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A comparison between first-order microscopic and macroscopic differential models of crowd dynamics is established for an
increasing number 𝑁 of pedestrians. The novelty is the fact of considering massive agents, namely, particles whose individual
mass does not become infinitesimal when 𝑁 grows. This implies that the total mass of the system is not constant but grows with
𝑁. The main result is that the two types of models approach one another in the limit 𝑁 → ∞, provided the strength and/or the
domain of pedestrian interactions are properly modulated by𝑁 at either scale.This is consistent with the idea that pedestrians may
adapt their interpersonal attitudes according to the overall level of congestion.

1. Introduction

Pedestrians walking in crowds exhibit rich and complex
dynamics, which in the last years generated problems of great
interest for different scientific communities including, for
instance, applied mathematicians, physicist, and engineers
(see [1, Chapter 4] and [2, 3] for recent surveys). This led to
the derivation of numerous mathematical models providing
qualitative and possibly also quantitative descriptions of the
system [4–6].

When deducing a mathematical model for pedestrian
dynamics different observation scales can be considered.
Two extensively used options are the microscopic and the
macroscopic scales. Microscopic models describe the time
evolution of the position of each single pedestrian, addressed
as a discrete particle [7–10]. Conversely, macroscopic models
deal with a spatially averaged representation of the pedestrian
distribution, which is treated as a continuum in terms of
the pedestrian density [11–15]. Furthermore, crowds have
been also represented at the mesoscopic scale [16–18] or via
discrete systems such as Cellular Automata [19, 20].

Different observation scales serve different purposes: the
microscopic scale is more informative when considering very

localized dynamics, in which the action of single individuals
is relevant; conversely, the macroscopic scale is appropriate
when insights into the ensemble (collective) dynamics are
required or when high densities are considered. In addition
to this, spatially discrete and continuous scales may provide
a dual representation of a crowd useful to formalize aspects
such as pedestrian perception and the interplay between
individualities and collectivity [1, 21, 22]. Selecting the most
adequate representation may present difficulties, because
different outcomes at different scales are likely to be observed.
Nevertheless, independently of the scale, models are often
deduced out of common phenomenological assumptions;
hence they are expected to reproduce analogous phenomena.
The question then arises when and how they are comparable
to each other.

These arguments provide the motivation for this paper,
in which a comparison of microscopic and macroscopic
crowd models is carried out for a growing number 𝑁 of
pedestrians. It is well known that the statistical behavior of
microscopic systems of interacting particles can be described,
for 𝑁 → ∞, by means of a Vlasov-type kinetic equation
derived in the mean field limit under the assumption that
the strength of pairwise interactions is scaled as 𝑁−1 (weak
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Figure 1: (a) Classical mean field point of view, in which the total mass𝑀 of the system is constant while the mass𝑚 of each particle becomes
infinitesimal as𝑁 increases. (b) The point of view pursued in this paper, in which 𝑚 is constant (massive particles) while𝑀 grows when𝑁
increases.

coupling scaling); see [23, 24] and references therein. If the
total mass of the system is 𝑀 = 𝑚𝑁, where 𝑚 is the mass
of each particle, this corresponds to assuming that particles
generate an interaction potential in space proportional to
their mass𝑚 = 𝑀/𝑁 (like, e.g., in gravitational interactions).
The mean field limit requires the assumption of a constant
total mass of the system, say 𝑀 = 1, which implies that the
mass of each particle becomes infinitesimal as 𝑁 grows (cf.
Figure 1(a)). On the contrary, considering continuousmodels
per se, parallelly to discrete ones, allows one to keep the mass
𝑚 of each individual constant, say 𝑚 = 1; thus 𝑀 = 𝑁

holds (cf. Figure 1(b)). In this perspective, a comparison with
discrete models based on the role of 𝑁 acquires a renewed
interest.

This point of view is being introduced also in the
context of other systems of interacting particles, for example,
vehicular traffic. Quoting from the conclusions of the lecture
[25],

real traffic is microscopic. Ideally, accurate macro-
scopic models should not focus on the limit𝑁 → ∞

but represent the solution with the true number of
vehicles𝑁.

Pedestrian crowds are microscopic as well; hence macro-
scopic crowd models should be built consistently with the
phenomenology of a finite number of microscopic massive
pedestrians. Of course, we cannot expect the microscopic
and macroscopic solutions to be the same for all numbers
of pedestrians; however we can ascertain if the two types
of models are actually “the same model” at least in some
asymptotic regime. In this sensewe address the limit𝑁 →∞.

The two types of models which will be considered
throughout the paper assume first-order position-dependent
pedestrian dynamics, given via the walking velocity. Specifi-
cally, in the microscopic case, let𝑋1

𝑡

, 𝑋
2

𝑡

, . . . , 𝑋
𝑁

𝑡

∈ R𝑑 be the
positions of𝑁 pedestrians at a time 𝑡.Their evolution satisfies

𝑋̇
𝑖

𝑡

= Vd (𝑋
𝑖

𝑡

) −

𝑁

∑

𝑗=1

𝐾(𝑋
𝑗

𝑡

− 𝑋
𝑗

𝑡

) , 𝑖 = 1, . . . , 𝑁. (1)

Conversely, in the macroscopic case, let 𝜌
𝑡

(𝑥) be the density
of pedestrians in the point 𝑥 ∈ R𝑑 at time 𝑡, such that

∫
R𝑑
𝜌
𝑡

(𝑥) 𝑑𝑥 = 𝑁 for all 𝑡 ≥ 0. In some analogy with (1), its
evolution is given by the conservation law

𝜕
𝑡

𝜌
𝑡

+ div (𝜌
𝑡

(Vd − ∫
R𝑑
𝐾(𝑦 − ⋅) 𝜌

𝑡

(𝑦) 𝑑𝑦)) = 0. (2)

In both cases, pedestrian velocity is modeled as a sum of
two terms: a desired velocity Vd, which walkers would keep
in the absence of others, plus repulsive (whence the minus
sign) interactions, which perturb Vd for collision avoidance
purposes. By assumption, interactions depend on the relative
distance between pairs of interacting pedestrians via an
interaction kernel 𝐾.

Models (1) and (2) can be recognized as particular
instances of a scale-agnostic measure-valued conservation
law. This abstract conservation law will play the role of a
pivot in the comparison performed here.The comparison and
the paper are organized as follows: in Section 2 we introduce
and briefly discuss the scale-agnostic modeling framework.
In Section 3 we give a first comparison result of discrete
and continuous dynamics in the one-dimensional stationary
case, which leads to the computation of the so-called speed
diagrams. The main result is that the asymptotic pedestrian
speeds predicted by models (1), (2) are not the same and that
they cannot even be expected to match one another for large
numbers of pedestrians. In Section 4 we then give a second
more complete comparison result in a general 𝑑-dimensional
time-evolutionary setting. We consider sequences of pairs
of discrete and continuous models of the forms (1), (2)
indexed by the total number 𝑁 of pedestrians and, as main
contributions, we establish the following: (i) for fixed 𝑁, a
stability estimate relating the distance between those pairs
of models at a generic instant 𝑡 > 0 to the one at the
initial time 𝑡 = 0; (ii) for fixed 𝑡, a family of scalings of the
interactions, comprising the aforementioned mean field as
a particular case, which control the amplification of such a
distancewhen𝑁 grows; (iii) a procedure to construct discrete
and continuous initial configurations of the crowd giving rise
to mutually convergent sequences of discrete and continuous
models at all times when 𝑁 grows. Finally, in Section 5
we discuss the implications of the obtained results on the
modeling of crowd dynamics and other particle systems in
a multiscale perspective.
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2. A Scale-Agnostic Modeling Framework

Models (1) and (2) are particular cases of the measure-valued
conservation law in R𝑑

𝜕
𝑡

𝜇
𝑡

+ div (𝜇
𝑡

V [𝜇
𝑡

]) = 0, (3)

where 𝑡 is the time variable, 𝜇
𝑡

is a time-dependent spatial
measure of the crowding, and V[𝜇

𝑡

] is a measure-dependent
velocity field to be prescribed (see below). More specifically,
𝜇
𝑡

is a positive locally finite Radon measure defined on
B(R𝑑

), the Borel 𝜎-algebra on R𝑑, which satisfies

𝜇
𝑡

(R
𝑑

) = 𝑁, ∀𝑡 ≥ 0, (4)

where, as we recall, 𝑁 ∈ N is the (conserved) number of
pedestrians. The cases 𝑑 = 1, 2 are commonly considered
to model, respectively, scenarios in which pedestrians are
aligned, for example, along awalkway (𝑑 = 1) or canwalk in a
given planar area (𝑑 = 2). Equation (3) has to be understood
in the proper weak formulation:

∫
R𝑑
𝜙𝑑𝜇

𝑡

= ∫
R𝑑
𝜙𝑑𝜇

0

+ ∫

𝑡

0

∫
R𝑑
∇𝜙 ⋅ V [𝜇

𝑠

] 𝑑𝜇
𝑠

𝑑𝑠,

∀𝜙 ∈ 𝐶
∞

𝑐

(R
𝑑

) ,

(5)

𝐶
∞

𝑐

(R𝑑

) being the space of infinitely smooth and compactly
supported test functions 𝜙 : R𝑑

→ R. From (5) it can be
formally checked that, given an initial measure 𝜇

0

(initial
configuration of the crowd), at time 𝑡 > 0 the following
results:

𝜇
𝑡

= 𝛾
𝑡

#𝜇
0

that is 𝜇
𝑡

(𝐸) = 𝜇
0

(𝛾
−1

𝑡

(𝐸)) ∀𝐸 ∈ B (R
𝑑

) ,

(6)

where # is the push forward operator (see, e.g., [26]) and 𝛾
𝑡

is
the flow map defined as

𝛾
𝑡

(𝑥) = 𝑥 + ∫

𝑡

0

V [𝜇
𝑠

] (𝛾
𝑠

(𝑥)) 𝑑𝑠. (7)

It is worth stressing that, under proper regularity conditions
on the velocity V, all solutions 𝑡 󳨃→ 𝜇

𝑡

of the Cauchy problem
associated with (3) are continuous functions of time [27, 28]
and admit the representations (6)-(7) [26].

