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Convergence analysis of the exponential matrix method

for the solution of 3D equilibrium equations for free

vibration analysis of plates and shells

Salvatore Brischetto∗

Abstract

The three-dimensional equilibrium dynamic equations written in general curvilinear orthogonal coordi-

nates allow the free vibration analysis of one-layered and multilayered plates and shells. The system

of second order differential equations is transformed into a system of first order differential equations.

Such a system is exactly solved using the exponential matrix method which is calculated by means of

an expansion with a very fast convergence ratio. In the case of plate geometries, the differential equa-

tions have constant coefficients. The differential equations have variable coefficients in the case of

shell geometries because of the curvature terms which depend on the thickness coordinate z. In shell

cases, several mathematical layers must be introduced to approximate the curvature terms and to obtain

differential equations with constant coefficients. The present work investigates the convergence of the

proposed method related to the order N used for the expansion of the exponential matrix and to the

number of mathematical layers M used for the solution of shell equations. Both N and M values are

analyzed for different geometries, thickness ratios, materials, lamination sequences, imposed half-wave

numbers, frequency orders and vibration modes.

Keywords: plates; shells; free vibrations; 3D elasticity solution; exact method; exponential matrix
method; convergence study; mathematical layers.

1 Introduction

Plates and shells are fundamental elements for the analysis of one-layered and multilayered structures
embedding homogeneous and composite layers. These two-dimensional (2D) elements need an accurate
validation to be used with confidence in several engineering applications [1], [2]. Three-dimensional
(3D) exact solutions can be used to validate and check 2D models. Moreover, 3D solutions give further
details about three-dimensional behavior and complicating effects introduced by multilayered configu-
rations, e.g., the coupling between shear and axial strains, the zigzag form of displacements through
the thickness and interlaminar continuity problems [3], [4]. In the literature, exact three-dimensional
solutions do not give a general overview of plate and shell elements because they analyze the various
geometries separately. The proposed 3D general formulation in orthogonal curvilinear coordinates for
the equations of motion is valid for multilayered square and rectangular plates, cylindrical shell panels,
spherical shell panels and cylinders. The present 3D model exactly solves the equations of motion
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Torino, corso Duca degli Abruzzi, 24, 10129 Torino, ITALY. tel: +39.011.090.6813, fax: +39.011.090.6899, e.mail: salva-
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in general curvilinear orthogonal coordinates including an exact geometry for shell structures with-
out simplifications. The method is based on a layer-wise approach which imposes the continuity of
displacements and transverse shear/normal stresses at the interfaces between layers embedded in the
multilayered plates and shells. The exponential matrix method [5]- [8] is used to solve the differential
equations which have variable coefficients in the case of shell geometries because of the curvature terms.
In this case, several mathematical layers are introduced to consider constant curvature terms in the
equilibrium equations. Details about the proposed 3D model can be found in past author’s works [9]-
[17]. Similar approaches have been used in [18] for the three-dimensional analysis of plates in rectilinear
orthogonal coordinates and in [19] for an exact, three-dimensional, free vibration analysis of angle-ply
laminated cylinders in cylindrical coordinates. The equations of motion written in orthogonal curvilin-
ear coordinates can be considered as a general form of the equations of motions written in rectilinear
orthogonal coordinates [18] and in cylindrical coordinates [19]. The present equations allow general
exact solutions for multilayered plate and shell geometries.

The revision of the literature about three-dimensional analysis of shells and plates demonstrates
that there is a variety of interesting works concerning plate or shell geometry. They include static
and dynamic analysis, functionally graded, composite and piezoelectric materials, displacement and
mixed models. However, the present 3D model constitutes a breakthrough because it gives a general
formulation for all the geometries (square and rectangular plates, cylindrical and spherical shell panels,
and cylindrical closed shells).

The most relevant works about three-dimensional shell analysis are summarized in the following
part. Chen et al. [20] analyzed the exact coupled free vibrations of a transversely isotropic cylindrical
shell embedded in an elastic medium. Fan and Zhang [21] proposed the exact solutions for static, dy-
namic and buckling analysis of thick laminated cylindrical shells using the Cayley-Hamilton theorem.
Gasemzadeh et al. [22] studied the exact three-dimensional free vibrations of cylindrical shells. The
free vibrations of simply-supported cross-ply cylindrical and doubly-curved laminates were proposed
in [23]. Sharma et al. [24] showed the three-dimensional free vibrations of a homogenous isotropic, vis-
cothermoelastic hollow sphere with surfaces subjected to stress-free, thermally insulated or isothermal
boundary conditions. A similar procedure was used for the exact three-dimensional vibration analysis
of a trans-radially isotropic, thermoelastic solid sphere [25]. Soldatos and Ye [19] proposed exact, three-
dimensional, free vibration analysis of angle-ply laminated cylinders. Armenakas et al. [26] developed
a self-contained study of plane harmonic wave propagation along a hollow circular cylinder using the
three-dimensional theory of elasticity. A thorough comparison between frequencies obtained from a
refined two-dimensional analysis, a shear deformation theory, the Flügge theory and an exact elasticity
analysis were proposed in [27]. Some details about the Flügge classical thin shell theory applied to the
free vibrations of cylindrical shells with elastic boundary conditions were given in [28]. Exact elasticity
solutions were extended to functionally graded cylindrical shells in [29]. The three-dimensional linear
elastodynamics equations were solved using suitable displacement functions that identically satisfy the
boundary conditions. Loy and Lam [30] developed a layer wise approach for the vibration of thick
circular cylindrical shells using the three-dimensional theory of elasticity. Wang et al. [31] investigated
the free vibrations of magneto-electro-elastic cylindrical panels based on the three-dimensional theory.
Further results about numerical three-dimensional analysis of shells were shown by Efraim and Eisen-
berger [32] for the dynamic stiffness matrix method, and by Kang and Leissa [33] and Liew et al. [34]
for the three-dimensional Ritz method for vibration of spherical shells.

Equilibrium equations for the three-dimensional analysis of plates are usually simpler than those for
shells and they do not allow the analysis of curved structures. Aimmanee and Batra [35] developed
an analytical solution for free vibrations of a simply supported rectangular plate made of an incom-
pressible homogeneous linear elastic isotropic material. A similar approach for in-plane modes of a
simply supported rectangular plate were proposed in [36]. A three-dimensional linear elastic, small
deformation theory obtained by the direct method was developed for the free vibration of simply sup-
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ported, homogeneous, isotropic, thick rectangular plates in [37]. A similar method was used in [38]
for the flexure of simply supported homogeneous, isotropic, thick rectangular plates under arbitrary
loadings. Comparisons between two-dimensional models and an exact three-dimensional solution for
the free vibrations of a simply supported rectangular orthotropic thick plate were shown in [39]. On the
basis of three-dimensional elasticity, Ye [40] developed a free vibration analysis of cross-ply laminated
rectangular plates with clamped boundaries. Comparisons between 2D-displacement-based-models and
the linear three-dimensional exact elasticity results were proposed in [18] for natural frequencies, dis-
placement and stress quantities of multilayered plates. Exact three-dimensional elasticity theory was
investigated in [41] for isosceles triangular plates by means of a global three-dimensional Ritz formu-
lation. The three-dimensional elastic free vibration analysis of a circular plate was analyzed in [42] by
means of the Ritz method using a set of orthogonal polynomial series for the spatial displacement ap-
proximations. High frequency vibration analyses are indispensable in a variety of engineering designs.
Zhao et al. [43] introduced a novel computational approach (the discrete singular convolution algo-
rithm) for high frequency vibration analysis of plate structures. A completely independent approach,
based on the Levy method, was employed to provide exact solutions to validated the proposed method.
Further works about the analysis of high-frequency vibrations of structures are given in [44] and [45].
Three-dimensional elasticity theory and the Ritz method was applied to derive the eigenvalue equation
in [45]. Xing and Liu [46] proposed the separation of variables to solve the Hamiltonian dual form of
eigenvalue problem for transverse free vibrations of thin plates. A formulation for the natural modes in
closed form was also performed. The extension of 3D exact analysis to functionally graded plates was
proposed in [47]- [49]. The extension of three-dimensional solutions to piezoelectric multilyered plates
was given in [50]- [55].

