of the structure

be denoted by Ω and the beam boundaries over y be 0 ≤ y ≤ L. The stress, σ, and strain,
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ǫ, components are grouped as follows:

σp =

{

σzz σxx σzx

}T

, ǫp =

{

ǫzz ǫxx ǫzx

}T

σn =

{

σzy σxy σyy

}T

, ǫn =

{

ǫzy ǫxy ǫyy

}T (12)

The subscript ”n” stands for terms lying on the cross-section, while ”p” stands for terms

lying on planes which are orthogonal to Ω. In the case of small displacements with respect

to a characteristic dimension of Ω, linear strain - displacement relations can be used

ǫp = Dpu

ǫn = Dnu = (DnΩ +Dny)u
(13)

where Dp and Dn are linear differential operators based on small displacement theory,

Dp =















0 0 ∂
∂z

∂
∂x

0 0

∂
∂z

0 ∂
∂x















, DnΩ =















0 ∂
∂z

0

0 ∂
∂x

0

0 0 0















, Dny =















0 0 ∂
∂y

∂
∂y

0 0

0 ∂
∂y

0















(14)

Linear elastic constitutive laws were exploited to obtain stress components,

σ = Cǫ (15)

According to Eq.s (12), Eq. (15) becomes

σp = C̃ppǫp + C̃pnǫn

σn = C̃npǫp + C̃nnǫn

(16)
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In the case of isotropic material the matrices C̃pp, C̃nn, C̃pn, and C̃np are

C̃pp =













λ+ 2G λ 0

λ λ + 2G 0

0 0 G













, C̃nn =













G 0 0

0 G 0

0 0 λ+ 2G













, C̃pn = C̃
T

np =













0 0 λ

0 0 λ

0 0 0













(17)

where G and λ are the Lamé’s parameters. If Poisson’s ratio ν and Young modulus E are

used one has G = E
2(1+ν)

and λ = νE
(1+ν)(1−2ν)

.

Fundamental nuclei

The FE approach was adopted to discretize the structure along the y-axis. This process

is conducted via a classical finite element technique, where the displacement vector is given

by

u(x, y, z) = Fτ (x, z)Ni(y)qτi (18)

Ni stands for the shape functions and qτi for the nodal displacement vector,

qτi =

{

quxτi
quyτi

quzτi

}T

(19)

For the sake of brevity, the shape functions are not reported here. They can be found in

many books, for instance in (Bathe 1996). Elements with four nodes (B4) were adopted

in this work, i.e. a cubic approximation along the y axis was assumed. The choice of the

cross-section discretization for the LE class (i.e. the choice of the type, the number and the

distribution of cross-section elements) or the theory order, N , for the TE class is completely

independent of the choice of the beam finite element to be used along the axis of the beam.

The stiffness matrix of the elements and the external loadings vector were obtained via

the principle of virtual displacements

δLint =

∫

V

(δǫTpσp + δǫTnσn)dV = δLext (20)
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where Lint stands for the strain energy, Lext is the work of the external loadings and δ stands

for the virtual variation. The virtual variation of the strain energy was rewritten using Eq.s

(13), (16) and (18):

δLint = δqT
τiK

ijτsqsj (21)

where Kijτs is the stiffness matrix in the form of the fundamental nucleus. In a compact

notation, it can be written as:

K
ij τ s = I

ij

l ⊳
(

D
T
np Fτ I

)

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

+

(

D
T
p Fτ I

)

[

C̃pp

(

Dp Fs I
)

+ C̃pn

(

Dnp Fs I
)

]

⊲ Ω +

I
ij,y
l ⊳

[

(

D
T
np Fτ I

)

C̃nn +
(

D
T
p Fτ I

)

C̃pn

]

Fs ⊲ Ω IΩ y +

I
i,y j

l IΩ y ⊳ Fτ

[

C̃np

(

Dp Fs I
)

+ C̃nn

(

Dnp Fs I
)

]

⊲ Ω +

I
i,y j,y
l IΩ y ⊳ Fτ C̃nn Fs ⊲ Ω IΩ y

(22)

where:

IΩ y =













0 1 0

1 0 0

0 0 1













⊳ . . . ⊲ Ω =

∫

Ω

. . . dΩ (23)

(

I
ij

l , I
ij,y
l , I

i,y j

l , I
i,y j,y
l

)

=

∫

l

(

Ni Nj , Ni Nj,y
, Ni,y

Nj , Ni,y
Nj,y

)

dy (24)

The fundamental nucleus has to be expanded according to the summation indexes τ and s

in order to obtain the elemental stiffness matrix. It should be noted that Kijτs does not

depend either on the expansion order or on the choice of the Fτ expansion polynomials.

