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Abstract

Efficient control of Heating, Ventilation and Air Con-
ditioning systems can lead to great reduction in en-
ergy consumption. This can be achieved by new
data-driven control algorithms based on Reinforce-
ment Learning (RL). In this work Dynamic Simula-
tion is coupled with a model-free RL algorithm to
study its performance in terms of energy saving and
thermal comfort in a realistic scenario. Two mod-
els are derived from the DOE Supermarket Reference
Building for two climate locations. The simulations
performed show a reduction between 5.4% and 9.4%
in primary energy consumption for the two locations,
guaranteeing the same thermal comfort of state-of-
the-art controls.

Introduction

The ecological concern about global warming and
the need of energy savings has become increasingly
present in recent years. The amount of global energy
consumption due to buildings is estimated in 40%, ac-
cording to Prez-Lombard et al. (2008). The reduction
of energy consumption and operating cost of existing
buildings can be achieved by retrofitting. Instead of
acting on the building envelope, retrofit could be im-
plemented by improving the efficiency of the Heat-
ing, Ventilation, Air Conditioning (HVAC) systems.
The control system of the thermal plant represents
a great opportunity to increase the HVAC efficiency.
This work explores by simulation a retrofitting sce-
nario of the control system of the HVAC plant on a
commercial building, with a view to design a scalable
solution on real sites.

The traditional controls for HVAC comprehend
the classes of model-based and rule-based controls.
Model-based controls like Model Predictive Control
can fit to complex thermodynamics and they achieve
good results in terms of primary energy saving on
a single building. Nevertheless, the retrofit applica-
tion of model-based methods requires to develop and
validate a thermo-energetic model for each existing
building. The performance of model-based controls
is strictly related to the model quality. An accurate

model can be expensive and complex to be obtained
at a sufficient level of fidelity in common working con-
ditions. Therefore, the model-based approach is char-
acterized by a high initial investment, an obstacle to
the deployment on everyday building projects and to
scale up this solution on a great number of buildings
(Sturzenegger et al., 2016). Furthermore, when the
building envelope undergoes interventions of energy
efficiency or the building itself change in the desig-
nated use, the model has to be rebuilt and tuned,
with an expensive involvement of a domain expert.
Conversely, rule-based controls (RBC) are state-of-
the-art model-free controls that represents an indus-
try standard. A model-free solution can potentially
scale up, because the absence of a model makes the so-
lution easily applicable on different buildings without
the need for a domain expert (Ruelens et al., 2015).
The main drawback of RBC is that they are difficult
to be optimally tuned because they are not enough
adaptable with respect to the intrinsic complexity of
the coupled building and plant thermodynamics.

Recently a new class of controls have been pro-
posed, composed by data-driven machine learning
(ML) algorithms. Among the others, the data-driven
algorithms based on Reinforcement Learning (RL)
showed promising results as HVAC controls in the
recent works of Ruelens et al. (2015) and Wei et al.
(2017). RL algorithms (Sutton and Barto, 1998) are
suitable to solve optimal control problems in stochas-
tic environments. A lot of applications of RL to
real world scenarios has been studied, for example to
the battery management systems of electric vehicles,
photovoltaic energy storage and domestic hot water
(Vázquez-Canteli and Nagy, 2019). The advantage of
the RL class over traditional controls is that it pro-
vides both model-free and adaptive controls: an RL
algorithm interacts directly with the HVAC control
system and adapt continuously to the controlled en-
vironment using real-time data collected on site with-
out the need to access to a thermo-energetic model of
the building. Hence, an RL solution could obtain
primary energy saving with respect to a RBC, reduc-
ing the operating cost while remaining suitable to a
large-scale application.
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Since an RL control learns online by interacting with
an environment, simulation tools are very attracting
to study an algorithm in the field of building energy
management systems. In this work a simulation-
based comparison between an RL algorithm and a
RBC is presented, using co-simulation with Energy-
Plus software. The numerical study is useful to com-
pare the two controls in a reproducible and fair en-
vironment. The aim of the analysis presented is to
assess the adaptability of a RL control to different
operating conditions, thus checking if the same algo-
rithm can scale up to different buildings.