The proposed three-dimensional equilibrium equations are written in general orthogonal curvilinear
coordinates and they can be used for the free vibration analysis of plates, cylinders and cylindri-
cal/spherical shell panels. The solution is written in exact/close form considering simply supported
structures and harmonic form for displacement components. The system of second order partial dif-
ferential equations is reduced to a system of first order partial differential equations redoubling the
variables. Resulting differential equations are solved using the exponential matrix method. The expo-
nential matrix is developed in the thickness direction with an opportune order N. The shell equilibrium
equations have variable coefficients because of the parametric coefficients which include curvatures and
the thickness coordinate z. Such equations are simpler in the plate cases where they show constant
coefficients. In the case of a system of partial differential equations with variable coefficients (shells
case), several mathematical layers M, to approximate the curvature terms, are introduced to solve the
system. The present paper proposes a convergence analysis for the order N used in the exponential
matrix and for the number of mathematical layers M in the case of plates and shells with different
materials, thickness ratios, geometries and lamination sequences. This convergence study is also pro-
posed for several frequency orders, half-wave numbers and vibration modes. In the works where this
method was accurately described [5]- [8] or used [9]- [19], this systematic and thorough study was not
contemplated. The proposed convergence analysis for both parameters M and N should be useful to
optimise the 3D model in terms of residual error and convergence speed. In general, the expansion of
the exponential matrix is stable and has a very fast convergence. The use of mathematical layers M
needs a higher attention.
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2 Three-dimensional equilibrium equations for shells

The three differential equations of equilibrium for the free vibration analysis of multilayered spherical
shells made of NL layers with constant radii of curvature Rα and Rβ are:

Hβ
∂σk

αα

∂α
+Hα

∂σk
αβ

∂β
+HαHβ

∂σk
αz

∂z
+ (

2Hβ

Rα
+

Hα

Rβ

)σk
αz = ρkHαHβü

k , (1)

Hβ

∂σk
αβ

∂α
+Hα

∂σk
ββ

∂β
+HαHβ

∂σk
βz

∂z
+ (

2Hα

Rβ
+

Hβ

Rα
)σk

βz = ρkHαHβ v̈
k , (2)

Hβ
∂σk

αz

∂α
+Hα

∂σk
βz

∂β
+HαHβ

∂σk
zz

∂z
−

Hβ

Rα
σk
αα −

Hα

Rβ

σk
ββ + (

Hβ

Rα
+

Hα

Rβ

)σk
zz = ρkHαHβẅ

k , (3)

the most general form for variable radii of curvature can be found in [2] and [56]. ρk is the mass
density, (σk

αα, σ
k
ββ, σ

k
zz, σ

k
βz, σ

k
αz , σ

k
αβ) are the six stress components and ük, v̈k and ẅk indicate the second

temporal derivative of the three displacement components. k indicates the general layer. Symbol ∂
indicates the partial derivatives. Rα and Rβ are referred to the mid-surface Ω0 of the whole multilayered
shell (details about notations and reference system for shells are shown in Figure 1). Parametric
coefficients Hα and Hβ continuously vary through the thickness of the whole multilayered shell and
depend on the thickness coordinate:

Hα = (1 +
z

Rα
) = (1 +

z̃ − h/2

Rα
) , Hβ = (1 +

z

Rβ
) = (1 +

z̃ − h/2

Rβ
) , Hz = 1 , (4)

Hα and Hβ depend on the z or z̃ coordinate (see Figure 2 for further details about the coordinate
systems). Geometry and the reference system are indicated in Figure 1 where curvilinear orthogonal
coordinates (α, β, z) are shown. Displacement components are indicted as u, v, and w in α, β and z
directions, respectively.

The geometrical relations in orthogonal curvilinear coordinates which link strains with displacements
in the case of three-dimensional theory of elasticity were shown in [56] and [57] for the generic k layer
of the multilayered shell. In the present paper, the attention is focused to shells with constant radii of
curvature (e.g., cylindrical and spherical geometries). The geometrical relations for shells with constant
radii of curvature are:

ǫkαα =
1

Hα

∂uk

∂α
+

wk

HαRα
, (5)

ǫkββ =
1

Hβ

∂vk

∂β
+

wk

HβRβ
, (6)

ǫkzz =
∂wk

∂z
, (7)

γkβz =
1

Hβ

∂wk

∂β
+

∂vk

∂z
−

vk

HβRβ
, (8)

γkαz =
1

Hα

∂wk

∂α
+

∂uk

∂z
−

uk

HαRα
, (9)

γkαβ =
1

Hα

∂vk

∂α
+

1

Hβ

∂uk

∂β
. (10)

These general relations for spherical shells degenerate into geometrical relations for cylindrical shells
when Rα or Rβ is infinite (with Hα or Hβ equals one), and they degenerate into geometrical relations
for plates when both Rα and Rβ are infinite (with Hα=Hβ=1).
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The three-dimensional linear elastic constitutive equations in orthogonal curvilinear coordinates (α,
β, z) and in matrix form for orthotropic material in the structural reference system is here given for a
generic k layer of the multilayered structure:

σ
k = C

k
ǫ
k , (11)

the 6 × 1 vector of stress components σk = {σk
αα, σ

k
ββ , σ

k
zz, σ

k
βz, σ

k
αz , σ

k
αβ}

T is linked with the the 6 ×

1 vector of strain components ǫk = {ǫkαα, ǫ
k
ββ , ǫ

k
zz, γ

k
βz, γ

k
αz , γ

k
αβ}

T by means of the 6 × 6 matrix C
k

containing the elastic coefficients. Details about this matrix are described in [3] and [4]. A closed form
solution of differential equations of equilibrium for shells are obtained imposing coefficients Ck

16
, Ck

26
,

Ck
36

and Ck
45

equal to zero (this means orthotropic angle θ equals 0◦ or 90◦).
Geometrical equations (5)-(10) and constitutive equations (11) are included in eqs.(1)-(3) in order

to obtain a displacement form of the equilibrium relations. The differential equations of equilibrium
for a generic k layer in displacement form are:

(−
HβC

k
55

HαR2
α

−
Ck
55

RαRβ

)uk + (
Ck
55
Hβ

Rα
+

Ck
55
Hα

Rβ

)uk,z + (
Ck
11
Hβ

Hα
)uk,αα + (

Ck
66
Hα

Hβ

)uk,ββ + (Ck
55HαHβ)u

k
,zz+

(Ck
12 + Ck

66)v
k
,αβ + (

Ck
11
Hβ

HαRα
+

Ck
12

Rβ
+

Ck
55
Hβ

HαRα
+

Ck
55

Rβ
)wk

,α + (Ck
13Hβ + Ck

55Hβ)w
k
,αz = ρkHαHβü

k , (12)

(−
HαC

k
44

HβR
2

β

−
Ck
44

RαRβ

)vk + (
Ck
44
Hα

Rβ

+
Ck
44
Hβ

Rα
)vk,z + (

Ck
66
Hβ

Hα
)vk,αα + (

Ck
22
Hα

Hβ

)vk,ββ + (Ck
44HαHβ)v

k
,zz+

(Ck
12 + Ck

66)u
k
,αβ + (

Ck
44
Hα

HβRβ
+

Ck
44

Rα
+

Ck
22
Hα

HβRβ
+

Ck
12

Rα
)wk

,β + (Ck
44Hα + Ck

23Hα)w
k
,βz = ρkHαHβ v̈

k , (13)

(
Ck
13

RαRβ
+

Ck
23

RαRβ
−

Ck
11
Hβ

HαR2
α

−
2Ck

12

RαRβ
−

Ck
22
Hα

HβR
2

β

)wk + (−
Ck
55
Hβ

HαRα
+

Ck
13

Rβ
−

Ck
11
Hβ

HαRα
−

Ck
12

Rβ
)uk,α+

(−
Ck
44
Hα

HβRβ
+

Ck
23

Rα
−

Ck
22
Hα

HβRβ
−

Ck
12

Rα
)vk,β + (

Ck
33
Hβ

Rα
+

Ck
33
Hα

Rβ
)wk

,z + (Ck
55Hβ + Ck

13Hβ)u
k
,αz+ (14)

(Ck
44Hα + Ck

23Hα)v
k
,βz + (Ck

55

Hβ

Hα
)wk

,αα + (Ck
44

Hα

Hβ
)wk

,ββ + (Ck
33HαHβ)w

k
,zz = ρkHαHβẅ

k .

Hα and Hβ are calculated through the thickness of the whole multilayered shell by means of eqs.(4).
Equilibrium equations (12)-(14) are for spherical shell panels, they automatically degenerate into equi-
librium equations for cylindrical closed/open shell panels when Rα or Rβ is infinite (Hα or Hβ equals
one) and into equilibrium equations for plates when both Rα and Rβ are infinite (Hα and Hβ equal
one). This formulation allows a unique and general formulation for any geometry. Partial derivatives
∂
∂α

, ∂
∂β

and ∂
∂z

are indicated with subscripts ,α, ,β and ,z.