These are the key-points of CUF which allows, with only nine FORTRAN statements, the

implementation of any-order of multiple class theories.

The loadings vector which is variationally coherent to the model was derived for the case
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of a generic concentrated load P acting on the application point (xp, yp, zp),

P =

{

Pux
Puy

Puz

}T

(25)

Any other loading condition can be similarly treated. The virtual work due to P is

δLext = δuTP (26)

After using Eq. (18), Eq. (26) becomes

δLext = FτNiδq
T
τiP (27)

where Fτ and Ni are evaluated in (xp, zp) and yp respectively. The last equation allows the

identification of the components of the nucleus which have to be loaded, that is, it allows the

proper assembling of the loading vector by detecting the displacement variables that have

to be loaded.

NUMERICAL RESULTS

The effectiveness of the present CW formulation is evaluated in this section. Common I-

and C-shaped beams are considered as initial assessments. The capability of the CW models

to deal with very low aspect-ratio beams is then shown and used to model a transverse stiff-

ening plate as a beam whose axis lays on the thickness direction. This characteristic of CW

models, together with the possibility to impose localized constraints, is subsequently used

to model a classical portal frame construction as a very short C-section beam. Next, more

complex problems are addressed such as truss structures and a portal frame for industrial

constructions. The results are compared to classical and higher-order TE beam theories and

to FE models obtained via MSC Nastran.
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I-section beam

The analysis of a cantilever I-shaped beam was carried out as the first assessment. The

geometry of the cross-section is shown in Fig. 7. The dimensions of the beam are as follows:

height h = 100 mm, width w = 96 mm, thickness of the flanges t1 = 8 mm, thickness of the

web t2 = 5 mm. The length of the beam is L = 1 m. The structure is made of a steel alloy

with Young’s modulus, E, equal to 210 GPa and Poisson’s ratio ν = 0.29. A bending point

load, Fz = −2× 103 N, was applied at [w
2
, L, h

2
].

Table 1 shows the vertical displacement at the centroid of the tip cross-section and at

the loaded point, together with the number of degrees of freedom (DOFs) for each model

implemented. The Euler-Bernoulli theory is used, which leads to uzb = FzL
3

3EI
, where I is

the cross-section moment of inertia. Classical and up to the eighth-order (N = 8) refined

beam models based on Taylor-type expansion are also given in Table 1. The quoted CW

model of the I-section beam was obtained by using 7 L9 elements on the cross-section as

shown in Fig. 8, whereas 10 B4 elements were used along the beam axis. Beam, shell, and

3D solid MSC Nastran models are shown in the last two rows of Table 1. FEM Nastran

models are used in this paper as benchmarks for comparison, and all of them were subjected

to convergence analyses. An example is provided in Table 2, which shows the dependance

of the solutions by the 1D beam, 2D shell and 3D solid NASTRAN models versus the mesh

size for the problem under consideration. For each of the Nastran models, the number of

elements, the number of DOFs, and the vertical displacement at the loaded point are given

in the table. In Table 2, 2-node CBAR, 4-node CQUAD, and 8-node CHEXA elements were

used for the beam, shell, and solid models, respectively.

Fig. 9 shows the deformed configuration of the tip cross-section for different structural

models. It is clear from both Table 1 and Fig. 9 that classical beam models are not able to

detect the mechanical behaviour of the structure for this problem. Torsional phenomenon

and local effects are in fact not foreseen by these models and higher-order theories are

therefore needed. Fig. 10 shows the cross-sectional distributions of axial and shear stress
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components for both CW and Solid models. The figure shows that the CW model is able to

correctly detect complex stress/strain fields in accordance with the 3D elasticity equations.

Moreover, as a general remark, it should be underlined that the present formulation requires

significantly lower computational efforts than a solid model.

C-shaped section with and without transverse stiffener and distributed and lo-

calized constraints

The C-shaped beam cross-section, which is shown in Fig. 11, has the following geometrical

characteristics: sides w = h = 0.2 m, side-to-thickness of the flanges ratio h/t = 10. The

whole structure is made of a steel alloy with Young’s modulus (E) equal to 198 GPa and

Poisson ratio ν = 0.3.

