
27 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

An exact 3D solution for free vibrations of multilayered cross-ply composite and sandwich plates and shells / Brischetto,
Salvatore. - In: INTERNATIONAL JOURNAL OF APPLIED MECHANICS. - ISSN 1758-8251. - 6:6(2014), pp. 1-42.
[10.1142/S1758825114500768]

Original

An exact 3D solution for free vibrations of multilayered cross-ply composite and sandwich plates and
shells

Publisher:

Published
DOI:10.1142/S1758825114500768

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2580141 since: 2020-06-03T23:52:46Z

World Scientific Publishing



An exact three-dimensional solution for free vibrations of

multilayered composite and sandwich plates and shells

Salvatore Brischetto∗

Abstract
A three-dimensional free vibration analysis of multilayered structures is proposed. The exact solution
is developed for the differential equations of equilibrium written in general orthogonal curvilinear coor-
dinates. The equations consider a geometry for shells without simplifications and allow the analysis of
spherical shell panels, cylindrical shell panels, cylindrical closed shells and plates. The method is based
on a layer-wise approach, the continuity of displacements and transverse shear/normal stresses is im-
posed at the interfaces between the layers of the structures. Results are given for multilayered composite
and sandwich plates and shells. A free vibration analysis is proposed for a number of vibration modes,
thickness ratios, imposed wave numbers, geometries and multilayer configurations embedding isotropic
and orthotropic composite materials. These results can also be used as reference solutions for plate and
shell two-dimensional models developed for the analysis of multilayered structures.

Keywords: multilayered structures, composite structures, sandwich structures, plates, shells, three-
dimensional elastic analysis, exact solution, free vibrations, vibration modes.

1 Introduction

The application of composite materials and sandwich configurations in aircraft, spacecraft, ship, and
automotive vehicle structures has increased rapidly over the past three decades. Composite materials
offer many advantages with respect to traditional metallic ones because of their high strength and
low weight. Sandwich configurations are used to provide a stronger and stiffer structure for the same
weight, or conversely lighter structures to carry the same load as a homogenous or compact-laminate
element. A number of complicating effects arises in the design, analysis, modeling and manufacturing
of composite and sandwich structures. The development of plate and shell elements is fundamental for
the analysis of these multilayered structures. For this reason, plate and shell elements need accurate
validation. Three-dimensional exact solutions allow such validations and checks to be made. These
solutions also give further details about three-dimensional behavior and complicating effects introduced
by these new configurations, e.g, the coupling between shear and axial strains (due to the in-plane
anisotropy) and the zigzag form of displacements through the thickness and interlaminar continuity
(due to the transverse anisotropy). In the literature, works about exact three-dimensional solutions do
not give a general overview of plate and shell elements because they analyze the various geometries
separately. The present paper aims to fill this gap by proposing a general formulation for the equations
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of motion in orthogonal curvilinear coordinates that is valid for multilayered square and rectangular
plates, cylindrical shell panels, spherical shell panels and cylinders. This formulation is an extension
of the one-layered cases shown in the companion paper [1]. The present paper exactly solves the
equations of motion in general curvilinear orthogonal coordinates including an exact geometry for shell
structures without simplifications. The method uses a layer-wise approach that imposes the continuity
of displacements and transverse shear/normal stresses at the interfaces between layers embedded in the
multilayered plates and shells.

Three-dimensional analysis of plates are usually performed by using equations in orthogonal recti-
linear coordinates. These equations do not allow the analysis of shell geometries. Pagano [2] proposed
three-dimensional elasticity solutions for rectangular laminates with pinned edges. Several specific ex-
ample problems were solved (including a sandwich plate), and comparisons with classical laminated
plate theory were also given. The elasticity solution for sandwich structural elements such as beams,
orthotropic plates and shells was considered in [3]. Results were given for the plate case only. However,
Meyer-Piening [3] considers that the analysis has the potential to be extended to curved shell panels.
Analytical three-dimensional solutions for free vibrations of a simply supported rectangular plate made
of an incompressible homogeneous linear elastic isotropic material were proposed in [4] and [5]. Some
frequencies missing in previous analytical solutions were also identified here. A three-dimensional lin-
ear elastic, small deformation theory obtained by the direct method was developed in [6] for the free
vibration of simply supported, homogeneous, isotropic, thick rectangular plates. The same method
was also proposed in [7] for the flexure of simply supported homogeneous, isotropic, thick rectangu-
lar plates under arbitrary loading. The expansion in terms of infinite series was formally exact and
yielded accurate numerical results without undue effort. Batra et al. [8] showed useful comparisons
between two-dimensional models and an exact three-dimensional solution for the free vibrations of a
simply supported rectangular orthotropic thick plate. Ye [9] presented a three-dimensional elastic free
vibration analysis of cross-ply laminated rectangular plates with clamped boundaries, the analysis was
based on a recursive solution. Comparisons between 2D-displacement-based-models and exact results
of the linear three-dimensional elasticity were proposed in [10] for natural frequencies, displacement
and stress quantities in multilayered plates. A global three-dimensional Ritz formulation was employed
in [11] for the exact three-dimensional elastic investigation of isosceles triangular plates, and in [12]
for the three-dimensional elastic free vibration analysis of a circular plate. A set of orthogonal poly-
nomial series was used to approximate the spatial displacements. Theoretical high frequency vibration
analysis is fundamental in a variety of engineering designs. The importance of high frequency analysis
of multilayered composite plates was also confirmed in the literature. Zhao et al. [13] introduced the
discrete singular convolution (DSC) algorithm for high frequency vibration analysis of plate structures,
the Levy method was also employed to provide exact solutions to validated the DSC algorithm. The
same investigation (comparison between DSC algorithm and the Levy method) was also proposed in
[14]. Taher et al. [15] computed the first nine frequency parameters of circular and annular plates with
variable thickness and combined boundary conditions, the eigenvalue equation was derived by means
of three-dimensional elasticity theory and Ritz method. Xing and Liu [16] proposed the separation of
variables to solve the Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin
plates. The extension of 3D exact analysis to functionally graded plates was performed in [17]-[19] for
free vibrations, forced vibrations and displacement and stress analysis under static loads. The extension
of three-dimensional solutions to plates embedding piezoelectric layers was given in [20]-[25] for static,
bending, free vibration and steady state harmonic responses. In [20]-[25] an exact three-dimensional
distribution of mechanical and electric quantities in inhomogeneous and laminated piezoelectric plates
is proposed in the framework of linear theory of piezoelectricity.

The most relevant works about three-dimensional shell analysis were discussed in [26]-[42]. The
coupled free vibrations of a transversely isotropic cylindrical shell embedded in an elastic medium were
studied in [26] where the three-dimensional elastic solution used three displacement functions to rep-
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resent the three displacement components. Fan and Zhang [27] showed static, dynamic and buckling
three-dimensional analysis of thick open laminated cylindrical shells by means of the Cayley-Hamilton
theorem. The state equation for orthotropy was established in a cylindrical coordinate system. Free
vibrations of simply-supported cylindrical shells were studied in [28] on the basis of three dimensional
exact theory. Extensive frequency parameters were obtained by solving frequency equations. The
free vibrations of simply-supported cross-ply cylindrical and doubly-curved laminates were investigated
in [29]. The three-dimensional equations of motion were reduced to a system of coupled ordinary
differential equations and then solved using the power series method. The three-dimensional free vi-
brations of a homogenous isotropic, viscothermoelastic hollow sphere were studied in [30]. The surfaces
were subjected to stress-free, thermally insulated or isothermal boundary conditions. The exact three-
dimensional vibration analysis of a trans-radially isotropic, thermoelastic solid sphere was analyzed in
[31]. The governing partial differential equations in [30] and [31] were solved into a coupled system
of ordinary differential equations. Fröbenious matrix method was employed to obtain the solution.
Soldatos and Ye [32] proposed exact, three-dimensional, free vibration analysis of angle-ply laminated
thick cylinders having a regular symmetric or a regular antisymmetric angle-ply lay-up. Armenakas
et al. [33] proposed a self-contained treatment of the problem of plane harmonic waves propagation
along a hollow circular cylinder in the framework of the three-dimensional theory of elasticity. A com-
parison between a refined two-dimensional analysis, a shear deformation theory, the Flügge theory and
an exact elasticity analysis was proposed in [34] for frequency investigation. Further details about
the Flügge classical thin shell theory concerning the free vibrations of cylindrical shells with elastic
boundary conditions can be found in [35]. Other comparisons between two-dimensional closed form
solutions and available exact 3-D elastic and analytical solutions for the free vibration analysis of simply
supported and clamped homogenous isotropic circular cylindrical shells were also proposed in [36]. Vel
[37] extended exact elasticity solutions to functionally graded cylindrical shells. The three-dimensional
linear elastodynamics equations were solved using suitable displacement functions that identically sat-
isfy the boundary conditions. Loy and Lam [38] obtained the governing equation using an energy
minimization principle. A layer-wise approach was proposed to study the vibration of thick circular
cylindrical shells on the basis of three-dimensional theory of elasticity. Wang et al. [39] proposed the
three-dimensional free vibration analysis of magneto-electro-elastic cylindrical panels. Further results
about three-dimensional analysis of shells, where the solutions are not given in closed form, can be
found in [40] for the dynamic stiffness matrix method and in [41] and [42] for the three-dimensional
Ritz method for vibration of spherical shells.

The papers in the literature show the three-dimensional analysis of plates or shells. They include
static and dynamic analysis, functionally graded materials, composite and piezoelectric materials, dis-
placement and mixed models. The novelty introduced by the present paper is the general formulation
for all the geometries (square and rectangular plates, cylindrical and spherical shell panels, and cylin-
drical closed shells). The equations of motion for the dynamic case are written in general orthogonal
curvilinear coordinates using an exact geometry for multilayered shells. The system of second order dif-
ferential equations is reduced to a system of first order differential equations, and afterwards it is exactly
solved using the exponential matrix method and the Navier-type solution. The approach is developed
in layer-wise form by imposing the continuity of displacements and transverse shear/normal stresses at
each interface. The exponential matrix method has already been used in [10] for the three-dimensional
analysis of plates in rectilinear orthogonal coordinates and in [32] for an exact, three-dimensional, free
vibration analysis of angle-ply laminated cylinders in cylindrical coordinates. The equations of motion
written in orthogonal curvilinear coordinates are a general form of the equations of motions written in
rectilinear orthogonal coordinates in [10] and in cylindrical coordinates in [32]. These equations allow
general exact solutions for multilayered plate and shell geometries as already done in the one-layered
plate and shell cases proposed in [1].

