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Abstract

This paper proposes the free vibration analysis of Double-Walled Carbon NanoTubes (DWCNTs). A

continuum elastic three-dimensional shell model is used for natural frequency investigation of simply

supported DWCNTs. The 3D shell method is compared with beam analyses to show the applicability

limits of 1D beam models. The effect of van der Waals interaction between the two cylinders is shown

for different Carbon NanoTube (CNT) lengths and vibration modes. Results give the van der Waals

interaction effect in terms of frequency values. In order to apply the 3D shell continuum model, DWC-

NTs are defined as two concentric isotropic cylinders (with an equivalent thickness and Young modulus)

which can be linked by means of the interlaminar continuity conditions or by means of an infinitesimal

fictitious layer which represents the van der Waals interaction.
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1 Introduction

Carbon NanoTubes (CNTs) are closed graphene sheets with a cylindrical shape, they were discovered

in Japan by Iijma in 1991 [Iijma (1991)]. CNTs exhibit exceptional mechanical properties [Valava and

Odegard (2005); Srivastava and Atluri (2002)], the equivalent elastic modulus is usually greater than 1

TPa and the tensile strength exceeds that of steel by over one order of magnitude. For these reasons,

CNTs are considered to be ideal reinforcements in composite structures [Rouainia and Djeghaba (2008);

Wu and Jiang (2014); Ghouhestani et al. (2014)].

The behavior of CNTs can be simulated by means of three different basic methods [Qian et al.

(2002)]: Molecular Dynamic (MD) simulations, atomistic-based modelling approaches and continuum

approaches. In the MD approaches, the simulations are based on the definition of an appropriate

potential energy function (e.g., Tersoff-Brenner or Lennard-Jones functions) [Chen and Cao (2006); Hu

et al. (2012); Ansari et al. (2012); Chowdhury et al. (2010); Das et al. (2013); Zhang et al. (2009);

Sinnott et al. (2002); Brenner et al. (2002); Yang et al. (2002); Namilae et al. (2007)]. In the atomistic-

based modelling approaches, CNTs are investigated by means of an atomistic finite element model with

beam elements and concentrated masses. The beams simulate the interatomic covalent forces and the

masses (which are located at the ends of the beams) represent the carbon positions [Arghavan and Singh

(2011); Gupta et al. (2012); Mir et al. (2008); Yan et al. (2008); Aydogdu (2009); Yan et al. (2013)].

The continuum approaches are based on the assumption that carbon nanotubes (which have a discrete

molecular structure) are continuum isotropic elastic cylinders which can be analyzed via beam or shell

models. When a continuum elastic model is applied to CNT analysis, it is of central importance to

accurately quantify the elastic properties of Single-Walled CNTs (SWCNTs) and Double-Walled CNTs

(DWCNTs) [Wang and Zhang (2008a)].

The high computational cost of the MD simulations of complex CNT networks does not allow fast

analyses. A real size multi-walled CNT simulation by means of an atomistic-based modelling approach

is also expensive. Therefore, continuum approaches are preferred to MD and atomistic-based models

in the described simulations because of their better computational cost. In order to apply a continuum

model, it is necessary to correctly define effective CNT wall thickness, Young modulus and Poisson

ratio because a carbon nanotube has a discrete molecular structure. Extensive studies [Vodenitcharova

and Zhang (2003); Odegard et al. (2002); Lee and Oh (2008); Zhang (2009)] have been conducted to

analyze this feature. A final conclusion has not yet been reached, as demonstrated by the different
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thickness and Young modulus values shown in the papers analyzed below. These equivalent properties

are not always the same for a given elastic stiffness.

Many researchers have used beam models for continuum approaches to analyze free vibrations of

single-walled and multi-walled carbon nanotubes. Among Single-Walled Carbon Nanotube (SWCNT)

simulations, Araújo dos Santos (2011) used finite elements based on the Euler-Bernoulli and Timoshenko

beam theories. The Timoshenko beam model with generalized boundary conditions was also employed

by Azrar et al. (2011). Unlike the Euler-Bernoulli beam model, the Timoshenko beam model allows

for the effects of transverse shear deformation and rotary inertia [Benzair et al. 2008]. Demir et al.

(2010) used the discrete singular convolution (DSC) method based on the Timoshenko beam theory.

