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Abstract 

Fitting of experimental creep-recovery curves obtained from rheological tests carried out on 

viscoelastic materials can reveal difficulties when handled by classical rheological theories, which 

generally provide exponential-type functions requiring a great number of parameters to be 

determined. Fractional calculus may represent a natural framework to develop more synthetic and 

efficient methods, overcoming most of the problems encountered with the classical approach. In 

this paper, a fractional model consisting of a dashpot in series with a springpot is proposed to 

describe the viscoelastic behavior of modified bituminous binders used in road pavements. The 

purpose is twofold: i) to evaluate the adequacy of a rheological model involving a limited number 

of parameters, each of which with a precise physical meaning; ii) to improve the accuracy of other 

fractional approaches proposed in literature. The investigation was validated by means of 

experimental data gathered from shear creep-recovery tests carried out at various temperatures on 

two modified bituminous binders containing a styrene-butadiene-styrene polymer and crumb rubber 

from end-of-life tires. 
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2 
 

1. Introduction 

The property of a body, when deformed, to exhibit both an elastic and a viscous behavior as a result 

of the simultaneous storage and dissipation of mechanical energy is known as viscoelasticity. In 

other terms, viscoelastic materials are those for which the stress-strain constitutive relationship 

depends upon time. Indeed, this framework represents the research field where fractional calculus, 

i.e. the mathematical branch dealing with derivatives and integrals of arbitrary orders (Samko 1993, 

Podlubny 1999), has been mostly applied. The reason is related to the fact that many viscoelastic 

materials show a creep/relaxation behavior of the power-law type (Nutting 1921,1943, Hilfer 2000, 

Mainardi 1994, Maugin 2006, Di Paola et al. 2013), while classical rheological models used to 

describe such a response generally rely on exponential-type functions. As a consequence, a huge 

number of elements (and thus of parameters) have to be taken into account in order to approximate 

a power-law expression, giving rise to several drawbacks: i) it is not always possible to provide a 

clear mechanical meaning to all coefficients; ii) the numerical procedure employed to fit the 

parameters is not trivial, these being subjected to several physical constraints (Tschoegl 1989, 

Sorvari and Malinen 2007). On the contrary, power-law expressions are naturally generated by 

assuming a constitutive law of the fractional type, i.e. involving non-integer order derivatives of 

stress and/or strain (Metzler et al. 1995). Moreover, it should be pointed out that fractional operators 

have a simple definition in terms of Laplace transforms, so it is not difficult to obtain the relaxation 

modulus starting from creep compliance (and viceversa), being these functions strictly related in the 

Laplace domain (e.g. (Mainardi 2010)). 

A detailed list of  references on fractional applications to viscoelasticity can be found in (Carpinteri 

and Mainardi 1998, Mainardi 2010, Machado et al. 2011), while significant contributions which are 

relevant in the context of this paper are the following: the pioneering work by Caputo and Mainardi 

(1971) on dissipation in anelastic solids; the application to problems in polymer physics and 

rheology discussed in (Hilfer 2000); the studies on concrete structures carried out in (Barpi and 

Valente 2003, 2004); the applications to bioengineering reported in (Magin 2006); the approach 

proposed in (Meral et al. 2010) to simulate the surface wave response of soft tissue-like materials; 

the analytical investigation of wave propagation in a viscoelastic rod of finite length carried out in 

(Atanackovic et al. 2011, 2013); the analysis of the behavior of different elastomers (Di Paola et al. 

2011); the finite element (FE) implementation presented in (Muller et al. 2013).  

Only few studies focused on bituminous materials used for road pavements. The first attempt, to the 

authors’ best knowledge, is due to Oeser et al. (2008), who employed the fractional Burger element 

to describe creep-recovery curves of bituminous mixtures. Both the cases of a constant fractional 

order α and of an exponent α varying with strain (i.e., with time) were discussed. The constitutive 
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law was implemented through a non-linear computational model in the spirit of the finite element 

method. More recently, Celauro et al. (2012) proposed the simple two-coefficient fractional dashpot 

(also known as Scott-Blair element or springpot) to analytically obtain loading and unloading 

curves which were compared to experimental data derived from creep-recovery tests performed on 

bituminous mixtures. Although promising, this last study presents significant points of weakness. 