Section 2 gives equations of motion in general orthogonal curvilinear coordinates for dynamic analysis
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of plates and shells. Section 3 shows geometrical relations and three-dimensional constitutive equations
for spherical shells by means of an exact geometrical approach. These equations automatically degener-
ate into geometrical relations for cylindrical shells and plates. Section 4 gives the closed form solution
of equations of motion and their multilayer extension. Vibration modes related to frequency values
are obtained from the same system of equations. Section 5 shows results, the method is validated by
means of three preliminary assessments for multilayered composite square plate, cylindrical shell and
spherical shell. The geometries for the new benchmarks are square and rectangular plates, cylinders,
cylindrical and spherical shell panels. Each structure is analyzed as a sandwich configuration with an
isotropic foam core and external skins that can be made of isotropic aluminium alloy or multilayered
composite layers. The free vibration analysis considers the effects of materials, angle of orthotropy,
thickness ratios, imposed wave numbers, order of frequencies and vibration modes. Conclusions are
discussed in Section 6.

2 Equilibrium equations in orthogonal curvilinear coordinates

A shell is a three-dimensional body bounded by two closely spaced curved surfaces where one dimension
(the distance between the two surfaces) is small in comparison with the other two dimensions in the
plane directions. The distance between the surfaces measured along the normal to the middle surface
is the thickness of the shell at that point [43], [44]. The middle surface Ω0 of the shell is the locus of
points which lie midway between these surfaces. Geometry and the reference system are indicated in
Fig. 1 where curvilinear orthogonal coordinates (α, β, z) are shown. Displacement components are u,
v, and w in α, β and z directions, respectively. The square of an infinitesimal linear segment in the
layer is:

ds2 = g1dα2 + g2dβ2 + g3dz2 , (1)

where
g1 = H2

α = [A(1 +
z

Rα
)]2 , g2 = H2

β = [B(1 +
z

Rβ
)]2 , g3 = H2

z = 1 . (2)

The quantities g1, g2, g3, A, B, Rα, Rβ are connected by the equations of Lamb [44] because the
three-dimensional space where the three independent variables α, β and z vary is an Euclidean space.
Rα and Rβ are the principal radii of curvature along the coordinates α and β, respectively. A and B
are the coefficients of the first fundamental form of the surface Ω0, z is the thickness coordinate that
varies from −h/2 to +h/2 (where h is the thickness of the structure as shown in Fig. 1). g3 = 1 because
z is a rectilinear coordinate.

The fundamental shell element is the differential element bounded by two surfaces dz apart at a
distance z from the middle surface and four ruled surfaces whose generators are the normals to the
middle surface along the parametric curves α = α0, α = α0 + dα, β = β0 and β = β0 + dβ [44]. The
lengths of the edges of this fundamental element are (see Fig. 1):

dsα(z) = A(1 + z/Rα)dα , (3)
dsβ(z) = B(1 + z/Rβ)dβ ,

the differential areas of the edge faces of the fundamental element are (see Fig. 1):

dAα(z) = A(1 + z/Rα)dαdz , (4)
dAβ(z) = B(1 + z/Rβ)dβdz ,

the associated infinitesimal area is:

dΩ(z) = [A(1 + z/Rα)][B(1 + z/Rβ)]dαdβ , (5)
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and the volume of the fundamental element is:

dV (z) = [A(1 + z/Rα)][B(1 + z/Rβ)]dαdβdz . (6)

The parametric coefficients for shells with constant radii of curvature (A=B=1) are:

Hα = (1 +
z

Rα
) = (1 +

z̃ − h/2
Rα

) , Hβ = (1 +
z

Rβ
) = (1 +

z̃ − h/2
Rβ

) , Hz = 1 , (7)

Hα and Hβ depend on z or z̃ coordinate (see Fig.2).
The three differential equations of equilibrium written for the case of free vibration analysis of

multilayered spherical shells made of NL layers with constant radii of curvature Rα and Rβ are here
given (the most general form for variable radii of curvature can be found in [45] and [46]):

Hβ
∂σααk

∂α
+ Hα

∂σαβk

∂β
+ HαHβ

∂σαzk

∂z
+ (

2Hβ

Rα
+

Hα

Rβ
)σαzk = ρkHαHβük , (8)

Hβ
∂σαβk

∂α
+ Hα

∂σββk

∂β
+ HαHβ

∂σβzk

∂z
+ (

2Hα

Rβ
+

Hβ

Rα
)σβzk = ρkHαHβ v̈k , (9)

Hβ
∂σαzk

∂α
+ Hα

∂σβzk

∂β
+ HαHβ

∂σzzk

∂z
− Hβ

Rα
σααk − Hα

Rβ
σββk + (

Hβ

Rα
+

Hα

Rβ
)σzzk = ρkHαHβẅk , (10)

where ρk is the mass density, (σααk, σββk, σzzk, σβzk, σαzk, σαβk) are the six stress components and ük, v̈k

and ẅk indicate the second temporal derivative of the three displacement components. Each quantity
depends on the k layer. Rα and Rβ are referred to the mid-surface Ω0 of the whole multilayered
shell. Hα and Hβ continuously vary through the thickness of the multilayered shell and depend on the
thickness coordinate.

3 Geometrical and constitutive relations

The strain-displacement relations of three-dimensional theory of elasticity in orthogonal curvilinear
coordinates, as also shown in [45] and [47], are written for the generic k layer of the multilayered shell:

εααk =
1

(1 + z/Rα)

( 1
A

∂uk

∂α
+

vk

AB

∂A

∂β
+

wk

Rα

)
, (11)

εββk =
1

(1 + z/Rβ)

( uk

AB

∂B

∂α
+

1
B

∂vk

∂β
+

wk

Rβ

)
, (12)

εzzk =
∂wk

∂z
, (13)

γαβk =
A(1 + z/Rα)
B(1 + z/Rβ)

∂

∂β

[ uk

A(1 + z/Rα)

]
+

B(1 + z/Rβ)
A(1 + z/Rα)

∂

∂α

[ vk

B(1 + z/Rβ)

]
, (14)

γαzk =
1

A(1 + z/Rα)
∂wk

∂α
+ A(1 + z/Rα)

∂

∂z

[ uk

A(1 + z/Rα)

]
, (15)

γβzk =
1

B(1 + z/Rβ)
∂wk

∂β
+ B(1 + z/Rβ)

∂

∂z

[ vk

B(1 + z/Rβ)

]
, (16)

symbol ∂ indicates the partial derivatives. In this work, we will focus only to shells with constant radii
of curvature (e.g., cylindrical and spherical geometries) for which A=B=1. The geometrical relations
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in Eqs.(11)-(16) written for shells with constant radii of curvature are defined as:

εααk =
1

Hα

∂uk

∂α
+

wk

HαRα
, (17)

εββk =
1

Hβ

∂vk

∂β
+

wk

HβRβ
, (18)

εzzk =
∂wk

∂z
, (19)

γαβk =
1

Hα

∂vk

∂α
+

1
Hβ

∂uk

∂β
, (20)

γαzk =
1

Hα

∂wk

∂α
+

∂uk

∂z
− uk

HαRα
, (21)

γβzk =
1

Hβ

∂wk

∂β
+

∂vk

∂z
− vk

HβRβ
. (22)

General geometrical relations for spherical shells degenerate into geometrical relations for cylindrical
shells when Rα or Rβ is infinite (with Hα or Hβ equals one), and they degenerate into geometrical
relations for plates when both Rα and Rβ are infinite (with Hα=Hβ=1).

Three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α, β,
z) for orthotropic material in the structural reference system are given for a generic k layer of the
multilayered structure:

σααk = C11kεααk + C12kεββk + C13kεzzk + C16kγαβk , (23)
σββk = C12kεααk + C22kεββk + C23kεzzk + C26kγαβk , (24)
σzzk = C13kεααk + C23kεββk + C33kεzzk + C36kγαβk , (25)
σβzk = C44kγβzk + C45kγαzk , (26)
σαzk = C45kγβzk + C55kγαzk , (27)
σαβk = C16kεααk + C26kεββk + C36kεzzk + C66kγαβk . (28)

Geometrical relations (Eqs.(17)-(22)) are inserted in constitutive equations (Eqs.(23)-(28)) and partial
derivatives ∂

∂α , ∂
∂β and ∂

∂z are indicated with subscripts ,α, ,β and ,z. A closed form solution of differential
equations of equilibrium for shells are obtained when coefficients C16k, C26k, C36k and C45k are set to
zero (this means orthotropic angle θ equals 0◦ or 90◦):

σααk =
C11k

Hα
uk,α +

C11k

HαRα
wk +

C12k

Hβ
vk,β +

C12k

HβRβ
wk + C13kwk,z , (29)

σββk =
C12k

Hα
uk,α +

C12k

HαRα
wk +

C22k

Hβ
vk,β +

C22k

HβRβ
wk + C23kwk,z , (30)

σzzk =
C13k

Hα
uk,α +

C13k

HαRα
wk +

C23k

Hβ
vk,β +

C23k

HβRβ
wk + C33kwk,z , (31)

σβzk =
C44k

Hβ
wk,β + C44kvk,z − C44k

HβRβ
vk , (32)

σαzk =
C55k

Hα
wk,α + C55kuk,z − C55k

HαRα
uk , (33)

σαβk =
C66k

Hα
vk,α +

C66k

Hβ
uk,β . (34)
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4 Closed form of equilibrium equations

The first step is the substitution of the Eqs.(29)-(34) in Eqs.(8)-(10) to obtain a displacement form
of the equilibrium relations. The following form of differential equations of equilibrium is given for a
generic k layer:

(
− HβC55k

HαR2
α

− C55k

RαRβ

)
uk +

(C55kHβ

Rα
+

C55kHα

Rβ

)
uk,z +

(C11kHβ

Hα

)
uk,αα +

(C66kHα

Hβ

)
uk,ββ+

(
C55kHαHβ

)
uk,zz +

(
C12k + C66k

)
vk,αβ +

(C11kHβ

HαRα
+

C12k

Rβ
+

C55kHβ

HαRα
+

C55k

Rβ

)
wk,α+ (35)

(
C13kHβ + C55kHβ

)
wk,αz = ρkHαHβük ,

(
− HαC44k

HβR2
β

− C44k

RαRβ

)
vk +

(C44kHα

Rβ
+

C44kHβ

Rα

)
vk,z +

(C66kHβ

Hα

)
vk,αα +

(C22kHα

Hβ

)
vk,ββ+

(
C44kHαHβ

)
vk,zz +

(
C12k + C66k

)
uk,αβ +

(C44kHα

HβRβ
+

C44k

Rα
+

C22kHα

HβRβ
+

C12k

Rα

)
wk,β+ (36)

(
C44kHα + C23kHα

)
wk,βz = ρkHαHβ v̈k ,

( C13k

RαRβ
+

C23k

RαRβ
− C11kHβ

HαR2
α

− 2C12k

RαRβ
− C22kHα

HβR2
β

)
wk +

(
− C55kHβ

HαRα
+

C13k

Rβ
− C11kHβ

HαRα
− C12k

Rβ

)
uk,α+

(
− C44kHα

HβRβ
+

C23k

Rα
− C22kHα

HβRβ
− C12k

Rα

)
vk,β +

(C33kHβ

Rα
+

C33kHα

Rβ

)
wk,z+ (37)

(
C55kHβ + C13kHβ

)
uk,αz +

(
C44kHα + C23kHα

)
vk,βz +

(
C55k

Hβ

Hα

)
wk,αα +

(
C44k

Hα

Hβ

)
wk,ββ+

(
C33kHαHβ

)
wk,zz = ρkHαHβẅk .

Rα and Rβ refer to the reference mid-surface Ω0 of the multilayered shell. Hα and Hβ are calcu-
lated through the thickness of the multilayered shell by means of Eq.(7). Equilibrium relations in
Eqs.(35)-(37) are for spherical shell panels, they automatically degenerate into equilibrium equations
for cylindrical closed/open shell panels [32] when Rα or Rβ is infinite (with Hα or Hβ equals one) and
into equilibrium equations for plates [10] when Rα and Rβ are infinite (with Hα and Hβ equal one). In
this way, a unique and general formulation is possible for any geometry.

The closed form of Eqs.(35)-(37) is obtained for simply supported shells and plates made of isotropic
material or orthotropic material with 0◦ or 90◦ orthotropic angle (in both cases C16k = C26k = C36k =
C45k = 0). The three displacement components have the following harmonic form:

uk = Uk(z)eiωtcos(ᾱα)sin(β̄β) , (38)

vk = Vk(z)eiωtsin(ᾱα)cos(β̄β) , (39)

wk = Wk(z)eiωtsin(ᾱα)sin(β̄β) , (40)

where Uk, Vk and Wk are the displacement amplitudes in α, β and z directions, respectively. i is the
coefficient of the imaginary unit, ω = 2πf is the circular frequency where f is the frequency value, t is
the time. In coefficients ᾱ = mπ

a and β̄ = nπ
b , m and n are the half-wave numbers and a and b are the

shell dimensions in α and β directions, respectively (calculated in the mid-surface Ω0).

7



Eqs.(38)-(40) are substituted in Eqs.(35)-(37) to obtain the following system of equations:

(
− C55kHβ

HαR2
α

− C55k

RαRβ
− ᾱ2 C11kHβ

Hα
− β̄2 C66kHα

Hβ
+ ρkHαHβω2

)
Uk +

(
− ᾱβ̄C12k − ᾱβ̄C66k

)
Vk+

(
ᾱ

C11kHβ

HαRα
+ ᾱ

C12k

Rβ
+ ᾱ

C55kHβ

HαRα
+ ᾱ

C55k

Rβ

)
Wk +

(C55kHβ

Rα
+

C55kHα

Rβ

)
Uk,z +

(
ᾱC13kHβ+ (41)

ᾱC55kHβ

)
Wk,z +

(
C55kHαHβ

)
Uk,zz = 0 ,

(
− ᾱβ̄C66k − ᾱβ̄C12k

)
Uk +

(
− C44kHα

HβR2
β

− C44k

RαRβ
− ᾱ2 C66kHβ

Hα
− β̄2 C22kHα

Hβ
+ ρkHαHβω2

)
Vk+

(
β̄

C44kHα

HβRβ
+ β̄

C44k

Rα
+ β̄

C22kHα

HβRβ
+ β̄

C12k

Rα

)
Wk +

(C44kHα

Rβ
+

C44kHβ

Rα

)
Vk,z +

(
β̄C44kHα+ (42)

β̄C23kHα

)
Wk,z +

(
C44kHαHβ

)
Vk,zz = 0 ,

(
ᾱ

C55kHβ

HαRα
− ᾱ

C13k

Rβ
+ ᾱ

C11kHβ

HαRα
+ ᾱ

C12k

Rβ

)
Uk +

(
β̄

C44kHα

HβRβ
− β̄

C23k

Rα
+ β̄

C22kHα

HβRβ
+ β̄

C12k

Rα

)
Vk+

( C13k

RαRβ
+

C23k

RαRβ
− C11kHβ

HαR2
α

− 2C12k

RαRβ
− C22kHα

HβR2
β

− ᾱ2 C55kHβ

Hα
− β̄2 C44kHα

Hβ
+ ρkHαHβω2

)
Wk+ (43)

(
− ᾱC55kHβ − ᾱC13kHβ

)
Uk,z +

(
− β̄C44kHα − β̄C23kHα

)
Vk,z +

(C33kHβ

Rα
+

C33kHα

Rβ

)
Wk,z+

(
C33kHαHβ

)
Wk,zz = 0 .

The system of Eqs.(41)-(43) can be written in a compact form by introducing coefficients Ask for each
block

()
with s from 1 to 19:

A1kUk + A2kVk + A3kWk + A4kUk,z + A5kWk,z + A6kUk,zz = 0 , (44)
A7kUk + A8kVk + A9kWk + A10kVk,z + A11kWk,z + A12kVk,zz = 0 , (45)
A13kUk + A14kVk + A15kWk + A16kUk,z + A17kVk,z + A18kWk,z + A19kWk,zz = 0 . (46)

The Eqs.(44)-(46) are a system of three second order differential equations. They are written for
spherical shell panels with constant radii of curvature but they automatically degenerate into equations
for cylindrical shells and plates.

4.1 Solution for the multilayered structures

The system of second order differential equations can be reduced to a system of first order differential
equations by using the method described in [48] and [49]. A simple example to understand this reduction
is shown in [48]:

a1u
′′
1 + b1u

′
1 + c1u1 = f1 , (47)

a2u
′′
2 + b2u

′
2 + c2u2 = f2 , (48)

where u′′r indicates ur,zz and u′r indicates ur,z. f1 and f2 are the external loads that in the present free
vibration analysis are zero. The following identities can be imposed:

a1u
′
1 = a1u

′
1 , (49)

a2u
′
2 = a2u

′
2 , (50)

8



the system of Eqs.(47)-(50) can be written as:




a1 0 0 0
0 a1 0 0
0 0 a2 0
0 0 0 a2







u1

u′1
u2

u′2




′

=




0 a1 0 0
−c1 −b1 0 0
0 0 0 a2

0 0 −c2 −b2







u1

u′1
u2

u′2


 +




0
f1

0
f2


 . (51)

The methodology described in Eqs.(47)-(51) can also be applied to the system of Eqs.(44)-(46):



A6k 0 0 0 0 0
0 A12k 0 0 0 0
0 0 A19k 0 0 0
0 0 0 A6k 0 0
0 0 0 0 A12k 0
0 0 0 0 0 A19k







Uk

Vk

Wk

U ′
k

V ′
k

W ′
k




′

=




0 0 0 A6k 0 0
0 0 0 0 A12k 0
0 0 0 0 0 A19k

−A1k −A2k −A3k −A4k 0 −A5k

−A7k −A8k −A9k 0 −A10k −A11k

−A13k −A14k −A15k −A16k −A17k −A18k







Uk

Vk

Wk

U ′
k

V ′
k

W ′
k




.

(52)
Eq.(52) can be written in a compact form for a generic k layer:

Dk
∂Uk

∂z̃
= AkUk , (53)

where ∂Uk
∂z̃ = U ′

k and Uk = [Uk Vk Wk U ′
k V ′

k W ′
k]. The Eq.(53) can be written as:

DkU
′
k = AkUk , (54)

U ′
k = D−1

k Ak Uk , (55)
U ′

k = A∗
k Uk , (56)

with A∗
k = D−1

k Ak.
In the case of plate geometry coefficients A3k, A4k, A9k, A10k, A13k, A14k and A18k are zero because

the radii of curvature Rα and Rβ are infinite. The other coefficients A1k, A2k, A5k, A6k, A7k, A8k,
A11k, A12k, A15k, A16k, A17k and A19k are constant in each k layer because parametric coefficients
Hα = Hβ = 1 and they do not depend on the thickness coordinate z̃, therefore matrices Dk, Ak and
A∗

k are constant in each k layer of the plate. The solution of Eq.(56) for the plate case can be written
as [49], [50]:

Uk(z̃k) = exp(A∗
kz̃k)Uk(0) with z̃k ε [0, hk] , (57)

where z̃k is the thickness coordinate of each layer from 0 at the bottom to hk at the top (see Fig. 2).
The exponential matrix for the plate case (constant coefficients Ask) is calculated with z̃k = hk for each
k layer as:

A∗∗
k = exp(A∗

khk) = I + A∗
k hk +

A∗2
k

2!
h2

k +
A∗3

k

3!
h3

k + . . . +
A∗N

k

N !
hN

k , (58)

where I is the 6× 6 identity matrix. This expansion has a fast convergence as indicated in [51] and it
is not time consuming from the computational point of view, N = 15 gives the exact solution for each
possible one-layered plate case [1]. In the case of NL layers for shell geometry A∗

k is not constant in each
k layer because of Hα(z̃) and Hβ(z̃). First of all, NL − 1 transfer matrices T k−1,k must be calculated
by using for each interface the following conditions for interlaminar continuity of displacements and
transverse shear/normal stresses:

ub
k = ut

k−1 , vb
k = vt

k−1 , wb
k = wt

k−1 , (59)

σb
zzk = σt

zzk−1 , σb
αzk = σt

αzk−1 , σb
βzk = σt

βzk−1 , (60)
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that means each displacement and transverse stress component at the top (t) of the k-1 layer is equal
to displacement and transverse stress components at the bottom (b) of the k layer.
The continuity of transverse shear stress σαz is given as:

C55k−1

Ht
αk−1

ᾱW t
k−1 + C55k−1U

′t
k−1 −

C55k−1

Ht
αk−1Rα

U t
k−1 =

C55k

Hb
αk

ᾱW b
k + C55kU

′b
k − C55k

Hb
αkRα

U b
k , (61)

U
′b
k =

1
C55k

(C55k−1

Ht
αk−1

ᾱ− C55k

Hb
αk

ᾱ
)
W t

k−1 +
1

C55k

(
− C55k−1

Ht
αk−1Rα

+
C55k

Hb
αkRα

)
U t

k−1 +
(C55k−1

C55k

)
U
′t
k−1 . (62)

The continuity of transverse shear stress σβz is given as:

C44k−1

Ht
βk−1

β̄W t
k−1 + C44k−1V

′t
k−1 −

C44k−1

Ht
βk−1Rβ

V t
k−1 =

C44k

Hb
βk

β̄W b
k + C44kV

′b
k − C44k

Hb
βkRβ

V b
k , (63)

V
′b
k =

1
C44k

(C44k−1

Ht
βk−1

β̄ − C44k

Hb
βk

β̄
)
W t

k−1 +
1

C44k

(
− C44k−1

Ht
βk−1Rβ

+
C44k

Hb
βkRβ

)
V t

k−1 +
(C44k−1

C44k

)
V
′t
k−1 . (64)

The continuity of transverse normal stress σzz is given as:

− C13k−1

Ht
αk−1

ᾱU t
k−1 +

C13k−1

Ht
αk−1Rα

W t
k−1 −

C23k−1

Ht
βk−1

β̄V t
k−1 +

C23k−1

Ht
βk−1Rβ

W t
k−1 + C33k−1W

′t
k−1 = (65)

− C13k

Hb
αk

ᾱU b
k +

C13k

Hb
αkRα

W b
k −

C23k

Hb
βk

β̄V b
k +

C23k

Hb
βkRβ

W b
k + C33kW

′b
k ,

W
′b
k =

1
C33k

(
− C13k−1

Ht
αk−1

ᾱ +
C13k

Hb
αk

ᾱ
)
U t

k−1 +
1

C33k

(
− C23k−1

Ht
βk−1

β̄ +
C23k

Hb
βk

β̄
)
V t

k−1+ (66)

1
C33k

( C13k−1

Ht
αk−1Rα

+
C23k−1

Ht
βk−1Rβ

− C13k

Hb
αkRα

− C23k

Hb
βkRβ

)
W t

k−1 +
(C33k−1

C33k

)
W

′t
k−1 .

The continuity of displacement components is:

U b
k = U t

k−1 , V b
k = V t

k−1 , W b
k = W t

k−1 . (67)

In Eqs.(61)-(67), t and b indicate top and bottom of k− 1 layer and k layer, respectively. ᾱ, β̄, Rα and
Rβ refer to mid-surface Ω0 of the structure. Hα and Hβ are calculated at the interfaces between k − 1
layer and k layer. The Eqs.(61)-(67) can be grouped in a system:




U
V
W
U ′

V ′

W ′




b

k

=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
T1 0 T2 T3 0 0
0 T4 T5 0 T6 0
T7 T8 T9 0 0 T10




k−1,k




U
V
W
U ′

V ′

W ′




t

k−1

, (68)

Eq.(68) in compact form is:
U b

k = T k−1,kU
t
k−1 . (69)

The calculated T k−1,k matrices allow to link U at the bottom (b) of the k layer with U at the top (t)
of the k − 1 layer. Eq.(69) can also be written as:

Uk(0) = T k−1,k Uk−1(hk−1) , (70)
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where Uk is calculated for z̃k = 0 and Uk−1 is calculated for z̃k−1 = hk−1. U at the top of the k layer
is linked with U at the bottom of the same k layer by means of the exponential matrix A∗∗

k :

Uk(hk) = A∗∗
k Uk(0) , (71)

Eq.(70) can recursively be introduced in Eq.(71) for the NL − 1 interfaces to obtain:

UNL
(hNL

) = A∗∗
NL

T NL−1,NL
A∗∗

NL−1 T NL−2,NL−1 . . . . . .A∗∗
2 T 1,2 A∗∗

1 U1(0) , (72)

the definition of the matrix Hm for the multilayered plate allows Eq.(72) to be written as:

UNL
(hNL

) = Hm U1(0) , (73)

that links U calculated at the top of the last NL layer with U calculated at the bottom of the first
layer. In the case of multilayered plates matrices Dk, Ak and A∗

k are constant in each k layer because
Rα and Rβ are infinite and Hα and Hβ equal 1. In the case of shell geometry matrices Dk, Ak and
A∗

k are not constant in each layer because of parametric coefficients Hα and Hβ that depend on z̃
coordinate (see Fig. 2). A first method could be the use of hypothesis z

Rα
= z

Rβ
= 0 (it is valid only for

very thin shells) that means Hα = Hβ = 1. In this case the solution is the same already seen for the
plate because matrices Dk, Ak and A∗

k are constant in each k layer. This method is not used in this
paper because it is an approximation that is valid only for very thin shells, and it does not consider
the exact geometry of the structure. The second method (used in this paper) is the introduction of
several j fictitious layers in each k layer where Hα and Hβ can exactly be calculated. Matrices A∗∗

j are
constant in the j layer because they are evaluated with Rα, Rβ, ᾱ and β̄ calculated in the mid-surface
Ω0 of the whole shell, and with Hα and Hβ calculated in the middle of each j layer. Matrices T j−1,j

are also constant because they are evaluated with Rα, Rβ, ᾱ and β̄ calculated in the mid-surface Ω0

of the shell, and with Hα and Hβ calculated at each fictitious interface. In the present paper each k
layer of the multilayered shell is divided in j=M=10 fictitious layers where we can recursively apply the
Eqs.(61)-(72) with index q in place of index k. The thickness of each layer is hq. The index q considers
all the fictitious and physical layers and it goes from 1 to P . M = 15 for each skin layer and M = 70 for
each core layer with N = 3 for the exponential matrix in Eq.(58) guarantee the exact convergence for
each shell investigated. The total number of mathematical layers for a multilayered shell is P = 100.

The structures are simply supported and free stresses at the top and at the bottom of the whole
multilayered shell, this feature means:

σzz = σαz = σβz = 0 for z = −h/2,+h/2 or z̃ = 0, h , (74)
w = v = 0, σαα = 0 for α = 0, a , (75)
w = u = 0, σββ = 0 for β = 0, b , (76)

Transverse shear/normal stresses written for a generic value of z̃ in the q layer are:

σzzq(z̃) =
C13q

Hα(z̃)
uq,α +

C13q

Hα(z̃)Rα
wq +

C23q

Hβ(z̃)
vq,β +

C23q

Hβ(z̃)Rβ
wq + C33qwq,z = −ᾱ

C13q

Hα(z̃)
Uq+

C13q

Hα(z̃)Rα
Wq − β̄

C23q

Hβ(z̃)
Vq +

C23q

Hβ(z̃)Rβ
Wq + C33qWq,z , (77)

σβzq(z̃) =
C44q

Hβ(z̃)
wq,β + C44qvq,z − C44q

Hβ(z̃)Rβ
vq = β̄

C44q

Hβ(z̃)
Wq + C44qVq,z − C44q

Hβ(z̃)Rβ
Vq , (78)

σαzq(z̃) =
C55q

Hα(z̃)
wq,α + C55quq,z − C55q

Hα(z̃)Rα
uq = ᾱ

C55q

Hα(z̃)
Wq + C55qUq,z − C55q

Hα(z̃)Rα
Uq , (79)
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Eq.(74) imposed at the the top (t) of the last P layer uses Eqs.(77)-(79) with Rα, Rβ, ᾱ and β̄ calculated
in the mid-surface Ω0 of the shell, and with Ht

α and Ht
β calculated at top of the whole shell for z̃ = h:

σt
zzP = −ᾱ

C13P

Ht
α

U t
P +

C13P

Ht
αRα

W t
P − β̄

C23P

Ht
β

V t
P +

C23P

Ht
βRβ

W t
P + C33P W t

P,z = 0 , (80)

σt
βzP = β̄

C44P

Ht
β

W t
P + C44P V t

P,z −
C44P

Ht
βRβ

V t
P = 0 , (81)

σt
αzP = ᾱ

C55P

Ht
α

W t
P + C55P U t

P,z −
C55P

Ht
αRα

U t
P = 0 , (82)

Eq.(74) imposed at the the bottom (b) of the first layer (q = 1) uses Eqs.(77)-(79) with Rα, Rβ, ᾱ and
β̄ calculated in the mid-surface Ω0 of the shell, and with Hb

α and Hb
β calculated at bottom of the whole

shell for z̃ = 0:

σb
zz1 = −ᾱ

C131

Hb
α

U b
1 +

C131

Hb
αRα

W b
1 − β̄

C231

Hb
β

V b
1 +

C231

Hb
βRβ

W b
1 + C331W

b
1,z = 0 , (83)

σb
βz1 = β̄

C441

Hb
β

W b
1 + C441V

b
1,z −

C441

Hb
βRβ

V b
1 = 0 , (84)