Foda (2013) proposed a direct analytical approach to suppress the steady state vibrations of a SWCNT

resting on a Winkler foundation. The natural frequencies and transversal responses of simply supported

SWCNTs were analyzed in Horng (2012) by means of the Timoshenko beam theory and the Bernoulli-

Fourier method. The thermal vibrations of SWCNTs were analyzed by Ming and Huiming (2013) by

means of a single beam model. The nonlocal elasticity was incorporated to introduce the effects of

small size into the formulation. The Timoskenko beam finite element formulation was used in Swain et

al. (2013) for the flexural vibration of SWCNTs. The nonlinear vibration of a SWCNT (considered as

a curved beam subjected to a harmonic load) was investigated in Wang et al. (2013) by means of the

nonlocal continuum theory. A stress gradient and a strain gradient approach were used in Wang and

Wang (2013) where vibrations of nanotubes embedded in an elastic matrix were investigated by means

of the nonlocal Timoshenko beam model. The nonlocal Euler-Bernoulli and Timoshenko beam theories

were used in Soltani et al. (2012) to investigate the transverse vibration of a single-walled carbon

nanotube with light waviness along its axis. The comparison between the two beam models shows

the effects of transverse shear deformation and rotary inertia. Forced vibrations of a simply supported

SWCNT subjected to a moving harmonic load were analyzed in Simsek (2010) by means of the nonlocal

Euler-Bernoulli beam theory. Murmu and Pradhan (2009) developed a nonlocal elasticity Timoshenko

beam model to investigate the stability response of a SWCNT embedded in an elastic medium. Both

Winkler-type and Pasternak-type foundation models were employed to simulate the interaction of

the SWCNT with the surrounding elastic medium. Different beam theories including those of Euler-

Bernoulli, Timoshenko, Reddy, Levinson and Aydogdu were compared in Aydogdu (2009a). Non local

constitutive equations of Eringen were used for these comparisons. Among Double-Walled Carbon

Nanotube (DWCNT) simulations, papers including the van der Waals interaction between the two
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cylinders are of particular interest. Aydogdu (2008) investigated free vibration of simply supported

DWCNTs by using the parabolic shear deformation theory (PSDT). It was concluded that van der

Waals (vdW) forces should be considered for small inner radius. Khosrozadeh and Hajabasi (2012)

used the nonlocal Euler-Bernoulli beam theory to investigate nonlinear free vibration of DWCNTs. The

interlayer vdW force was modelled as a nonlinear function of inner and outer tubes deflections. The

nonlinear equations of motion of the DWCNTs derived by using the Euler beam theory and the Hamilton

principle and the nonlinear van der Waals forces were considered in Fang et al. (2013). Natsuki

et al. (2008) analyzed the vibration characteristics of simply supported DWCNTs by using Euler-

Bernoulli beam theory and coupling the two nanotube shells through the van der Waals interaction.

Equations of motion of elastically supported DWCNTs were established in Kianim (2013) using nonlocal

Rayleigh, Timoshenko, and higher-order beam theories. The two tubes were appropriately interacted

through consideration of interlayer van der Waals forces via an equivalent spring system. The effect

of various parameters like the radius of nanotubes, van der Waals forces and nonlocal parameters on

the longitudinal wave propagation in multiwalled carbon nanotubes was discussed in Aydogdu (2014).

The influence of van der Waals interaction coefficient on the vibrational properties of DWCNTs was

studied in de Borbón and Ambrosini (2012). A high order continuum beam model was used. Chang

(2013) adopted stochastic FEM to study the statistical dynamic behaviors of nonlinear vibration of the

fluid-conveying DWCNTs under a moving load by considering the effects of the geometric nonlinearity

and the nonlinearity of van der Waals forces. Benguediab et al. (2014) studied the mechanical buckling

properties of a zigzag double-walled carbon nanotube (DWCNT) with both chirality and small scale

effects.

The use of shell models for the vibration analysis of CNTs is usually more complicated than the use

of beam models, but shell models allow the analysis of CNTs with small length/diameter ratios. For

these structures the use of 1D beam models gives significant errors because short CNTs are not one-

dimensional structures. Refined 2D or 3D shell models are suitable for the correct vibration analysis

of short CNTs, in particular when the radius/thickness ratio is small, as demonstrated in Brischetto

(2014a) and in Cinefra et al. (2011). The present author has proposed a continuum approach [Brischetto

(2014a)] (based on an exact elastic three-dimensional shell model) for natural frequency investigation

of simply supported Single-Walled Carbon Nanotubes (SWCNTs). Among SWCNT shell simulations,

Wang and Zhang (2008b) proposed a two-dimensional elastic shell model to characterize the deformation

of SWCNTs using the in-plane rigidity, Poisson ratio, bending rigidity and off-plane torsion rigidity
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as independent elastic constants. An elastic shell model of single-walled carbon nanotubes can be

established only with a well-defined effective thickness. Vibrations of SWCNTs based on a three-

dimensional theory of elasticity were analyzed in Alibeigloo and Shaban (2013). The Flügge type

shell equations were used in Mikhasev (2013) as governing equations for free axisymmetric vibrations

of a SWCNT. Among DWCNT shell simulations, Cinefra et al. (2011) proposed refined layer-wise