First of all, discrepancies with experimental data were observed for tests involving long loading 

times and additional parameters were hence introduced, thus leading to a four-parameter model. 

From a physical point of view, this choice may be questionable. Secondly, according to the 

springpot element (and, more in general, to all “pure” fractional models as observed in (Oeser et al. 

2008)), recovery strains tend to zero for infinite times, whereas a permanent viscous strain is 

experimentally observed in the case of bituminous materials.  

With the purpose of overcoming these drawbacks and of giving an original contribution to research 

on bituminous binders, a three-parameter model consisting of a springpot in series with a dashpot 

was considered in the investigation described in this paper (see also (Di Mino et al. in press)). The 

model was applied to creep-recovery test results obtained at different temperatures for two modified 

bituminous binders. The paper is organized as follows: classical rheological models are presented in 

Section 2, while basic fractional approaches are discussed in Section 3; Section 4 includes a 

description of the performed experimental investigation, an illustration of the procedure adopted to 

fit model parameters, the comparison between test data and theoretical results; finally, Section 5 

contains the main conclusions of the study. 

 

2. Classical rheological models 

Elastic behavior is generally modeled by a one-dimensional Hookean spring, whose stress-strain (σ-

ε) constitutive relationship, as a function of time t, is written as:  

 

( ) ( )t E t               (1) 

 

being E the spring stiffness.  

Fluid viscous response is described by a dashpot element, whose constitutive law is: 

 

( )
( )

d t
t

dt


              (2) 

 

where  is dynamic viscosity. 
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Viscoelastic materials exhibit both elastic and viscous behaviors, which are then modeled by 

properly combining springs and dashpots.  

In the first part of the analysis presented in this paper, the viscoelastic constitutive equation is 

expressed by using a creep-based formulation of the following type: 

 

0( ) ( )t D t              (3) 

 

being 
0  the applied stress and D(t) the creep compliance function, which for the spring is simply 

D=1/E and for the dashpot takes the form D(t)=t/. 

 

2.1 Maxwell and Kelvin-Voigt models 

The Maxwell model consists of a spring and a dashpot in series (Fig. 1a). The two elements are 

subjected to the same stress, while total strain is given by the sum of the contributions of the spring 

and of the dashpot. Thus, it is not difficult to obtain the constitutive relationship by differentiating 

Eq. (1) and by adding the result to Eq. (2):  

 

( ) ( )
( )

d t d t
t

E dt dt

  
             (4) 

 

The Kelvin-Voigt model is obtained by combining in parallel a spring and a dashpot (Fig. 1b). In 

this case the two elements are subjected to the same strain, whereas total stress is the sum of two 

terms associated to the component models. The constitutive law can be achieved by adding Eq. (1) 

to Eq. (2), leading to:  

 

( )
( ) ( )

d t
t E t

dt


              (5) 

 

In the case of the Maxwell model, creep compliance D(t) is: 

 

 
1 t

D t
E 

   ,           (6) 

 

while for the Kelvin-Voigt model it is represented by an exponential-decaying function of the 

following type:  
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   
1

1 exp( / )D t t t
E

             (7) 

 

where  /t E  is known as retardation time.  

 

2.2  Generalized models 

Since both models introduced in the previous section have only two parameters, their capability of 

representing the behavior of complex materials is limited. However, they can be combined in 

several ways, thus leading to more versatile and useful generalized models (the reader is referred to 

(Tschoegl 1989) for a complete description).  

Typical examples of such models are: (i) the four-parameter Burger model (Fig. 2a), which is 

obtained by arranging in series a Maxwell element with a Kelvin-Voigt element; (ii) the 2n-

parameter generalized Kelvin-Voigt model (Fig. 2b), achieved by considering n Kelvin-Voigt 

elements in series with an isolated spring. In this last case, the creep compliance function is:    

 

10

1 1
( ) [1 exp( / )]



   
n

k

k

k

D t t t
E E

         (8) 

 

Eq. (8) can be easily written in the form of a Prony series. Indeed, there are several problems related 

to such a model. Firstly, the physical meaning of all the elements is not always clear. Secondly, 

fitting an experimental curve by a Prony series is not a trivial task since several restrictions must be 

imposed (e.g. coefficients have to be positive (Bradshaw and Brinson 1997)). The resulting fitting 

algorithm consists of a constrained least squares problem and sophisticated numerical methods must 

be implemented (e.g. Tschoegl 1989, Sorvari and Malinen 2007).  