Such a measure-based framework features an intrinsic
generality; indeed it can describe a discrete crowd distribu-
tion when 𝜇

𝑡

is an atomic measure:

𝜇
𝑡

= 𝜖
𝑡

fl
𝑁

∑

𝑖=1

𝛿
𝑋

𝑖

𝑡
, (8)

where {𝑋
𝑖

𝑡

}
𝑁

𝑖=1

⊂ R𝑑 are the positions of pedestrians at
time 𝑡, or a continuous crowd distribution when 𝜇

𝑡

is
an absolutely continuous measure with respect to the 𝑑-
dimensional Lebesgue measure:

𝜇
𝑡

= 𝜌
𝑡

(9)

with 𝜌
𝑡

(R𝑑

) = ∫
R𝑑
𝑑𝜌

𝑡

= 𝑁 for all 𝑡 ≥ 0. In this latter case,
by Radon-Nikodym theorem, 𝜇

𝑡

admits a density, that is, the
crowd density. For ease of notation, we will systematically
confuse the measure 𝜌

𝑡

with its density and write 𝑑𝜌
𝑡

(𝑥)

or 𝜌
𝑡

(𝑥)𝑑𝑥 interchangeably. Moreover, when required by the
context, we will write explicitly the number𝑁 of pedestrians
as superscript of the measures (e.g., 𝜇𝑁

𝑡

, 𝜖𝑁
𝑡

, and 𝜌𝑁
𝑡

).
Once plugged into (5), the measures (8), (9) produce

models (1), (2), respectively, if the following velocity is used:

V [𝜇
𝑡

] (𝑥) = Vd (𝑥) − ∫
R𝑑
𝐾(𝑦 − 𝑥) 𝑑𝜇

𝑡

(𝑦) . (10)

The interaction kernel 𝐾 : R𝑑

→ R𝑑 represents pairwise
interactions occurring among walking pedestrians, which, in
normal conditions (i.e., no panic), tend to be ofmutual avoid-
ance and finalized at maintaining a certain comfort distance.
As a consequence, they are supposed to be repulsive-like,
whence −𝐾(𝑧) ⋅ 𝑧 ≤ 0 for all 𝑧 ∈ R𝑑. Moreover, they are
known to happen within a bounded region in space, the so-
called sensory region [29]. Therefore 𝐾 has compact support,
which, for a pedestrian in position 𝑥, we denote by

𝑆
𝑅

(𝑥) fl supp𝐾 (⋅ − 𝑥) ⊆ 𝐵
𝑅

(𝑥) , (11)

𝐵
𝑅

(𝑥) being the ball centered in 𝑥 with radius 𝑅. Therefore,
𝑅 is the maximum distance from 𝑥 at which interactions
are effective. If the sensory region is not isotropic (as it
is the case for pedestrians, who interact preferentially with
people ahead), its orientation is expected to depend on the
pedestrian gaze direction [29]. Nonetheless, in the following,
we assume for simplicity that 𝑆

𝑅

(𝑥) is just a rigid translation
of a prototypical region 𝑆

𝑅

(0) = supp𝐾 ⊆ 𝐵
𝑅

(0). Extending
the proposed setting to models featuring fully orientation
dependent sensory regions is mainly a technical issue, for
which the reader can refer, for example, to [28, 30].

According to the arguments set forth, (3) allows for a
formal qualitative correspondence between the two mod-
eling scales; nonetheless no quantitative correspondence is
established between the actual dynamics. The analysis of
quantitative correspondences will be the subject of the next
sections.

3. The One-Dimensional Stationary Case:
Speed Diagrams

In this section we study and compare the stationary behavior
of one-dimensional (𝑑 = 1) microscopic and macroscopic
homogeneous pedestrian distributions satisfying (3) with
velocity (10). Homogeneous conditions, yet to be properly
defined at the two considered scales, represent dynamic
equilibrium conditions possibly reached asymptotically, after
a transient. In homogeneous conditions, the speed of pedes-
trians is expected to be a constant, depending exclusively on
the number of pedestrians and on the length, say 𝐿 > 0, of
the one-dimensional domain.

The evaluation of the pedestrian speed in homogeneous
crowding conditions is an established experimental practice
which leads to the so-called speed diagrams, that is, synthetic
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quantitative relations between the density of pedestrians and
their average speed [31]. Usually, such diagrams feature a
decreasing trend for increasing values of the density and
are defined up to a characteristic value (stopping density)
at which the measured speed is zero. In the following,
speed diagrams are studied as a function of the number
of pedestrians 𝑁 (for an analogous experimental case cf.
[32]), in the microscopic and macroscopic cases. In this
context, 𝑁 is retained as the common element between the
two descriptions, as it remains well-defined independently
of the observation scale. It is finally worth pointing out that
although speed diagrams have been often used in mathemat-
ical models as closure relations (especially for macroscopic
models, cf. [33, 34]), in this case they are a genuine output of
the considered interaction rules expressed by the integral in
(10).

3.1. Modeling Hypotheses. For the sake of simplicity, we
consider the one-dimensional problem on a periodic domain
[0, 𝐿). In order to model homogeneous pedestrian distribu-
tions, in the discrete case (1) we consider an equispaced lattice
solution translating with a certain constant speed 𝑤 (to be
determined); that is,

𝜖
𝑡

(𝑥) = 𝜖 (𝑥 − 𝑤𝑡) , (12)

where 𝜖 has form (8) with atom locations such that
󵄨󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

− 𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
= (𝑗 − 𝑖)

𝐿

𝑁
, 𝑖, 𝑗 = 1, . . . , 𝑁, (13)

for 𝑋1

< 𝑋
2

< ⋅ ⋅ ⋅ < 𝑋
𝑁 (the ordering is modulo 𝐿). Thus

the atoms of 𝜖
𝑡

are 𝑋𝑖

𝑡

= 𝑋
𝑖

+ 𝑤𝑡 for 𝑖 = 1, . . . , 𝑁. In the
continuous case (2), we consider instead a constant density;
that is,

𝜌
𝑡

(𝑥) ≡ 𝜌 ≥ 0, (14)

which, owing to (4), is given by 𝜌 = 𝑁/𝐿.
We assume that the desired velocity is a positive constant

Vd > 0; therefore the movement is in the positive direction
of the real line. Furthermore, we make the following assump-
tions on the interaction kernel (cf. Figure 2).

Assumption 1 (properties of 𝐾). We make the following
assumptions

(i) Compactness of the support and frontal orientation of
the sensory region: the support of 𝐾 is

𝑆
𝑅

(0) = [0, 𝑅] (15)

with 0 < 𝑅 < 𝐿.
(ii) Boundedness and regularity in (0, 𝑅): pedestrian inter-

actions vary smoothly with themutual distance of the
interacting individuals and have a finite maximum
value. Specifically,

𝐾 ∈ 𝐶
2

(0, 𝑅) ,

𝐾,𝐾
󸀠󸀠

∈ 𝐿
∞

(0, 𝑅) .

(16)

0 R
z

K

K(0+)

Figure 2: Prototype of interaction kernel 𝐾 complying with
Assumption 1.

(iii) Monotonicity in (0, 𝑅) and behavior at the endpoints:
we assume

𝐾 (𝑧) > 0,

𝐾
󸀠

(𝑧) < 0,

for 𝑧 ∈ (0, 𝑅)

(17)

with, moreover,
𝐾 (0) = 𝐾 (𝑅) = 0,

𝐾 (0
+

) fl lim
𝑧→0

+
𝐾 (𝑧) > 0.

(18)

Thus pedestrian interactions decay in the interior of
the sensory region as the mutual distance increases
and,moreover, pedestrians donot “self-interact.”This
forces 𝐾 to be discontinuous in 𝑧 = 0.

3.2. Stationarity and Stability of Spatially Homogeneous Solu-
tions. Before proceeding with the comparison of asymptotic
pedestrian speeds resulting from microscopic and macro-
scopic dynamics, we ascertain that the spatially homogeneous
solutions (12)-(13) and (14) are indeed stable and possibly
attractive solutions to either (1) or (2). This ensures that
such distributions can indeed be considered as equilibrium
distributions and therefore that the evaluation of speed
diagrams is well-posed.

The recent literature about discrete and continuous
models of collective motions is quite rich in contributions
dealing with the stability of special patterns, for example,
flocks, mills, and double mills; see [23, 35–37] and references
therein. We consider here much simpler one-dimensional
configurations, however useful in this context because they
reproduce mathematically the typical experimental setups
in which pedestrian speed diagrams are measured; see, for
example, [38, 39].

Proposition 2 (equilibrium of the microscopic model). The
equispaced lattice solution (12) is a stable solution to (1) for

𝑤 = Vd −
𝑁−1

∑

ℎ=1

𝐾(ℎ
𝐿

𝑁
) . (19)

It is moreover attractive if 𝑅 > 𝐿/𝑁.
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Proposition 2 asserts that the equispaced pedestrian dis-
tribution is always a stable (quasi)stationary solution to the
microscopic model. This is somehow in contrast to what is
found in microscopic optimal-velocity traffic models, where
the so-called POMs (“Ponies-on-a-Merry-Go-Round”) solu-
tions can generate instabilities (traffic jams) depending on
the total number of vehicles [40, 41]. The rationale for this
difference is that, unlike the present case, in such models
vehicle interactions can be both repulsive and attractive
depending on the distance of the interacting pairs.

Proposition 3 (equilibrium of the macroscopic model). The
spatially homogeneous solution (14) is a locally stable and
attractive solution to (2).

For the sake of completeness, we report the proofs of
Propositions 2 and 3 in Appendix 5.

3.3. Discrete and Continuous Speed Diagrams. We now cal-
culate and compare the speed diagrams corresponding to
the stable stationary homogeneous solutions studied in the
previous sections, that is, the mappings 𝑁 󳨃→ V[𝜖𝑁

𝑡

] and
𝑁 󳨃→ V[𝜌𝑁], respectively.