σb
αz1 = ᾱ

C551

Hb
α

W b
1 + C551U

b
1,z −

C551

Hb
αRα

U b
1 = 0 . (85)

Eqs.(80)-(82) in matrix form are (UP (hP ) means U calculated at the top of the whole multilayered
shell, last P layer with z̃P = hP ):




−ᾱC13P
Ht

α
−β̄ C23P

Ht
β

( C13P
Ht

αRα
+ C23P

Ht
βRβ

) 0 0 C33P

0 − C44P

Ht
βRβ

β̄ C44P

Ht
β

0 C44P 0

− C55P
Ht

αRα
0 ᾱC55P

Ht
α

C55P 0 0







UP (hP )
VP (hP )
WP (hP )
U ′

P (hP )
V ′

P (hP )
W ′

P (hP )




=




0
0
0


 . (86)

Eqs.(83)-(85) in matrix form are (U1(0) means U calculated at the bottom of the whole multilayered
shell, first layer 1 with z̃1 = 0):




−ᾱC131

Hb
α

−β̄ C231

Hb
β

( C131

Hb
αRα

+ C231

Hb
βRβ

) 0 0 C331

0 − C441

Hb
βRβ

β̄ C441

Hb
β

0 C441 0

− C551

Hb
αRα

0 ᾱC551

Hb
α

C551 0 0







U1(0)
V1(0)
W1(0)
U ′

1(0)
V ′

1(0)
W ′

1(0)




=




0
0
0


 . (87)

Eqs.(86) and (87) in compact form to express the free stress state at the top and bottom of the whole
shell are:

BP (hP ) UP (hP ) = 0 , (88)
B1(0) U1(0) = 0 , (89)

Eq.(73) can be substituted in Eq.(88) considering a total number of layers equals P :

BP (hP ) Hm U1(0) = 0 , (90)
B1(0) U1(0) = 0 , (91)
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in this way Eqs.(90) and (91) are grouped in the following system:
[

BP (hP ) Hm

B1(0)

] [
U1(0)

]
=

[
0

]
, (92)

and introducing the (6× 6) E matrix, the Eq.(92) is:
[

E
] [

U1(0)
]

=
[

0
]

. (93)

The Eq.(93) is also valid for plate case where the fictitious layers are not introduced and BNL
(hNL

) =
BP (hP ). Matrix E has always (6 × 6) dimension, independently from number of layers P , even if
the method uses a layer-wise approach. The solution is implemented in a Matlab code where only the
spherical shell method is considered, it automatically degenerates into cylindrical open/closed shell and
plate methods.

The free vibration analysis means to find the non-trivial solution of U1(0) in Eq.(93), this means to
impose the determinant of matrix E equals zero:

det[E] = 0 , (94)

Eq.(94) means to find the roots of an higher order polynomial in λ = ω2. For each pair of half-wave
numbers (m,n) a certain number of circular frequencies are obtained depending on the order N chosen
for each exponential matrix A∗∗

q .

4.2 Vibration modes

A certain number of circular frequencies ωl are found when half-wave numbers m and n are imposed in
the structures. For each frequency ωl, it is possible to find the vibration mode through the thickness
in terms of the three displacement components. If the frequency ωl is substituted in (6×6) matrix E,
this last matrix has six eigenvalues. We are interested to the null space of matrix E that means to find
the (6× 1) eigenvector related to the minimum of the six eigenvalues proposed. This null space is, for
the chosen frequency ωl, the vector U calculated at the bottom of the whole structure:

U1ωl
(0) =

[
U1(0) V1(0) W1(0) U ′

1(0) V ′
1(0) W ′

1(0)
]T

ωl
, (95)

T means the transpose of the vector and the subscript ωl means that the null space is calculated for
the circular frequency ωl.

It is possible to find U qωl
(z̃q) (with the three displacement components Uqωl

(z̃q), Vqωl
(z̃q) and

Wqωl
(z̃q) through the thickness) for each q layer of the multilayered structure by using Eqs.(70)-(73)

with the index q from 1 to P . The thickness coordinate z̃ can assume all the values from the bottom
to the top of the structure. For the plate case the procedure is simpler because there are not the j
fictitious layers and the index q coincides with the index k of the physical layers (in this case, total
number of layers is NL).

5 Results

The present three-dimensional exact solution proposed for the free vibration analysis of multilayered
plates and shells has been validated by means of a comparison with assessments given in the literature.
These assessments are the free vibration analysis of multilayered composite square plates proposed in
[10], and cylindrical and spherical shell panel free vibration analysis shown in [29]. After this preliminary
validation the method can be used with confidence to investigate the free vibrations of multilayered
sandwich square and rectangular plates, cylindrical shell panels, cylinders and spherical shell panels
(see Fig. 3). In the assessments and benchmarks proposed the 3D solution is always obtained with a
total number M=100 of mathematical layers and an expansion order N=3 for the exponential matrix.
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5.1 Validation of the method

The assessment proposed by Messina [10] considers a simply supported square plate (a=b=10) with
thickness ratio a/h=10. The plate is multilayered and each composite layer has Young modulus com-
ponents E1 = 25.1 × 106psi, E2 = 4.8 × 106psi and E3 = 0.75 × 106psi, shear modulus components
G12 = 1.36×106psi, G13 = 1.2×106psi and G23 = 0.47×106psi, Poisson ratio components ν12 = 0.036,
ν13 = 0.25 and ν23 = 0.171. The mass density is ρ = 0.054191 lb/in3. The first three vibration modes
are given in Table 1 in terms of no-dimensional circular frequency ω̄ = ωh

√
ρ/E2 for half-wave num-

bers (m,n) equal (1,1), (1,2), (2,1) and (2,2). Two-layered, three-layered and four-layered composite
plates are investigated with lamination sequence (0◦/90◦), (0◦/90◦/0◦) and (0◦/90◦/0◦/90◦), respec-
tively (each layer has the same thickness). The present three-dimensional solution coincides with that
given by Messina [10] for each half-wave number imposed, lamination sequence and mode considered.
This validation is fundamental because the present three-dimensional solution extended to general or-
thogonal curvilinear coordinates uses a methodology similar to the one applied by Messina [10] to plates
with orthogonal rectilinear coordinates.

The assessment proposed in Table 2 considers a simply supported cylindrical shell panel with radius
of curvature Rα = 10 and thickness h = 0.5. The radius of curvature in β direction is infinite and
the shell has dimensions a = b = 5. The structure is multilayered (it embeds NL layers) and each
layer has the same thickness. The lamination sequence is (0◦/90◦/0◦/90◦/ . . .). Table 2 gives the first
three modes for imposed half-wave numbers (1,1) and the first mode for the other imposed half-wave
numbers (m,n). The results are given as no-dimensional circular frequency ω̄ = ωRβ

√
ρ/E0 for number

of layers NL equals 2, 4 and 10. Each composite layer has Young modulus components E1 = 25E0

and E2 = E3 = E0, shear modulus components G12 = G13 = 0.5E0 and G23 = 0.2E0, Poisson ratio
components ν12 = ν13 = ν23 = 0.25. The mass density is ρ = 1500kg/m3. The three-dimensional
solution proposed by Huang [29] is coincident with the present three-dimensional analysis for each half-
wave number imposed, number of layers (NL) and mode considered. The two solutions give the same
results even if the two methods use different approaches.

The assessment proposed in Table 3 considers a simply supported spherical shell panel with radii
of curvature Rα = Rβ = 10, thickness h = 0.2 and dimensions a = b = 2. The structure is mul-
tilayered (it embeds NL layers) and each layer has the same thickness. The lamination sequence is
(0◦/90◦/0◦/90◦/ . . .). Table 3 gives the first fundamental mode for different half-wave numbers (m,n)
imposed. The results are given as circular frequencies with the same no-dimensional form already seen
for the assessment of Table 2. The spherical shell panel embeds the same composite material of the
cylindrical shell panel. The three-dimensional solution proposed by Huang [29] is coincident with the
present three-dimensional analysis for each pair of half-wave numbers (m,n) imposed and number of
layers (NL) considered.

After these three preliminary assessments, the present three-dimensional solution can be considered
as validated for the free vibration analysis of multilayered plates and shells.

5.2 Benchmarks

Five different geometries are analyzed as shown in Fig. 3. The square plate has dimensions a = b = 1
and thickness ratios a/h = 100, 50, 10, 5. The rectangular plate has dimensions a = 1 and b = 3a
and the thickness ratios are a/h = 100, 50, 10, 5. The cylindrical shell panel has a radius of curvature
Rα = 10 and an infinite radius of curvature Rβ in β direction. The dimensions are a = π

3 Rα and b = 20,
and the thickness ratios are Rα/h = 1000, 100, 10, 5. The cylinder has the same radii of curvature of
the cylindrical shell panel, but it is closed in circumferential direction that means a = 2πRα. The other
dimension is b = 100 and the thickness ratios are Rα/h = 1000, 100, 10, 5. The last geometry is the
spherical shell panel with radii of curvature Rα = Rβ = 10, dimensions a = b = π