3 Exact solution and exponential matrix method

The closed form of eqs.(12)-(14) is developed for simply supported shells and plates. The harmonic
form of the three displacement components is:

uk(α, β, z, t) = Uk(z)eiωtcos(ᾱα)sin(β̄β) , (15)

vk(α, β, z, t) = V k(z)eiωtsin(ᾱα)cos(β̄β) , (16)

wk(α, β, z, t) = W k(z)eiωtsin(ᾱα)sin(β̄β) , (17)

Uk, Vk and Wk are the displacement amplitudes in α, β and z directions, respectively. ω=2πf is the
circular frequency where f is the frequency value, t is the time. i is the coefficient of the imaginary
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unit. In coefficients ᾱ = mπ
a

and β̄ = nπ
b
, m and n are the half-wave numbers and a and b are the shell

dimensions in α and β directions, respectively, calculated in the mid-surface Ω0.
Eqs.(15)-(17) are substituted in eqs.(12)-(14) to obtain the following system:

(−
Cj
55
Hβ

HαR2
α

−
Cj
55

RαRβ
− ᾱ2

Cj
11
Hβ

Hα
− β̄2

Cj
66
Hα

Hβ
+ ρjHαHβω

2)U j + (−ᾱβ̄Cj
12

− ᾱβ̄Cj
66
)V j+

(ᾱ
Cj
11
Hβ

HαRα
+ ᾱ

Cj
12

Rβ

+ ᾱ
Cj
55
Hβ

HαRα
+ ᾱ

Cj
55

Rβ

)W j + (
Cj
55
Hβ

Rα
+

Cj
55
Hα

Rβ

)U j
,z + (ᾱCj

13
Hβ + ᾱCj

55
Hβ)W

j
,z+ (18)

(Cj
55
HαHβ)U

j
,zz = 0 ,

(−ᾱβ̄Cj
66

− ᾱβ̄Cj
12
)U j + (−

Cj
44
Hα

HβR
2

β

−
Cj
44

RαRβ
− ᾱ2

Cj
66
Hβ

Hα
− β̄2

Cj
22
Hα

Hβ
+ ρjHαHβω

2)V j+

(β̄
Cj
44
Hα

HβRβ
+ β̄

Cj
44

Rα
+ β̄

Cj
22
Hα

HβRβ
+ β̄

Cj
12

Rα
)W j + (

Cj
44
Hα

Rβ
+

Cj
44
Hβ

Rα
)V j

,z + (β̄Cj
44
Hα + β̄Cj

23
Hα)W

j
,z+ (19)

(Cj
44
HαHβ)V

j
,zz = 0 ,

(ᾱ
Cj
55
Hβ

HαRα
− ᾱ

Cj
13

Rβ
+ ᾱ

Cj
11
Hβ

HαRα
+ ᾱ

Cj
12

Rβ
)U j + (β̄

Cj
44
Hα

HβRβ
− β̄

Cj
23

Rα
+ β̄

Cj
22
Hα

HβRβ
+ β̄

Cj
12

Rα
)V j + (

Cj
13

RαRβ
+

Cj
23

RαRβ
−

Cj
11
Hβ

HαR2
α

−
2Cj

12

RαRβ
−

Cj
22
Hα

HβR
2

β

− ᾱ2
Cj
55
Hβ

Hα
− β̄2

Cj
44
Hα

Hβ
+ ρjHαHβω

2)W j + (−ᾱCj
55
Hβ− (20)

ᾱCj
13
Hβ)U

j
,z + (−β̄Cj

44
Hα − β̄Cj

23
Hα)V

j
,z + (

Cj
33
Hβ

Rα
+

Cj
33
Hα

Rβ
)W j

,z + (Cj
33
HαHβ)W

j
,zz = 0 .

Coefficients in eqs.(18)-(20), which multiply displacements and their derivatives in z, are variable in
the case of shell geometry because parametric coefficients Hα and Hβ depend on the z coordinate (see
Figure 2). Hα=Hβ=1 in the case of plate geometry (both radii of curvature Rα and Rβ are infinite),
and eqs.(18)-(20) have constant coefficients and they can be directly solved via the exponential matrix
method. For shell geometries, several l mathematical layers are included in each k physical layer in
order to calculate Hα and Hβ. Coefficients are constant in the l layer because they are evaluated with
Rα, Rβ, ᾱ and β̄ considered in the mid-surface Ω0 of the whole shell, and with Hα and Hβ considered in
the middle of each l layer. In the present paper, each k physical layer of the multilayered structures is
divided in l mathematical layers. The total index for both mathematical and physical layers is j=k×l.
Examples of introduction of j mathematical layers in shell geometries are given in Figures 3, 4 and 5
for a one-layered shell (1 physical layer, NL=1), a three-layered shell (3 physical layers, NL=3) and a
five-layered shell (5 physical layers, NL=5), respectively, are divided in j=M=10 mathematical layers.

The system of eqs.(18)-(20) are develped in a compact form by introducing coefficients Aj
s (with s

from 1 to 19) for each block in parentheses which multiplies displacement components or their deriva-
tives:

Aj
1
U j +Aj

2
V j +Aj

3
W j +Aj

4
U j
,z +Aj

5
W j

,z +Aj
6
U j
,zz = 0 , (21)

Aj
7
U j +Aj

8
V j +Aj

9
W j +Aj

10
V j
,z +Aj

11
W j

,z +Aj
12
V j
,zz = 0 , (22)

Aj
13
U j +Aj

14
V j +Aj

15
W j +Aj

16
U j
,z +Aj

17
V j
,z +Aj

18
W j

,z +Aj
19
W j

,zz = 0 . (23)

The eqs.(21)-(23) are a system of three second order differential equations. These equations have been
developed for spherical shell panels with constant radii of curvature but they automatically degenerate
into equations for cylindrical shells and plates.

The system of second order differential equations is reduced to a system of first order differential
equations using the method described in [5] and [6] where the number of variables has been redoubled.
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Details about this methodology can be found in [10] and [11]. This method allows to write:


















Aj
6

0 0 0 0 0

0 Aj
12

0 0 0 0

0 0 Aj
19

0 0 0

0 0 0 Aj
6

0 0

0 0 0 0 Aj
12

0

0 0 0 0 0 Aj
19



































U j

V j

W j

U j ′

V j ′

W j ′

















′

=



















0 0 0 Aj
6

0 0

0 0 0 0 Aj
12

0

0 0 0 0 0 Aj
19

−Aj
1

−Aj
2

−Aj
3

−Aj
4

0 −Aj
5

−Aj
7

−Aj
8

−Aj
9

0 −Aj
10

−Aj
11

−Aj
13

−Aj
14

−Aj
15

−Aj
16

−Aj
17

−Aj
18



































U j

V j

W j

U j ′

V j ′

W j ′

















.

(24)

Eq.(24) can be written in a compact form for a generic j layer:

D
j ∂U

j

∂z̃
= A

j
U

j , (25)

where ∂Uj

∂z̃
= U

j ′ and U
j = [U j V j W j U j ′ V j ′ W j ′]. The eq.(25) can be developed as:

D
j
U

j ′ = A
j
U

j , (26)

U
j ′ = D

j−1
A

j
U

j , (27)

U
j ′ = A

j∗
U

j , (28)

with A
j∗ = D

j−1
A

j .
The solution of eq.(28), in accordance to [6], [7], is:

U
j(z̃j) = exp(Aj∗z̃j)U j(0) with z̃j ǫ [0, hj ] , (29)

where z̃j is the thickness coordinate of each layer from 0 at the bottom to hj at the top (see Figure 2).
The exponential matrix for each j mathematical layer, with constant coefficients Aj

s, is calculated with
z̃j=hj:

A
j∗∗ = exp(Aj∗hj) = I +A

j∗ hj +
A

j∗2

2!
hj

2
+

A
j∗3

3!
hj

3
+ . . .+

A
j∗N

N !
hj

N
, (30)

I is the 6× 6 identity matrix. The proposed expansion has a fast convergence ratio as indicated in [8]
and it is not time consuming from the computational point of view.

M-1 transfer matrices T j−1,j must be calculated using for each interface the following conditions for
interlaminar continuity of displacements and transverse shear/normal stresses:

ujb = uj−1

t , vjb = vj−1

t , wj
b = wj−1

t , (31)

σj
zzb = σj−1

zzt , σj
αzb = σj−1

αzt , σj
βzb = σj−1

βzt , (32)

where displacements and transverse shear/normal stresses at the bottom (b) of the j layer must be
equal to displacements and transverse shear/normal stresses at the top (t) of the (j-1) layer.

The structures are considered as simply supported and free stresses at the top and at the bottom of
the whole multilayered shell:

σzz = σαz = σβz = 0 for z = −h/2,+h/2 or z̃ = 0, h , (33)

w = v = 0, σαα = 0 for α = 0, a , (34)

w = u = 0, σββ = 0 for β = 0, b , (35)

The use of solution proposed in eq.(30) and the introduction of the conditions written in eqs.(31)-(32)
and eqs.(33)-(35) give the following compact form for final system:

E U1(0) = 0 . (36)
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All the details about the steps, omitted in this paper, to obtain the final equation (36), can be found in
past author’s works [9]- [11]. Matrix E has always 6× 6 dimension, independently from the employed
number of physical and mathematical layers M and even if the method uses a layer-wise approach. Each
term in the matrix E is a higher order polynomial with an order depending on the value N used for
the exponential matrix in eq.(30) and on the number of mathematical layers M used in eqs.(31)-(32).
The vector U1(0) contains the three displacement components and their derivatives with respect z
calculated at the bottom (h1=0) of the first layer (j=1):

U1(0) =
[

U1(0) V1(0) W1(0) U ′

1
(0) V ′

1
(0) W ′

1
(0)

]T
, (37)

The method is implemented in a Matlab code in the case of the spherical shell case, it automatically
degenerates into cylindrical open/closed shell and plate methods.