To reduce the cost of the implementation of the RL
solution on a real scenario, it is assumed that the
data available to the RL control are those commonly
used to monitor an HVAC system. The implemen-
tation of an RL method requires a small initial in-
vestment, comparable to the connection of a single
core computer with the HVAC system. Therefore it
is attractive for a large-scale application on HVAC
systems where the operating cost is high, like those
in charge of the thermo-regulation of a great volume.
One of the building use class where it could be conve-
nient to implement an RL solution is the supermarket
class. Supermarkets are widespread buildings with
variable thermal loads and complex occupational pat-
terns that introduce a non-negligible stochastic com-
ponent from the HVAC control point of view. The
variability of those environments is manifest in the
retail area, which is characterized by a great volume
and it does not require strict comfort requirements.
Consequently, it could be interesting to conduct the
comparison for the retail area of a supermarket.

The U.S. Department of Energy (DOE) provides val-
idated EnergyPlus Reference Buildings suitable for
realistic retrofit applications. Starting from the Su-
permarket Reference Building, two different build-
ing models has been developed within EnergyPlus for
Italian locations, using traditional design handbooks
(Stefanutti, 2001). During each simulation the con-
trol regulates the set-point temperature of the HVAC
plant in charge of the thermo-regulation of the Sales
zone of the building model, which represents the re-
tail area of the supermarket.

Other attempts of using RL as control strategy for
HVAC have already been experimented in a simu-
lated environment but extremely simplified models of
buildings and HVAC plants have been used (Barrett
and Linder, 2015; Ruelens et al., 2015). To the best
of our knowledge, the first attempt to use dynamic
simulation coupled with a recent RL algorithm has
been described by Wei et al. (2017) but the results ob-
tained are difficult to be reproduced since no building
model description is given. The plant considered by
Wei et al. (2017) is a variable air flow volume system
while in this study a more common case of a constant
air flow volume system is studied. Here, inspired by

Table 1: U-Values envelope [ W
m2K ].

Climate Zone E Climate Zone B
External Wall 0.278 0.429

Ceiling 0.257 0.428

Floor 0.238 0.333

Glazing 1.6 2.6

the work of Ruelens et al. (2015), a modified version
of the Fitted-Q-Iteration algorithm is applied to the
two supermarket models. The first paragraph Mod-
elling Methods presents the analysed buildings and it
describes the differences with respect to the original
DOE model for both climate zone B and E. Then
the RBC used as baseline and the RL algorithm for
HVAC control are described in detail in the para-
graph Control Methods. The simulation framework
that combines the EnergyPlus Software with the RL
training algorithm is presented in paragraph Simula-
tion Framework. The simulation results are presented
in paragraph Results to analyze the performance of
the proposed algorithm with respect to the RBC. Fi-
nally, conclusions and possibilities of future work are
presented in paragraph Conclusions.

Modelling methods

The building model has been located in the Italian
locations of Bergamo and Catania. Following Kop-
pen climate zone classification, Bergamo is charac-
terized by a climate type 3A with respectively 778◦C
and 1099◦C cooling and heating Degree-Days (DD);
Catania is classified 4A, with respectively 324◦C
and 2550◦C cooling and heating DD. According to
ASHRAE Standards 90.1-2004 and 90.2-2004 climate
zone, both the locations are classified as Cfa. The
Italian territory is divided into six climate zones in-
creasing from A to F as a function of heating DD
(D.P.R., 1993). Bergamo belongs to the Italian cli-
mate zone E, while Catania to the Italian climate
zone B. In what follows, the locations are referred
according to the Italian climate zone classification.
Real weather data of two years of 2016-2017 has been
collected from open-data sources (ARPA, 2018), to
compare the controls in a realistic scenario.