Fig. 12 shows three different configurations whose results are discussed hereafter. In the

first analysis case (Fig. 12a), the length of the beam is L = 2 m. The clamped-clamped (CC)

beam undergoes a uniform pressure load equal to 1 MPa, which is applied at the top surface.

Table 3 shows the vertical displacement at x = 0, z = h
2
on the mid-span cross-section and

the normal stress component at the top right corner of the clamped end at y = 0. The

number of DOFs are also given in the table for each model. Classical and higher-order TE

theories as well as MSC Nastran models are shown for comparison purposes. The MSC

Nastran models were obtained as in the previous example. Two different CW models of the

CC C-shaped beam are provided in Table 3, differing from the number of L9 elements on

the cross-section as shown in Fig. 13. In Fig. 13 a different notation with respect to Fig. 8 is

adopted. In particular, the nodes of the L-elements are not depicted in Fig. 13 for the sake

of simplicity. Fig. 14 shows the distribution of the vertical component of the displacement

vector on the mid-span cross-section. CW models are compared to the fifth-order TE model

and the 3D solution by MSC Nastran. The following comments arise from the analysis:

• Classical and lower-order TE models as well as Nastran Beam model are not able to

correctly detect localized stress values.
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• The 3D distributions of the displacement components can be affected by inaccuracies

if thin-walled structures are analysed and higher-order TE theories are considered.

• As shown in (Carrera and Petrolo 2012a), CW models can be easily enhanced by

enriching the displacement field, i.e. by increasing the number of L-elements on the

cross-section.

• CW models are able to reproduce the 3D solutions with very low computational costs.

In recent works (Carrera et al. 2013d; Carrera et al. 2013a; Carrera et al. 2013b) the

unique capability of the present 1D theories to deal with very low aspect ratio beams was

demonstrated. In those papers 1D CUF models were in fact used to model reinforced thin-

walled structures for aerospace applications. Here, a transverse stiffener is added to the

C-shaped beam as shown in Fig. 12b. The effect of the “rib” is shown in Table 4, where

both vertical and horizontal displacement components at different locations of the beam are

given. In Table 4 the results by the CW approach are compared to a 2D and a 3D model by

MSC Nastran. In the CW models, the transverse stiffener is modelled as a beam whose axis

lays in the thickness direction. The CW cross-section discretizations of the rib are shown

in Fig. 15. The rib is modelled with one B4 element along the beam axis. All the models

given in the Table 4 show the undeformability of the cross-section close to the transverse

stiffener. Conversely, the vertical flanges at y = L
4
are characterized by a non-null horizontal

displacement as expected.

Another important characteristic of CW models is the possibility to deal with local-

ized constraints, as shown in (Carrera and Petrolo 2012a). This feature, coupled with the

capability to deal with very low aspect-ratio beams, allows for the modelling of the struc-

ture shown in Fig. 12c. In this analysis case, the portal undergoes a vertical point load

Fz = −40 × 103 N at [0, t
2
, h
2
]. Table 5 shows the vertical displacements at the loaded point

and at [0, 0, h
2
], together with force reactions at the clamped ends and the number of DOFs.

Force reactions are shown in Fig. 16 for the sake of clarity. Both CW and MSC Nastran

models are given in Table 5. The Solid model was built by using 8-node CHEXA elements
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as in the previous examples. The Nastran Beam model was obtained with 2-node CBAR

elements, which are placed along three different beam-lines (two vertical and one horizontal

axes). Conversely, the CW models were constructed by modelling the portal as a C-shaped

cross-section beam with very low length L = t = 0.02 m. TE models are not given in Table 5

since the imposition of constraints at points which do not lay on the beam axis would involve

the use of mathematical techniques such as the Lagrange multipliers method (see (Carrera

et al. 2013c)). That being said, it is clear from the table that the present CW approach

gives good results if compared to classical FE modelling approaches. Fig. 17 is finally given

to definitely prove the capability of the present CW model in matching the solid solutions.

Truss structures

Truss structures are extensively used in bridge and industrial building constructions.

Examples of the applicability of the present CW approach to the analysis of this class of

structures are given hereinafter. The first example is shown in Fig. 18. A two-bay truss

structure with a solid transverse stiffener is considered. The dimensions of the structure are:

h = w = 0.2 m, t = 0.02 m, L = 2 m. The structure is made of the same steel alloy as in

the previous example. A vertical point load, Fz = −100 N, is applied at the middle-span

transverse stiffener at x = 0, z = h
2
. Hinged supports were placed as shown in the figure.