2D shell models which account for van der Waals (vdW) interaction between the inner and the outer

cylinder. In general, vdW interaction gives a small decrease in the frequency value for the free vibration

analysis. Dong et al. (2008) presented an analytical laminated cylindrical shell method to investigate

wave propagation in individual multiwall carbon nanotubes (MWNTs) or MWNTs embedded in an

elastic matrix. Further shell models for Double-Walled Carbon NanoTubes (DWCNTs) were proposed

in Li and Kardomateas (2007) and in Yao and Han (2008) for free vibration and buckling analysis,

respectively. For the analysis of MWNTs, He et al. (2005) have shown that the greatest contribution

to the vdW interaction comes from the adjacent layers and the contribution from a remote layer may

be negligible. Han et al. (2005) examined the instability of a DWCNT embedded in an elastic medium

under pure bending. The effect of surrounding elastic medium and van der Waals forces between the

inner and outer nanotubes was taken into consideration. Thermoelastic vibration and damping of

a DWCNT upon interlayer van der Waals (vdW) interaction and initial axial stresses are studied in

Hoseinzadeh and Khadem (2011). The inner and outer carbon nanotubes are modeled as two individual

elastic thin shells.

The present paper proposes an exact three-dimensional elastic shell model for free vibration analysis

of simply supported DWCNTs. This work is an extension of the three-dimensional elastic shell model

prosed by the same author for the free vibration analysis of SWCNTs [Brischetto (2014a)]. The equilib-

rium equations in general orthogonal curvilinear coordinates (see Brischetto (2013), Brischetto (2014b),

Brischetto (2014c) and Brischetto and Torre (2014)) are adapted to the case of a cylinder by giving an

infinite value for one of the two radii of curvature. The equilibrium equations in rectilinear orthogonal

coordinates and in cylindrical coordinates were exactly solved in Messina (2009) and Soldatos and Ye

(1995), respectively. In order to apply the 3D shell continuum model, DWCNTs are defined as two

concentric isotropic cylinders (with an equivalent thickness and Young modulus) which can be linked by

means of the interlaminar continuity conditions (first model) or by means of an infinitesimal fictitious

layer which represents the van der Waals interaction (second model). The comparisons between the

two models show the effect of van der Waals interaction between the two cylinders for different Carbon

5



NanoTube lengths and vibration modes. Results show the van der Waals interaction effect in terms of

frequency values and the comparison between shell and beam models.

2 3D shell model

Multilayered spherical shells with constant radii of curvature Rα and Rβ have been analyzed in

Brischetto (2013) and Brischetto (2014b) by means of three differential equations of equilibrium in

general orthogonal curvilinear coordinates written for the case of free vibration analysis. The equations

have been solved in exact form in analogy with the method proposed in Messina (2009) and Soldatos

and Ye (1995) for orthogonal rectilinear coordinates and cylindrical coordinates, respectively. In the

present paper, the equations in general orthogonal curvilinear coordinates are simplified for the cylin-

drical case by imposing an infinite value for the radius of curvature Rβ (see Fig. 1). The general form

proposed in Brischetto (2013) and Brischetto (2014b) remains valid for both plate and constant radius

shell geometries (spherical and cylindrical shells).

The strain-displacement relations of three-dimensional theory of elasticity in orthogonal curvilinear

coordinates are written for the generic k layer of the multilayered cylindrical shell of Fig. 1 (the general

form for spherical shells with constant radii of curvature Rα and Rβ has already been given in Brischetto

(2013) and Brischetto (2014b)):

ǫααk =
1

Hα

uk,α +
wk

HαRα

, (1)

ǫββk = vk,β , (2)

ǫzzk = wk,z , (3)

γβzk = wk,β + vk,z , (4)

γαzk =
1

Hα

wk,α + uk,z −
uk

HαRα

, (5)

γαβk =
1

Hα

vk,α + uk,β . (6)

The parametric coefficients for cylindrical shells are:

Hα = (1 +
z

Rα

) , Hβ = 1 , Hz = 1 . (7)

The strain components are ǫαα, ǫββ, ǫzz, γβz, γαz and γαβ for each k isotropic layer. The displacement
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components for each k isotropic layer are u, v and w along orthogonal curvilinear coordinates α, β and

z, respectively. Partial derivatives ∂
∂α

, ∂
∂β

and ∂
∂z

are indicated with subscripts ,α, ,β and ,z, respectively.

Hα depends on the z coordinate. Hβ = 1 and Hz = 1 because β and z are rectilinear coordinates. Rα

is the principal radius of curvature along the α coordinate. Rβ is infinite for a cylinder (see Fig. 1).