 

3. Fractional models 

Fractional generalization of the models presented in Section 2.1  can be obtained by replacing first-

order derivatives with derivatives of order (0,1)  (Mainardi 2010). According to Caputo’s 

definition, the -derivative of a generic function f can be expressed in the form:   

0

( ) 1 '( )
(0,1)

(1 ) ( )

x
d f x f y

dy
dx x y



 


 
 

        (9) 

where  is the Euler-Gamma function.  
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According to Eq. (9), function f  is obtained for 0  , while the first order classical derivative 

corresponds to 1  (being (0)=∞ and (1)=1) .  

It should be noticed that different definitions of fractional derivative have been proposed in 

literature (Podlubny 1999). For systems at rest at t = 0, Eq. (9) coincides with that provided by 

Riemann and Liouville, thus proving that the same notation is coherent with both definitions with 

no loss of generality. A different notation was adopted in (Schiessel et al. 1995, Hillfer 2000), 

where fractional elements were obtained by substituting both springs and dashpots with springpots. 

 

3.1  Scott-Blair element 

Replacement of the first-order derivative with the derivative of order (0,1)   is equivalent, from a 

practical point of view, to the substitution of a dashpot with a fractional dashpot (or springpot) of 

order , which represents the simplest fractional element (also known as Scott-Blair element) (Fig. 

3a). The corresponding constitutive equation is ( (0,1)  ): 

 

1

( )
( )

d t
t b

dt






             (10) 

 

Eq. (10) coincides with Eq. (1) (i.e., the spring case) for 0  , while it leads to Eq. (2) (i.e., the 

dashpot case)  for 1  . As  varies, the physical meaning of parameter b1 obviously changes (as 

well as its physical dimensions),  passing from a stiffness ( 0  ) to a viscosity ( 1  ). 

When a creep-based formulation is used, for the Scott-Blair element creep compliance D(t) assumes 

the following power-law form: 

 

 
1 (1 )

t
D t

b



 



             (11) 

 

3.2  Double Scott-Blair element 

If two springpots in series are considered, a double Scott-Blair element is originated (Fig. 3b). The 

constitutive relationship can be expressed as ( , (0,1)   ): 

 

1 1

1 1

1 2

( ) 1 ( ) 1 ( )d t d t d t

dt b dt b dt

 

 

   

 
           (12) 
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whereas the creep function D(t) is: 

 

 
1 2(1 ) (1 )

t t
D t

b b

 

   
 

 
         (13) 

 

While considering limit cases, the model described by Eqs. (12-13) yields: 

 A single spring (Eq. (1)) with stiffness 
1 2 1 2/ ( )b b b b  for 0   . 

 A single dashpot (Eq. (2)) with viscosity 
1 2 1 2/ ( )b b b b  for 1   .  

 The classical Maxwell model (Eq. (4)) for 1, 0 v  0, 1        

 A single springpot for 0,1    described by the two constants 1 2 1 2/ ( ),b b b b  . 

It can be observed that for 1   the second springpot becomes a dashpot (Fig. 3c): this three-

parameter model is adopted in Section (4.2) to describe creep-recovery curves obtained from 

experimental tests. 

Interested readers can refer to (Schiessel et al. 1995, Mainardi 2010) for a deeper insight on more 

complex fractional viscoelastic models. In general it is observed that substitution of a dashpot with 

a springpot involves the introduction of an additional parameter in the analysis. For example, 

fractionalization of the abovementioned Burger model (Fig. 2a) involves a total of six parameters. 