The DOE Supermarket Reference Building is com-
posed by 6 zones, specifically named Bakery, Deli,
Dry Storage, Office, Produce and Sales. The biggest
area is the Sales zone, which extends for 2325m2. In
the developed building models each zone is indepen-
dently thermo-regulated by an RBC which controls
the internal air set-point. The RBC is followed by
a PI logic that chooses the supply air temperature
of the controlled zone. The building model and the
PI are tuned to accomplish italian law requirements
(MISE, 2015). In this work, the comparison between
the controls involve to replace only the RBC of the
Sales zone with an RL algorithm while retaining the
PI logic to choose the supply air temperature of the
controlled zone. The original constructions have been

________________________________________________________________________________________________ 

________________________________________________________________________________________________ 
Proceedings of the 16th IBPSA Conference 
Rome, Italy, Sept. 2-4, 2019

 
1413

 

 
  



Table 2: Design set-point (* for the Sales zone, the design set-point is substituted by the RBC or RL control),
nominal capacities, lightning and electric load equipment, ventilation requirements, design occupancy and activity
level (MET = Metabolic Equivalent of Task) for each climate zone and thermal zone.

Zone Bakery Deli Dry Storage Office Produce Sales

Set-Point [◦C] B, E
Heating 16 16 14 20 16 (*)
Cooling 25 25 - 25 25 (*)

Nominal E
Cooling 40 40 32 5.6 28 80
Heating 32 40 64 12 96 400

Capacities [kW ] B
Cooling 45 90 65 9 63 225
Heating 30 30 65 10 90 300

Electrical [ W
m2 ] B, E

Lightning 15 15 10 15 15 15
Equipment 15 15 3.5 10 15 3.5

Outdoor Air [m
3

s
] B, E 3.4592 1.4607 4.0423 0.0586 0.4620 15.1125

Occupancy [people] B, E 3 3 62 5 3 465 (max)

MET B, E 1.8 2.0 2.0 1.0 2.0 1.7

modified to accomplish the different regulations for
the two Italian climate zones (MISE, 2008). Table 1
resumes the thermal transmittance (U-value) of con-
structions for each climate zone.

The number of people of the DOE model has been
adapted according to the Italian standard (UNI,
1995). The random occupation model assumed is de-
fined by Page et al. (2008). The parameter of mobil-
ity µ is set to 0.5, corresponding to medium mobility.
The occupation fraction mean value has been kept as
in the original DOE model, between 0.2 in the morn-
ing to 0.8 at 4 p.m. in weekdays. Random occupation
model has been applied only to the Sales zone while
the original occupation schedules have been kept un-
changed for all the other zones. The occupancy activ-
ity level are set according to the Engineering manual
of EnergyPlus, depending on the different activities
conducted in each zone (Table 2). The workers of the
Bakery and Deli zones are assumed to keep a constant
clothing along the year, equal to 0.5 clo, since those
zones have high internal gains. The clothing model
for the occupants of the other zones is the Dynamic
Clothing Model (ASHRAE proposal). The lighting
and electric load equipments have been changed to
the Italian standard values (UNI, 2017), as resumed
in Table 2. Ventilation requirements are specified in
Table 2 in terms of outdoor air. Opening hours are
from 9 a.m. to 9 p.m. on working days and 9 a.m.
to 8 p.m. on each Sunday. The winter season is de-
fined between the 15th October and the 15th April for
climate zone E while for climate zone B it is defined
from the 1st December to the 31th March (D.P.R.,
1993). Heating is available only during winter, while
HVAC is in cooling mode during summer.

Control methods

The HVAC system for the Supermarket model is an
all-air system: both ventilation and air conditioning
are provided by supply air. The HVAC system has
six different air loops, one for each thermal zone, that
handle the outdoor air flow. The logic of each air

loop imposes the delivery air temperature set-point
to guarantee the objective air temperature defined
by the zone set-point. Each loop is driven by a fan
with constant velocity and air diffusers as terminals
to the zone. Heating load is supplied by Furnaces and
cooling load is supplied by Direct Expansion Chillers,
one for each Air Handling Unit. The nominal capac-
ities of the equipments for climate zone B and E ob-
tained by EnergyPlus design simulation are reported
in Table 2. The thermostat for the HVAC system
provides a single set-point and its logic is described
by Stefanutti (2001). Both for climate zone B and E,
the values of the design set-point of the five thermal
zones of the Supermarket Reference Building, all ex-
cept the Sales area controlled, are represented in Ta-
ble 2. These thermal comfort requirements have been
chosen from traditional italian manuals depending on
the zone destination (Stefanutti, 2001). In the con-
trolled zone, the thermostat set-point is set to keep
an objective air temperature above of 16◦C in winter
and below 25◦C in summer.