Specifically, from Proposition 2 we know

V [𝜖𝑁
𝑡

] = Vd −
𝑁−1

∑

ℎ=1

𝐾(ℎ
𝐿

𝑁
) . (20)

While from (10) with 𝑑 = 1, 𝜇
𝑡

= 𝜌
𝑁

= 𝑁/𝐿 and taking
Assumption 1 into account we deduce

V [𝜌𝑁] = Vd −
𝑁

𝐿
∫

𝐿

0

𝐾 (𝑧) 𝑑𝑧. (21)

Notice that both V[𝜖𝑁
𝑡

] and V[𝜌𝑁] are decreasing functions
of𝑁, the trend being definitely linear in the continuous case.
This is consistent with typical speed diagrams for pedestrians
reported in the experimental literature; see, for example, [42,
43].

In order to compare the two speed diagramswe introduce
the quantity

ΔV (𝑁) fl V [𝜖𝑁
𝑡

] − V [𝜌𝑁] . (22)

Actually, since in view of Proposition 2 the equilibrium speed
V[𝜖𝑁

𝑡

] depends only on the headways |𝑋𝑗

𝑡

− 𝑋
𝑖

𝑡

|, which are
constant in time, we can drop the dependence on 𝑡 by freezing
pedestrians in a particular configuration, for instance, the
one with 𝑋

𝑖

= (𝑖 − 1)(𝐿/𝑁). Hence we will write simply
𝜖
𝑁

= ∑
𝑁

𝑖=1

𝛿
𝑋

𝑖 .
From Assumption 1(ii) on the regularity of 𝐾, we can

calculate ΔV(𝑁) explicitly. To do that, we preliminarily

K(0+)

E1
1/2 E2 E3 E4 E5 E6

1/2

z

LX
1
= 0 X

2
X

3 R X
4

X
5

Figure 3: The considered partition of the domain [0, 𝐿) is shown in
the case 𝑁 = 5. Solid dots correspond to pedestrian positions. The
dashed line portrays an example of interaction kernel 𝐾.

introduce the following pairwise disjoint partition of the
interval [0, 𝐿] (cf. Figure 3):

𝐸
1

1/2

= [0,
𝐿

2𝑁
] ,

𝐸
𝑖

= ((𝑖 −
3

2
)
𝐿

𝑁
, (𝑖 −

1

2
)
𝐿

𝑁
] , 2 ≤ 𝑖 ≤ 𝑁,

𝐸
𝑁+1

1/2

= ((𝑁 −
1

2
)
𝐿

𝑁
, 𝐿] ,

(23)

which is such that 𝑋1

∈ 𝐸
1

1/2

, 𝑋𝑖

∈ 𝐸
𝑖 for 𝑖 = 2, . . . , 𝑁, while

𝐸
𝑁+1

1/2

does not contain any of the atoms of 𝜖𝑁. Then we have

ΔV (𝑁) = ∫

𝐿

0

𝐾 (𝑧) 𝑑 (𝜌
𝑁

− 𝜖
𝑁

) (𝑧)

= ∫
𝐸

1

1/2

𝐾 (𝑧) 𝑑 (𝜌
𝑁

− 𝜖
𝑁

) (𝑧)

+

𝑁

∑

𝑖=2

∫
𝐸

𝑖

𝐾 (𝑧) 𝑑 (𝜌
𝑁

− 𝜖
𝑁

) (𝑧)

+ ∫
𝐸

𝑁+1

1/2

𝐾 (𝑧) 𝑑𝜌
𝑁

(𝑧)

(24)

and in particular we compute the following:
(i) For the first integral,

∫
𝐸

1

1/2

𝐾 (𝑧) 𝑑 (𝜌
𝑁

− 𝜖
𝑁

) (𝑧)

=
𝑁

𝐿
∫
𝐸

1

1/2

𝐾 (𝑧) 𝑑𝑧 − 𝐾(𝑋
1

) =
1

2
⟨𝐾⟩

𝐸

1

1/2

− 𝐾 (0)

=
1

2
⟨𝐾⟩

𝐸

1

1/2

(25)

because 𝑋
1

= 0 in the chosen configuration and
moreover 𝐾(0) = 0 (cf. Assumption 1(iii)). We have
denoted ⟨𝐾⟩

𝐸

fl ⨏
𝐸

𝐾(𝑧)𝑑𝑧, where ⨏ is the integral
mean.

(ii) For each of the integrals in the sum,

∫
𝐸

𝑖

𝐾 (𝑧) 𝑑 (𝜌
𝑁

− 𝜖
𝑁

) (𝑧) =
𝑁

𝐿
∫
𝐸

𝑖

𝐾 (𝑧) 𝑑𝑧 − 𝐾(𝑋
𝑖

)

= ⟨𝐾⟩
𝐸

𝑖 − 𝐾(𝑋
𝑖

) .

(26)
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Figure 4: Speed diagrams (20) (discrete model, dots) and (21) (continuous model, solid lines) obtained, for different values of 𝐿, with Vd = 1,
𝐾(𝑧) = (1/5)(1 − 𝑧

2

). The graph in the upper-right box shows the convergence to 0.5 of the quantity ΔV(𝑁)/𝐾(0+) for𝑁 →∞.

(iii) For the last integral,

∫
𝐸

𝑁

1/2

𝐾 (𝑧) 𝑑𝜌
𝑁

(𝑧) =
𝑁

𝐿
∫
𝐸

𝑁+1

1/2

𝐾 (𝑧) 𝑑𝑧 =
1

2
⟨𝐾⟩

𝐸

𝑁+1

1/2

. (27)

It follows that

ΔV (𝑁) =
1

2
⟨𝐾⟩

𝐸

1

1/2

+

𝑁

∑

𝑖=2

(⟨𝐾⟩
𝐸

𝑖 − 𝐾(𝑋
𝑖

))

+
1

2
⟨𝐾⟩

𝐸

𝑁+1

1/2

.

(28)

A numerical evaluation of ΔV(𝑁) is reported in Figure 4
(up to a scaling with respect to𝐾(0+)). We observe that when
𝑁 grows, the normalized curves approach the constant 1/2,
thus suggesting that ΔV(𝑁) does not converge to 0 for 𝑁 →

∞. This intuition is confirmed by the following result.

Theorem 4 (nonconvergence of speed diagrams). One has

lim
𝑁→∞

ΔV (𝑁) =
1

2
𝐾 (0

+

) . (29)

Proof. We consider one by one the terms at the right-hand
side of (28).

First, the right endpoint of 𝐸1
1/2

approaches the origin
when𝑁 grows; hence, owing to the mean value theorem and
using the continuity of 𝐾 in (0, 𝑅) (cf. Assumption 1(ii)), we
find

lim
𝑁→∞

1

2
⟨𝐾⟩

𝐸

1

1/2

=
1

2
𝐾 (0

+

) . (30)

Second, in view of the smoothness of 𝐾 in (0, 𝑅) (cf.
Assumption 1(ii)), for each term of the sum we can use a

second-order Taylor expansion with Lagrange remainder to
discover

⟨𝐾⟩
𝐸

𝑖 − 𝐾(𝑋
𝑖

) = ⨏
𝐸

𝑖

(𝐾(𝑋
𝑖

) + 𝐾
󸀠

(𝑋
𝑖

) (𝑧 − 𝑋
𝑖

)

+
1

2
𝐾
󸀠󸀠

(𝜁
𝑖

) (𝑧 − 𝑋
𝑖

)

2

) 𝑑𝑧 − 𝐾(𝑋
𝑖

)

(31)

(for some 𝜁𝑖 ∈ 𝐸𝑖),

⟨𝐾⟩
𝐸

𝑖 − 𝐾(𝑋
𝑖

) = ⨏
𝐸

𝑖

(𝐾
󸀠

(𝑋
𝑖

) (𝑧 − 𝑋
𝑖

)

+
1

2
𝐾
󸀠󸀠

(𝜁
𝑖

) (𝑧 − 𝑋
𝑖

)

2

)𝑑𝑧 =
1

2
⨏
𝐸

𝑖

𝐾
󸀠󸀠

(𝜁
𝑖

) (𝑧

− 𝑋
𝑖

)

2

𝑑𝑧

(32)

(because 𝑧 − 𝑋𝑖 is odd in 𝐸𝑖), and

⟨𝐾⟩
𝐸

𝑖 − 𝐾(𝑋
𝑖

) ≤
1

2

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠󸀠

󵄩󵄩󵄩󵄩󵄩∞
⨏
𝐸

𝑖

(𝑧 − 𝑋
𝑖

)

2

𝑑𝑧

=
1

2

󵄩󵄩󵄩󵄩󵄩
𝐾
󸀠󸀠

󵄩󵄩󵄩󵄩󵄩∞

𝐿
2

12𝑁2

𝑁→∞

󳨀󳨀󳨀󳨀󳨀→ 0

(33)

which, for the arbitrariness of 𝑖, implies that the whole sum
vanishes for𝑁 →∞.

Finally,

lim
𝑁→∞

1

2
⟨𝐾⟩

𝐸

𝑁+1

1/2

= 0 (34)

because of Assumption 1(i); indeed for large𝑁 the following
results: 𝐸𝑁+1

1/2

∩ [0, 𝑅] = 0.
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Figure 5: Speed diagrams (20) (discrete model, dots) and (21) (continuous model, solid lines) obtained, for different values of 𝐿, with Vd = 1,
𝐾(𝑧) = (1/2)𝑧(1 − 𝑧). The graph in the upper-right box shows the convergence to 0 of the quantity ΔV(𝑁) for𝑁 →∞.

From Theorem 4 we conclude that the discrete system
moves asymptotically at a higher speed than the continuous
one because𝐾(0+) > 0, as also Figure 4 confirms. Ultimately,
the discrete and continuous models (1), (2) predict different
walking speeds at equilibrium, which do not match one
another even in the limit of a large number of pedestri-
ans. It is worth noticing that this fact does not actually
depend on Assumption 1(iii), which states the absence of
self-interactions (𝐾(0) = 0). Indeed, assuming the right
continuity of 𝐾 in 0, that is, 𝐾(0) = 𝐾(0

+

), would still lead
to a nonzero limit for ΔV(𝑁),

lim
𝑁→∞

ΔV (𝑁) = lim
𝑁→∞

1

2
⟨𝐾⟩

𝐸

1

1/2

− 𝐾 (0) = −
1

2
𝐾 (0) < 0 (35)

(cf. (24)). In this case, the discrete system is asymptotically
slower than the continuous one, because discrete pedestrians
are further slowed down by self-interactions (which, instead,
do not affect the continuous system).