 

4. Proposed model and experimental validation 

As already observed in Section 1, many experimental tests on viscoelastic materials reveal a power-

law behavior under creep loading. From the point of view of classical rheology, this implies the 

implementation of the generalized Kelvin-Voigt model with all the related drawbacks discussed in 

Section 2.2. Fractional models discussed in Section 3 are much easier to handle, since power-law 

creep compliance derives directly from the constitutive law (Eqs. (10)-(13)). The book by Mainardi 

(2010) describes in detail all the fractional rheological approaches presented so far in different 

research fields.  

Modelling is certainly more challenging when considering the experimental behavior of viscoelastic 

materials subjected to both loading and unloading conditions. This is the case of the so called creep-

recovery tests, which consist in a first phase, in which a given load is applied to a specimen for a 

predefined time interval, followed by a second phase, in which the load is removed. During such 

tests, evolution of strain as a function of time is monitored, thus leading to the direct assessment of 

its reversible and irreversible components. 
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Creep-recovery tests are used in the laboratory performance-related characterization of bituminous 

binders and mixtures in order to evaluate their anti-rutting potential (Levenberg 2009, Merusi and 

Giuliani 2011, Santagata et al. 2013, Bai et al. 2014). Such a task is of premium importance since 

rutting, which results from the accumulation of permanent deformation produced by repeated axle 

loads, represents one of the main distress types affecting road pavements. Presence of ruts on 

pavement surfaces leads to a low level of comfort and safety, thus contributing to the decrease of 

overall road serviceability.   

The single springpot element (Fig. 3.1) was employed in (Celauro et al. 2012) to model data from 

creep-recovery compression tests carried out on bituminous mixtures in different temperature 

conditions. The two parameters 1( , )b   were obtained from fitting which was performed by using 

the Mathematica® software. However, it was observed that for long loading times fitted recovery 

strains deviate significantly from recorded data and that implementation of the single springpot 

element is not adequate to capture the presence of permanent strains. This limitation is clearly 

described by the following equation, derived from Eq. (11):   

 

 
*

1

*

0

( ) ( ) ( )

(1 )

t U t t t U t t
t

b

 

 
 

    


          (14) 

 

which shows that for such a model strain tends to zero for times t tending to infinite. In Eq. (14) the 

function U(t) represents the unit step function, while t* is the starting unloading instant.  

. Thus, an approach based on two different groups of parameters, one for the loading phase and one 

for the unloading phase, was proposed.  This choice, which leads to a four-coefficient model, is 

arbitrary and lacks a precise physical meaning.  

In order to overcome these drawbacks, a new model consisting of a springpot in series with a 

dashpot (Fig. 3c) is proposed in this paper to approximate the whole creep-recovery behavior. As 

observed in Section 3.2, such a model represents a particular case of the double Scott-Blair element 

(Fig. 3b) obtained by setting β = 1. The choice of adding a dashpot in series to a springpot is 

justified by the need of obtaining a non-zero permanent strain at the end of recovery. Starting from 

Eq. (14) and setting β = 1, the constitutive law becomes: 

 

 
* *

0

1 2 1 2

( ) ( )
( ) ( )

(1 ) (1 )

*t t t t t t
t U t U t t

b b b b

 

 
   

      
        

      
    (15) 
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In order to validate the model, several shear creep-recovery tests were carried out at various 

temperatures on two different modified bituminous binders. The test procedure is described in 

Section 4.1, while the comparison between experimental data and theoretical results is discussed in 

Section 4.2.  

It should be mentioned that the adopted fractional approach lies in a framework in which non-linear 

effects are not taken into account or discussed. Nevertheless, since these aspects could be relevant 

for future applications (Masad et al. 2008, Di Mino et al. in press), it may be useful for the reader to 

briefly synthesize the most important studies developed in this field so far. A detailed reference list 

can be found in the work by Schapery (2000).  

Schapery’s non-linear viscoelastic theory (Schapery 1969, Lou and Schapery 1971) was derived by 

using principles of irreversible thermodynamics. In the case of uniaxial loading, if strain is assumed 

as the independent state variable, the theory leads to a single integral expression, where non-linear 

stress-dependent terms are related to Gibb’s free energy and can be calibrated by specifying a creep 

compliance function (Lou and Schapery 1971). Furthermore, for low stresses, strain reduces to a 

power-law function of time, which is linear with respect to applied stress. As already outlined, this 

can be achieved also by assuming a constitutive law of fractional type. 