3 Rα, and thickness
ratios Rα/h = 1000, 100, 10, 5. All these structures are simply supported. Each geometry includes two
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different sandwich configurations. The sandwich structure with isotropic skins has a foam core in PVC
with thickness hc = 0.7h (where hc is the thickness of the core and h is the total thickness) and two
external skins in isotropic aluminium alloy Al2024 with thickness hs = 0.15h (where hs indicates the
thickness of each skin). The sandwich structure with multilayered composite faces has a foam core in
PVC with thickness hc = 0.7h, each external skin is made of two composite layers with lamination
sequence (0◦/90◦) and thickness hl = 0.075h (where hl is the thickness of each composite layer that
means hs = 0.15h for each skin). Further details about the two sandwich configurations are given in
Fig. 3. The PVC material used as foam core has Young modulus E = 180 MPa, Poisson ratio ν = 0.37
and mass density ρ = 50 kg/m3. The isotropic aluminium alloy Al2024 used as skins has Young
modulus E = 73GPa, Poisson ratio ν = 0.3 and mass density ρ = 2800 kg/m3. The orthotropic layers
in Gr/Ep used to build the composite skins have Young modulus components E1 = 132.38GPa and
E2 = E3 = 10.756GPa, shear modulus components G12 = G13 = 5.6537GPa and G23 = 3.603GPa,
Poisson ratio components ν12 = ν13 = 0.24 and ν23 = 0.49, the mass density is ρ = 1600 kg/m3.
Ten different benchmarks are proposed to show a complete overview of the free vibration analysis of
multilayered composite and sandwich plates and shells: sandwich square plate with isotropic faces
(see Table 4), sandwich square plate with composite faces (see Table 5), sandwich rectangular plate
with isotropic faces (see Table 6), sandwich rectangular plate with composite faces (see Table 7),
sandwich cylindrical shell panel with isotropic faces (see Table 8), sandwich cylindrical shell panel with
composite faces (see Table 9), sandwich cylinder with isotropic faces (see Table 10), sandwich cylinder
with composite faces (see Table 11), sandwich spherical shell panel with isotropic faces (see Table 12),
sandwich spherical shell panel with composite faces (see Table 13). The first three circular frequencies
in no-dimensional form ω̄ = ω a2

h

√
ρskin

E2skin
are calculated in Tables 4-13 for various pairs of half-wave

numbers (m,n) and several thickness ratios. The vibration modes plotted in Figs. 4-8 are given in
terms of no-dimensional values such as u∗ = u/|umax|, v∗ = v/|vmax|, w∗ = w/|wmax| and z∗ = z̃/h.
Circular frequencies plotted in Figs. 9-13 with respect to half-wave numbers (m,n) and vibration mode
order have the same no-dimensional form already seen in the Tables 4-13.

Table 4 presents thick and thin square sandwich plates with isotropic faces (Benchmark 1). The
first three vibration modes are shown for some combinations of half-wave numbers (m,n) and different
thickness ratios. The plate is square and the three layers (the core and the two external faces) are
isotropic. Therefore, circular frequencies for half-wave numbers (0,1) are equal to those for (1,0), and
the same considerations are made for the half-wave numbers (1,2) and (2,1). Fig. 9 shows (for the
case of a thick plate with isotropic faces, a/h = 10) how the first six vibration modes change with the
imposed half-wave numbers (m,n). Each vibration mode increases when the half-wave numbers increase.
The (0,1) cases are equal to the (1,0) cases, and the (1,2) cases are equal to the (2,1) cases. The lowest
frequency is obtained for the first mode in the case of (0,1) and (1,0) half-wave numbers. Higher order
modes (third, forth, fifth and sixth ones) rapidly increase when the half-wave numbers (m,n) increase.
Table 5 shows thick and thin square sandwich plates with external faces made of two composite layers
(Benchmark 2). It presents the first three vibration modes for some possible combinations of half-wave
numbers (m,n) from (0,1) until to (2,2). The core is made of an isotropic material, but the skins are
made of composite orthotropic layers with fiber orientation 0◦/90◦ at the bottom and 90◦/0◦ at the
top. For this reason, results for half-wave numbers (0,1) are not equal to those for (1,0), and the
same considerations apply to the half-wave numbers (1,2) and (2,1). This feature is due to the in-
plane orthotropy of the skins. Fig. 4 shows the first three vibration modes in terms of no-dimensional
displacements u∗, v∗ and w∗ through the no-dimensional thickness coordinate z∗ for sandwich plate
with composite skins and thickness ratio a/h = 10 and for half-wave numbers (1, 0), (1, 1), (2, 1) and
(2, 2). The first mode always has a constant through-the-thickness transverse displacement w∗, and
linear in-plane displacements u∗ and v∗ with the typical zigzag form of the sandwich structures. This
zigzag form is due to the fact that the core has completely different elastic and mass properties from
those of the skins. In the case of half-wave numbers (1,0) the in-plane displacements v∗ is zero. The
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second mode has a linear zigzag form of the transverse displacement w∗, and a non-linear zigzag form
of the in-plane displacements u∗ and v∗. In the case of half-wave numbers (1,0) the only displacement
different from zero is the constant value of v∗. Similar considerations can be made for the third mode,
but in this case the displacement v∗ has a linear zigzag form trough the thickness for the (1,0) case. The
typical zigzag form of displacements for sandwich structures due to the transverse anisotropy (layers
with different elastic and mass properties) is shown by the present three-dimensional model because it
uses a layer-wise approach for each layer embedded in the multilayered structure.

Tables 6 and 7 show the same cases already seen in Tables 4 and 5, but a rectangular plate is
analyzed in place of a square plate. In Table 6 (Benchmark 3), the frequencies for (0,1) are different
from those for (1,0) (same considerations can be made for (1,2) and (2,1) cases) even if the faces are
isotropic because the plate is rectangular with dimension b = 3a. These features are also valid for
Table 7 (Benchmark 4) where the plate is rectangular with orthotropic composite faces. Fig. 10 shows
(for the case of a thick rectangular plate with isotropic faces, a/h = 10) as the first six vibration
modes change with the imposed half-wave numbers (m,n). All the considerations already made for
Benchmark 1 in Fig. 9 are valid for Benchmark 3 in Fig. 10. Moreover, (0,1) cases are different from
(1,0) cases, and (1,2) cases are different from (2,1) cases because the plate is rectangular. The lowest
frequency is obtained for the first mode in the (0,1) case, the (1,0) case gives a higher first frequency.
Fig. 5 shows the first three vibration modes for sandwich plate with composite faces and thickness ratio
a/h = 10 and for half-wave numbers (1, 0), (1, 1), (2, 1) and (2, 2). Benchmark 4 for the rectangular
plate has vibration modes similar to those proposed in Fig. 4 for the square plate of Benchmark 2. The
zigzag form of the displacements through the thickness (linear and non-linear) is confirmed because the
sandwich structure has an important transverse anisotropy value between core and skins.

Table 8 gives the first three vibration modes of the sandwich cylindrical shell panel with isotropic
faces (Benchmark 5) for several combinations of half-wave numbers (m,n) and different thickness ratios.
The shell is isotropic but the frequencies are always different for each couple of (m,n) because of the
geometry with different a and b dimensions. Similar considerations are also valid for Benchmark 6 in
Table 9 (sandwich cylindrical shell panel with composite faces). The geometry with different a and b
dimensions and orthotropic composite faces do not give any similarity when the half-wave numbers (m,n)
change. Fig. 11 shows the first six vibration modes versus the imposed half-wave numbers (m,n) for the
case of sandwich cylindrical shell panel with isotropic faces (Benchmark 5). The particular geometry
of the cylindrical shell (dimensions a and b are different, and radius of curvature in α direction) do not
allow the lowest frequency to be identified as the first vibration mode for half-wave numbers (0,1). The
lowest frequency is obtained for the first vibration mode in the (1,0) case. All the first vibration modes
for higher values of half-wave numbers are smaller than the first vibration mode for (0,1), this feature
is due to the coupling generated by the radius of curvature Rα. Fig. 6 shows the first three vibration
modes for thickness ratio Rα/h = 10 and composite skins, half-wave numbers are (1, 0), (1, 1), (2, 1)
and (2, 2). The vibration modes have the typical zigzag form of the displacements because the shell has
a sandwich structure. These vibration modes have a different behavior with respect to the behavior of
plates given in Figs. 4 and 5. This difference is due to the curvature.

Tables 10 and 11 show frequencies for sandwich closed cylinders with isotropic faces (Benchmark 7)
and composite faces (Benchmark 8), respectively. These results do not add further considerations with
respect to those already given for the open cylindrical shell. The half-wave number m in α direction
must be zero or equal to even values because the structure is closed in this direction. Fig. 12 shows the
first six vibration modes versus the imposed half-wave numbers (m,n) for the case of sandwich closed
cylinder with isotropic faces (Benchmark 7). The particular geometry of the cylinder (dimensions a
and b have different values, and α direction is closed) makes it possible to identify the first mode for
half-wave numbers (2,1) as lowest frequency. The first mode for (0,1) is the second lowest frequency.
Important differences (in terms of vibration modes through the thickness) are shown in Fig. 7 for the
sandwich cylinder with composite faces (Benchmark 8) with respect to the open cylindrical panel in
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Fig. 6. In any case, the sandwich structure shows the typical zigzag form of the displacements that
can be linear, constant or zero.

Tables 12 and 13 investigate sandwich spherical shell panel with isotropic faces (Benchmark 9) and
orthotropic composite faces (Benchmark 10), respectively. The shell geometry considered here has the
same radii of curvature in α and β directions, and the same dimensions a and b. For this reason the
considerations made for the square plate (Tables 4 and 5) are also valid in these two last benchmarks:
frequencies for (0,1) and (1,0) are the same for the case with isotropic faces. This feature remains valid
for half-wave numbers (1,2) and (2,1). In the cases of composite faces (Benchmark 10) the frequencies
for (0,1) should be different from those for (1,0), and the frequencies for (1,2) should be different from
those for (2,1). In Table 13 these differences are clear for thick shells where the physical quantity
of orthotropic composite material is bigger. Fig. 13 shows (for the case of thick sandwich panel
with isotropic faces, Rα/h = 10) as the first six vibration modes change with the imposed half-wave
numbers (m,n). Each vibration mode increases when the half-wave numbers increase, the (0,1) cases
are equal to the (1,0) cases, and the (1,2) cases are equal to the (2,1) cases. The lowest frequency is
obtained for the first mode in the (0,1) and (1,0) cases. Higher order modes (third, forth, fifth and sixth
ones) rapidly increase when the half-wave numbers (m,n) increase. In any case, the radii of curvature
have a fundamental role in the vibration mode analysis shown in Fig. 8 for the case of sandwich
configuration with orthotropic composite faces. These vibration modes are rather complicated because
of the coupling generated by the radii of curvature. The displacements have the typical zigzag form
caused by the difference between core and skins in terms of elastic and mass properties.