The free vibration analysis is conducted finding the non-trivial solution of U1(0) in eq.(36), the
determinant of matrix E is imposed equal to zero:

det[E] = 0 , (38)

Eq.(38) allows to find the roots of an higher order polynomial in λ = ω2. For each pair of imposed
half-wave numbers (m,n), a certain number of circular frequencies are obtained depending on the order
N adopted for each exponential matrix A

j∗∗.

4 Results

Results given in this section allow to find the best values for the order of expansion N of the exponential
matrix A

j∗∗ described in eq.(30) and for the number of mathematical layers M used for the approx-
imation of the shell curvature to obtain 3D equilibrium equations with constant coefficients. The M
layers depend on the interlaminar continuity conditions as shown in eqs.(31) and (32).

The considered cases are simply supported square plates, cylindrical shell panels, cylinders and
spherical shell panels. In-plane plate dimensions are a=b=1m with infinite radii of curvature Rα

and Rβ and thickness ratios a/h=100 and 5. Cylindrical shell panels have radius of curvature in
α-direction Rα=10m and an infinite radius of curvature Rβ in β-direction. In plane dimensions are
a=π/3Rα and b=20m. Thickness ratios are Rα/h=100 and 5. Cylinders have radius of curvature
in α-direction Rα=10m and an infinite radius of curvature Rβ in β-direction. In plane dimensions
are a=2πRα and b=100m. Thickness ratios are Rα/h=100 and 5. Spherical shell panels have radii
of curvature Rα=Rβ=10m. In plane dimensions are a=b=π/3Rα. Thickness ratios are Rα/h=100
and 5. All these geometries have been considered as one-layered embedding an aluminium alloy with
Young modulus E=73GPa, Poisson ratio ν=0.3 and mass density ρ=2800kg/m3. Square plates and
cylindrical shell panels have also been considered as sandwich configurations with external skins in
aluminium alloy (same properties of the one-layered cases) and an internal soft core with Young modulus
E=180MPa, Poisson ratio ν=0.37 and mass density ρ=50kg/m3. The internal core has a thickness
hc=0.6h where h is the total thickness. Each external skin has thickness hs=0.2h. Cylinders and
spherical shell panels have also been considered as sandwich configurations with external composite
skins and an internal soft core. The core has the same thickness and material properties already seen
for the sandwich configuration with isotropic skins. The composite skins are made of two laminae at
the bottom with fibre orientation 0◦/90◦ and thickness values h0◦=h90◦=0.1h and two laminae at the
top with fibre orientation 90◦/0◦ and thickness values h90◦=h0◦=0.1h. The global lamination from the
bottom to the top is 0◦/90◦/core/90◦/0◦. The properties of the fibre reinforced composite material
are Young modulii E1=132.38GPa and E2=E3=10.756GPa, shear modulii G12=G13=5.6537GPa and
G23=3.603GPa, Poisson ratios ν12=ν13=0.24 and ν23=0.43 and mass density ρ=1600kg/m3. All the
sandwich configurations present the same thickness ratios already discussed for the one-layered isotropic
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cases. Results in tables are given as dimensionless circular frequencies ω̄ = ω(a2/h)
√

ρ/E for one-
layered isotropic cases, ω̄ = ω(a2/h)

√

ρskin/Eskin for the sandwich configurations with isotropic skins
and ω̄ = ω(a2/h)

√

ρskin/E2skin for the sandwich configurations with composite skins. a is the in-plane
dimension of the structure in the α direction. h is the total thickness of the structure. ρ is the mass
density of the aluminium alloy for the one-layered cases, ρskin is the mass density of the isotropic or
composite skins. E is the Young modulus of the one-layered structure, Eskin is the Young modulus
of the isotropic skin, E2skin is the Young modulus in direction 2 for the composite skin. When the
half-wave numbers m and n are imposed in the in-plane directions α and β, circular frequencies ω from
I, II, III to ∞ are obtained. In the visualization of vibration modes, the thickness coordinate is given in
dimensionless form z∗=z/h and the three displacement components are also given in dimensionless form
u∗=u/|Umax|, v

∗=v/|Vmax| and w∗=w/|Wmax|. In proposed tables, when the convergence is reached,
the frequencies are indicated in bold. The use of NaN indicates ”Not a Number” when there is a
numerical problem for the solution developed with certain M and N values. In these cases the global
matrix and the related system are not well conditioned.

One-layered structures have one physical layer (NL=1), this layer can be divided in several mathe-
matical layers M. Figure 3 shows the use of 1 and 10 mathematical layers in the one-layered structures.
Sandwich structures with isotropic skins have three physical layers (NL=3), these layers can be divided
in M uniform mathematical layers. Figure 4 shows a shell structure with three physical layers divided in
M=10 mathematical layers. Sandwich structures with composite skins have five physical layers (NL=5),
these layers can be divided in M uniform mathematical layers. Figure 5 shows a shell structure with
five physical layers divided in M=10 mathematical layers. For plate geometries the use of mathematical
layers is not mandatory in order to apply the exponential matrix method for the solution of the system
of partial differential equations. In fact, 3D equilibrium equations have constant coefficients. However,
their use is also proposed in analogy to the shell cases in order to understand their possible advantages.

Table 1 shows the first frequency (I), for imposed half-wave numbers m=n=1 and m=n=2 and
thickness ratios a/h equal 100 an 5, in the case of one-layered isotropic plate. In this case, the use
of mathematical layers M is not necessary. For M=1 (no mathematical layers), the convergence of
the solution is obtained for an order of expansion for the exponential matrix N=5 for thin plates
(a/h=100) and both combinations of half-wave numbers. Higher N values are necessary for thicker
plates (a/h=5), in particular N=9 for m=n=1 and N=11 for m=n=2. The mathematical layers have
also been considered, even if they are not necessary, to demonstrate that the use of mathematical layers
allows to reduce the order N for the exponential matrix. For plate cases, it is more convenient, for
computational reasons, the use of a higher N value and not the inclusion of M mathematical layers.

The first frequency (I) for imposed half-wave numbers m=n=1 and m=n=2 is proposed in Table 2 for
the case of thin (Rα/h=100) and thick (Rα/h=5) isotropic one-layered cylindrical shell panels. For these
geometries the use of M mathematical layers is mandatory to solve the system of partial differential
equations with variable coefficients. The structure is one-layered and isotropic without transverse
anisotropy. For these reasons, M=10 mathematical layers are sufficient to approximate the curvature
terms in the case of thin shell (Rα/h=100) and m=n=1. M=20 mathematical layers are mandatory in
the case of thin shell with m=n=2. N=3 order of expansion is sufficient to correctly approximate the
exponential matrix when M mathematical layers are employed. For thick shells (Rα/h=5), a higher
M value for mathematical layers is necessary to approximate the curvature (M=60 for m=n=1 and
M=20 for m=n=2). m and n effects demonstrate the dependence of the convergence from the type of
vibration mode. This dependence is not a priori predictable. The first (I) vibration mode is shown in
Figure 6 for the thick shell (Rα/h=5) and half-wave numbers m=n=1 and m=n=2.

Table 3 shows the first frequency (I), for imposed half-wave numbers (m=2, n=1) and (m=2, n=3)
and thickness ratios Rα/h equal 100 and 5, in the case of one-layered isotropic cylinder. The number
M of mathematical layers to approximate the curvature in cylinders is smaller than the cylindrical and
spherical shell cases because of the symmetry of the cylinder geometry and its bigger rigidity. For thin
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cylinders and m=2 and n=1, M=10 mathematical layers are sufficient. For thin cylinder and m=2
and n=3, mathematical layers are not necessary. In the case of thick cylinders, the M mathematical
layers for a correct convergence increases until M=40 for m=2 and n=1. The case m=2 and n=3 shows
the dependency of the convergence analysis from the half-wave numbers. For thick shells, N=3 order
for the exponential matrix combined with an opportune choice of the mathematical layers guarantee
the desired convergence. Figure 7 shows the first (I) vibration mode for the thick shell (Rα/h=5) and
couples of half-wave numbers (m=2 and n=1) and (m=2 and n=3).

The isotropic one-layered spherical shell is analyzed in Table 4. The first (I) frequency is investi-
gated for imposed half-wave numbers m=n=1 and m=n=2 and thickness ratios Rα/h equal 100 an 5.
Conclusions similar to the cylindrical shell panels can be reached. For thin shells, M=10 mathematical
layers are sufficient for the curvature approximation. M=40 mathematical layers must be used for thick
shells in the case of m=n=1. For all these cases, N=3 order of expansion for the exponential matrix
method is sufficient for a correct analysis. When the number of mathematical layers M are not sufficient
for a correct curvature approximation, even if N=12 order of expansion is used, the correct solution is
not obtained. Figure 8 shows the first frequency (I) for the thick isotropic spherical shell (Rα/h=5)
and couples of half-wave numbers m=n=1 and m=n=2.