More recently,  Lai and Bakker (1995) successfully applied the theory to uniaxial loading of a semi-

crystalline polymer, high-density polyethylene. Total strain was assumed to be decomposed into its 

recoverable visco-elastic and irrecoverable plastic portions, the former being represented by 

Schapery’s thermodynamic theory, the latter being accumulated during loading history. This 

viscoplastic strain formulation, as well as some work of others on various polymers and composites, 

were later discussed by Schapery (1997), who then generalized his theory to properly take damage 

and viscoplastic effects into account (Schapery 1999). Starting from the models presented above, 

many applications were developed in different research fields (Uzan, et al. 1986; Uzan, 1996; Park 

et al. 1996; Provenzano et al. 2002; Ye et al. 2010).  

Eventually, even in the framework of fractional calculus, non-linear analyses have been discussed 

both in (Oeser et al. 2008) and (Di Mino et al. in press). 

 

4.1 Materials and test procedure 

Materials used in the experimental investigation included a polymer-modified binder (PMB) and an 

asphalt rubber (AR). Both binders were evaluated in short-term aged conditions after being 

subjected to the Rolling Thin Film Oven Test (RTFOT) in accordance with AASHTO T240-2009. 

PMB was originated from a base bitumen by adding a high percentage of styrene-butadiene-styrene 

(SBS) according to the undisclosed processing scheme adopted by the plant which provided the 
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material. Modification of bitumen by means of SBS polymers may provide a significant 

enhancement of its viscoelastic properties (King et al. 1986; Collins et al. 1991). For this reason, the 

use of SBS polymer-modified bituminous binders is suitable for heavy-duty pavements subjected to 

high traffic volumes with a significant percentage of heavy and slow-moving vehicles. 

AR was a commercially available product containing approximately 18% crumb rubber (by weight 

of total binder) derived from the grinding of end-of-life tires. The use of crumb rubber in road 

paving applications has been known since the 60’s (McDonald 1981) and represents an attractive 

design option since it allows to solve a serious waste management problem and can simultaneously 

lead to a significant improvement of pavement performance. In particular, due to their enhanced 

stiffness and elasticity, crumb rubber modified binders are expected to reduce the accumulation of 

permanent deformation, thus contributing to the prevention of rut formation (Lee at al. 2008, Hsu et 

al. 2011, Moreno et al. 2013).  

Equipment used for testing was a Physica MCR 302 Dynamic Shear Rheometer (DSR) from Anton 

Paar Inc., an air bearing stress-controlled device equipped with a permanent magnet synchronous 

drive (minimum torque = 0.1 μNm, torque resolution < 0.1 μNm) and an optical incremental 

encoder for measurement of angular rotation (resolution < 1 μrad). The 25 mm parallel plates 

geometry was employed, with a gap between the plates set at 1.0 mm in the case of PMB and 1.5 

mm in the case of AR.  

Rheological measurements consisted in shear creep-recovery tests carried out at four temperatures 

(ranging from 58°C to 76°C, with 6°C increments) at a single stress level (equal to 100 Pa). 

Duration of creep and recovery phases was set in order to allow materials to reach steady-state flow 

conditions under loading and to recover most of the delayed elastic deformation after load removal. 

As indicated in Table 1, this approach led to very long creep and recovery times which were 

however coherent with those adopted in previous investigations carried out on similar highly 

modified binders (Santagata et al. 2013, 2014). Two replicates were run for each material-

temperature combination and average data were considered in the analysis. 

 

4.2 Results and discussion 

The three parameters 1 2( , , )b b  of Eq. (15) were determined by means of a numerical algorithm 

which allows calculation of the coefficients of a nonlinear regression function by using a least 

squares estimate. Data recorded in the first 1% of the loading history were not considered in the 

analysis, since they may be affected by inaccuracies due to initial settlements of test specimens 

under loading and to inertia phenomena of the test setup.  
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Obtained values of 
1 2( , , )b b  are reported in Table 2. It can be noticed that  monotonically 

decreases as a function of increasing temperature T,  i.e., when a more viscous behavior is expected. 