The state-of-the-art RBC for all-air systems imposes
a constant set-point while the Proportional-Integral
(PI) control modifies the delivery air temperature set-
point (ASHRAE, 2017). The error signal is computed
between the RBC thermostat set-point and the actual
internal air temperature. The PI control system for
both the heating and cooling have been tuned with
Ultimate Oscillation method described in ASHRAE
(2017). The tuning results of the PI control parame-
ters Kp and Ki are listed in Table 3. This control is
established as a baseline for the Sales zone and it will
be compared with a RL based control.

Reinforcement Learning

RL is an Artificial Intelligence framework in which an
agent interacts with an environment and learns the
optimal sequence of actions, represented by a policy,
to reach a desired goal (Sutton and Barto, 1998). In
this work, the environment is one of the supermar-
ket building models described before. The learning
goal of the agent is expressed by means of a reward,
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Table 3: PI tuning for the Climate Zone E and B.
Climate zone E Climate zone B

Heating Cooling Heating Cooling
Thermal Zone Kp Ki Kp Ki Kp Ki Kp Ki

Bakery 1.802 0.217 2.8 0.3 1.802 0.217 2.8 0.3
Deli 1.802 0.217 2.8 0.3 1.802 0.217 1.5 0.3

Dry Storage 1.802 0.217 1.802 0.217 1.802 0.217 1.802 0.217
Office 1.802 0.217 1.802 0.217 1.802 0.217 1.802 0.217

Produce 1.802 0.217 1.6 0.3 1.5 0.3 1.6 0.3
Sales 1.802 0.217 1.6 0.3 1.802 0.217 2.8 0.3

a scalar feedback value returned to the agent which
measures how the agent is behaving with respect to
the learning objective. The agent-environment inter-
action is formalized by means of a Markov Decision
Process (MDP), which is completely described by a
tuple (S,A, r,P), where S is the set of states, A is
the set of actions, r : S × A→ R is the reward func-
tion and P is the transition probability from a state-
action pair to the next state P : S × A × S → [0, 1].
During a discrete sequence of time-step, the agent
improves its policy π : S → P(A), which represents
its behaviour in the environment, where P(A) is a
probability distribution among the global set of ac-
tions. The objective of the policy improvement pro-
cedure is to find the optimal policy π∗, defined as the
policy that maximize the expected discounted return
E[gt] = E[

∑∞
k=0 γ

krt+k], where γ ∈ [0, 1].

The core assumption to model the RL framework as
a MDP is that the state observed by the agent com-
pletely represents the useful information about the
environment. In a real application, the Markovian as-
sumption is relaxed in favor of a ”quasi-Markovian”
condition because the agent can not observe the com-
plete representation of the environment: the state
observed by the agent approximates the actual state
(Sutton and Barto, 1998). To apply the RL frame-
work to a real environment, the quasi-Markovian ap-
proximation is not a negligible assumption: the sig-
nals that compose the observed state have to be care-
fully chosen. This work follows the approach of Ru-
elens et al. (2015), where the observed state is an
array composed of past and current data. A similar
solution has been proposed by Zhang et al. (2018),
where the last 3 historical values of each signal is
included in the observed state. Conversely, the argu-
ments about the quasi-Markovian state are discarded
in Wei et al. (2017), where it is assumed that the fu-
ture internal air temperature dynamics is completely
determined by actual signals about time, solar radia-
tion, outdoor air temperature and indoor air temper-
ature. The state observed by the RL agent studied in
this work is reported in Table 4.

The objective of the RL algorithm applied to the
HVAC control system is to save energy while satisfy-
ing comfort constraints. The translation of the learn-
ing objective into the reward function has to take into
account a trade-off between the two components of

Table 4: State observed by the agent during the RL
time-step t, where (t) actual time-step; (t±4) 4 time-
step before/forecast; Tin zone internal air temperature
of the zone; Tsend delivery air temperature.