Additionally, from Theorem 4 we infer that speed dia-
grams approaching one another can be obtained if 𝐾(0+) =
𝐾(0) = 0 (cf. Figure 5). This condition however vio-
lates the assumption that 𝐾 is decreasing in (0, 𝑅) (cf.
Assumption 1(iii)), which is used to prove the stability and
attractiveness of the homogeneous configurations on which
speed diagrams are based (cf. Propositions 2 and 3).

4. General Nonstationary Dynamics

In this section we consider the Cauchy problem

𝜕
𝑡

𝜇
𝑡

+ div (𝜇
𝑡

V [𝜇
𝑡

]) = 0, 𝑡 ∈ (0, 𝑇] , 𝑥 ∈ R
𝑑

𝜇
0

= 𝜇,

(36)

where V is given by (10), 𝑇 > 0 is a certain final time,
and 𝜇 is a prescribed measure representing, at the proper
scale, the initial distribution of the crowd. Using the results
in [1, 28] we can state that, under suitable assumptions
encompassing those that we will recall later in Section 4.1,
problem (36) admits a unique measure-valued solution 𝜇

⋅

∈

𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) in the weak sense (5),M𝑁

1

(R𝑑

) being the
space of positive measures onR𝑑 with total mass𝑁 and finite
first-order moment. Moreover, such a solution preserves the
structure of the initial datum: if 𝜇 is discrete, respectively,
continuous, then so is 𝜇

𝑡

for all 𝑡 ∈ (0, 𝑇].
It makes thus sense to consider sequences of discrete

and continuous initial conditions {𝜖
𝑁

}
∞

𝑁=1

, {𝜌
𝑁

}
∞

𝑁=1

, with
𝜖
𝑁

, 𝜌
𝑁

∈ M𝑁

1

(R𝑑

) ∀𝑁 ≥ 1, to which sequences of solu-
tions correspond at the same scales {𝜖𝑁

⋅

}
∞

𝑁=1

, {𝜌
𝑁

⋅

}
∞

𝑁=1

, with
𝜖
𝑁

⋅

, 𝜌
𝑁

⋅

∈ 𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) ∀𝑁 ≥ 1, and to compare them
“𝑁-by-𝑁” in order to determine whenmutually approaching
initial measures, that is,

lim
𝑁→∞

d (𝜖𝑁, 𝜌𝑁) = 0 (37)

for some metric d, generate mutually approaching solutions;
that is,

lim
𝑁→∞

d (𝜖𝑁
𝑡

, 𝜌
𝑁

𝑡

) = 0, ∀𝑡 ∈ (0, 𝑇] . (38)

Formally speaking, we will operate in the setting of the
1-Wasserstein distance𝑊

1

, whose definition is as follows:

𝑊
1

(𝜇, ]) = inf
𝜋∈Π(𝜇,])

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝜋 (𝑥, 𝑦) ,

𝜇, ] ∈ M
𝑁

1

(R
𝑑

) ,

(39)
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where Π(𝜇, ]) is the set of all transference plans between the
measures 𝜇 and ]; that is, every 𝜋 ∈ Π(𝜇, ]) is a measure
on the product space R𝑑

× R𝑑 with marginal measures 𝜇, ]:
𝜋(𝐸×R𝑑

) = 𝜇(𝐸) and 𝜋(R𝑑

×𝐸) = ](𝐸) for every𝐸 ∈ B(R𝑑

).
By Kantorovich duality (cf., e.g., [44]), 𝑊

1

admits also the
representation

𝑊
1

(𝜇, ]) = sup
𝜙∈Lip

1
(R𝑑)

∫
R𝑑
𝜙𝑑 (] − 𝜇) , (40)

where Lip
1

(R𝑑

) is the space of Lipschitz continuous functions
𝜙 : R𝑑

→ R with at most unitary Lipschitz constant. We
will use indifferently either expression of 𝑊

1

depending on
the context.

In the following, from Sections 4.1–4.3, we recall general
results about the solution to (36) independently of the
geometric structure of the measure. Such results will allow us
to discuss, later in Section 4.4, the limits (37)-(38) previously
introduced.

4.1. Modeling Hypotheses. Following the theory developed
in [1, 27, 28], we assume some smoothness of the transport
velocity. Consider, specifically, the following.

Assumption 5 (Lipschitz continuity of V). There exist
Lip(Vd) > 0 and Lip(𝐾) > 0 such that

󵄨󵄨󵄨󵄨Vd (𝑦) − Vd (𝑥)
󵄨󵄨󵄨󵄨 ≤ Lip (Vd)

󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨 ,

󵄨󵄨󵄨󵄨𝐾 (𝑦) − 𝐾 (𝑥)
󵄨󵄨󵄨󵄨 ≤ Lip (𝐾) 󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨

(41)

for all 𝑥, 𝑦 ∈ R𝑑.

Using the expression (10) of the transport velocity, it is
immediate to check that Assumption 5 implies

󵄨󵄨󵄨󵄨V []] (𝑦) − V [𝜇] (𝑥)󵄨󵄨󵄨󵄨

≤ (Lip (Vd) + 𝑁 Lip (𝐾)) 󵄨󵄨󵄨󵄨𝑦 − 𝑥
󵄨󵄨󵄨󵄨

+ Lip (𝐾)𝑊
1

(𝜇, ])

(42)

for all 𝑥, 𝑦 ∈ R𝑑 and 𝜇, ] ∈ M𝑁

1

(R𝑑

), hence letting

𝜉
𝑁 fl 2max {Lip (Vd) ,𝑁 Lip (𝐾)} (43)

and recalling that we are considering𝑁 ≥ 1 we finally have

󵄨󵄨󵄨󵄨V []] (𝑦) − V [𝜇] (𝑥)󵄨󵄨󵄨󵄨 ≤ 𝜉
𝑁

(
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨 +
1

𝑁
𝑊
1

(𝜇, ])) . (44)

4.2. Continuous Dependence on the Initial Datum. The basic
tool for the subsequent analysis is the continuous dependence
of the solution to (36) on the initial datum, which can be
proved using the representation formula (6) based on the
flow map (7). The result itself and the analytical technique
to obtain it are classical in the theory of problem (36); see,
for example, [45–47]. They have also been extensively used
to analyze swarming models; see, for example, [48] and

the thorough review [49]. However, in the present case it
is crucial to obtain the explicit dependence on 𝑁 of some
constants appearing in the final estimates, which is less
classical due to the fact that here the total mass of the system
is not 1 but𝑁. For this reason, in order tomake the paper self-
contained, we detail in Appendix 5 the proofs of the following
two results.

Lemma6 (regularity of the flowmap). Consider the flowmap
(7):

(i) For all 𝑥, 𝑦 ∈ R𝑑 and 𝑡 ∈ [0, 𝑇] the following results:

󵄨󵄨󵄨󵄨𝛾𝑡 (𝑦) − 𝛾𝑡 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑒

𝜉

𝑁
𝑡
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨 .
(45)

(ii) Let 𝜇
⋅

, ]
⋅

∈ 𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) be two solutions to (36)
with respective initial conditions 𝜇, ] ∈ M𝑁

1

(R𝑑

). Call
𝛾
𝜇, 𝛾] the flow maps associated with either solution.

Then for all 𝑥 ∈ R𝑑 and 𝑡 ∈ [0, 𝑇] the following results:

󵄨󵄨󵄨󵄨𝛾
]
𝑡

(𝑥) − 𝛾
𝜇

𝑡

(𝑥)
󵄨󵄨󵄨󵄨 ≤

𝜉
𝑁

𝑒
𝜉

𝑁
𝑡

𝑁
∫

𝑡

0

𝑊
1

(𝜇
𝑠

, ]
𝑠

) 𝑑𝑠. (46)

Proposition 7 (continuous dependence). Let 𝜇
⋅

, ]
⋅

∈

𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) be two solutions to (36) corresponding to
initial conditions 𝜇, ] ∈ M𝑁

1

(R𝑑

). Then

𝑊
1

(𝜇
𝑡

, ]
𝑡

) ≤ 𝑒
𝜉

𝑁
𝑡(1+𝑒

𝜉
𝑁
𝑇
)

𝑊
1

(𝜇, ]) , ∀𝑡 ∈ (0, 𝑇] . (47)

4.3. Sequences of Measures with Growing Mass: Scaling of
the Interactions. Let us now consider two sequences of
initial conditions of growingmass, say {𝜇𝑁}∞

𝑁=1

, {]𝑁}∞
𝑁=1

with
𝜇
𝑁

, ]𝑁 ∈ M𝑁

1

(R𝑑

) ∀𝑁 ≥ 1, and the related sequences
of solutions to (36), {𝜇

𝑁

⋅

}
∞

𝑁=1

, {]𝑁
⋅

}
∞

𝑁=1

with 𝜇
𝑁

⋅

, ]𝑁
⋅

∈

𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) ∀𝑁 ≥ 1. From Proposition 7 we have

𝑊
1

(𝜇
𝑁

𝑡

, ]𝑁
𝑡

) ≤ 𝑒
𝜉

𝑁
𝑡(1+𝑒

𝜉
𝑁
𝑇
)

𝑊
1

(𝜇
𝑁

, ]𝑁) , (48)

where the exponential factor estimates the amplification at
time 𝑡 > 0 of the distance between the initial data. If 𝑁 is
sufficiently large then from (43) we have 𝜉𝑁 = 2𝑁 Lip(𝐾).
In order for the exponential factor to remain bounded for
growing 𝑁 and ensure that 𝑊

1

(𝜇
𝑁

, ]𝑁) and 𝑊
1

(𝜇
𝑁

𝑡

, ]𝑁
𝑡

) are
of the same order of magnitude for all𝑁, it is necessary that

Lip (𝐾) = 𝑂 (𝑁
−1

) for 𝑁 󳨀→∞. (49)

In otherwords,we have to suitably scale the interaction kernel
with respect to𝑁. In particular, given a Lipschitz continuous
functionK : R𝑑

→ R𝑑 compactly supported in 𝐵
𝑅

(0) ⊂ R𝑑,
to comply with (49) we consider the following two-parameter
family of interaction kernels:

𝐾 (𝑧) = 𝐾
𝑁

𝛼,𝛽

(𝑧) fl
1

𝑁𝛼

K(
𝑧

𝑁𝛽

) , 𝛼, 𝛽 ∈ R, (50)
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whose Lipschitz constant is

Lip (𝐾𝑁

𝛼,𝛽

) =
Lip (K)

𝑁𝛼+𝛽

. (51)

Clearly, they satisfy (49) as long as

𝛼 + 𝛽 ≥ 1. (52)

Example 8 (role of𝛼). An admissible interaction kernel in the
family (50) is obtained for 𝛼 = 1, 𝛽 = 0; that is,

𝐾
𝑁

1,0

(𝑧) =
1

𝑁
K (𝑧) . (53)

This corresponds to decreasing interpersonal repulsion when
the number of pedestrians increases. Notice that this is the
same scaling adopted in the mean field limit [23, 24]. In this
case, pedestrian velocity (10) reads

V [𝜇𝑁
𝑡

] (𝑥) = Vd (𝑥) −
1

𝑁
∫
R𝑑

K (𝑦 − 𝑥) 𝑑𝜇
𝑁

𝑡

(𝑦) . (54)

Considering that 𝜇𝑁
𝑡

(R𝑑

) = 𝑁, the desired velocity and the
interactions have commensurable weights for every𝑁.

