
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

PowTrAn: an R Package for Power Trace Analysis / Ardito, Luca; Torchiano, Marco; Coppola, Riccardo; Antoniol, Giulio.
- In: SOFTWAREX. - ISSN 2352-7110. - ELETTRONICO. - 12:(2020), pp. 1-9. [10.1016/j.softx.2020.100512]

Original

PowTrAn: an R Package for Power Trace Analysis

Publisher:

Published
DOI:10.1016/j.softx.2020.100512

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2824612 since: 2020-10-22T16:50:15Z

Elsevier

SoftwareX 12 (2020) 100512

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PowTrAn: An R Package for power trace analysis
Luca Ardito a,∗, Marco Torchiano a, Riccardo Coppola a, Giulio Antoniol b
a Control and Computer Engineering Department, Politecnico di Torino, Italy
b Département de Génie Informatique et Génie Logiciel, École Polytechnique de Montréal, Canada

a r t i c l e i n f o

Article history:
Received 31 January 2020
Received in revised form 12 May 2020
Accepted 14 May 2020

Keywords:
Energy consumption
Power trace analysis
R language

a b s t r a c t

Energy efficiency is an increasingly important non-functional property of software, especially when it
runs on mobile or IoT devices. An engineering approach demands a reliable measurement of energy
consumption of software while performing computational tasks. In this paper, we describe PowTrAn,
an R package supporting the analysis of the power traces of a device executing software tasks. The
tool analyzes traces with embedded markers, a non-invasive technique that enables gauging software
efficiency based on the energy consumed by the whole device. The package effectively handles large
power traces, detects work units, and computes correct energy measures, even in noisy conditions,
such as those caused by multiple processes working simultaneously. PowTrAn was validated on
applications in realistic conditions and multiple hardware configurations. PowTrAn also provides data
visualization that helps the user to assess the measurement consistency, and it also helps to highlight
possible energy outliers.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v01
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_25
Code Ocean compute capsule https://codeocean.com/capsule/0198017
Legal Code License GNU GPLv3.0
Code versioning system used git
Software code languages, tools, and services used R, Java
Compilation requirements, operating environments & dependencies Java 1.8+, R
If available Link to developer documentation/manual https://github.com/SoftengPoliTo/powtran
Support email for questions marco.torchiano@polito.it

1. Motivation and significance

A software program consists of a sequence of instructions
that are run on an underlying hardware [1]. A device consumes
energy due to the software it executes. Energy consumption can
be considered as a non-functional requirement during software
inception phase or as a property to be measured and moni-
tored in production phase. For portable devices, such as laptops,
tablets, and smartphones, energy consumption impacts battery

∗ Corresponding author.
E-mail addresses: luca.ardito@polito.it (L. Ardito),

marco.torchiano@polito.it (M. Torchiano), riccardo.coppola@polito.it
(R. Coppola), antoniol@ieee.org (G. Antoniol).

life, resulting in a possible degradation of user experience [2],
thus some users may prefer energy frugal application over a
power-hungry one. In other domains, such as data centers or
computing-intensive devices (e.g., those implemented by Bitcoin
miners [3]), energy consumption increases electricity costs, which
leads to a negative environmental impact. Challenges with mea-
suring and reducing energy consumption are often addressed in
an ad-hoc manner, as exemplified in Mochocki et al. [4].

While energy consumption can be estimated, through a bat-
tery discharge or CPU load data, an accurate evaluation must
be based on physical measurements that can be linked to the
software in real-time or offline. We developed a software pack-
age called PowTrAn (i.e., POWer TRace ANalyzer) that utilizes an
offline approach for the collection of task-related data in power

https://doi.org/10.1016/j.softx.2020.100512
2352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

https://doi.org/10.1016/j.softx.2020.100512
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100512&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_25
https://codeocean.com/capsule/0198017
https://github.com/SoftengPoliTo/powtran
mailto:marco.torchiano@polito.it
mailto:luca.ardito@polito.it
mailto:marco.torchiano@polito.it
mailto:riccardo.coppola@polito.it
mailto:antoniol@ieee.org
https://doi.org/10.1016/j.softx.2020.100512
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512

Fig. 1. The energy study workflow as adapted from [5].

traces registered by a power meter. The data collected is used
by different measurement devices, such as the HOBO UX120-018
Plug Load Data Logger1 or RAPL.2

When performing a physical power measurement on a device,
discriminating the consumption due to the software under ex-
amination from other processes simultaneously running on that
device is crucial. In practice, to gauge the energy consumption
of an application while performing a specific task, it is necessary
to identify the proportion of the power attributable to the task,
which entails the following approach:

1. collecting energy data (i.e., energy traces),
2. identifying the relevant regions in the trace, (i.e., when the

application or task was running),
3. estimate the application or task consumption, by separat-

ing it from the background contributions from the operat-
ing system and other applications.