Tables 1-4 have shown the effects of thickness ratio, half-wave numbers and geometry in the conver-
gence analysis of the order of expansion N for the exponential matrix and the number of mathematical
layers M for the curvature approximation. Tables 5-8 have been added to investigate the effect of the
lamination sequence (number of layers, materials, transverse and in-plane anisotropy). For this aim,
a sandwich configuration with isotropic skins for plates and cylindrical shell panels and a sandwich
configuration with composite skins for cylinders and spherical shell panels have been investigated. In
general, for the same geometry, thickness ratio and half-wave numbers, sandwich configurations need a
great number of mathematical layers M and a higher order of expansion N for the exponential matrix
with respect the same one-layered cases. These considerations come from the comparisons between
Table 1 and Table 5, Table 2 and Table 6, Table 3 and Table 7, Table 4 and Table 8. Thick sandwich
cylindrical shell (Rα/h=5) in Table 6 and thick sandwich spherical shell (Rα/h=5 and m=n=1) in Table
8 need M=100 mathematical layers for a correct result. Figure 9 shows the first frequency (I) for the
thick sandwich spherical shell with composite skins for half-wave numbers m=n=1 and m=n=2. For
sandwich configurations, the zigzag form of displacements components through the thickness confirms
the high transverse anisotropy of this lamination sequence.

Tables 9-12 allow the study of the frequency order effect on the choice of the number M of mathe-
matical layers and the order N for the exponential matrix. Table 9 investigates the first four modes for
m=n=1 of the thick (a/h=5) sandwich plate with isotropic skins. Table 10 shows the first four modes
for m=n=1 of the thick (Rα/h=5) sandwich cylindrical shell with isotropic skins. Table 11 analyzes
the first four modes for m=2 and n=1 of the thick (Rα/h=5) sandwich cylinder with composite skins.
Table 12 shows the first four modes for m=n=1 of the thick (Rα/h=5) sandwich spherical shell with
composite skins. From Tables 9-12, it is clear how the choice of M and N parameters could also depend
on the considered mode and frequency order. The first four frequencies (for the same half-wave numbers
m and n) could have a different through-the-thickness behaviour of the displacement components, as
indicated in Figures 10 and 11 for sandwich cylindrical shell with isotropic skins and sandwich spher-
ical shell with composite skins, respectively. In the vibration mode visualization, the zigzag effect for
sandwich structures (due to the transverse anisotropy) is clearly indicated. Convergence analysis has
a strong dependency from the frequency order but this dependency is not a priori predictable because
it depends on the vibration mode type.

The choice of M and N values depends on several parameters such as geometry, thickness ratio,
lamination sequence, material, half-wave numbers, vibration mode and order of frequency. M and N
values have a dependence from vibration mode and order of frequency that is not a priori predictable,
in particular for very higher order modes (over the fourth one). For these reasons, a conservative choice
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with M=100 mathematical layers and N=3 order of expansion for the exponential matrix, in order to
analyze each configuration with an optimum for the residual errors and computational costs, has been
made. M=100 and N=3 allow an exact analysis for each structure, thickness ratio, lamination sequence,
material, half-wave numbers, mode and order of frequency, considering a low computational cost and
time consumption. In the case of M=1 mathematical layer, the method has a very low computation
time which means that the results are obtained in few seconds for any N value for the expansion of
the exponential matrix. The addition of M mathematical layers is more heavy from the computational
point of view, e.g., a model with M=100 and N=3 has a computation time of about 60 seconds. These
features are confirmed by the results in Tables 13-15 where the present 3D exact solution is compared
with other 3D solutions given in the literature. Table 13 compares the present 3D exact solution with
that by Messina [18] for a simply supported multilayered composite square plate (a/h=10). The first
three modes (I, II and III) for several lamination sequences and imposed half-wave numbers m and n
are investigated. The present 3D results and Messina [18] results are always coincident. In this plate
case, the use of mathematical layers is not necessary and M=2, 3 and 4 are used (coincident with the
number of physical layers NL). A N=12 order for the exponential matrix has been used because the
mathematical layers have not been introduced. This assessment considers a simply supported square
plate (a=b=10) with thickness ratio a/h=10. The plate is multilayered and each composite layer has
Young modulus components E1=25.1×106 psi, E2=4.8×106 psi and E3=0.75×106psi, shear modulus
components G12=1.36×106psi, G13=1.2×106psi and G23=0.47×106psi, Poisson ratio components ν12 =
0.036, ν13 = 0.25 and ν23 = 0.171. The mass density is ρ=0.054191lb/in3 . The first three vibration
modes are given in terms of dimensionless circular frequency ω̄ = ωh

√

ρ/E2 for half-wave numbers
(m,n) equal (1,1), (1,2), (2,1) and (2,2). Two-layered, three-layered and four-layered composite plates
are investigated with lamination sequence (0◦/90◦), (0◦/90◦/0◦) and (0◦/90◦/0◦/90◦), respectively (each
layer has the same thickness). Tables 14 and 15 show the assessment proposed by Huang [23] for
simply supported cylindrical and spherical shell panels, respectively. Cylindrical shell panel has radius
of curvature Rα=10 and thickness h=0.5. The radius of curvature in β direction is infinite and the shell
has dimensions a=b=5. The structure is multilayered (it embeds NL layers) and each layer has the same
thickness. The lamination sequence is (0◦/90◦/0◦/90◦/ . . .). Each composite layer has Young modulus
components E1=25E0 and E2=E3=E0, shear modulus components G12=G13=0.5E0 and G23=0.2E0,
Poisson ratio components ν12 = ν13 = ν23 = 0.25. The mass density is ρ=1500 kg/m3. The number
of layers NL is 2, 4 and 10. Spherical shell panel has radii of curvature Rα=Rβ=10, thickness h=0.2
and dimensions a=b=2. The structure is multilayered (it embeds NL layers) and each layer has the
same thickness. The lamination sequence is (0◦/90◦/0◦/90◦/ . . .). The same material of the cylindrical
shell is considered. In Tables 14 and 15, the present 3D solution and the 3D solution by Huang [23] are
coincident for each geometry, thickness ratio, lamination sequence, half-wave numbers and frequency
order. M=100 mathematical layers and order N=3 for the exponential matrix have been used.

5 Conclusions

The paper proposes the three-dimensional equilibrium equations written in general orthogonal curvilin-
ear coordinates for the free vibration analysis of multilayered plates, cylinders and spherical/cylindrical
shell panels. The system of differential equations has been solved by means of the exponential matrix
method. The solution has been given in closed form considering simply supported structure and har-
monic form for displacement components. The equilibrium equations have constant coefficients in the
case of plate geometries and coefficients depending on the thickness coordinate z in the case of shell ge-
ometries. In the plate cases an opportune choice of the order of expansion N for the exponential matrix
is mandatory. For shell cases, in addition to the order N, the opportune value M of mathematical layers
must be identified to correctly solve the three-dimensional equations with variable coefficients. The
opportune N and M values depend on several parameters such as geometry, thickness ratio, material,
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lamination sequence, imposed half-wave numbers, frequency order and vibration mode. For plate cases,
mathematical layers are not mandatory and N=12 for the exponential matrix always allows the correct
solution. In shell cases, the use of mathematical layers is mandatory in order to describe the curvature
approximation. The use of M mathematical layers allows also the reduction of the order N for the
exponential matrix. N=3 gives always the correct solution if combined with an opportune value M for
mathematical layers. However, the dependency of the mathematical layers from geometry, thickness
ratio, material, lamination sequence, half-wave numbers, vibration mode and frequency order is not
always a priori predictable. Therefore, the choice of M=100 is set to have a conservative approach.
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m=1, n=1; a/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 275.54 10.341 5.9665 5.9724 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=10 5.9414 6.0306 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=20 5.9638 5.9862 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=40 5.9694 5.9750 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=60 5.9704 5.9729 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=80 5.9708 5.9722 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

M=100 5.9710 5.9719 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713 5.9713

m=1, n=1; a/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 13.777 8.8703 3.6564 5.6957 5.2506 5.3144 5.3027 5.3038 5.3036 5.3036 5.3036 5.3036

M=10 5.2915 5.3428 5.3035 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

M=20 5.3006 5.3134 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

M=40 5.3029 5.3061 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

M=60 5.3033 5.3047 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

M=80 5.3034 5.3042 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

M=100 5.3035 5.3040 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036 5.3036

m=2, n=2; a/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 551.07 41.309 23.785 23.879 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=10 23.741 24.097 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=20 23.830 23.919 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=40 23.853 23.875 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=60 23.857 23.867 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=80 23.858 23.864 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

M=100 23.859 23.862 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860 23.860

m=2, n=2; a/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 27.554 26.741 27.554 20.502 14.792 17.339 16.777 16.904 16.878 16.883 16.882 16.882

M=10 16.902 16.951 16.881 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

M=20 16.887 16.899 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

M=40 16.883 16.886 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

M=60 16.882 16.884 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

M=80 16.882 16.883 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

M=100 16.882 16.883 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882 16.882