Signal Name Signals observed
Season, Weekday

t
time-step of the day

Electric cost, Solar radiance,
t, t− 4

Gas cost
External air temperature t, t+ 4

Tin Bakery, Tin Deli
t, t− 4Tin Dry Storage, Tin Office

Tin Produce, Tin Sales
Humidity Sales, Tsend Sales t, t− 4

comfort and primary energy consumed. In this work
the comfort constraint is defined as an acceptable in-
terval on the internal air temperature [Tb, Tb], where

Tb and Tb depend on the season of the actual time-

step. The interval [Tb, Tb] is fixed to [16◦C, 19◦C]
for winter and [23◦C, 25◦C] for summer (Stefanutti,
2001). Here, the reward at each time-step rt is de-
fined as the sum rt = rA + rB of the two components
of cost rA and comfort rB :

rA := −λc

rB :=

{
0 if Tin ∈ [Tb, Tb]
− exp(p) otherwise

(1)

where c is the sum of the electric energy and thermal
energy costs at each time-step, p = max(Tb−Tin, 0)+

max(Tin − Tb, 0) is the constraint penalization factor
and λ is a trade-off parameter between the comfort
and the cost component. The exponential function
applied on p accounts for the greater importance of
the comfort component as the temperature exceed the
comfort constraints.

In a real application, it needs to be established a
method to evaluate the comfort in the controlled zone
to tune the λ trade-off parameter. A tuning criterion
can be defined by regarding the comfort constraint as
a stochastic constraint. The idea is that given a tem-
perature T and an exceeding value ∆T , the agent can
exceed the temperature T +∆T only with a bounded
probability for each hour of the day. Formally, to de-
fine the stochastic constraint, first compute the em-
pirical probability density function (empirical pdf) of
the internal air temperature values Tin registered for
each hour of the day. An example of such densities
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Table 5: stochastic constraint for λ parameter tuning
divided by each season.

Winter Summer
mE<16 < 20% mE>25 < 20%

mE<15.5 < 8% mE>25.5 < 8%

mE<15 < 3% mE>26 < 3%

for different control systems is showed in Figure 1.
For each hour h of the day, let Eh be the probability
that Tin exceeds the lower temperature Tb for win-

ter and the upper temperature Tb for summer. The
stochastic constraint is defined in terms of the max-
imum exceeding probability over all the hours of the
day, mE<16 for winter and mE>25 for summer. In
addition, mE<15.5, mE<15 for winter and mE>25.5,
mE>26 for summer can be defined. The set of con-
ditions assumed for the stochastic constraint are re-
ported in Table 5.

The RL algorithm improves continuously its policy
by collecting information about the environment dy-
namics. The information collected are summarized
by a set of transitions, that is, a set of tuples T =
{(st, at, rt, st+1)}t. The expected value of the return
obtained by starting in a state s, choosing an action a
and following a policy π is called q-function qπ for the
policy π: qπ(st, at) = Eπ

[
gt | st, at

]
. The agent’s Q-

function Qπ is the approximation of qπ in every pair
(s, a). The optimal policy π∗ satisfies the Bellman
optimality equation:

q∗(st, at) = Eπ∗

[
rt + γmax

at+1

q∗(st+1, at+1)− q∗(st, at)
]

(2)
From equation (2) descends the Q-learning algorithm,
first proposed by Watkins (1989): after a transition
(st, at, rt, st+1), the Q-function is updated by means
of the equation (3):

σ
(1)
t = rt + γmax

at+1

Qπ(st+1, at+1)

Qπ(st, at)← (1− α)Qπ(st, at) + ασ
(1)
t . (3)

where α ∈ [0, 1] is the learning-rate. Multi-step meth-
ods are introduced to improve the Q-function approx-
imation of Q-learning. (Sutton and Barto, 1998). Af-
ter having observed K consecutive transitions, the
Multi-step Q-learning algorithm is characterized by
the following update formula:

σ
(K)
t =

K−1∑
k=0

γkrt+k + γK max
at+K

Qπ(st+K , at+K)

Qπ(st, at)← (1− α)Qπ(st, at) + ασ
(K)
t . (4)

In practice, the application of RL to HVAC control
needs a non-linear regression algorithm because of the
great dimension of the state space, together with the
complexity and non-linearity of the building dynam-
ics. The algorithm analysed in this work is Fitted
Q-Iteration (FQI), developed firstly by Ernst et al.
(2005), where the regression is computed by means of

Algorithm 1.1: Fitted Q-Iteration algorithm

Initialize Q̂0 = 0; day N = 0, transitions set B ← ∅.
for day N ≤ Nmax do

for time-step t of day N do

Acquire transition bt,N using Q̂N ;
B: Append bt,N

end
Set Input I ← ∅; Response R ← ∅;
for transition bj ∈ B do

Compute yj relative to bj with equation (5);
I: Append (sj , aj);
R: Append yj ;

end

Train Q̂N on the input-response pair: (I,R)
end

Outputs a Q̂Nmax approximator.

the Extremely Randomized Tree (Geurts et al., 2006).
FQI is called a batch-mode RL algorithm, because it
processes a transitions set in batch. FQI assumes that
a buffer of past transitionsB = {(sj , aj , rj , sj+1))}j≤t
has been collected, where t is the current time-step.
Then it iterates the regression to the set of transitions
in order to improve the accuracy of the Q-function
approximation Q̂. For each transition bj ∈ B, the
regression procedure uses a response variable value
yj . While in the original FQI the response yj is de-
rived from Q-learning, in this work yj is derived from
Multi-Step Q-learning:

yj =

K−1∑
k=0

γkrj+k + γK max
aj+K

Q̂N−1(sj+K , aj+K) (5)

where Q̂N−1 is the approximator obtained at the pre-
ceding step of the iteration. Finally, the Q̂N approx-
imator is used to derive a new policy and acquire
new transitions. The variant of FQI is called Multi-
Step FQI, or MS-FQI, and the training pseudo-code
is summarized in box 1.1. The MS-FQI is coupled
with is the ε-greedy policy in order to explore the
environment (Sutton and Barto, 1998). This policy
requires the agent to choose with probability 1 − ε
the action with the maximum estimated Q-value and
with probability ε a random action.

Simulation framework

The complete simulation framework comprises the
building model, the communication interface and the
RL framework. The two supermarket models has
been developed using EnergyPlus 8.5. The communi-
cation interface is implemented by the Building Con-
trols Virtual Test Bed 1.5.0, abbreviated BCVTB
(Wetter, 2011). The RL framework is made up of
the environment and the agent components.

The environment is compatible with the OpenAI
Gym framework (Brockman et al., 2016). After re-
ceiving the simulated physical signals from the En-
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Figure 1: Example of the temperature reached by the MS-FQI-1 (red) and PI-Const-15 control (green) in the
working day of the winter testing period ( Results paragraph). The areas show the empirical pdf of the Sales
zone temperature, during the opening time, grouped by hour of the day.

ergyPlus model, it generates the state observed by
the agent by adding the past and forecast signals val-
ues, according to the Table 4. Then, the environment
is in charge of restricting the set of action the agent
can choose among. Furthermore, the environment re-
ceives the chosen action of the agent, it translates the
action into a set-point and it sends back the set-point
to the EnergyPlus model using the BCVTB interface.
The simulation time-step of EnergyPlus is set to 5
minutes, while the delta-time between two consecu-
tive RL time-step is fixed at 15 minutes. Differently
from the other works of Ruelens et al. (2015) and Wei
et al. (2017), the global set of actions available to the
agent depends on the actual time of the day and on
the actual season. The agent has a predefined set of
action available on each season, that comprehends a
only-ventilation action. In addition, the agent is al-
lowed to choose a switch-off action before the opening
time of the Sales zone, to achieve energy saving. The
agent is in charge of choosing the action at each time-
step and updating the Q-function approximation at
the end of each episode. In the simulation analyzed,
an episode is described as a day of activity of the
supermarket, between the 8:30 a.m. and the closing
time of that day.