Example 9 (role of 𝛽). An interaction kernel somehow
opposite to 𝐾𝑁

1,0

(cf. Example 8) is obtained for 𝛼 = 0, 𝛽 = 1;
that is,

𝐾
𝑁

0,1

(𝑧) = K(
𝑧

𝑁
) , (55)

whose support is contained in the ball 𝐵
𝑁𝑅

(0). This kernel
corresponds to pedestrians who interact with an increas-
ing number of individuals as the total number of people
increases. The resulting velocity

V [𝜇𝑁
𝑡

] (𝑥) = Vd (𝑥) − ∫
R𝑑

K(
𝑦 − 𝑥

𝑁
)𝑑𝜇

𝑁

𝑡

(𝑦) (56)

is such that the component due to interactions tends to
predominate over the desired one for growing𝑁.

Example 10. Besides the extreme cases in Examples 8 and 9,
we may also consider intermediate cases in which both 𝛼 and
𝛽 are simultaneously nonzero (and not necessarily positive).
For instance, for 𝛼 = 2, 𝛽 = −1 we get

𝐾
𝑁

2,−1

(𝑧) =
1

𝑁2

K (𝑁𝑧) , (57)

which corresponds to interactions that weaken and that are
restricted to a contracting sensory region (in fact supp𝐾𝑁

2,−1

⊆

𝐵
𝑅/𝑁

(0)) as 𝑁 grows. This models pedestrians who agree
to stay closer and closer as their number increases, like, for
example, in highly crowded train or metro stations during
rush hours. The resulting velocity

V [𝜇𝑁
𝑡

] (𝑥) = Vd (𝑥)

−
1

𝑁2

∫
R𝑑

K (𝑁 (𝑦 − 𝑥)) 𝑑𝜇
𝑁

𝑡

(𝑦)

(58)

is such that Vd dominates for large 𝑁, meaning that at high
crowding pedestrians tend to be passively transported by the
flow without interacting.

A scaling of interactions of type (50) is proposed, for
example, in [50]. However, it involves only one parameter
𝛾 ∈ (0, 1), corresponding to 𝛼 = −𝛾 and 𝛽 = −𝛾/𝑑 in (49). As
this condition does not satisfy (52), it has to be regarded as
a complementary case, not covered by the theory developed
here.

4.3.1. Scaling Equivalence. Solutions to (36) with interaction
kernel (50) for different values of the parameters 𝛼, 𝛽
account for different interpersonal attitudes of pedestrians in
congested crowd regimes. Hence, wemay expect significantly
different solutions for large 𝑁. Nonetheless, in the case Vd ≡
0 a one-to-one correspondence among them exists, up to
a transformation of the space variable depending on 𝑁. In
order to prove it we preliminarily introduce the following.

Proposition 11. Let 𝑈 : R𝑑

→ R𝑑 be the linear scaling of the
space

𝑈 (𝑧) = 𝑎𝑧, 𝑎 ∈ R (59)

and let V̂, Ṽ be the velocities (10) computed with the following
interaction kernels:

𝐾̂ (𝑧) = (K ∘ 𝑈
−1

) (𝑧) = K(
𝑧

𝑎
) ,

𝐾̃ (𝑧) = (𝑈
−1

∘K) (𝑧) =
1

𝑎
K (𝑧) ,

(60)

where K : R𝑑

→ R𝑑 is Lipschitz continuous. Assume
moreover Vd ≡ 0.

(i) For all 𝜇 ∈ M𝑁

1

(R𝑑

) the following results:

Ṽ [𝜇] (𝑥) =
1

𝑎
V̂ [𝑈#𝜇] (𝑎𝑥) . (61)

Let 𝜇̂
⋅

, 𝜇̃
⋅

∈ 𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) be the solutions to (36)
with velocities V̂, Ṽ, respectively, and initial conditions
such that

𝜇̂
0

= 𝑈#𝜇̃
0

. (62)

(ii) The flow maps 𝛾̂
𝑡

, 𝛾̃
𝑡

correspond to one another as

𝛾̂
𝑡

= 𝑈 ∘ 𝛾̃
𝑡

∘ 𝑈
−1

, ∀𝑡 ∈ (0, 𝑇] . (63)

(iii) The solutions satisfy

𝜇̂
𝑡

= 𝑈#𝜇̃
𝑡

, ∀𝑡 ∈ (0, 𝑇] . (64)

Proof. (i) By direct calculation we find

1

𝑎
V̂ [𝑈#𝜇] (𝑎𝑥) = −

1

𝑎
∫
R𝑑
𝐾̂ (𝑦 − 𝑎𝑥) 𝑑 (𝑈#𝜇) (𝑦)

= −
1

𝑎
∫
R𝑑

K(
𝑦 − 𝑎𝑥

𝑎
) 𝑑 (𝑈#𝜇) (𝑦)

= −
1

𝑎
∫
R𝑑

K (𝑧 − 𝑥) 𝑑𝜇 (𝑧)

= −∫
R𝑑
𝐾̃ (𝑧 − 𝑥) 𝑑𝜇 (𝑧) = Ṽ [𝜇] (𝑥) .

(65)
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(ii) We check that

𝛾̂
𝑡

(𝑥) fl (𝑈 ∘ 𝛾̃
𝑡

∘ 𝑈
−1

) (𝑥) = 𝑎𝛾̃
𝑡

(
𝑥

𝑎
) (66)

complies with definition (7). Using (7) for 𝛾̃
𝑡

, we write

𝛾̂
𝑡

(𝑥) = 𝑥 + 𝑎∫

𝑡

0

Ṽ [𝛾̃
𝑠

#𝜇̃
0

] (𝛾̃
𝑠

(
𝑥

𝑎
)) 𝑑𝑠. (67)

Next we observe that

𝛾̃
𝑠

#𝜇̃
0

= (𝛾̃
𝑠

∘ 𝑈
−1

∘ 𝑈) #𝜇̃
0

= (𝛾̃
𝑠

∘ 𝑈
−1

) #𝜇̂
0

; (68)

hence from the previous point (i) we deduce

𝛾̂
𝑡

(𝑥)

= 𝑥 + 𝑎∫

𝑡

0

1

𝑎
V̂ [𝑈# (𝛾̃

𝑠

∘ 𝑈
−1

) #𝜇̂
0

] (𝑎𝛾̃
𝑠

(
𝑥

𝑎
)) 𝑑𝑠

= 𝑥 + ∫

𝑡

0

V̂ [𝛾̂
𝑠

#𝜇̂
0

] (𝛾̂
𝑠

(𝑥)) 𝑑𝑠,

(69)

as desired.
(iii) Due to the result in (ii) we have

𝜇̂
𝑡

= 𝛾̂
𝑡

#𝜇̂
0

= (𝑈 ∘ 𝛾̃
𝑡

∘ 𝑈
−1

) # (𝑈#𝜇̃
0

) = (𝑈 ∘ 𝛾̃
𝑡

) #𝜇̃
0

= 𝑈#𝜇̃
𝑡

.

(70)

As a consequence of Proposition 11, we can prove a
correspondence among the dynamics governed by different
interaction kernels of family (50).

Theorem 12 (scaling equivalence). Let 𝜇
𝑁

⋅

, ]𝑁
⋅

∈

𝐶([0, 𝑇];M𝑁

1

(R𝑑

)) be the solutions to (36) corresponding to
interaction kernels 𝐾𝑁

𝛼,𝛽

, 𝐾𝑁

𝛼

󸀠
,𝛽

󸀠 , with

𝛼 + 𝛽 = 𝛼
󸀠

+ 𝛽
󸀠

, (71)

and to initial conditions 𝜇𝑁, ]𝑁 = 𝑈
𝑁#𝜇𝑁 ∈ M𝑁

1

(R𝑑

), respec-
tively, where

𝑈
𝑁

(𝑧) = 𝑁
𝛽

󸀠
−𝛽

𝑧. (72)

Then

]𝑁
𝑡

= 𝑈
𝑁#𝜇𝑁

𝑡

, ∀𝑡 ∈ (0, 𝑇] . (73)

Proof. By (50) we have, on the one hand,

𝐾
𝑁

𝛼,𝛽

(𝑧) =
1

𝑁𝛼

K(
𝑧

𝑁𝛽

) =
1

𝑁𝛽

󸀠
−𝛽

⋅
1

𝑁𝛼

󸀠
K(

𝑧

𝑁𝛽

) , (74)

where we have used the fact that 𝛼 = 𝛼
󸀠

+ 𝛽
󸀠

− 𝛽, and, on the
other hand,

𝐾
𝑁

𝛼

󸀠
,𝛽

󸀠 (𝑧) =
1

𝑁𝛼

󸀠
K(

𝑧

𝑁𝛽

󸀠
)

=
1

𝑁𝛼

󸀠
K(

1

𝑁𝛽

󸀠
−𝛽

⋅
𝑧

𝑁𝛽

) .