6 Conclusions

The general three-dimensional formulation proposed uses an exact geometry for shells and a layer-wise
approach for the multilayered structures. This method allows results for spherical, open cylindrical,
closed cylindrical and flat panels to be obtained. The differential equations of equilibrium in orthogonal
curvilinear coordinates for the free vibrations of simply supported multilayered composite and sandwich
plates and shells have been exactly solved in three-dimensional form. The first three vibration modes
have been investigated for several geometries, sandwich configurations with isotropic or composite faces,
various thickness ratios and half-wave numbers imposed. The vibration modes through the thickness
make it possible to recognize the most complicated cases and these results will be useful benchmarks to
validate future refined 2D models for the analysis of multilayered structures. The layer-wise approach
proposed is obtained by imposing the continuity of displacements and transverse shear/normal stresses
at the interfaces between the layers of the plates and shells. This approach allows zigzag form of
displacements to be shown. This form is typical of multilayered structures with high values of transverse
anisotropy. This exact solution gives a global three-dimensional overview of the free vibration problem
of multilayered plates and shells.
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Mode I II III
0◦/90◦

3D[10] 0.060274 0.52994 0.58275 (1,1)
Present 3D 0.060274 0.52994 0.58275 (1,1)
3D[10] 0.14539 0.62352 0.95652 (1,2)
Present 3D 0.14538 0.62352 0.95652 (1,2)
3D[10] 0.14539 0.62352 0.95652 (2,1)
Present 3D 0.14538 0.62352 0.95652 (2,1)
3D[10] 0.20229 0.95796 1.0300 (2,2)
Present 3D 0.20229 0.95796 1.0300 (2,2)

0◦/90◦/0◦

3D[10] 0.067147 0.50349 0.63775 (1,1)
Present 3D 0.067147 0.50349 0.63775 (1,1)
3D[10] 0.12811 0.6888 0.95017 (1,2)
Present 3D 0.12811 0.6888 0.95017 (1,2)
3D[10] 0.17217 0.58366 1.1780 (2,1)
Present 3D 0.17217 0.58366 1.1780 (2,1)
3D[10] 0.20798 0.97517 1.2034 (2,2)
Present 3D 0.20798 0.97517 1.2034 (2,2)

0◦/90◦/0◦/90◦

3D[10] 0.066210 0.54596 0.59996 (1,1)
Present 3D 0.066210 0.54596 0.59995 (1,1)
3D[10] 0.15194 0.63875 1.0761 (1,2)
Present 3D 0.15194 0.63875 1.0761 (1,2)
3D[10] 0.15194 0.63875 1.0761 (2,1)
Present 3D 0.15194 0.63875 1.0761 (2,1)
3D[10] 0.20841 1.0623 1.1557 (2,2)
Present 3D 0.20841 1.0623 1.1557 (2,2)

Table 1: Assessment 1. Simply supported multilayered composite square plate. First three exact
natural circular frequencies in no-dimensional form ω̄ = ωh

√
ρ

E2
for various half-wave numbers (m,n)

imposed. Comparison between present three-dimensional analysis and three-dimensional analysis by
Messina [10] for thickness ratio a/h=10.
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NL = 2 NL = 4 NL = 10
m,n mode 3D[29] Present 3D 3D[29] Present 3D 3D[29] Present 3D
1,1 I 1.8971 1.8971 2.3415 2.3415 2.4930 2.4930
1,1 II 18.813 18.813 21.545 21.545 22.387 22.387
1,1 III 20.169 20.169 22.902 22.902 23.694 23.694
1,2 I 4.4492 4.4492 4.9620 4.9620 5.3017 5.3017
1,3 I 7.8195 7.8195 8.0752 8.0753 8.5254 8.5253
2,1 I 4.3485 4.3485 4.8493 4.8493 5.1853 5.1853
2,2 I 6.0384 6.0384 6.5486 6.5486 6.9739 6.9739
2,3 I 8.8895 8.8895 9.1438 9.1438 9.6347 9.6346
3,1 I 7.7503 7.7503 7.9573 7.9573 8.3952 8.3950
3,2 I 8.9012 8.9012 9.1290 9.1290 9.6122 9.6120
3,3 I 11.103 11.103 11.164 11.164 11.686 11.686

Table 2: Assessment 2. Simply supported multilayered composite cylindrical shell panel. Modes
versus half-wave numbers (m,n) for several layers (NL) and lamination sequence (0◦/90◦/0◦/90◦/ . . .).
Comparison between present three-dimensional analysis and three-dimensional analysis by Huang [29]
in term of no-dimensional circular frequencies ω̄ = ωRα

√
ρ

E0
for thickness ratio Rα/h = 20.

NL = 2 NL = 4 NL = 10
m,n mode 3D[29] Present 3D 3D[29] Present 3D 3D[29] Present 3D
1,1 I 4.6238 4.6240 5.8070 5.8070 6.2293 6.2293
1,2 I 10.753 10.753 12.134 12.134 13.050 13.050
1,3 I 19.130 19.130 19.846 19.845 21.042 21.042
2,1 I 10.864 10.864 12.188 12.188 13.076 13.076
2,2 I 14.909 14.909 16.298 16.298 17.432 17.432
2,3 I 21.961 21.961 22.719 22.719 24.027 24.027
3,1 I 19.315 19.315 19.932 19.931 21.082 21.081
3,2 I 22.053 22.053 22.757 22.757 24.045 24.045
3,3 I 27.483 27.483 27.790 27.790 29.189 29.189

Table 3: Assessment 3. Simply supported multilayered composite spherical shell panel. Modes versus
half-wave numbers (m,n) for several layers (NL) and lamination sequence (0◦/90◦/0◦/90◦/ . . .). Com-
parison between present three-dimensional analysis and three-dimensional analysis by Huang [29] in
term of no-dimensional circular frequencies ω̄ = ωRα

√
ρ

E0
for thickness ratio Rα/h = 50.
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a/h 100 50 10 5
(m = 0, n = 1)

I mode 4.2035 3.8748 1.6497 0.9451
II mode 191.42 95.707 19.133 6.9370
III mode 323.64 161.80 23.325 9.5516

(m = 1, n = 0)
I mode 4.2035 3.8748 1.6497 0.9451
II mode 191.42 95.707 19.133 6.9370
III mode 323.64 161.80 23.325 9.5516

(m = 1, n = 1)
I mode 8.1693 7.0764 2.4879 1.4786
II mode 270.70 135.35 27.045 6.8059
III mode 457.67 228.77 28.081 13.473

(m = 1, n = 2)
I mode 18.908 14.477 4.3479 2.8767
II mode 428.01 213.99 27.596 6.7271
III mode 723.55 361.48 42.691 20.972

(m = 2, n = 1)
I mode 18.908 14.477 4.3479 2.8767
II mode 428.01 213.99 27.596 6.7271
III mode 723.55 361.48 42.691 20.972

(m = 2, n = 2)
I mode 28.306 20.121 5.9146 4.1973
II mode 541.39 270.67 27.223 7.0358
III mode 915.10 425.01 53.891 25.225

Table 4: Benchmark 1. Simply supported sandwich square plate with isotropic skins. First three
vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin
Eskin

for several combinations
of half-wave numbers m and n.
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a/h 100 50 10 5
(m = 0, n = 1)

I mode 9.4566 8.7778 3.8148 2.1100
II mode 222.85 111.42 22.282 11.136
III mode 786.78 393.31 40.545 14.091

(m = 1, n = 0)
I mode 10.978 10.186 4.4056 2.4091
II mode 222.85 111.42 22.282 11.136
III mode 786.77 393.28 40.555 14.092

(m = 1, n = 1)
I mode 15.754 14.440 5.9275 3.2639
II mode 771.58 385.73 71.631 17.398
III mode 861.39 430.56 76.817 37.351

(m = 1, n = 2)
I mode 38.540 31.191 9.6637 5.5954
II mode 897.28 448.53 70.874 16.773
III mode 1592.9 795.70 89.723 43.039

(m = 2, n = 1)
I mode 43.343 34.853 10.471 5.9335
II mode 897.30 448.57 70.630 16.538
III mode 1592.7 795.38 89.454 43.079

(m = 2, n = 2)
I mode 57.761 45.175 13.056 7.6556
II mode 1542.9 771.00 69.593 16.392
III mode 1722.2 859.78 149.40 52.297

Table 5: Benchmark 2. Simply supported sandwich square plate with composite skins. First three
vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin

E2skin
for several combinations

of half-wave numbers m and n.
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a/h 100 50 10 5
(m = 0, n = 1)

I mode 0.4798 0.4749 0.3700 0.2499
II mode 63.806 31.903 6.3803 3.1896
III mode 107.88 53.941 10.783 4.5804

(m = 1, n = 0)
I mode 4.2035 3.8748 1.6497 0.9451
II mode 191.42 95.707 19.133 6.9370
III mode 323.64 161.80 23.325 9.5516

(m = 1, n = 1)
I mode 4.6553 4.2583 1.7567 1.0092
II mode 201.77 100.88 20.167 6.9197
III mode 341.14 170.55 24.201 10.066

(m = 1, n = 2)
I mode 5.9935 5.3640 2.0524 1.1925
II mode 230.05 115.02 22.990 6.8719
III mode 388.96 194.44 26.659 11.467

(m = 2, n = 1)
I mode 15.886 12.529 3.8450 2.4756
II mode 388.11 194.04 27.731 6.7050
III mode 656.12 327.85 38.731 19.141

(m = 2, n = 2)
I mode 17.033 13.278 4.0367 2.6268
II mode 403.53 201.75 27.679 6.7091
III mode 682.19 340.85 40.263 19.859

Table 6: Benchmark 3. Simply supported sandwich rectangular plate with isotropic skins. First three
vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin
Eskin

for several combinations
of half-wave numbers m and n.
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a/h 100 50 10 5
(m = 0, n = 1)

I mode 1.0767 1.0667 0.8467 0.5788
II mode 74.284 37.142 7.4283 3.7140
III mode 262.28 131.13 26.207 9.2196

(m = 1, n = 0)
I mode 10.978 10.186 4.4056 2.4091
II mode 222.85 111.42 22.282 11.136
III mode 786.77 393.28 40.555 14.092

(m = 1, n = 1)
I mode 11.231 10.421 4.5385 2.4968
II mode 342.45 171.22 34.219 19.965
III mode 791.01 395.40 48.469 17.876