Results

To demonstrate the performance of RL on retrofit
applications some results are presented about simula-
tions performed using the two modified supermarket
models described before. The simulations cover two
years, specifically from the 1st January 2016 to the
30th December 2017. The first year of each simula-
tion is called training period, while the second year is
called the testing period. The analysis of the simula-
tions performed comprises only the testing period.

The baseline is defined using RBC control with con-

stant seasonal set-point together with the PI control.
The tuning of the baseline set-point follows the cri-
terion of the stochastic constraint in Table 5. To ac-
complish the constraint requirements, the set-point
of the RBC is fixed to 24◦C for summer and 16.5◦C
for winter. The turn-on time of the HVAC system
for the baseline is varied in order understand better
the PI control behaviour with respect to the comfort
and energy saving objectives. Therefore, the control
named PI-Const-30 turns on the HVAC at the 8:30
a.m. of each day, i.e. 30 minutes before the opening
time of the Sales zone, PI-Const-15 15 minutes before
and PI-Const-0 turns on the plant at 9:00 a.m.

The RL agent using the Multi-Step Fitted-Q-
Iteration algorithm is called MS-FQI-λ, depending on
the λ parameter used in the reward function. In par-
ticular, λ is varied within the set {0.1, 1, 2}. The
multi-Step parameter K is fixed to 10 and the dis-
count factor γ = 0.8. The actions available to the
MS-FQI are a discrete set of actions. Specifically,
during winter the agent can choose from the set-point
of 15◦C to the set-point of 18◦C, with a step of 0.5◦C
(i.e. 15◦C, 15.5◦C, 16◦C and so on). During summer,
the MS-FQI is allowed to choose from the set-point
of 24◦C to 26◦C, with a step of 0.5◦C. The ε pa-
rameter of ε-greedy policy is linearly decreased from
1.0 to 0.02 during each RL time-step of the first 6
months of the training period, while is kept constant
from that time-step on. The agent concentrates the
greatest exploration during the training period while
a little exploration is kept during the testing phase to
continuously improve the policy.

To compare the simulations, two metrics are defined.
The consumption metric is expressed in primary en-
ergy consumed during each season of the testing
period, expressed in kWh/m2. The maximum ex-
ceeding quantities mE used previously to define the
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Table 6: Comparison of the results for climate zone B, testing period.

Control
Cons winter mE winter (%) Cons summer mE summer (%)
(kWh/m2) < 16◦ < 15.5◦ < 15◦ (kWh/m2) > 25◦ > 25.5◦ > 26◦

PI-Const-30 24.99 0.91 0.00 0.00 40.54 7.45 2.03 0.36
PI-Const-15 24.47 0.45 0.00 0.00 40.03 7.51 1.85 0.28

PI-Const-0 25.28 0.56 0.01 0.00 41.21 15.81 14.04 12.39
MS-FQI-0.1 27.17 3.41 0.63 0.08 40.23 7.30 1.70 0.25
MS-FQI-1 20.92 2.36 0.09 0.00 39.12 15.33 5.59 1.32
MS-FQI-2 19.51 7.71 0.85 0.21 38.92 16.60 6.31 1.61

Table 7: Comparison of the results for climate zone E, testing period.

Control
Cons winter mE winter (%) Cons summer mE summer (%)
(kWh/m2) < 16◦ < 15.5◦ < 15◦ (kWh/m2) > 25◦ > 25.5◦ > 26◦

PI-Const-30 34.89 18.49 7.77 2.37 35.17 11.76 4.76 1.80
PI-Const-15 33.57 18.08 7.68 2.36 34.90 13.79 5.78 2.19

PI-Const-0 32.61 18.28 8.11 3.01 35.41 34.88 27.25 21.63
MS-FQI-0.1 33.94 9.48 3.12 0.89 35.06 12.69 5.08 2.20
MS-FQI-1 31.56 14.69 6.60 2.50 34.94 14.72 5.42 2.17
MS-FQI-2 30.38 17.40 7.96 3.01 34.38 16.85 5.81 2.14

stochastic constraint are the comfort metric. As an
example, refers to Figure 1: for each hour h, the area
below 16◦C is Eh<16. The maximum over all the hours
is the comfort measure mE<16 (mE = maximum ex-
ceeding). For both the control systems, the max value
is reached during 8 p.m. The MS-FQI-1 keeps a lower
temperature than the PI-Const-15 but it remains in
the comfort bounds, thus reducing the primary en-
ergy consumption. The area above 19◦C is due to
mid-season temperatures and because the HVAC is
in heating mode during winter.