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α, β,

z) (see Fig. 1) are here given for a generic k isotropic layer. The stress components (σαα, σββ, σzz,

σβz, σαz, σαβ) are linked with the strain components (ǫαα, ǫββ , ǫzz, γβz, γαz , γαβ) for each k isotropic

layer as:

σααk = C11kǫααk + C12kǫββk + C13kǫzzk , (8)

σββk = C12kǫααk + C22kǫββk + C23kǫzzk , (9)

σzzk = C13kǫααk + C23kǫββk + C33kǫzzk , (10)

σβzk = C44kγβzk , (11)

σαzk = C55kγαzk , (12)

σαβk = C66kγαβk . (13)

The most general form of differential equations of equilibrium for spherical shells with constant radii

of curvature can be found in Brischetto (2013) and Brischetto (2014b). These equations rewritten for

the case of free vibration analysis of cylindrical shells are:

σααk,α +Hασαβk,β +Hασαzk,z +
2

Rα

σαzk = ρkHαük , (14)

σαβk,α +Hασββk,β +Hασβzk,z +
1

Rα

σβzk = ρkHαv̈k , (15)

σαzk,α +Hασβzk,β +Hασzzk,z −
1

Rα

σααk +
1

Rα

σzzk = ρkHαẅk , (16)

where ρk is the mass density. ük, v̈k and ẅk indicate the second temporal derivative of the three

displacement components uk, vk and wk, respectively. Each quantity depends on the k layer. Rα

is referred to the mid-surface Ω0 of the whole multilayered shell. Hα continuously varies through

the thickness of the multilayered shell and it depends on the z thickness coordinate. Eqs.(14)-(16)

have constant coefficients (even if a shell geometry is considered) when the shell is divided in NL

mathematical layers where the parametric coefficient Hα can easily be calculated in the middle of each
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k mathematical layer.

The closed form of Eqs.(14)-(16) is obtained for simply supported cylindrical shells. The three

displacement components have the following harmonic form:

uk(α, β, z, t) = Uk(z)e
iωtcos(ᾱα)sin(β̄β) , (17)

vk(α, β, z, t) = Vk(z)e
iωtsin(ᾱα)cos(β̄β) , (18)

wk(α, β, z, t) = Wk(z)e
iωtsin(ᾱα)sin(β̄β) , (19)

where Uk(z), Vk(z) and Wk(z) are the displacement amplitudes in α, β and z directions, respectively.

i is the coefficient of the imaginary unit. ω = 2πf is the circular frequency where f is the frequency

value, t is the time. In coefficients ᾱ = pπ
a

and β̄ = qπ
b
, p and q are the half-wave numbers and a

and b are the shell dimensions in α and β directions, respectively (they are calculated in the reference

mid-surface Ω0).

Eqs.(1)-(6), (8)-(13) and (17)-(19) are substituted in Eqs.(14)-(16) to obtain the following system

of equations for each k mathematical layer:

(

−
C55k

HαR2
α

− ᾱ2C11k

Hα

− β̄2C66kHα + ρkHαω
2
)

Uk +
(

− ᾱβ̄C12k − ᾱβ̄C66k

)

Vk +
(

ᾱ
C11k

HαRα

+

ᾱ
C55k

HαRα

)

Wk +
(C55k

Rα

)

Uk,z +
(

ᾱC13k + ᾱC55k

)

Wk,z +
(

C55kHα

)

Uk,zz = 0 , (20)

(

− ᾱβ̄C66k − ᾱβ̄C12k

)

Uk +
(

− ᾱ2C66k

Hα

− β̄2C22kHα + ρkHαω
2
)

Vk +
(

β̄
C44k

Rα

+ β̄
C12k

Rα

)

Wk+

(C44k

Rα

)

Vk,z +
(

β̄C44kHα + β̄C23kHα

)

Wk,z +
(

C44kHα

)

Vk,zz = 0 , (21)

(

ᾱ
C55k

HαRα

+ ᾱ
C11k

HαRα

)

Uk +
(

− β̄
C23k

Rα

+ β̄
C12k

Rα

)

Vk +
(

−
C11k

HαR2
α

− ᾱ2C55k

Hα

− β̄2C44kHα+

ρkHαω
2
)

Wk +
(

− ᾱC55k − ᾱC13k

)

Uk,z +
(

− β̄C44kHα − β̄C23kHα

)

Vk,z +
(C33k

Rα

)

Wk,z+ (22)

(

C33kHα

)

Wk,zz = 0 .

Parametric coefficients Hα are constant because the thickness coordinate z is given in the middle of

each k mathematical layer. The system of Eqs.(20)-(22) is written in a compact form by introducing
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constant coefficients Ask for each block
()

with s from 1 to 19:

A1kUk +A2kVk +A3kWk +A4kUk,z +A5kWk,z +A6kUk,zz = 0 , (23)

A7kUk +A8kVk +A9kWk +A10kVk,z +A11kWk,z +A12kVk,zz = 0 , (24)

A13kUk +A14kVk +A15kWk +A16kUk,z +A17kVk,z +A18kWk,z +A19kWk,zz = 0 . (25)

Eqs.(23)-(25) are a system of three second order differential equations. This system can be reduced

to a system of first order differential equations [Brischetto (2013); Brischetto (2014b); Messina (2009);

Soldatos and Ye (1995)]:































A6k 0 0 0 0 0

0 A12k 0 0 0 0

0 0 A19k 0 0 0

0 0 0 A6k 0 0

0 0 0 0 A12k 0

0 0 0 0 0 A19k





























































Uk

Vk

Wk

U ′

k

V ′

k

W ′

k































′

=































0 0 0 A6k 0 0

0 0 0 0 A12k 0

0 0 0 0 0 A19k

−A1k −A2k −A3k −A4k 0 −A5k

−A7k −A8k −A9k 0 −A10k −A11k

−A13k −A14k −A15k −A16k −A17k −A18k





























































Uk

Vk

Wk

U ′

k

V ′

k

W ′

k































.