This procedure requires a precise methodology to reconcile
the physical power measures with the task execution timing.
The approach supported by the software described in this paper
consists of generating distinctive features in the power traces
to markup the task execution. Although other approaches are
possible, such as time synchronization, the use of markups is
straightforward, precise, and does not require additional instru-
mentation.

This paper has four main goals: (i) describe the PowTrAn
software and how it leverages offline power trace analysis, (ii)
compare PowTrAn to other existing frameworks for power anal-
ysis and how they solve several known problems in power trace
analysis, (iii) describe how the software integrates into an analy-
sis workflow within the R ecosystem, and (iv) provide examples
of utilization of the software with real-world algorithms.

2. Background and related work

To better illustrate the role of PowTrAn, we first provide con-
text in terms of a power assessment reference workflow, adapted
from [5]. As shown in Fig. 1, it encompasses four phases: (i) Goal,
a definition of the research questions and context, (ii) How, a
definition of the procedure, measurement method, and analysis
method, (iii) Do, the setup of the devices and execution of the
measurement, and (iv) Analyze, the analysis of the data. The latter
phase includes three main activities:

• Pre-processing and data reduction: the power traces need to
be pre-processed and reduced in size before being analyzed.

1 https://www.powermeterstore.com/product/hobo-data-loggers-ux120-018-
plug-load-data-logger Last Visited: 14/04/2020.
2 https://01.org/rapl-power-meter Last Visited: 14/04/2020.

• Statistical analysis: the software uses reduced and pre-
processed data to perform conventional statistical analysis.

• Present and package the results: after the results from the
statistical analysis are available, they must be presented as
diagrams and tables and packaged into a technical report.

PowTrAn was designed to fit in the energy assessment work-
flow and support the pre-processing activities. In particular, it
takes care of several tasks:

• Reconciliation: the power trace must be combined with the
information about the task timings,

• Task identification: the portion of the reconciled power
trace that corresponds to the task executions must be iden-
tified;

• Reference identification: a reference value for the back-
ground tasks must be identified to offset the task consump-
tion,

• Reduction: the size of the collected data is reduced for
subsequent analyses because a single energy assessment
experiment can obtain millions of samples.

For a non-invasive power measurement, the power consump-
tion trace must be reconciled to the intervals when the tasks
under consideration are performed. The reconciliation process
can utilize two approaches:

1. synchronize the system clocks of the device running the
measured software with the measurement device that col-
lects the trace samples, and

2. instrument the code to add distinctive patterns to mark
each task execution.

The clock synchronization requires accurate time synchroniza-
tion between the device under test and the measurement device
so that only the consumption related to the relevant tasks is
recorded. This synchronization can be achieved using NTP (net-
work time protocol) [6], and while this solution can be simple, it
requires both devices to be connected at least to a LAN to reach
the NTP server. Moreover, the precision of the synchronization
might not be enough for power measurement purposes, espe-
cially for short-running tasks, as NTP has been observed to allows
errors of up to 100 ms, mainly due to network congestion [7].

The second approach enables the association of the consump-
tion to a Software Under Test (SWUT) without clock synchroniza-
tion, but simply adding markers in the SWUT as described, in
Section 3.1.

We developed PowTrAn to address this specific use case by
following these guidelines:

• Open-source: the software must be made available to the
research community and researchers,

https://www.powermeterstore.com/product/hobo-data-loggers-ux120-018-plug-load-data-logger
https://www.powermeterstore.com/product/hobo-data-loggers-ux120-018-plug-load-data-logger
https://01.org/rapl-power-meter

L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512 3

Table 1
A comparison of power consumption analysis approaches.
Software Open source Non-invasive Physical meas. Integrated

Atitallah et al. [9] No Yes No No
Pycoolr [10] Yes No Yes Yes
MuMMi [11] No No No No
Eprof [12] No No No No
Banerjee et al. [13] No Yes Yes No
Joulemeter [14,15] Yes Yes No No
SES [16] No No Yes No
Power-Sleuth [17] Yes Yes No No
PSAT [18] Yes Yes Yes No
DOME [19] No Yes Yes No

PowTrAn Yes Yes Yes Yes

• Non-invasive: the software must require neither heavy in-
strumentation of the software under measurement nor pres-
ence of additional processes on the hardware device execut-
ing the software,

• Real measurement: the software must analyze actual phys-
ical measures of power consumption instead of estimates,

• Integration: the software must be part of statistical or com-
puting environment and easily integrated into a robust sta-
tistical environment to enable researchers to perform fur-
ther analysis and produce suitable visualizations.

The development intention is for PowTrAn to be the first step in
an integrated analysis workflow.

PowTrAn is developed in R, a software environment for data
analysis, manipulation, and visualization. R provides many pack-
ages for handling data of varied characteristics and sources [8]. To
the best of our knowledge, PowTrAn constitutes the first effort in
developing a power trace analyzer that leverages the R language
and addresses non-invasive marker-based pre-processing. The
choice of R is due to its popularity as an environment among
scientists for performing data analysis. R is also widely used
for big data, as it is easy to parallelize and interacts well with
many other languages. Moreover, R provides excellent graphical
capabilities that can be harnessed to produce control charts and
assess the overall quality of the collected measures.