Table 6 shows the vertical displacement at the loaded point and the axial stress compo-

nent, σyy, at [w
2
, t, h

2
]. Both MSC Nastran and CW models are considered. Two different

CW models are addressed. In the first case (Model A, Fig. 19a) the cross-section of the

transverse stiffener was modelled with 9 L4 elements; each longitudinal stringer was mod-

elled with one L4 element. In the second case (Model B, Fig. 19b) the transverse solid

stiffener was modelled with 9 L9 elements and one L9 element was used for each stringer.

The Nastran Beam/Shell model was obtained by using a combination of 1D 2-node CBAR

and 2D 4-node CQUAD elements. In particular, beam elements were used to simulate the

longitudinal frames and plate elements were used for the transverse stiffener. The results

from a full solid Nastran model are also given in Table 6, together with the number of DOFs
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for each model implemented.

Fig. 20 shows the same two-bay truss structure with hollow transverse stiffeners. Three

different CW models are considered. In the CW Model A (Fig. 21a), the cross-section of

the hollow transverse stiffener was modelled with a combination of L3, L4 and L9 elements.

L4 elements were used for the stringers. In Model B (Fig. 21b), L3 and L9 elements were

used on the cross-section of the stiffener, whereas L9 elements were used for the longitudinal

frames. Finally, in Model C (Fig. 21c) the same discretization scheme of Model B was

adopted but two L9 elements were used on the cross-section of the horizontal and vertical

frames. The results by the CW models are shown in Table 7, together with FE solutions

by MSC Nastran. The results from a Nastran solid model and a beam model are given for

comparison purposes. Fig. 22 shows the 3D deformed configuration of the two-bay truss

structure by the CW model. The analyses confirm what has been stated previously. In

particular,

• The CW approach is effective in the analysis truss structures.

• The results by CW models agree with reference solutions by MSC Nastran both in

terms of displacements and stresses.

• CW models provide solid-like results with very low computational costs.

• Both cross-sectional and longitudinal slender stiffening members as well as transverse

stiffening plates can be modeled by the present CW approach. Panels cannot be

modelled by classical truss type structural models.

Differences between classical FE beam models and the present 1D CW model should be

underlined. In classical FE modeling, beam elements are placed along different beam-lines as

shown in Fig. 23a. In CW approach, beam elements are placed along the longitudinal axis of

the structure; for each beam node, the degrees of freedom are subsequently expanded above

the cross-section components by using Lagrange polynomials (see Fig. 23b). In CW models,

the unknowns are pure displacements and they can be placed on the physical surfaces of the
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structure. This characteristic is a unique feature that makes this approach advantageous in

a CAE/CAD scenario.

Typical portal frame construction for industrial buildings

A complete industrial building was considered as the last example. The structure is

shown in Fig. 24. The main dimensions of the building are given in Table 8. Columns and

frames have square section with side t = 0.2 m. The thickness of the roof is also equal to t.

Two different load cases were addressed, as shown in Fig. 25. In the first load case (Fig. 25a),

an horizontal load, Fx = −2 × 103 N, was applied. In the second load case (Fig. 25b), the

structure also underwent a gravity load, which is considered as a uniform vertical pressure

distribution (qz = 960 Pa).

For both load cases, table 9 shows the displacement and stress components and the

number of DOFs for each model. CW models are compared to a full MSC Nastran solid

model and a FE model obtained by using a combination of 1D beam and 2D plate elements.

In particular, the Beam/Shell Nastran model was obtained by using 2-node CBAR beam

elements to model columns and frame and CQUAD elements for the roof. The CW model

was constructed by considering the whole structure as a beam laying along the y-axis (see

Fig. 24). Two different cross-sectional combinations of L-elements were used in the CW beam

modelling and they are shown in Fig. 26. The sole difference between Model A (Fig. 26a) and

Model B (Fig. 26b) is that 4 L9 instead of 2 L9 elements are used in Model B to discretize

the columns. The capability to enrich the displacement field of the single component is one

of the main feature of the present CW model and it is clear from the proposed analyses.

Fig. 27 finally shows the deformation of the loaded cross-section from both CW and Solid

models for Load Case 1. The computational efficiency of the proposed CW models with

respect to the MSC Nastran solid model is evident. Moreover, it should definitely noted the

unique capability of the present CW approach, which allows to model each of the structure’s

components (i.e. columns, frame members, and roof) with the same 1D element, without

the need of adopting different kinematics. As a consequence, artificial lines (beam axes) and
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surfaces (plate/shell reference surfaces) are no longer used. This is otherwise possible only

if 3D solid elements are adopted.