The results of the simulations are reported in Table
6 and Table 7 respectively for climate zones B and
E. The results show that the performance of the PI-
Const control systems vary with respect to the turn-
on time-step. This demonstrates that the turn-on
time is critical to fulfil the comfort constraints. The
PI-Const-0 exceeds the stochastic constraint, while
the other two baselines meet the thermal comfort re-
quirements. The PI-Const-15 is chosen as best base-
line because of better primary energy consumption.

The MS-FQI-λ agents satisfy the stochastic con-
straint. Note that during winter the mE values are
greater for climate zone B while are smaller for cli-
mate zone E with respect to the three baselines. The
MS-FQI-2 achieves a better energy saving for both
the climate zones. Considering the overall testing pe-
riod, it achieves an energy saving of 9.4% and 5.4%
with respect to PI-Const-15, respectively for climate
zone B and E. Overall, the savings obtained by the
agent are higher for winter (20.3% zone B; 9.5% zone
E), than for summer (2.8% zone B; 1.5% zone E).

Discussion

The overall results obtained for both climate zones
are comparable with the primary energy saving ob-
tained by Ruelens et al. (2015), even though their ex-
periments used a very simplified thermal model. Fur-
thermore, the RL agent is trained only for 12 months,

differently from the previous work of Wei et al. (2017),
where the training period consisted of 100 months.

The analysis performed shows that an RL control is
a viable solution for retrofitting, specifically where
design values are not sufficient anymore to guaran-
tee thermal comfort requirements, because of degra-
dation of HVAC system or change in building des-
tination. In addition, reductions of the energy re-
quests can have the same effect of over-sizing of the
HVAC system, so it causes worsening of the control
efficiency, for example after increasing thermal insu-
lation of the envelope. In this case an adaptive algo-
rithm like RL can reach greater savings with respect
to an RBC control tuned for the original designated
use and climate zone. As RL control learns by interac-
tion with environment, it can achieve savings in every
climate zone. To maximize energy saving and obtain
near-optimal control, a re-tuning of the λ trade-off
parameter should be taken into account when chang-
ing climate zone. An interesting improvement over
the studied algorithm regards the reduction of the
training period, which here consisted of 12 months.
The reduction can be directed by an informed explo-
ration policy, different from the ε-greedy used in the
reported simulations, or by a pre-training phase in
a simulated environment, as suggested by Wei et al.
(2017). Model simulations do not account for noisy
signals that can affect the performance of each con-
trol.An example is the weather forecast, which is as-
sumed to be exact in the simulations performed while
it is affected by error in common working conditions.
More investigations are needed to assess the robust-
ness of the RL control when receiving noisy obser-
vations and the adaptability with respect to varying
climate zones and weather conditions. A first analy-
sis of a retrofitting application of the RL framework
on a real site showed promising results in terms of
primary energy saving.
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Conclusions

This work studied the performance of a RL algorithm
with respect to state-of-the-art RBC control system
in a realistic scenario, represented by two building
models based on the Supermarket Reference Building
provided by DOE. The overall results show that the
the RL algorithm achieves 9.4% and 5.4% of primary
energy saving respectively in climate zone B and E,
while guaranteeing the same thermal comfort of RBC
control. The same algorithm is applied as it is to dif-
ferent climate zones, without any tuning phase. This
is an example of the scalability of the RL approach to
different buildings. The research in ML offers oppor-
tunities to study and test new algorithms as building
energy management systems. This study is a step
forward to the application of one machine learning
algorithm as a scalable solution for retrofitting.
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