(26)

Eq.(26) can be written in a compact form for a generic k layer:

Dk

∂Uk

∂z
= AkUk , (27)

where ∂Uk

∂z
= U

′

k and Uk = [Uk Vk Wk U ′

k V ′

k W ′

k]. Eq.(27) can be written as:

U
′

k = A
∗

k Uk , (28)

with A
∗

k = D
−1
k Ak. The solution of Eq.(28) is:

U k(zk) = exp(A∗

kzk)U k(0) with zk ǫ [0, hk] , (29)

where zk is the thickness coordinate of each k layer from 0 at the bottom to hk at the top.

If we consider NL layers, NL−1 transfer matrices T k−1,k must be calculated by using for each inter-

face the following conditions for interlaminar continuity of displacements and transverse shear/normal
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stresses:

ubk = utk−1 , vbk = vtk−1 , wb
k = wt

k−1 , (30)

σb
zzk = σt

zzk−1 , σb
αzk = σt

αzk−1 , σb
βzk = σt

βzk−1 , (31)

each displacement and transverse stress component at the top (t) of the k-1 layer is equal to each

displacement and transverse stress component at the bottom (b) of the k layer. Eqs.(30)-(31) in

compact form are:

U
b
k = T k−1,kU

t
k−1 . (32)

The calculated T k−1,k matrices allow vector U at the bottom (b) of the k layer with vector U at the

top (t) of the k− 1 layer to be linked. The structures are simply supported and free stresses at the top

and at the bottom, this feature means:

σzz = σαz = σβz = 0 for z = 0, h , (33)

w = v = 0, σαα = 0 for α = 0, a , (34)

w = u = 0, σββ = 0 for β = 0, b . (35)

The combination of Eqs. (28), (29), (32) and (33)-(35) leads to the following system (details can be

found in Brischetto (2013) and Brischetto (2014b)):

E U
b
1

= 0 . (36)

Matrix E has always (6 × 6) dimension, independently from the number NL of mathematical layers,

even if the method uses a layer-wise approach. The free vibration analysis means to find the non-trivial

solution of U b
1 (displacement at the bottom of the layer 1) in Eq.(36) by imposing the determinant of

matrix E equals zero:

det[E] = 0 . (37)

Eq.(37) means to find the roots of an higher order polynomial in λ = ω2. For each pair of half-wave

numbers (p, q) a certain number of circular frequencies are obtained depending on the order N chosen

for the exponential matrix in Eq.(29) and the number NL of mathematical layers.
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2.1 Analysis of DWCNT without van der Waals interaction

The DWCNT is analyzed in this paper by means of an equivalent continuum model where the two

cylinders have thickness values hi and he (see Figs. 1 and 2). The first model considers NL=228

mathematical layers to correctly approximate the curvature of the shell. The first cylinder (with

thickness hi) is divided into 114 mathematical layers (from k=1 to k=114) and the second cylinder

(with thickness he) is also divided into 114 mathematical layers (from k=115 to k=228). Mathematical

layers are linked by means of the interlaminar continuity conditions given in Eqs. (30) and (31). Such

conditions are also used to link layer k=114 to layer k=115, in this way the two cylinders are linked

by means of interlaminar continuity conditions. This model is indicated as the 3D model in the results

proposed.

2.2 Analysis of DWCNT including van der Waals interaction

The second model proposed in this paper is called the 3DvdW model because it allows van der Waals

interaction to be included in the 3D continuum shell model described in Section 2. The two cylinders

have thickness values hi and he. The first cylinder is divided into 114 fictitious layers (from k=1 to

k=114) and the second cylinder is also divided into 114 fictitious layers (from k=116 to k=229). An

infinitesimal layer (k=115) is introduced between the two cylinders to simulate the van der Waals

interaction (see Fig. 2). This infinitesimal fictitious layer has a negligible thickness (h115 = (hi +

he)/1000) and opportune elastic properties which represent the van der Waals interaction. Layers

k=114 and k=115, and layers k=115 and k=116 are linked by means of the interlaminar continuity

conditions given in Eqs. (30) and (31). The fictitious layer k=115 has mass density ρ = 1.225kg/m3