CONCLUSIONS

In this paper, the CW approach has been presented and used to carry out analyses of

typical civil engineering structures. The main novelty introduced by the present CW models

is that each structural component such as frame members, columns, transverse stiffening

plates, flanges and webs can be modeled with the same 1D finite element. Moreover, it

has been shown that CW models preserve their efficacy when applied to complex truss

structures and portal frame industrial buildings. The results have been successfully compared

to classical and refined beam theories indeed as well as to FE models built by means of the

commercial software MSC Nastran. Three-dimensional FE analysis is required to reach the

same accuracy of CW with a number of DOFs which is at least one order of magnitude

higher than the present models.

Future work should deal with the extension of the proposed approach to include physical

and geometrical non-linearities as well as ultimate load analysis.
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−uz(0, L, 0), mm −uz(
w
2
, L, h

2
), mm DOFs

−uzb =
FzL

3

3EI
= 0.951, mm

Classical and refined beam theories based on TE
EBBM 0.951 0.951 93
TBM 0.964 0.964 155
N = 1 0.964 0.978 279
N = 2 0.956 0.978 558
N = 3 0.989 1.018 930
N = 4 0.989 1.287 1395
N = 5 0.993 1.481 1953
N = 6 0.992 1.462 2604
N = 7 0.997 1.560 3348
N = 8 0.997 1.851 4185

Present CW model
7 L9, Fig. 8 0.953 2.213 4185

MSC Nastran models
Beam 0.961 0.961 60
Shell 0.959 2.321 61000
Solid 0.956 2.316 355800

TABLE 1. Vertical displacement at the centroid of the tip cross-section, uz(0, L, 0),
and at the loaded point, uz(

w
2
, L, h

2
), for the I-section beam (Fig. 7)
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Beam Shell Solid
No. Elmts. DOFs −u∗

z No. Elmts. DOFs −u∗

z No. Elmts. DOFs −u∗

z

10 60 0.961 900 4750 2.308 1800 11100 2.260
50 300 0.961 3000 15500 2.312 11300 55200 2.286
100 600 0.961 12000 61000 2.321 90400 355800 2.316

∗: −uz(
w
2
, L, h

2
), mm

TABLE 2. Mesh dependance of reference MSC Nastran solutions, I-section beam
(Fig. 7)
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−uz, mm σyy × 10−2, MPa DOFs
Classical and refined beam theories based on TE

EBBM 0.925 1.088 93
TBM 1.041 1.088 155
N = 1 1.041 1.088 279
N = 2 1.022 1.306 558
N = 3 1.073 2.009 930
N = 4 1.091 1.892 1395
N = 5 1.102 1.864 1953

Present CW models
8 L9, Fig. 13a 1.112 1.949 4185
14 L9, Fig. 13b 1.138 1.963 8091

MSC Nastran models
Beam 1.141 1.094 594
Shell 1.115 2.083 60695
Solid 1.208 2.217 337305

TABLE 3. Vertical displacement, uz, at [0, L
2
, h
2
] and normal stress component, σyy, at

[w
2
, 0, h

2
] for the CC C-section beam (Fig. 12a)
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−uz, mm ux, mm DOFs
[w
2
, L
2
, 0] [w

2
, L
4
, 0]

Present CW models
Model A, Fig. 15a 1.165 0.000 0.047 5346
Model B, Fig. 15b 1.169 0.000 0.072 9546

MSC Nastran models
Shell 1.028 0.000 0.110 62595
Solid 1.121 0.000 0.112 294525

TABLE 4. Effect of the transverse stiffener on the CC C-section beam (Fig. 12b).
Vertical displacement, uz, at [0, L

2
, h
2
] and horizontal displacement, ux, at [w

2
, L
2
, 0] and

[w
2
, L
4
, 0]
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−uz(0, 0, h/2), mm −uz(0, t/2, h/2), mm Rx × 10−4, N Rz × 10−4, N DOFs

Present CW models
8L9 0.729 0.742 0.545 2.000 1071
14L9 0.926 0.951 0.507 2.000 1827

MSC Nastran models
Beam 1.065 1.065 0.456 2.000 354
Solid 0.975 1.034 0.489 2.000 8325