At first glance, this trend might appear misleading, since for   tending to zero the springpot 

approaches the behavior of a spring.  However, it must also be observed that b1 decreases with 

temperature, indicating a progressive reduction of springpot resistance to shear deformation. In 

other terms, as a result of the combined effects of  and b1 variations, as temperature increases and 

coherently with expectations, the relative contribution of the springpot to overall deformation 

becomes smaller than that of the dashpot. As expected, parameter b2, representing viscosity of the 

dashpot, also decreases with temperature.  

By comparing results obtained for the two binders, it can be observed that at any given temperature 

AR exhibits lower values of , higher values of b1 and higher values of b2 than PMB. Coherently 

with the composition of the considered materials, this indicates that AR has a more pronounced 

elastic behavior and a higher stiffness than PMB. 

Experimental data were compared with those obtained by using Eq. (15) with fitted parameters 

(Table 2). Results referring to different temperatures for PMB are reported in Figs. 4-5a,b, while 

Figures 4-5c,d display the percent relative error  of each case. Indeed, a fairly good agreement is 

generally found. In the creep phase,  remains always below 10%, with maximum values (nearly 

8%) observed at T = 58°C and 76°C, i.e. in the least and most viscous cases, respectively. During 

recovery,  does not exceed 3%, showing a monotonic trend with time. Similar considerations hold 

for tests carried out on AR (Figs. 6-7): theoretical results seem to be accurate both during the creep 

phase (with maximum errors, close to 7%, occurring once again for the extremes cases 

corresponding to T = 58°C and 76°C) and during recovery (  being always less than 5%).  

In order to verify the capability of the model to predict material response under different test 

conditions, shear strain values calculated by implementing the proposed model were compared with 

available experimental data not used in the calibration process. These data refer to creep tests 

carried out on binder PMB at a lower stress level (20 Pa) and the two extreme temperatures (58 and 

76°C). Theoretical predictions, obtained by using the parameters given in Table 2, and experimental 

curves are shown in Fig. 8. Matching appears to be satisfactory in both cases with maximum 

relative deviations lower than 5%. 

 

5. Conclusions 

A fractional model, consisting of a springpot in series with a dashpot, was used in this study to 

describe the creep-recovery behavior of two different modified bituminous binders (containing SBS 
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polymer and crumb rubber, respectively). Theoretical results matched the experimental data 

gathered from shear creep-recovery tests carried out at different temperatures. In particular, during 

the creep phase, absolute percent relative errors were generally lower than 8%, while during the 

recovery phase maximum deviations were comprised in the ±5% range. For one of the two binders, 

parameter calibration was successfully verified by considering a different data set, obtained from 

creep tests carried out at a lower loading level. Based on the findings synthesized above, it can be 

concluded that the proposed fractional model is superior to others adopted for the analysis of 

bituminous materials for road pavements. In particular, it seems to be more accurate than the single 

springpot considered in (Celauro et al. 2012) and easier to be implemented than the six-parameter 

fractional Burger element (Oeser et al. 2008).  

Future developments of the study described in this paper will consider three-dimensional 

characterization, numerical implementation of the model via a finite element code and 

generalization of the approach to take into account non-linear effects (Di Mino et al. in press).  
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List of Tables 

 

Temperature [°C] Shear stress level 

[Pa]  

Creep time [s] Recovery time [s] 

58 100 10800 43200 

64 100 1800 21600 

70 100 600 10800 

76 100 300 7200 

Table 1. Test conditions adopted in the experimental investigation.  

 

 

T [°C] 
PMB AR 

  1b  [s ·N/m2]  
2b  [s·N/m2]   1b  [s ·N/m2]  

2b  [s·N/m2] 

58 0.611 0.555 9.26 0.461 0.909 15.7 

64 0.571 0.312 1.88 0.372 0.476 6.02 

70 0.549 0.213 0.758 0.359 0.345 2.47 

76 0.502 0.154 0.215 0.341 0.256 1.08 

Table 2. Fitted parameters 
1 2( , , )b b  for creep-recovery tests carried out at different temperatures. 
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