(air density). The Poisson ratio is the same used for the other layers. The van der Waals interaction

coefficient c, estimated at the initial interlayer spacing can be given as:

c1 =
200erg/cm2

0.16d2
, (38)

or as:

c2 =
320erg/cm2

0.16d2
, (39)

see de Borbón and Ambrosini (2012) for further details. d = 0.142nm is the length of C-C bond

and 1erg = 10−7Joule. This coefficient has values c1 = 6.19916683 × 1019N/m3 or c2 = 9.918667 ×
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1019N/m3. Transverse displacements for CNT analysis have values in the order of 10−12m. Therefore,

the equivalent Young modulii for the infinitesimal fictitious layer which simulates van der Waals inter-

actions are E1 = 6.19916683 × 107Pa or E2 = 9.918667 × 107Pa, respectively. The three-dimensional

models including van der Waals interaction are called 3DvdW (c1) and 3DvdW (c2).

3 Results

The three-dimensional shell model proposed in this paper is firstly validated by means of a comparison

with the Double Timoshenko Beam Model (DTBM) proposed in de Borbón and Ambrosini (2012). The

DTBM investigates the free vibration analysis of simply-supported Double Walled Carbon Nanotubes

(DWCNTs). The two concentric cylinders are linked by means of the van der Waals interactions. DTBM

(c1) considers a van der Waals interaction coefficient as described in Eq. (38). DTBM (c2) considers a

van der Waals interaction coefficient as described in Eq. (39). The DWCNT has two layers with the

same equivalent thickness hi = he = 0.35nm (see Figs. 1-3). The equivalent elastic properties are Young

modulus E = 1TPa and Poisson ratio ν = 0.25. The mass density is ρ = 2300kg/m3. Four different

DWCNT geometries are investigated (see Figs. 1 and 3 for reference values). The first nanotube has a

reference diameter for the inner cylinder di = 0.7nm and a reference diameter for the external cylinder

de = 1.4nm. The mean radius of curvature for the DWCNT is Rα = di/2 + hi/2 = 0.525nm; this

value means dimension a = 2πRα = 3.298672286nm. The second nanotube has a reference diameter

for the inner cylinder di = 2.95nm and a reference diameter for the external cylinder de = 3.65nm.

The mean radius of curvature for the DWCNT is Rα = di/2 + hi/2 = 1.65nm; this value means

dimension a = 2πRα = 10.367256nm. The third nanotube has a reference diameter for the inner

cylinder di = 4.80nm and a reference diameter for the external cylinder de = 5.50nm. The mean radius

of curvature for the DWCNT is Rα = di/2+hi/2 = 2.575nm; this value means dimension a = 2πRα =

16.1792022nm. The fourth nanotube has a reference diameter for the inner cylinder di = 7.0nm and

a reference diameter for the external cylinder de = 7.70nm. The mean radius of curvature for the

DWCNT is Rα = di/2 + hi/2 = 3.675nm; this value means dimension a = 2πRα = 23.090706nm. The

four DWCNTs have an infinity radius of curvature in β direction. The lengths L = b considered in the β

direction are obtained from L/de = 5, 10, 15, 30 and 50. Table 1 compares the proposed 3D shell model

with the beam model DTBM proposed in de Borbón and Ambrosini (2012). The fundamental frequency

f in GHz is given for half-wave numbers p=2 and q=1. The first three columns compare the DTBM and

12



the 3D model which include a van der Waals interaction coefficient c1 = 6.19916683 × 1019N/m3. The

second three columns compare the DTBM and the 3D model which include a van der Waals interaction

coefficient c2 = 9.918667×1019N/m3. The last two columns show the 3D model without van der Waals

interaction where the two cylinders are linked by means of the interlaminar continuity conditions. ∆c1

and ∆c2 values allow some important considerations. The difference between the beam model and

the 3D shell model decreases when the length ratio L/de increases. Therefore, for long nanotubes the

beam model is similar to the 3D shell model. The difference between the beam model and the 3D

shell model increases when the thickness ratio Rα/h increases (h = hi + he). Bigger Rα/h values mean

cylinders with thin layers. As already discussed in de Borbón and Ambrosini (2012), DTBM has some

problems of numerical instability for nanotube 3 with L/de = 15 (see the different values for ∆c1 and

∆c2) and for nanotube 4 with L/de = 15 (see the omitted value for ∆c2). Beam results for L/de equals

30 and 50 were not given in de Borbón and Ambrosini (2012). The use of c1 or c2 value does not give

visible differences, for this reason the 3D shell model will use only the c2 coefficient in Tables 2-5. ∆3D

values in Table 1 show the van der Waals interaction effects. The frequency obtained via the 3D shell

model considering the interlaminar continuity conditions between the two cylinders is bigger than the

frequency obtained via the 3D shell model considering the van der Waals interaction. This difference

is bigger for short cylinders (small L/de values) and it decreases for longer cylinders (big L/de values).

Moreover, van der Waals effects are negligible for cylinders with thin layers (see nanotubes 2, 3 and 4).