Table 1: One-layered isotropic plate. First mode (I) given as dimensionless circular frequency ω̄ =
ω(a2/h)

√

ρ/E. One physical layer (NL=1) divided in M mathematical layers.
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m=1, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 10.250 23.069 22.531 22.536 22.535 22.535 22.535 22.535 22.535 22.535 22.535 22.535
M=10 21.618 22.509 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

M=20 22.065 22.505 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

M=40 22.286 22.504 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

M=60 22.358 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

M=80 22.395 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

M=100 22.416 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503 22.503

m=1, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 11.746 6.2291 1.6677 3.6225 3.3365 3.3787 3.3508 3.3576 98.316 0.0105 NaN 0.0000
M=10 0.0105 2.9510 339.58 3.2167 3.2173 3.2172 3.2172 3.2172 3.2172 3.2172 3.2172 3.2172
M=20 339.58 3.2231 3.2159 3.2160 3.2160 3.2160 3.2160 3.2160 3.2160 3.2160 3.2160 3.2160
M=40 3.1533 3.2174 3.2157 3.2157 3.2157 3.2157 3.2157 3.2157 3.2157 3.2157 3.2157 3.2157
M=60 3.1743 3.2164 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156

M=80 3.1847 3.2160 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156

M=100 3.1910 3.2159 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156 3.2156

m=2, n=2; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 463.87 34.817 27.498 27.585 27.581 27.581 27.581 27.581 27.581 27.581 27.581 27.581
M=10 23.623 27.532 27.452 27.452 27.452 27.452 27.452 27.452 27.452 27.452 27.452 27.452
M=20 25.619 27.471 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451

M=40 26.554 27.456 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451

M=60 26.857 27.453 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451

M=80 27.007 27.452 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451

M=100 27.096 27.452 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451 27.451

m=2, n=2; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 23.140 20.061 23.187 14.158 10.797 11.906 11.694 11.742 114.69 0.0885 NaN NaN
M=10 11.423 339.58 11.642 11.644 11.644 11.644 11.644 11.644 11.644 11.644 11.644 11.644
M=20 339.58 11.661 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643

M=40 11.589 11.647 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643

M=60 11.607 11.645 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643

M=80 11.616 11.644 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643

M=100 11.621 11.644 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643 11.643

Table 2: One-layered isotropic cylindrical shell. First mode (I) given as dimensionless circular frequency
ω̄ = ω(a2/h)

√

ρ/E. One physical layer (NL=1) divided in M mathematical layers.
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m=2, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 246.46 244.62 244.60 244.60 244.60 244.60 244.60 244.60 244.60 244.60 244.60 244.60
M=10 244.78 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

M=20 244.69 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

M=40 244.64 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

M=60 244.63 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

M=80 244.62 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

M=100 244.61 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59 244.59

m=2, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 13.744 12.906 12.367 12.426 12.417 12.418 13.526 10.694 0.0061 5146.1 NaN 0.0000
M=10 12.322 12225 12.297 12.297 12.297 12.297 12.297 12.297 12.297 12.297 12.297 12.297
M=20 12225 12.297 12.296 12.296 12.296 12.296 12.296 12.296 12.296 12.296 12.296 12.296
M=40 12.342 12.296 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295

M=60 12.327 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295

M=80 12.319 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295

M=100 12.314 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295 12.295

m=2, n=3; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 1355.3 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=10 1353.8 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=20 1353.8 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=40 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=60 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=80 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

M=100 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7 1353.7

m=2, n=3; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 69.179 70.225 68.025 68.353 68.313 68.317 74.740 62.888 0.0791 4928.9 NaN NaN
M=10 68.686 12225 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

M=20 0.0000 68.326 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

M=40 68.366 68.324 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

M=60 68.352 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

M=80 68.345 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

M=100 68.340 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323 68.323

Table 3: One-layered isotropic cylinder. First mode (I) given as dimensionless circular frequency
ω̄ = ω(a2/h)

√

ρ/E. One physical layer (NL=1) divided in M mathematical layers.
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m=1, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 100.93 105.07 104.76 104.77 104.77 104.77 104.77 104.77 104.77 104.77 104.77 104.77
M=10 104.39 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

M=20 104.57 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

M=40 104.67 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

M=60 104.70 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

M=80 104.71 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

M=100 104.72 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76 104.76

m=1, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 14.338 11.405 2.8057 7.6892 6.8984 7.0697 7.0570 7.0893 0.0799 0.0277 NaN NaN
M=10 6.7664 339.58 6.9553 6.9564 6.9563 6.9563 6.9563 6.9563 6.9563 6.9563 6.9563 6.9563
M=20 0.0000 6.9629 6.9555 6.9556 6.9556 6.9556 6.9556 6.9556 6.9556 6.9556 6.9556 6.9556
M=40 6.9095 6.9572 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554

M=60 6.92249 6.9562 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554

M=80 6.9325 6.9558 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554

M=100 6.9371 6.9556 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554 6.9554

m=2, n=2; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 88.738 115.87 110.74 110.84 110.83 110.83 110.83 110.83 110.83 110.83 110.83 110.83
M=10 109.00 110.82 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

M=20 109.90 110.79 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

M=40 110.34 110.78 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

M=60 110.48 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

M=80 110.56 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

M=100 110.60 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77 110.77

m=2, n=2; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=1 28.809 28.870 28.856 23.041 11.982 18.387 17.341 17.621 112.78 122.00 NaN NaN
M=10 17.370 0.0000 17.509 17.514 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

M=20 339.58 17.533 17.512 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

M=40 17.472 17.518 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

M=60 17.486 17.515 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

M=80 17.492 17.514 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

M=100 17.496 17.514 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513 17.513

Table 4: One-layered isotropic spherical shell. First mode (I) given as dimensionless circular frequency
ω̄ = ω(a2/h)

√

ρ/E. One physical layer (NL=1) divided in M mathematical layers.
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m=1, n=1; a/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 7.6313 7.9087 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=10 7.7040 7.7715 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=20 7.7209 7.7378 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=40 7.7252 7.7294 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=60 7.7259 7.7278 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=80 7.7262 7.7273 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

M=100 7.7263 7.7270 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266 7.7266

m=1, n=1; a/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 1.0789 2.2807 1.5681 1.5815 1.5788 1.5788 1.5788 1.5781 1.5788 1.5788 1.5788 1.5788

M=10 1.4693 1.7798 1.5781 1.5790 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=20 1.5523 1.6313 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=40 1.5722 1.5921 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=60 1.5759 1.5847 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=80 1.5772 1.5821 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=100 1.5778 1.5809 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

m=2, n=2; a/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 32.563 33.621 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=10 32.845 33.099 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=20 32.909 32.972 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=40 32.925 32.940 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=60 32.927 32.935 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=80 32.929 32.932 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

M=100 32.929 32.932 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930 32.930

m=2, n=2; a/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 2.3138 8.2012 4.8647 5.1199 5.0664 5.0679 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=10 4.5654 5.9848 5.0553 5.0708 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=20 4.9495 5.3100 5.0669 5.0679 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=40 5.0386 5.1292 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=60 5.0548 5.0951 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=80 5.0604 5.0831 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

M=100 5.0631 5.0676 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677 5.0677

Table 5: Sandwich plate with isotropic skins. First mode (I) given as dimensionless circular frequency
ω̄ = ω(a2/h)

√

ρskin/Eskin. Three physical layers (NL=3) divided in M mathematical layers.
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m=1, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 20.633 22.454 22.433 22.433 22.433 22.433 22.433 22.431 22.433 22.433 22.433 22.433
M=10 21.562 22.437 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

M=20 22.002 22.433 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

M=40 22.218 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

M=60 22.289 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

M=80 22.325 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

M=100 22.346 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432 22.432

m=1, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 6.4503 1.8102 0.0001 0.0000 339.24 339.58 339.58 339.58 1.4981 1.4981 1.4981 1.4981
M=10 0.0014 339.58 1.4831 1.4848 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847
M=20 339.58 1.5013 1.4809 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811
M=40 1.3044 1.4852 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802
M=60 1.3660 1.4822 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800
M=80 1.3956 1.4812 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800
M=100 1.4129 1.4807 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799

m=2, n=2; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 21.124 29.205 28.902 28.903 28.903 28.903 28.903 28.903 28.903 28.903 28.903 28.903
M=10 25.375 28.973 28.899 28.899 28.899 28.899 28.899 28.899 28.899 28.899 28.899 28.899
M=20 27.203 28.917 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898