(75)

Thus,

𝐾
𝑁

𝛼,𝛽

(𝑧) =
1

𝑎
⋅
1

𝑁𝛼

󸀠
K(

𝑧

𝑁𝛽

) ,

𝐾
𝑁

𝛼

󸀠
,𝛽

󸀠 (𝑧) =
1

𝑁𝛼

󸀠
K(

1

𝑎
⋅
𝑧

𝑁𝛽

)

(76)

for 𝑎 = 𝑁
𝛽

󸀠
−𝛽 and the thesis follows from Proposition 11.

4.4. Back toDiscrete andContinuousModels. Conditions (50)
and (52) imply

𝜉
𝑁

≤ 𝜉
∗ fl 2max {Lip (Vd) , Lip (K)} , ∀𝑁 ≥ 1. (77)

When using (48) for sequences of discrete and continuous
measures we can incorporate this fact and write

𝑊
1

(𝜖
𝑁

𝑡

, 𝜌
𝑁

𝑡

) ≤ 𝑒
𝜉

∗
𝑡(1+𝑒

𝜉
∗
𝑇
)

𝑊
1

(𝜖
𝑁

, 𝜌
𝑁

) ,

∀𝑡 ∈ (0, 𝑇] , ∀𝑁 ≥ 1.

(78)

Hence mutually approaching sequences of discrete and con-
tinuous solutions to (36) (cf. (38)) are possible, provided
one is able to construct mutually approaching sequences of
initial conditions at the corresponding scales (cf. (37)). In
the following we discuss a possible procedure leading to the
desired result.

Let𝑋1

, . . . , 𝑋
𝑁

∈ R𝑑 be the initial positions of𝑁 distinct
microscopic pedestrians.The associated discrete distribution
𝜖
𝑁 is constructed from (8), while, given 𝑟 > 0, we define

𝜌
𝑁

=

𝑁

∑

𝑖=1

𝜌
𝑖

,

𝜌
𝑖

(𝑥) =
1

𝑟𝑑
𝑓(

𝑥 − 𝑋
𝑖

𝑟
) ,

(79)

where 𝑓 : R𝑑

→ R is a nonnegative function such that

supp𝑓 ⊆ 𝐵
1

(0),

∫
𝐵1(0)

𝑓 (𝑥) 𝑑𝑥 = 1.

(80)

Consequently, supp 𝜌𝑖 ⊆ 𝐵
𝑟

(𝑋
𝑖

) and moreover 𝜌𝑖(𝐵
𝑟

(𝑋
𝑖

)) =

1 each 𝑖; thus 𝜌
𝑁 is the superposition of 𝑁 piecewise

constant density bumps, each of which carries a unit mass
representative of one pedestrian. We assume

𝑟 <
1

2
min
𝑖 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

− 𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
(81)

which ensures no overlapping of the supports of the 𝜌𝑖’s.
In the remaining part of this section we compute the

Wasserstein distance between 𝜖
𝑁 and 𝜌

𝑁 and we study its
trend with respect to𝑁.
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Proposition 13 (distance between the initial conditions). Let

𝑚
𝑓

fl ∫
𝐵1(0)

|𝑥| 𝑓 (𝑥) 𝑑𝑥. (82)

The distance between 𝜖𝑁 and 𝜌𝑁 is

𝑊
1

(𝜖
𝑁

, 𝜌
𝑁

) = 𝑚
𝑓

𝑁𝑟. (83)

Proof. Here we use expression (40) of 𝑊
1

. Let us consider
the case 𝑁 = 1 first. Since 𝜖1 is a single Dirac mass, there is
no ambiguity in the construction of the optimal transference
plan 𝜋 between 𝜖

1 and 𝜌
1 (i.e., the transference plan which

realizes the infimum in (39)), which is just the tensor product
of the measures:

𝜋 (𝑥, 𝑦) = 𝜌
1

(𝑥) ⊗ 𝜖
1

(𝑦) . (84)

By substitution in (39) we find

𝑊
1

(𝜖
1

, 𝜌
1

) = ∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑 (𝜌

1

(𝑥) ⊗ 𝜖
1

(𝑦))

= ∫
𝐵𝑟(𝑋

1

)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝜌
1

(𝑥) 𝑑𝑥

=
1

𝑟𝑑
∫
𝐵𝑟(𝑋

1

)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓(

𝑥 − 𝑋
1

𝑟
)𝑑𝑥

= 𝑟∫
𝐵1(0)

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 𝑓 (𝑦) 𝑑𝑦

(set 𝑦 fl
(𝑥 − 𝑋

1

)

𝑟
)

= 𝑚
𝑓

𝑟.

(85)

We pass now to characterize transference plans between
𝜖
𝑁 and 𝜌𝑁 in the case𝑁 > 1. Every element of the continuous
mass 𝜌𝑁 is transported onto a delta, a condition that, in
the spirit of the so-called semidiscrete Monge-Kantorovich
problem [51], can be expressed by a measure 𝜋 on R𝑑

× R𝑑

of the form

𝜋 (𝑥, 𝑦) = 𝜌
𝑁

(𝑥) ⊗

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥) 𝛿
𝑋

𝑗 (𝑦) , (86)

where, in order to ensure conservation of the mass, the 𝛼
𝑗

’s
are such that

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥) = 1,

𝛼
𝑗

(𝑥) ≥ 0, ∀𝑗 = 1, . . . , 𝑁, ∀𝑥 ∈ supp 𝜌𝑁.

(87)

Representation (86) means that the infinitesimal element of
continuousmass 𝑑𝜌𝑁(𝑥) located in 𝑥 ∈ supp 𝜌𝑁 is split in the
points {𝑋𝑗

}
𝑁

𝑗=1

following the convex combination given by the

Rd

Rd

𝛿
X
3

𝛿
X
2

𝛿
X
1

≥
r

≥
r

≤
r

𝜌1 𝜌2 𝜌3

𝛼3(x)𝜌N(dx) ⊗ 𝛿
X
3

𝛼2(x)𝜌N(dx) ⊗ 𝛿
X
2

𝛼1(x)𝜌N(dx) ⊗ 𝛿
X
1

(x, x)

𝜌N(dx)

Figure 6: Transference plans (86) in R𝑑

× R𝑑 for 𝑁 = 3.
Each continuous mass element is within a distance 𝑟 from its
correspondingDiracmass.Therefore, owing to (81), it is farther than
𝑟 from all other Dirac masses.

coefficients 𝛼
𝑗

(𝑥) (cf. Figure 6). The measure 𝜋 is generally
not a transference plan between 𝜖

𝑁 and 𝜌
𝑁, because it is

not guaranteed to have marginal 𝜖𝑁 with respect to 𝑦. In
particular, a nonunit mass might be allocated in every𝑋𝑗. In
order to have a transference plan, the further condition,

∫
R𝑑
𝛼
𝑗

(𝑥) 𝑑𝜌
𝑁

(𝑥) = 1, ∀𝑗 = 1, . . . , 𝑁, (88)

needs to be enforced.
Let us consider, for a transference plan of the form (86)

with 𝜌𝑁 as in (79), the global transportation cost:

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝜋 (𝑥, 𝑦)

= ∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑(

𝑁

∑

𝑖=1

𝜌
𝑖

(𝑥) ⊗

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥) 𝛿
𝑋

𝑗 (𝑦))

=

𝑁

∑

𝑖,𝑗=1

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑 (𝜌

𝑖

(𝑥) ⊗ 𝛼
𝑗

(𝑥) 𝛿
𝑋

𝑗 (𝑦))

=

𝑁

∑

𝑖=1

∫
𝐵𝑟(𝑋

𝑖

)

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝜌

𝑖

(𝑥) .

(89)

Owing to (87) we have

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
= ∑

𝑗 ̸=𝑖

𝛼
𝑗

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

+ (1 −∑

𝑗 ̸=𝑖

𝛼
𝑗

(𝑥))
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨

(90)
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whence, for 𝑥 ∈ 𝐵
𝑟

(𝑋
𝑖

) and taking (81) into account,

𝑁

∑

𝑗=1

𝛼
𝑗

(𝑥)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
≥ 𝑟∑

𝑗 ̸=𝑖

𝛼
𝑗

(𝑥) +
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
− 𝑟∑

𝑗 ̸=𝑖

𝛼
𝑗

(𝑥)

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
;

(91)

thus ultimately

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑𝜋 (𝑥, 𝑦) ≥

𝑁

∑

𝑖=1

∫
𝐵𝑟(𝑋

𝑖

)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑋

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝜌

𝑖

(𝑥)

=

𝑁

∑

𝑖=1

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑 (𝜌

𝑖

(𝑥) ⊗ 𝛿
𝑋

𝑖 (𝑦)) .

(92)

Notice that the transference plan

𝜋 =

𝑁

∑

𝑖=1

𝜌
𝑖

⊗ 𝛿
𝑋

𝑖 (93)

is of the form (86) for, for example, the coefficients 𝛼
𝑗

(𝑥) =

𝜒
𝐵𝑟(𝑋

𝑗

)

(𝑥) which fulfill both (87) and (88). The previous
calculation says that it is actually an optimal transference plan
between 𝜖𝑁 and 𝜌𝑁, that is, one which ensures the minimum
transportation cost. Thus

𝑊
1

(𝜖
𝑁

, 𝜌
𝑁

) =

𝑁

∑

𝑖=1

∫
R𝑑×R𝑑

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 𝑑 (𝜌

𝑖

(𝑥) ⊗ 𝛿
𝑋

𝑖 (𝑦))

= 𝑁𝑊
1

(𝜖
1

, 𝜌
1

) ,

(94)

whence the thesis follows.

Thanks to Proposition 13 we finally obtain themain result
of the paper.