Tables 2-5 compare the 3D shell model including interlaminar continuity conditions with the 3D

shell model including the van der Waals interaction (only the c2 coefficient case is analyzed because

Table 1 did not show significant differences for the use of c1 and c2 coefficient). The effect of the

half-wave numbers (p,q) is also investigated in Tables 2-5. Table 2 considers a nanotube with thick

layers for the two cylinders, in this case the van der Waals effect is important and it increases when the

longitudinal half-wave number q increases. This effect decreases for long nanotubes (from L/de = 5 to

L/de = 50). These considerations are also summarized in Fig. 4, the van der Waals effect increases

with the longitudinal half-wave number q value and it is more important for short cylinders (whereas

it is negligible for long cylinders). Tables 3-5 consider nanotubes with thinner layers (Rα/h = 2.31 for

nanotube 2, Rα/h = 3.68 for nanotube 3 and Rα/h = 5.25 for nanotube 4). In these cases the van der

Waals effect is less important and can be considered negligible for long cylinders (L/de values greater

than 15) even if higher longitudinal half-wave numbers q are imposed.
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4 Conclusions

The free vibration analysis of simply supported Double-Walled Carbon NanoTubes (DWCNTs) is here

proposed by means of a continuum 3D shell model. The layer-wise approach of the model allows inter-

laminar continuity or van der Waals interaction conditions to be imposed between the two concentric

cylinders. This feature allows the evaluation of the van der Waals interaction effect in free vibration

analysis of DWCNTs. This effect is important and cannot be discarded for short nanotubes, higher

values of half-wave numbers imposed and/or thick cylinders. In all the other cases van der Waals inter-

action can be considered negligible. Moreover, a comparison between the present 3D shell model and

a Timoshenko beam model already present in the literature has also been proposed. The beam model

remains valid for long DWCNTs and/or thick layers for the cylinders. For short DWCNTs and/or thin

layers for the cylinders, the use of the 3D shell model is mandatory.
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L/de DTBM(c1) 3DvdW (c1) ∆c1(%) DTBM(c2) 3DvdW (c2) ∆c2(%) 3D ∆3D(%)

Nanotube 1 (Rα/h = 0.75)
5 272 270.2 0.64 273 270.8 0.81 277.4 2.44
10 72.8 72.60 0.27 72.8 72.64 0.22 73.12 0.66
15 32.8 32.75 0.15 32.8 32.76 0.12 32.85 0.27
30 \ 8.266 \ \ 8.267 \ 8.270 0.04
50 \ 2.984 \ \ 2.984 \ 2.984 0.00

Nanotube 2 (Rα/h = 2.31)
5 108 106.1 1.79 108 106.2 1.69 106.5 0.28
10 28.7 28.53 0.60 28.7 28.54 0.56 28.55 0.03
15 12.9 12.87 0.23 12.9 12.87 0.23 12.88 0.08
30 \ 3.248 \ \ 3.248 \ 3.248 0.00
50 \ 1.172 \ \ 1.171 \ 1.172 0.08

Nanotube 3 (Rα/h = 3.68)
5 73.3 71.69 2.25 73.3 71.70 2.23 71.73 0.04
10 19.5 19.33 0.88 19.4 19.33 0.36 19.34 0.05
15 8.68 8.728 -0.55 8.82 8.729 1.04 8.729 0.00
30 \ 2.203 \ \ 2.203 \ 2.203 0.00
50 \ 0.7950 \ \ 0.7946 \ 0.7949 0.04

Nanotube 4 (Rα/h = 5.25)
5 53.0 51.79 2.34 53.0 51.78 2.36 51.79 0.02
10 14.3 14.00 2.14 14.3 14.00 2.14 14.00 0.00
15 6.42 6.323 1.53 \ 6.323 \ 6.323 0.00
30 \ 1.597 \ \ 1.597 \ 1.597 0.00
50 \ 0.5763 \ \ 0.5762 \ 0.5761 -0.02

Table 1: Assessment. First natural frequency in GHz for half-wave numbers p=2 and q=1 and different
L/de ratios. DTBM is the Double Timoshenko Beam Model including van der Waals interaction as
proposed in de Borbón and Ambrosini (2012). The beam effects are evaluated by means of ∆c1(%) =
DTBM(c1)−3DvdW (c1)

3DvdW (c1)
× 100 and ∆c2(%) = DTBM(c2)−3DvdW (c2)

3DvdW (c2)
× 100. The van der Waals interaction

effects are evaluated by means of ∆3D(%) = 3D−3DvdW (c2)
3DvdW (c2)

× 100.
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(p,q) 3D 3DvdW (c2) ∆vdW (%)