M=40 28.066 28.902 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898

M=60 28.346 28.900 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898

M=80 28.485 28.899 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898

M=100 28.568 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898 28.898

m=2, n=2; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 4.5473 5.4610 69.937 0.0003 340.24 339.58 339.58 339.58 3.5679 3.5679 3.5679 3.5679
M=10 72.747 339.58 3.5287 3.5447 3.5435 3.5435 3.5435 3.5435 3.5435 3.5435 3.5435 3.5435
M=20 339.58 3.6813 3.5351 3.5367 3.5366 3.5366 3.5366 3.5366 3.5366 3.5366 3.5366 3.5366
M=40 3.1762 3.5712 3.5347 3.5349 3.5349 3.5349 3.5349 3.5349 3.5349 3.5349 3.5349 3.5349
M=60 3.3043 3.5507 3.5345 3.5346 3.5346 3.5346 3.5346 3.5346 3.5346 3.5346 3.5346 3.5346
M=80 3.3649 3.5435 3.5344 3.5345 3.5345 3.5345 3.5345 3.5345 3.5345 3.5345 3.5345 3.5345
M=100 3.4002 3.5402 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344 3.5344

Table 6: Sandwich cylindrical shell with isotropic skins. First mode (I) given as dimensionless circular
frequency ω̄ = ω(a2/h)

√

ρskin/Eskin. Three physical layers (NL=3) divided in M mathematical layers.
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m=2, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 464.05 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=10 464.05 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=20 464.02 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=40 464.00 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=60 464.00 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=80 464.00 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

M=100 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99 463.99

m=2, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 23.462 8027.3 22263 24075 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=10 0.0079 24075 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=20 24075 23.405 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=40 23.420 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=60 23.415 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=80 23.412 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=100 23.410 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

m=2, n=3; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=10 1786.7 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=20 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=40 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=60 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=80 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

M=100 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6 1786.6

m=2, n=3; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 90.350 8020.1 26587 24075 90.348 90.348 90.348 90.348 90.348 90.348 90.348 90.348
M=10 5554.8 24075 90.349 90.349 90.349 90.349 90.349 90.349 90.349 90.349 90.349 90.349
M=20 24075 90.360 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350
M=40 90.360 90.353 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350 90.350
M=60 90.357 90.352 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351

M=80 90.355 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351

M=100 90.354 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351 90.351

Table 7: Sandwich cylinder with composite skins. First mode (I) given as dimensionless circular
frequency ω̄ = ω(a2/h)

√

ρskin/E2skin. Five physical layers (NL=5) divided in M mathematical layers.
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m=1, n=1; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 135.15 135.46 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=10 135.20 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=20 135.33 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=40 135.39 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=60 135.41 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=80 135.42 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

M=100 135.42 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45 135.45

m=1, n=1; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 7.0083 226.32 0.0000 668.75 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408
M=10 148.16 668.75 7.2379 7.2443 7.2436 7.2437 7.2437 7.2437 7.2437 7.2437 7.2437 7.2437
M=20 668.75 7.2725 7.2422 7.2429 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428
M=40 7.1867 7.2498 7.2425 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=60 7.2061 7.2458 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=80 7.2155 7.2443 7.2425 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=100 7.2211 7.2437 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425

m=2, n=2; Rα/h=100

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 150.91 152.39 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=10 151.05 152.37 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=20 151.66 152.28 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=40 151.96 152.26 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=60 152.06 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=80 152.11 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

M=100 152.14 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25 152.25

m=2, n=2; Rα/h=5

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 9.5926 8.8982 660.27 668.75 10.687 10.687 10.687 10.687 10.687 10.687 10.687 10.687
M=10 4.6405 668.75 10.554 10.727 10.696 10.698 10.698 10.698 10.698 10.698 10.698 10.698
M=20 668.75 11.062 10.684 10.696 10.695 10.695 10.695 10.695 10.695 10.695 10.695 10.695
M=40 10.483 10.784 10.693 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694

M=60 10.563 10.733 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694

M=80 10.599 10.716 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694

M=100 10.620 10.708 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694 10.694

Table 8: Sandwich spherical shell with composite skins. First mode (I) given as dimensionless circular
frequency ω̄ = ω(a2/h)

√

ρskin/E2skin. Five physical layers (NL=5) divided in M mathematical layers.
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m=1, n=1; I mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 1.0789 2.2807 1.5681 1.5815 1.5788 1.5788 1.5788 1.5781 1.5788 1.5788 1.5788 1.5788

M=10 1.4693 1.7798 1.5781 1.5790 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=20 1.5523 1.6313 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=40 1.5722 1.5921 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=60 1.5759 1.5847 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=80 1.5772 1.5821 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

M=100 1.5778 1.5809 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788 1.5788

m=1, n=1; II mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 6.5600 6.3041 6.4856 6.4941 6.4927 6.4925 6.4925 6.4980 6.4925 6.4925 6.4925 6.4925

M=10 6.4670 6.5260 6.4924 6.4926 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

M=20 6.4862 6.5009 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

M=40 6.4910 6.4946 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

M=60 6.4918 6.4935 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

M=80 6.4922 6.4931 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

M=100 6.4923 6.4929 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925 6.4925

m=1, n=1; III mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 13.659 13.561 13.567 13.594 13.592 13.591 13.591 13.539 13.591 13.591 13.591 13.591

M=10 13.595 13.589 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

M=20 13.592 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

M=40 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

M=60 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

M=80 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

M=100 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591 13.591

m=1, n=1; IV mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 14.235 14.016 14.018 14.061 14.059 14.056 14.056 14.106 14.056 14.056 14.056 14.056

M=10 14.063 14.053 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

M=20 14.058 14.055 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

M=40 14.057 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

M=60 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

M=80 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

M=100 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056 14.056

Table 9: Sandwich plate with isotropic skins and thickness ratio a/h=5. Modes from I to IV (m=n=1)
given as dimensionless circular frequency ω̄ = ω(a2/h)

√

ρskin/Eskin. Three physical layers (NL=3)
divided in M mathematical layers.
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m=1, n=1; I mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 6.4503 1.8102 0.0001 0.0000 339.65 339.58 339.58 339.58 1.4981 1.4981 1.4981 1.4981
M=10 0.0014 339.58 1.4831 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847 1.4847
M=20 339.58 1.5013 1.4809 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811 1.4811
M=40 1.3044 1.4852 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802 1.4802
M=60 1.3660 1.4822 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800
M=80 1.3956 1.4812 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800 1.4800
M=100 1.4129 1.4807 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799 1.4799

m=1, n=1; II mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 11.310 6.6200 206.16 1018.2 376.02 416.27 480.24 480.24 6.8843 6.8843 6.8843 6.8843
M=10 48.641 480.25 6.8849 6.8851 6.8851 6.8851 6.8851 6.8851 6.8851 6.8851 6.8851 6.8851
M=20 480.25 6.8857 6.8845 6.8845 6.8845 6.8845 6.8845 6.8845 6.8845 6.8845 6.8845 6.8845
M=40 6.8319 6.8846 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843

M=60 6.8495 6.8844 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843

M=80 6.8582 6.8844 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843

M=100 6.8634 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843 6.8843

m=1, n=1; III mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 12.955 11.244 206.79 NaN NaN 1517.8 588.06 588.34 11.279 11.279 11.279 11.279
M=10 76.612 537.10 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

M=20 618.05 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

M=40 11.275 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

M=60 11.276 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

M=80 11.276 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

M=100 11.276 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278 11.278

m=1, n=1; IV mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=3 18.963 12.810 NaN NaN NaN NaN 619.90 666.93 12.867 12.867 12.867 12.867

M=10 105.86 6188.4 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

M=20 12434 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

M=40 12.863 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

M=60 12.864 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

M=80 12.865 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

M=100 12.865 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867 12.867

Table 10: Sandwich cylindrical shell with isotropic skins and thickness ratio Rα/h=5. Modes from I
to IV (m=n=1) given as dimensionless circular frequency ω̄ = ω(a2/h)

√

ρskin/Eskin. Three physical
layers (NL=3) divided in M mathematical layers.
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m=2, n=1; I mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 23.462 8027.3 22263 24075 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=10 0.0079 24075 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=20 24075 23.405 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=40 23.420 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=60 23.415 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=80 23.412 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

M=100 23.410 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404 23.404

m=2, n=1; II mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 211.70 8257.9 22651 24075 211.81 211.81 211.81 211.81 211.81 211.81 211.81 211.81
M=10 3050.8 34026 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

M=20 34043 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

M=40 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

M=60 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

M=80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

M=100 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80 211.80

m=2, n=1; III mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 380.76 14181 1553014 37879 378.72 378.72 378.72 378.72 378.72 378.72 378.72 378.72
M=10 5563.1 178895 378.88 378.87 378.87 378.87 378.87 378.87 378.87 378.87 378.87 378.87
M=20 37020 378.83 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88

M=40 378.25 378.86 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88

M=60 378.46 378.87 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88

M=80 378.56 378.87 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88

M=100 378.62 378.87 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88 378.88

m=2, n=1; IV mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 472.40 15477 NaN 64414 469.61 469.61 469.61 469.61 469.61 469.61 469.61 469.61
M=10 7462.9 NaN 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79
M=20 69080 469.69 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79 469.79
M=40 468.91 469.76 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78

M=60 469.19 469.77 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78

M=80 469.33 469.80 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78

M=100 469.42 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78 469.78

Table 11: Sandwich cylinder with composite skins and thickness ratio Rα/h=5. Modes from I to IV
(m=2 and n=1) given as dimensionless circular frequency ω̄ = ω(a2/h)