(m = 1, n = 2)
I mode 12.500 11.596 5.0608 2.7888
II mode 563.40 281.68 56.150 17.593
III mode 805.27 402.52 66.581 27.916

(m = 2, n = 1)
I mode 40.944 32.851 9.7156 5.4768
II mode 516.10 258.04 51.546 16.689
III mode 1575.2 786.66 62.312 25.699

(m = 2, n = 2)
I mode 41.684 33.470 9.9872 5.6419
II mode 684.88 342.41 67.861 16.625
III mode 1581.6 789.84 71.505 33.814

Table 7: Benchmark 4. Simply supported sandwich rectangular plate with composite skins. First three
vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin

E2skin
for several combinations

of half-wave numbers m and n.
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Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 1048.5 104.85 10.495 5.2469
II mode 1049.6 104.96 10.513 5.2612
III mode 1823.8 182.38 17.822 6.4256

(m = 1, n = 0)
I mode 3.4655 3.5522 1.4329 0.8259
II mode 2004.5 200.45 19.922 7.2736
III mode 3572.6 357.23 24.975 9.5143

(m = 1, n = 1)
I mode 218.88 22.345 2.7559 1.4630
II mode 2323.0 232.30 23.080 7.2572
III mode 3948.2 394.78 26.028 11.201

(m = 1, n = 2)
I mode 543.31 54.875 5.9407 3.0639
II mode 2978.4 297.84 28.837 7.7248
III mode 4961.8 496.13 29.800 14.505

(m = 2, n = 1)
I mode 70.375 17.298 3.9690 2.5498
II mode 4156.6 415.66 30.015 7.2912
III mode 7089.8 708.82 40.829 19.404

(m = 2, n = 2)
I mode 229.38 29.488 4.9357 3.1081
II mode 4557.8 455.78 29.953 7.3789
III mode 7712.0 771.00 44.892 21.465

Table 8: Benchmark 5. Simply supported sandwich cylindrical shell panel with isotropic skins. First
three vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin
Eskin

for several combi-
nations of half-wave numbers m and n.
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Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 1221.9 122.19 12.220 6.1109
II mode 2743.2 274.33 27.534 11.237
III mode 4316.5 431.64 39.076 13.803

(m = 1, n = 0)
I mode 9.4940 9.2744 3.8297 2.1105
II mode 2333.7 233.37 23.322 11.470
III mode 8685.4 868.42 43.955 15.367

(m = 1, n = 1)
I mode 338.13 35.247 5.4162 2.9011
II mode 4875.2 487.52 48.665 18.627
III mode 8781.1 877.98 61.782 24.208

(m = 1, n = 2)
I mode 723.96 73.860 9.1701 4.7742
II mode 8488.9 848.83 73.279 18.752
III mode 9419.3 941.81 84.391 40.481

(m = 2, n = 1)
I mode 143.15 42.140 9.9226 5.6055
II mode 6334.6 633.45 63.059 18.218
III mode 16759 1675.2 74.258 30.815

(m = 2, n = 2)
I mode 354.29 54.967 11.148 6.2612
II mode 9736.1 973.56 76.774 18.147
III mode 16924 1691.7 96.967 46.652

Table 9: Benchmark 6. Simply supported sandwich cylindrical shell panel with composite skins. First
three vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin

E2skin
for several combi-

nations of half-wave numbers m and n.
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Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 7556.8 755.69 75.574 37.795
II mode 12128 1212.8 121.27 60.629
III mode 40870 4087.1 409.55 135.88

(m = 2, n = 1)
I mode 2403.4 240.34 24.098 12.125
II mode 26792 2679.3 267.96 132.95
III mode 58169 5816.8 564.63 176.45

(m = 2, n = 2)
I mode 7577.9 757.81 75.989 38.143
II mode 32790 3279.0 327.93 162.44
III mode 60297 6029.5 577.50 181.27

(m = 2, n = 3)
I mode 13301 1330.1 133.43 66.873
II mode 39378 3937.8 393.70 189.93
III mode 64363 6436.2 602.43 199.82

Table 10: Benchmark 7. Simply supported sandwich cylinder with isotropic skins. First three vibration
modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin
Eskin

for several combinations of half-
wave numbers m and n.

Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 8797.8 879.79 87.986 44.004
II mode 31038 3103.8 310.42 155.25
III mode 98885 9888.8 991.38 340.44

(m = 2, n = 1)
I mode 4597.4 459.76 46.133 23.238
II mode 41954 4195.4 419.69 209.84
III mode 139995 13999 1376.7 395.64

(m = 2, n = 2)
I mode 11287 1128.7 113.47 57.169
II mode 68111 6811.1 681.10 340.25
III mode 140500 14049 1382.3 473.05

(m = 2, n = 3)
I mode 17724 1772.6 178.60 89.936
II mode 96930 9693.0 968.91 481.89
III mode 141452 14145 1392.4 500.05

Table 11: Benchmark 8. Simply supported sandwich cylinder with composite skins. First three vibra-
tion modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin

E2skin
for several combinations of

half-wave numbers m and n.
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Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 981.60 98.206 9.8978 4.9418
II mode 2004.5 200.44 19.832 8.6325
III mode 3720.6 372.02 25.094 9.4554

(m = 1, n = 0)
I mode 981.60 98.206 9.8978 4.9418
II mode 2004.5 200.44 19.832 8.6325
III mode 3720.6 372.02 25.094 9.4554

(m = 1, n = 1)
I mode 1028.2 103.05 10.522 5.2854
II mode 2834.8 283.47 27.909 8.9414
III mode 5023.6 502.27 31.006 13.256

(m = 1, n = 2)
I mode 1057.7 107.25 11.397 5.9281
II mode 4482.2 448.19 31.688 9.1047
III mode 7722.5 772.01 43.743 20.734

(m = 2, n = 1)
I mode 1057.7 107.25 11.397 5.9281
II mode 4482.2 448.19 31.688 9.1045
III mode 7722.5 772.01 43.743 20.734

(m = 2, n = 2)
I mode 1065.5 110.00 12.169 6.6340
II mode 5669.6 566.92 31.542 9.4322
III mode 9699.6 969.53 55.069 25.826

Table 12: Benchmark 9. Simply supported sandwich spherical shell panel with isotropic skins. First
three vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin
Eskin

for several combi-
nations of half-wave numbers m and n.
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Rα/h 1000 100 10 5
(m = 0, n = 1)

I mode 2333.7 233.36 23.205 11.290
II mode 2578.7 257.96 25.978 12.974
III mode 8769.8 876.85 44.188 15.622

(m = 1, n = 0)
I mode 2333.7 233.36 23.205 11.290
II mode 2578.7 258.00 26.045 12.994
III mode 8769.8 876.84 44.199 15.624

(m = 1, n = 1)
I mode 1338.4 134.45 14.290 7.2379
II mode 8080.3 807.96 72.088 19.204
III mode 9760.1 975.81 79.253 37.348

(m = 1, n = 2)
I mode 1619.3 165.77 18.611 9.6555
II mode 9618.2 961.70 75.850 19.742
III mode 16948 1694.2 95.578 44.582

(m = 2, n = 1)
I mode 1619.4 166.83 19.045 9.8596
II mode 9618.2 961.73 75.709 19.558
III mode 16948 1694.1 94.776 44.019

(m = 2, n = 2)
I mode 1419.9 152.27 19.172 10.310
II mode 16161 1615.7 76.611 19.207
III mode 18417 1840.8 154.39 56.868

Table 13: Benchmark 10. Simply supported sandwich spherical shell panel with composite skins.
First three vibration modes in term of no-dimensional circular frequency ω̄ = ω a2

h

√
ρskin

E2skin
for several

combinations of half-wave numbers m and n.
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Figure 1: Geometry, notation and reference system for shells.

Figure 2: Thickness coordinates and reference systems for plates and shells.
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Figure 3: Geometries and lamination sequences considered for the assessments and benchmarks: (a)
square plate, (b) rectangular plate, (c) cylindrical shell panel, (d) cylinder, (e) spherical shell panel.
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Figure 4: Benchmark 2, simply supported sandwich square plate with composite faces and thickness
ratio a/h=10. First three vibration modes in terms of displacement components through the thickness
for several combinations of half-wave numbers.
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Figure 5: Benchmark 4, simply supported sandwich rectangular plate with composite faces and thick-
ness ratio a/h=10. First three vibration modes in terms of displacement components through the
thickness for several combinations of half-wave numbers.
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Figure 6: Benchmark 6, simply supported sandwich cylindrical shell panel with composite faces and
thickness ratio Rα/h = 10. First three vibration modes in terms of displacement components through
the thickness for several combinations of half-wave numbers.
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Figure 7: Benchmark 8, simply supported sandwich cylinder with composite faces and thickness ratio
Rα/h = 10. First three vibration modes in terms of displacement components through the thickness
for several combinations of half-wave numbers.
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Figure 8: Benchmark 10, simply supported sandwich spherical shell panel with composite faces and
thickness ratio Rα/h = 10. First three vibration modes in terms of displacement components through
the thickness and several combinations of half-wave numbers.
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Figure 9: Benchmark 1, simply supported sandwich square plate with isotropic faces and thickness
ratio a/h=10. No-dimensional circular frequencies versus mode order and half-wave numbers.

Figure 10: Benchmark 3, simply supported sandwich rectangular plate with isotropic faces and thickness
ratio a/h=10. No-dimensional circular frequencies versus mode order and half-wave numbers.
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Figure 11: Benchmark 5, simply supported sandwich cylindrical shell panel with isotropic faces and
thickness ratio Rα/h = 10. No-dimensional circular frequencies versus mode order and half-wave
numbers.

Figure 12: Benchmark 7, simply supported sandwich cylinder with isotropic faces and thickness ratio
Rα/h = 10. No-dimensional circular frequencies versus mode order and half-wave numbers.
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Figure 13: Benchmark 9, simply supported sandwich spherical shell panel with isotropic faces and
thickness ratio Rα/h = 10. No-dimensional circular frequencies versus mode order and half-wave
numbers.
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