TABLE 5. Vertical displacements, uz, at [0, 0, h
2
] and at [0, L

2
, h
2
] and reactions at the

clamped ends (see Fig. 16) for the very short C-section beam (Fig. 12c)
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−uz, mm σyy , MPa DOFs
Present CW models

Model A, Fig. 19a 0.839 3.738 1632
Model B, Fig. 19b 0.984 4.119 4140

MSC Nastran models
Beam/Shell 1.128 4.124 19163
Solid 1.019 3.187 127785

TABLE 6. Vertical displacement at [0, L
2
, h
2
] and normal stress at [w

2
, t, h

2
] for the two-bay

truss structure with solid transverse stiffener (Fig. 18)
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−uz, mm DOFs
Present CW models

Model A, Fig. 21a 0.880 3828
Model B, Fig. 21b 1.015 6732
Model C, Fig. 21c 1.026 7596

MSC Nastran models
Beam 1.065 7562
Solid 1.050 98760

TABLE 7. Vertical displacement at [0, L
2
, h
2
] for the two-bay truss structure with hollow

transverse stiffener (Fig. 20)

Dimensions, m
Length, L 14.00
Width, w 13.80
h1 7.00
h2 3.00
c 4.50

TABLE 8. Main dimensions of the portal frame industrial construction (Fig. 24)
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Load Case 1 Load Case 2
−ua

x, mm −ux, mm −ub
z, mm −σc

zz, MPa DOFs
Present CW models

Model A, Fig. 26a 0.713 0.709 0.716 1.591 6543
Model B, Fig. 26b 0.893 0.869 0.730 1.541 7119

MSC Nastran models
Beam/Shell 0.865 0.812 0.723 1.546 2835
Solid 0.858 0.799 0.719 1.558 143121
a: ux measured at Fx load application point
b: uz measured at [w, L

2
, h]

c: maximum σzz component value in the column at x = w, y = 0

TABLE 9. Displacement and stress components for different load cases, portal frame
industrial construction (Fig 24)
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FIG. 1. Coordinate frame of the beam model
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FIG. 2. Differences between Euler-Bernoulli (a) and Timoshenko (b) beam theories
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FIG. 3. Limit condition of transverse stress components
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FIG. 4. Rigid torsion of the beam cross-section
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FIG. 5. Cross-sectional Lagrange polynomial sets
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FIG. 6. Two assembled L9 elements in actual geometry
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FIG. 7. Cross-section of the I-section beam
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FIG. 8. Distribution of the 7 L9 elements above the cross-section of the I-shaped beam
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FIG. 9. Deformed tip cross-section of the I-section beam
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FIG. 10. Distribution of axial, σyy, and transversal, σyz, stresses for the I-section beam.
Comparison between CW and Solid models
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FIG. 11. Cross-section of the C-shaped beam
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FIG. 12. Various configurations of the C-shaped beam
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(a) 8 L9
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(b) 14 L9

FIG. 13. Distribution of L-elements on the cross-section of the C-shaped beam
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FIG. 14. Distribution of the vertical displacement, uz, on the mid-span cross-section
for the C-shaped beam (Fig. 12a)
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(a) Model A

L9 element

(b) Model B

FIG. 15. L-elements distribution on the cross-section of the transverse stiffener, CC
C-shaped beam (Fig. 12b)
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FIG. 16. Force reactions of the very short C-shaped beam (Fig. 12c)
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FIG. 17. Deformed cross-section at y = 0. Very short C-shaped beam (Fig. 12c)
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FIG. 18. Cross-section geometry and loading condition of the two-bay truss structure
with solid transverse stiffener
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FIG. 19. Cross-sectional distributions of L-elements on the solid transverse stiffener of
the truss structure
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FIG. 20. Two-bay truss structure with hollow transverse stiffener
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FIG. 21. Cross-sectional distribution of L-elements for the CW models of the two-bay
truss structure with hollow transverse stiffener
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FIG. 22. 3D deformation of the two-bay truss structure by CW, Model C (Fig. 21c)
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FIG. 23. Differences between classical FE beam modelling and CW approach
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FIG. 24. Geometry of the portal frame construction
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FIG. 25. Loading configurations applied to the portal frame construction
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FIG. 26. L-elements distribution on the cross-section for the CW model of the portal
frame industrial construction
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FIG. 27. Deformation of the loaded cross-section of the portal frame industrial con-
struction (Fig. 25)
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