√

ρskin/E2skin. Five physical
layers (NL=5) divided in M mathematical layers.
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m=1, n=1; I mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 7.0083 226.32 0.0000 668.75 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408 7.2408
M=10 148.16 668.75 7.2379 7.2443 7.2436 7.2437 7.2437 7.2437 7.2437 7.2437 7.2437 7.2437
M=20 668.75 7.2725 7.2422 7.2429 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428 7.2428
M=40 7.1867 7.2498 7.2425 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=60 7.2061 7.2458 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=80 7.2155 7.2443 7.2425 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426 7.2426
M=100 7.2211 7.2437 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425 7.2425

m=1, n=1; II mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 17.950 235.40 51123 945.73 18.376 18.378 18.379 18.379 18.379 18.379 18.379 18.379
M=10 205.44 931.09 18.392 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

M=20 945.89 18.394 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

M=40 18.283 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

M=60 18.320 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

M=80 18.338 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

M=100 18.349 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393 18.393

m=1, n=1; III mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 38.810 389.74 729.74 1749.8 38.010 37.964 37.967 37.970 37.967 37.969 37.931 37.969
M=10 215.33 4921.2 38.035 38.138 38.047 37.920 37.967 37.965 37.965 37.965 37.965 37.965
M=20 1027.3 37.924 37.963 37.963 37.963 37.963 37.963 37.963 37.963 37.963 37.963 37.963
M=40 37.972 37.953 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962

M=60 37.965 37.958 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962

M=80 37.962 37.960 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962

M=100 37.961 37.960 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962 37.962

m=1, n=1; IV mode

N=1 N=2 N=3 N=4 N=5 N=6 N=7 N=8 N=9 N=10 N=11 N=12

M=5 46.010 421.88 NaN NaN 44.746 44.590 44.576 44.594 44.643 44.593 55.818 44.593
M=10 435.65 NaN 42.865 41.753 510.89 65.792 44.443 44.597 44.597 44.597 44.597 44.597
M=20 9932.8 44.529 44.593 44.593 44.593 44.593 44.593 44.593 44.593 44.593 44.593 44.593
M=40 44.607 44.576 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592
M=60 44.594 44.584 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592
M=80 44.591 44.588 44.592 44.591 44.592 44.592 44.592 44.592 44.592 44.592 44.592 44.592
M=100 44.590 44.590 44.589 44.592 44.591 44.591 44.591 44.591 44.591 44.591 44.591 44.591

Table 12: Sandwich spherical shell with composite skins and thickness ratio Rα/h=5. Modes from I
to IV (m=n=1) given as dimensionless circular frequency ω̄ = ω(a2/h)

√

ρskin/E2skin. Five physical
layers (NL=5) divided in M mathematical layers.
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Mode (m,n) I II III

0◦/90◦

Present 3D (1,1) 0.060274 0.52994 0.58275
3D [18] (1,1) 0.060274 0.52994 0.58275
Present 3D (1,2) 0.14538 0.62352 0.95652
3D [18] (1,2) 0.14539 0.62352 0.95652
Present 3D (2,1) 0.14538 0.62352 0.95652
3D [18] (2,1) 0.14539 0.62352 0.95652
Present 3D (2,2) 0.20229 0.95796 1.0300
3D [18] (2,2) 0.20229 0.95796 1.0300

0◦/90◦/0◦

Present 3D (1,1) 0.067147 0.50349 0.63775
3D [18] (1,1) 0.067147 0.50349 0.63775
Present 3D (1,2) 0.12811 0.6888 0.95017
3D [18] (1,2) 0.12811 0.6888 0.95017
Present 3D (2,1) 0.17217 0.58366 1.1780
3D [18] (2,1) 0.17217 0.58366 1.1780
Present 3D (2,2) 0.20798 0.97517 1.2034
3D [18] (2,2) 0.20798 0.97517 1.2034

0◦/90◦/0◦/90◦

Present 3D (1,1) 0.066210 0.54596 0.59995
3D [18] (1,1) 0.066210 0.54596 0.59996
Present 3D (1,2) 0.15194 0.63875 1.0761
3D [18] (1,2) 0.15194 0.63875 1.0761
Present 3D (2,1) 0.15194 0.63875 1.0761
3D [18] (2,1) 0.15194 0.63875 1.0761
Present 3D (2,2) 0.20841 1.0623 1.1557
3D [18] (2,2) 0.20841 1.0623 1.1557

Table 13: Assessment for a simply supported multilayered composite square plate (a/h=10). First three

exact natural circular frequencies in dimensionless form ω̄ = ωh
√

ρ
E2

for imposed half-wave numbers

(m,n). Comparison between the present three-dimensional analysis (M=2, 3, 4 and N=12) and the
three-dimensional analysis by Messina [18].
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NL=2 NL=4 NL=10
m,n mode Present 3D 3D [23] Present 3D 3D [23] Present 3D 3D [23]

1,1 I 1.8971 1.8971 2.3415 2.3415 2.4930 2.4930
1,1 II 18.813 18.813 21.545 21.545 22.387 22.387
1,1 III 20.169 20.169 22.902 22.902 23.694 23.694
1,2 I 4.4492 4.4492 4.9620 4.9620 5.3017 5.3017
1,3 I 7.8195 7.8195 8.0753 8.0752 8.5253 8.5254
2,1 I 4.3485 4.3485 4.8493 4.8493 5.1853 5.1853
2,2 I 6.0384 6.0384 6.5486 6.5486 6.9739 6.9739
2,3 I 8.8895 8.8895 9.1438 9.1438 9.6346 9.6347
3,1 I 7.7503 7.7503 7.9573 7.9573 8.3950 8.3952
3,2 I 8.9012 8.9012 9.1290 9.1290 9.6120 9.6122
3,3 I 11.103 11.103 11.164 11.164 11.686 11.686

Table 14: Assessment for a simply supported multilayered composite cylindrical shell panel (Rα/h=20).
Modes versus half-wave numbers (m,n) for several physical layers (NL) and lamination sequence
(0◦/90◦/0◦/90◦/ . . .). Comparison between the present three-dimensional analysis (M=100 and N=3)
and the three-dimensional analysis by Huang [23] in term of dimensionless circular frequencies ω̄ =

ωRα

√

ρ
E0

.

NL=2 NL=4 NL=10
m,n mode Present 3D 3D [23] Present 3D 3D [23] Present 3D 3D [23]

1,1 I 4.6240 4.6238 5.8070 5.8070 6.2293 6.2293
1,2 I 10.753 10.753 12.134 12.134 13.050 13.050
1,3 I 19.130 19.130 19.845 19.846 21.042 21.042
2,1 I 10.864 10.864 12.188 12.188 13.076 13.076
2,2 I 14.909 14.909 16.298 16.298 17.432 17.432
2,3 I 21.961 21.961 22.719 22.719 24.027 24.027
3,1 I 19.315 19.315 19.931 19.932 21.081 21.082
3,2 I 22.053 22.053 22.757 22.757 24.045 24.045
3,3 I 27.483 27.483 27.790 27.790 29.189 29.189

Table 15: Assessment for a simply supported multilayered composite spherical shell panel (Rα/h=50).
Modes versus half-wave numbers (m,n) for several physical layers (NL) and lamination sequence
(0◦/90◦/0◦/90◦/ . . .). Comparison between the present three-dimensional analysis (M=100 and N=3)
and the three-dimensional analysis by Huang [23] in term of dimensionless circular frequencies ω̄ =

ωRα

√

ρ
E0

.
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Figure 1: Notations, reference system and geometrical parameters for shell structures.

Figure 2: Thickness coordinates z and z̃, and reference systems for shell structures.

1 physical layer: N =1L

1 mathematical layer: M=1
1 physical layer: N =1

10 mathematical layers: M=10
L

Figure 3: One-layered structures, example for the use of M mathematical layers.
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3 physical layers: N =3L

3 mathematical layers: M=3
3 physical layers: N =3L

10 mathematical layers: M=10

Figure 4: Three-layered sandwich structures, example for the use of M mathematical layers.

5 physical layers: N =5L

5 mathematical layers: M=5
5 physical layers: N =5L

10 mathematical layers: M=10

Figure 5: Five-layered sandwich structures, example for the use of M mathematical layers.
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Figure 6: First mode (I) for one-layered isotropic cylindrical shell with Rα/h=5.
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Figure 7: First mode (I) for one-layered isotropic cylinder with Rα/h=5.
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Figure 8: First mode (I) for one-layered isotropic spherical shell with Rα/h=5.
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Figure 9: First mode (I) for sandwich spherical shell embedding composite skins with Rα/h=5.
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Figure 10: First four modes (I-IV) for sandwich cylindrical shell with isotropic skins and thickness ratio
Rα/h=5.
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Figure 11: First four modes (I-IV) for sandwich spherical shell with composite skins and thickness ratio
Rα/h=5.
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