L/de = 5
(2,1) 277.4 270.8 2.44
(2,2) 947.3 892.3 6.16
(2,3) 1813 1628 11.4

L/de = 10
(2,1) 73.12 72.64 0.66
(2,2) 277.4 270.8 2.44
(2,3) 579.5 554.3 4.55

L/de = 15
(2,1) 32.85 32.76 0.27
(2,2) 128.1 126.6 1.18
(2,3) 277.4 270.8 2.44

L/de = 30
(2,1) 8.270 8.267 0.04
(2,2) 32.85 32.76 0.27
(2,3) 73.12 72.64 0.66

L/de = 50
(2,1) 2.984 2.984 0.00
(2,2) 11.89 11.89 0.00
(2,3) 26.65 26.60 0.19

Table 2: Benchmark: first nanotube with thickness ratio Rα/h = 0.75. Frequency values in GHz for
different half-wave numbers (p,q) and L/de ratios. The van der Waals effects are evaluated by means

of ∆vdW (%) = 3D−3DvdW (c2)
3DvdW (c2)

× 100.
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(p,q) 3D 3DvdW (c2) ∆vdW (%)

L/de = 5
(2,1) 106.5 106.2 0.28
(2,2) 347.9 346.1 0.52
(2,3) 632.5 624.2 1.33

L/de = 10
(2,1) 28.55 28.54 0.03
(2,2) 106.5 106.2 0.28
(2,3) 217.6 216.7 0.41

L/de = 15
(2,1) 12.88 12.87 0.08
(2,2) 49.79 49.74 0.10
(2,3) 106.5 106.2 0.28

L/de = 30
(2,1) 3.248 3.248 0.00
(2,2) 12.88 12.87 0.08
(2,3) 28.55 28.53 0.07

L/de = 50
(2,1) 1.172 1.171 0.08
(2,2) 4.671 4.671 0.00
(2,3) 10.45 10.45 0.00

Table 3: Benchmark: second nanotube with thickness ratio Rα/h = 2.31. Frequency values in GHz for
different half-wave numbers (p,q) and L/de ratios. The van der Waals effects are evaluated by means

of ∆vdW (%) = 3D−3DvdW (c2)
3DvdW (c2)

× 100.
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(p,q) 3D 3DvdW (c2) ∆vdW (%)

L/de = 5
(2,1) 71.73 71.70 0.04
(2,2) 231.6 231.5 0.04
(2,3) 416.4 415.9 0.12

L/de = 10
(2,1) 19.34 19.33 0.05
(2,2) 71.73 71.70 0.04
(2,3) 145.8 145.6 0.14

L/de = 15
(2,1) 8.729 8.729 0.00
(2,2) 33.67 33.66 0.03
(2,3) 71.73 71.70 0.04

L/de = 30
(2,1) 2.203 2.203 0.00
(2,2) 8.729 8.729 0.00
(2,3) 19.34 19.33 0.05

L/de = 50
(2,1) 0.7949 0.7946 0.04
(2,2) 3.168 3.168 0.00
(2,3) 7.088 7.087 0.01

Table 4: Benchmark: third nanotube with thickness ratio Rα/h = 3.68. Frequency values in GHz for
different half-wave numbers (p,q) and L/de ratios. The van der Waals effects are evaluated by means

of ∆vdW (%) = 3D−3DvdW (c2)
3DvdW (c2)

× 100.
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(p,q) 3D 3DvdW (c2) ∆vdW (%)

L/de = 5
(2,1) 51.79 51.78 0.02
(2,2) 166.2 166.2 0.00
(2,3) 296.3 296.2 0.03

L/de = 10
(2,1) 14.00 14.00 0.00
(2,2) 51.79 51.78 0.02
(2,3) 104.9 104.9 0.00

L/de = 15
(2,1) 6.323 6.323 0.00
(2,2) 24.35 24.35 0.00
(2,3) 51.79 51.78 0.02

L/de = 30
(2,1) 1.597 1.597 0.00
(2,2) 6.323 6.323 0.00
(2,3) 14.00 14.00 0.00

L/de = 50
(2,1) 0.5761 0.5761 0.00
(2,2) 2.296 2.296 0.00
(2,3) 5.135 5.135 0.00

Table 5: Benchmark: fourth nanotube with thickness ratio Rα/h = 5.25. Frequency values in GHz for
different half-wave numbers (p,q) and L/de ratios. The van der Waals effects are evaluated by means

of ∆vdW (%) = 3D−3DvdW (c2)
3DvdW (c2)

× 100.
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Figure 1: Notation, reference system and continuum approach for a Single-Walled Carbon NanoTube
(SWCNT) and a Double-Walled Carbon NanoTube (DWCNT).

Figure 2: Continuum 3D shell model for DWCNT analysis. Interlaminar continuity between the two
cylinders (3D model) and van der Waals interaction between the two cylinders (3DvdW model).

Figure 3: Geometrical data for the equivalent continuum DWCNT.
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Figure 4: First nanotube with thickness ratio Rα/h = 0.75: van der Waals force interaction effects
versus half-wave numbers (p,q) and CNT lengths (L/de ratios).
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