Theorem 14 (discrete-continuous convergence). Let 𝜖𝑁 ∈

M𝑁

1

(R𝑑

) be given and let 𝜌𝑁 ∈ M𝑁

1

(R𝑑

) be constructed as in
(79)-(80). Set 𝑟 = 𝑐

𝑁

𝑁
−𝛾, 𝛾 > 1, where 0 < 𝑐

𝑁

≤ 1 is possibly
used to enforce condition (81). Let moreover the interaction
kernel satisfy (50) and (52). Then

lim
𝑁→∞

𝑊
1

(𝜖
𝑁

𝑡

, 𝜌
𝑁

𝑡

) = 0, ∀𝑡 ∈ (0, 𝑇] . (95)

Proof. From Proposition 13 with the given 𝑟 we obtain

𝑊
1

(𝜖
𝑁

, 𝜌
𝑁

) =

𝑚
𝑓

𝑐
𝑁

𝑁𝛾−1

𝑁→∞

󳨀󳨀󳨀󳨀󳨀→ 0 (96)

because 𝛾 > 1. Hence the thesis follows from (78).

It is worth remarking that, because of (81), in dimension
𝑑 a bound on the radius 𝑟 of the form 𝑟 < 𝐶𝑁

−1/𝑑,
where 𝐶 > 0 is a constant, holds true, for example, when
considering homogeneous distributions of pedestrians in
bounded domains (cf. the next example of regular lattices).

This is not sufficient by itself to comply with the hypotheses
of Theorem 14, but choosing 𝑟 as

𝑟 = 𝐶𝑁
−(1+ℎ)/𝑑

, 𝑁 > 1, (97)

where ℎ > 0, is instead sufficient if

ℎ > 𝑑 − 1. (98)

Then, according to (78) and to Proposition 13, the distance
between the discrete and continuous solutions to (36) scales
with𝑁 as

𝑊
1

(𝜖
𝑁

𝑡

, 𝜌
𝑁

𝑡

) ≤ 𝑂 (𝑁
(𝑑−1−ℎ)/𝑑

) for 𝑁 󳨀→∞. (99)

Example 15 (regular lattices). Homogeneous pedestrian dis-
tributions can be obtained, for instance, by considering
regular lattices.

Let Ω = [0, 1]
𝑑. We partition it in 𝑁

𝑘

= 2
𝑘𝑑 equal

hypercubes of edge size 2−𝑘; then we position 𝑁
𝑘

discrete
pedestrians {𝑋𝑖

}
𝑁𝑘

𝑖=1

in their centroids (cf. Figure 7), so that

min
𝑖 ̸=𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

− 𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
= 2

−𝑘

. (100)

Owing to (81) we need then to take

𝑟 < 2
−(𝑘+1)

=
1

2
𝑁
−1/𝑑

𝑘

, (101)

which, following (97), we satisfy by setting 𝑟 = 2
−(1+(ℎ+1)𝑘) for

ℎ > 0. For this value of 𝑟, let us set

𝜌
𝑖

(𝑥) =
𝑑

𝜔
𝑑

𝑟𝑑
𝜒
𝐵𝑟(𝑋

𝑖

)

(𝑥) , 𝑖 = 1, . . . , 𝑁, (102)

where 𝜔
𝑑

is the surface area of the unit ball in R𝑑 and 𝜒

the characteristic function. These 𝜌𝑖’s are of the form (79)
for 𝑓(𝑥) = (𝑑/𝜔

𝑑

)𝜒
𝐵1(0)

(𝑥), which complies with (80) and
moreover is such that 𝑚

𝑓

= 𝑑/(1 + 𝑑). This entails the
following:

(i) In dimension 𝑑 = 1,

𝑊
1

(𝜖
𝑁𝑘 , 𝜌

𝑁𝑘) = 2
−2−ℎ𝑘

, (103)

which converges to zero for 𝑘 → ∞ if ℎ > 0.
(ii) In dimension 𝑑 = 2,

𝑊
1

(𝜖
𝑁𝑘 , 𝜌

𝑁𝑘) =
2
(1−ℎ)𝑘

3
, (104)

which converges to zero for 𝑘 → ∞ if ℎ > 1.
(iii) In dimension 𝑑 = 3,

𝑊
1

(𝜖
𝑁𝑘 , 𝜌

𝑁𝑘) = 3 ⋅ 2
(2−ℎ)𝑘−3

, (105)

which converges to zero for 𝑘 → ∞ if ℎ > 2.
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Ω Ω Ω

k = 0 k = 1 k = 2

Figure 7: Discrete pedestrians (dots) and their continuous counterparts (circular regions delimited by dashed lines) in Ω = [0, 1]
2 (𝑑 = 2)

and for 𝑘 = 0, 1, 2.

5. Discussion

In this paper we have investigated microscopic and macro-
scopic differential models of systems of interacting particles,
chiefly inspired by human crowds, for an increasing number
𝑁 of total agents. The main novelty was the consideration
of massive particles, that is, particles whose mass does not
scale with the number 𝑁. This implies that the continuous
model is not obtained in the limit𝑁 → ∞ from the discrete
model; rather it is postulated per se for every value of 𝑁.
The following question then arises: under which conditions
are the discrete and continuous models counterparts of one
another at smaller and larger scales?

In particular, we have proved the solutions to the follow-
ing two models:

𝑋̇
𝑖

𝑡

= Vd (𝑋
𝑖

𝑡

) +
1

𝑁𝛼

𝑁

∑

𝑗=1

K(
𝑋
𝑗

𝑡

− 𝑋
𝑖

𝑡

𝑁𝛽

) ,

𝑖 = 1, . . . , 𝑁,

𝜕
𝑡

𝜌
𝑡

+ div (𝜌
𝑡

(Vd +
1

𝑁𝛼

∫
R𝑑

K(
𝑦 − ⋅

𝑁𝛽

) 𝜌
𝑡

(𝑦) 𝑑𝑦))

= 0, 𝜌
𝑡

(R
𝑑

) = 𝑁,

(106)

where the velocity field Vd and the interaction kernel K
are assumed to be Lipschitz continuous, converging to one
another in the sense of the 1-Wasserstein distance when𝑁 →

∞ if the parameters 𝛼, 𝛽 are such that 𝛼 + 𝛽 ≥ 1 and if, in
addition, the respective initial conditions approximate each
other.This fact, which is schematically illustrated in Figure 8,
has implications from the modeling point of view, especially
as far as the role of single scales and their possible coupling
are concerned.

First of all, we point out that interactions are modeled in
an𝑁-dependent way by means of the kernel

𝐾
𝑁

𝛼,𝛽

(𝑧) =
1

𝑁𝛼

K(
𝑧

𝑁𝛽

) . (107)

More specifically, the function K expresses the basic inter-
action trend (e.g., repulsion) while the factors 𝑁−𝛼, 𝑁−𝛽

modulate it depending on the total number of particles. This
is consistent with the idea that particles like, for example,
pedestrians do not behave the same regardless of their num-
ber. The strength of their mutual repulsion or the acceptable
interpersonal distances may vary considerably from free to
congested situations. We model this aspect by acting on
the values of 𝛼, 𝛽. Hence, the various scalings contained
in the two-parameter family of kernels 𝐾𝑁

𝛼,𝛽

correspond to
different interpersonal attitudes of the particles for growing
𝑁. As our analysis demonstrates, the latter need to be taken
into account for ensuring consistency of a given interaction
model at different scales. In this respect, we have shown that
if such a scaling is neglected the discrete and continuous
models predict quantitatively different, albeit qualitatively
analogous, emerging equilibria. In particular, they yield
different asymptotic speeds of the particles, which do not
approach each other as𝑁 grows.

Second, our analysis shows the correct parallelism
between first-order microscopic and macroscopic models
which do not originate from one another but are formulated
independently by aprioristic choices of the scales. In this view,
the utility of such a parallelism is twofold. On one hand,
it accounts for the interchangeability of the two models at
sufficiently high numbers of particles, with (i) the possibility
to switch from a microscopic to a macroscopic description,
which may be more convenient for the a posteriori calcu-
lation of observable quantities and statistics of interest for
applications; (ii) the possibility to infer qualitative properties
at one scale from their rigorous knowledge at the other
scale (e.g., the microscopic model can be expected to exhibit
qualitatively the same nonlinear diffusive behavior for large
𝑁 which is typically proved quantitatively for macroscopic
conservation laws with nonlocal repulsive flux). On the
other hand, it allows one to motivate and support multiscale
couplings of microscopic and macroscopic models [1, 22],
which are supposed to provide a dual representation of the
same particle system at different scales. In this case, the
interest does not lie as much in the congested regime (large
𝑁), where the twomodels have been proved to be equivalent,
but rather in the moderately crowded one, where the discrete
and continuous solutions can complement each other with
effects which would not be recovered at a single scale.
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Figure 8: A schematic illustration of the result of the paper. The ODE and PDE solutions approach each other for 𝑁 → ∞ under certain
conditions on the scaling of the interactions and of the initial conditions.

Appendix

Technical Proofs

Proof of Proposition 2. First we observe that measure (12)
is a solution to (1); in fact using (13) in (1) together with
Assumption 1(i)–(iii) we get

𝑋̇
𝑖

𝑡

= Vd −∑
𝑗>𝑖

𝐾((𝑗 − 𝑖)
𝐿

𝑁
) , (A.1)

which reduces to (19) by setting ℎ = 𝑗 − 𝑖.
To show that 𝜖

𝑡

is stable and possibly attractive we use
a perturbation argument. We define the perturbed positions
𝑋̃
𝑖

𝑡

= 𝑋
𝑖

𝑡

+ 𝜂
𝑖

𝑡

; then we plug them into (1) to find

̇̃
𝑋

𝑖

𝑡

= Vd −
𝑁

∑

𝑗=1

𝐾(𝑋
𝑗

𝑡

− 𝑋
𝑖

𝑡

+ 𝜂
𝑗

𝑡

− 𝜂
𝑖

𝑡

) . (A.2)

Linearizing this around 𝑋𝑗

𝑡

− 𝑋
𝑖

𝑡

and using Assumption 1(i)
give

̇̃
𝑋

𝑖

𝑡

= 𝑤 −∑

𝑗>𝑖

𝐾
󸀠

((𝑗 − 𝑖)
𝐿

𝑁
) (𝜂

𝑗

𝑡

− 𝜂
𝑖

𝑡

) , (A.3)

which, considering that 𝜂̇𝑖
𝑡

=
̇̃

𝑋

𝑖

𝑡

− 𝑤, further yields

𝜂̇
𝑖

𝑡

= −∑

𝑗>𝑖

𝐾
󸀠

((𝑗 − 𝑖)
𝐿

𝑁
) (𝜂

𝑗

𝑡

− 𝜂
𝑖

𝑡

)

= −

𝑁−1

∑

ℎ=1

𝐾
󸀠

(ℎ
𝐿

𝑁
) (𝜂

𝑖+ℎ

𝑡

− 𝜂
𝑖

𝑡

) .

(A.4)

Finally, we claim that 𝜖
𝑡

is

(a) stable if 𝑅 ≤ 𝐿/𝑁;
(b) stable and attractive if 𝑅 > 𝐿/𝑁.

In case (a) the sum in (A.4) is zero as 𝐾
󸀠

(𝐿/𝑁) =

𝐾
󸀠

(2𝐿/𝑁) = ⋅ ⋅ ⋅ = 0 by Assumption 1(i). Therefore, small

perturbations remain constant over time, which is sufficient
to ensure stability.

In case (b) we make the ansatz

𝜂
𝑖

𝑡

=

𝑁−1

∑

𝑘=1

𝐶
𝑘

𝑒
𝜎𝑘𝑡+i(2𝜋/𝑁)𝑘𝑖 (i = imaginary unit) , (A.5)

where𝐶
𝑘

∈ R, which reflects the periodicity of 𝜂𝑖
𝑡

with respect
to 𝑖. Notice that the expansion above starts from 𝑘 = 1 because
the term for 𝑘 = 0 is not relevant in the present context; in fact
it corresponds simply to a further rigid translation of the𝑋𝑖

𝑡

’s.
After substituting in (A.4), we obtain that (A.5) is a solution
as long as

𝜎
𝑘

= −

𝑁−1

∑

ℎ=1

𝐾
󸀠

(ℎ
𝐿

𝑁
) (𝑒

i(2𝜋/𝑁)𝑘ℎ
− 1) , (A.6)

whence

Re (𝜎
𝑘

) =

𝑁−1

∑

ℎ=1

𝐾
󸀠

(ℎ
𝐿

𝑁
)(1 − cos(2𝜋

𝑁
𝑘ℎ)) . (A.7)

Since 0 < ℎ, 𝑘 < 𝑁, the following results: 1 − cos(2𝜋ℎ𝑘/𝑁) >
0. Because of Assumption 1(iii), every term of the sum at the
right-hand side of (A.7) is either negative (for ℎ𝐿/𝑁 < 𝑅,
i.e., within the sensory region) or zero (for ℎ𝐿/𝑁 ≥ 𝑅, i.e.,
outside the sensory region). Moreover, since 𝑅 > 𝐿/𝑁, the
sum has at least a nonvanishing term (for ℎ = 1). Therefore
Re(𝜎

𝑘

) < 0 for all 𝑘 = 1, 2, . . . , 𝑁 − 1 and we have stability
and attractiveness.

Proof of Proposition 3. The constant solution (14) is clearly a
solution to (2) when Vd is constant, for then

V [𝜌] = Vd − 𝜌∫
𝑥+𝑅

𝑥

𝐾(𝑦 − 𝑥) 𝑑𝑦

= Vd − 𝜌∫
𝑅

0

𝐾 (𝑧) 𝑑𝑧

(A.8)
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is constant as well. To study its local stability we consider its
perturbation of the form

𝜌̃
𝑡

= 𝜌 + 𝜂󰜚
𝑡

(A.9)

for 𝜂 ∈ R; then we plug it into (2) to have

𝜕
𝑡

(𝜌 + 𝜂󰜚
𝑡

) + 𝜕
𝑥

((𝜌 + 𝜂󰜚
𝑡

) V [𝜌 + 𝜂󰜚
𝑡

]) = 0. (A.10)

In the limit of small 𝜂 this gives the following linearized
equation for the perturbation:

𝜕
𝑡

󰜚
𝑡

+ 𝜕
𝑥

(𝜌V [󰜚
𝑡

] + 󰜚
𝑡

V [𝜌]) = 0, (A.11)

for which we make the ansatz of periodic solution in space:

󰜚
𝑡

(𝑥) = ∑

𝑘∈z

𝐶
𝑘

𝑒
𝜎𝑘𝑡+i(2𝜋/𝐿)𝑘𝑥 (i = imaginary unit) , (A.12)

with 𝐶
𝑘

∈ R. Actually, similarly to the microscopic case
in Proposition 2, we can neglect the term of the sum for
𝑘 = 0, because again it corresponds to a constant in space
perturbation.

By linearity we consider one term of the sum at a time;
that is, we take 󰜚

𝑡

(𝑥) = 𝐶
𝑘

𝑒
𝜎𝑘𝑡+i(2𝜋/𝐿)𝑘𝑥. Substituting in (A.11)

we find

𝜎
𝑘

+ i2𝜋
𝐿
𝑘 (V [𝜌] + 𝜌K

𝑘

) = 0

with K
𝑘

fl −∫

𝐿

0

𝐾 (𝑧) 𝑒
i(2𝜋/𝐿)𝑘𝑧

𝑑𝑧.

(A.13)

The asymptotic trend in time of 󰜚
𝑡

depends onRe(𝜎
𝑘

), which,
according to the previous equation, is given by

Re (𝜎
𝑘

) =
2𝜋

𝐿
𝑘𝜌Im (K

𝑘

)

= −
2𝜋

𝐿
𝑘𝜌∫

𝐿

0

𝐾 (𝑧) sin(2𝜋
𝐿
𝑘𝑧) 𝑑𝑧.

(A.14)

We claim thatRe(𝜎
𝑘

) < 0 for all 𝑘 ̸= 0.
First, we observe that (2𝜋/𝐿)𝑘𝜌Im(K

𝑘

) is even in 𝑘,
since it is the product of two odd functions in 𝑘. Thus
Re(𝜎

−𝑘

) = Re(𝜎
𝑘

) and we can confine ourselves to 𝑘 > 0.
Second,Im(K

𝑘

) can be written as

Im (K
𝑘

) = −∫

𝐿

0

𝐾 (𝑧) sin(2𝜋
𝐿
𝑘𝑧) 𝑑𝑧

= −

𝑘−1

∑

𝑞=0

∫

(𝑞+1)𝐿/𝑘

𝑞𝐿/𝑘

𝐾 (𝑧) sin(2𝜋
𝐿
𝑘𝑧) 𝑑𝑧

(A.15)

and, in addition, for each term of the sum at the right-hand
side it holds

∫

(𝑞+1)𝐿/𝑘

𝑞𝐿/𝑘

𝐾 (𝑧) sin(2𝜋
𝐿
𝑘𝑧) 𝑑𝑧

= ∫

(𝑞+1/2)𝐿/𝑘

𝑞𝐿/𝑘

(𝐾 (𝑧) − 𝐾(𝑧 +
𝐿

2𝑘
))

⋅ sin(2𝜋
𝐿
𝑘𝑧) 𝑑𝑧.

(A.16)

In the interval [𝑞𝐿/𝑘, (𝑞 + 1/2)𝐿/𝑘] the sine function is non-
negative. Furthermore, in view of Assumption 1(i)–(iii), 𝐾 is
globally nonincreasing; thus the integral above is nonnegative
for all 𝑘 > 0. Consequently, the sum in (A.15) is nonpositive
and, owing to Assumption 1(iii), it has at least one strictly
negative element corresponding to 𝑞 = 0, whence the claim
follows.

Proof of Lemma 6. (i) From (7) and (44) we obtain

󵄨󵄨󵄨󵄨𝛾𝑡 (𝑦) − 𝛾𝑡 (𝑥)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨

+ ∫

𝑡

0

󵄨󵄨󵄨󵄨V [𝜇𝑠] (𝛾𝑠 (𝑦)) − V [𝜇
𝑠

] (𝛾
𝑠

(𝑥))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤
󵄨󵄨󵄨󵄨𝑦 − 𝑥

󵄨󵄨󵄨󵄨 + 𝜉
𝑁

∫

𝑡

0

󵄨󵄨󵄨󵄨𝛾𝑠 (𝑦) − 𝛾𝑠 (𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑠,

(A.17)

whence the thesis follows by invoking Gronwall’s inequality.
(ii) Again by (7) and (44) we have

󵄨󵄨󵄨󵄨𝛾
]
𝑡

(𝑥) − 𝛾
𝜇

𝑡

(𝑥)
󵄨󵄨󵄨󵄨

≤ ∫

𝑡

0

󵄨󵄨󵄨󵄨V []𝑠] (𝛾
]
𝑠

(𝑥)) − V [𝜇
𝑠

] (𝛾
𝜇

𝑠

(𝑥))
󵄨󵄨󵄨󵄨 𝑑𝑠

≤ 𝜉
𝑁

(∫

𝑡

0

󵄨󵄨󵄨󵄨𝛾
]
𝑠

(𝑥) − 𝛾
𝜇

𝑠

(𝑥)
󵄨󵄨󵄨󵄨 𝑑𝑠

+
1

𝑁
∫
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(A.18)

whence again Gronwall’s inequality yields the result.

Proof of Proposition 7. Here we use the expression (40) of𝑊
1

.
Let 𝜙 ∈ Lip

1

(R𝑑

); then using the notation introduced in
Lemma 6(ii) and recalling (6) we have
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where in the last term at the right-hand side we have used the
fact that the function𝑥 󳨃→ 𝜙(𝛾

𝜇

𝑡

(𝑥)) is Lipschitz continuous in
view of Lemma 6(i). Invoking furthermore Lemma 6(ii) we
continue as

∫
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, ]
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Taking the supremum over 𝜙 of both sides we obtain

𝑊
1

(𝜇
𝑡

, ]
𝑡

) ≤ 𝜉
𝑁

𝑒
𝜉

𝑁
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∫
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0

𝑊
1
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𝑠
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) 𝑑𝑠

+ 𝑒
𝜉

𝑁
𝑡

𝑊
1

(𝜇, ]) ,

(A.21)

where in the first term at the right-hand side we have further
used 𝑡 ≤ 𝑇. Finally we apply Gronwall’s inequality and we are
done.
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