Many techniques to estimate and optimize the power con-
sumption of applications and devices are described in the liter-
ature, and cover multiple levels of abstraction, from the electrical
to functional levels. Lower-level techniques, even if more precise,
require specific equipment and knowledge.

While the related software packages do present some of the
detailed characteristics, none featured them all. Table 1 compares
the available software packages with PowTrAn.

Pycoolr [10] is a monitoring and controlling software capable
of sampling per-CPU core temperatures and CPU/DRAM con-
sumption. Based on the Intel RAPL interface to take measure-
ments, it outputs results in the JSON format for later analysis.
The integration of Pycoolr in Python allows the usage of statistical
libraries, like Panda or Mlpy to review the results. MuMMi [11] is
an infrastructure for systematic measurements, built upon three
existing frameworks of Prophesy (for performance modeling and
prediction), PAPI (for hardware performance monitoring), and
PowerPack (for power measurement and profiling). Eprof [12] is
one of the first fine-grained off-device energy profiling software
packages for Windows and Android mobile applications. Banerjee
et al. [13] described a software that profiles the energy footprint
of Android apps for finding energy anomalies. Atitallah et al. [9]
provided a power trace analyzer to estimate power consumption
and aid embedded software design, built on IP-XACT hardware
descriptions. Naumann et al. [20] described a conceptual refer-
ence model for sustainable software, named GREENSOFT, that

supports stakeholders involved in software development (e.g., de-
velopers, administrators, and users) in creating, maintaining, and
using the software from a green perspective. The model covers,
for each stakeholder, a model of the life cycle, power metrics,
procedure models, recommendations, and software.

The ‘‘self-metering’’ approach presented in [21,22], and [23]
builds individualized online power models of smartphones. This
action is possible if the device can read the online voltage and
current values from its built-in battery interface. The primary
limitation of the approach is the impossibility of incorporating
current sensing to many smartphones.

Joulemeter [14,15] models the energy consumption of mem-
ory, CPU, disk, and other components of a device, based on
resource utilization. SES [16] is an energy monitoring software
that collects energy consumption data with a cycle-by-cycle res-
olution, mapping each to the program structure. SES requires
an extra module composed of measurement circuits, a profile
controller, and an acquisition memory. Therefore, only certain
embedded systems can use SES.

An example of a dynamic power management technique is
Power-Sleuth [17] that fully describes the behavior of a software.
In this work, the authors, instead of correlating power with
events, developed a model that investigates the source of power
consumption directly. Power-Sleuth locates program phases by
using the ScarPhase library [24] to detect and classify each soft-
ware phase.

Finally, DOME [19] is an evolution of PSAT [18], an open source
Matlab and GNU/Octave-based software package for analysis and
design of small- to medium-sized electric power systems. DOME
is written in Python, and can parse data files to perform power
flow analysis. The software is not open source.

All these related software collect and analyze power consump-
tion data at various levels. PowTrAn is an open source library
that addresses a specific use case (marker-based reconciliation);
it can be included in any software-chain that collects and analyzes
energy data.

3. Software description

The PowTrAn R package3 consists of roughly 800 lines of R
code and can be installed through the commands shown in Listing
1.

Listing 1: The code to install the PowTrAn package.
install.packages(" devtools ")
library(devtools)
install_github(" SoftengPoliTo/powtran ")

Through the PowTrAn package, the procedure to analyze a
power trace consists of the following steps:

• process the power trace with the extract.power function,
• perform a visual assessment using the control chart,
• analyze the energy values to assess the task under observa-

tion.

3.1. Trace markers

The technique adopted for identifying the task trace consists
of generating one marker before and after the task.

This marker is a square impulse generated through a sequence
of sleep, busy, and sleep. The busy phase is produced by gen-
erating a 100% utilization of the core. The two sleep phases are
obtained by injecting a sleep period to keep the core idle, thus

3 Code available on GitHub: https://github.com/SoftengPoliTo/powtran. So far,
the package is not available on CRAN.

https://github.com/SoftengPoliTo/powtran

4 L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512

causing a minimum power consumption. The tailing energy can
substantially impact the measurement, and, as suggested in [25],
the final sleep, before running the task, can be long, such as a
couple of minutes. For this reason, the sleep time could be longer
than the busy time. However, in our examples, we assume that
1 s is sufficient for allowing the tail energy to disperse.

The marker is generated using the fragment of Java code
shown in Listing 2, which is designed to work on multi-core
architectures. The code generates one busy thread for each CPU
and lets each CPU work for the given marker duration.

Listing 2: The code excerpt for marker generation written in the
Java language.
final static int N_THREADS =

Runtime.getRuntime().availableProcessors();
private static void generateMarker(long markerLength)

throws InterruptedException {
//SLEEP
Thread.sleep(markerLength);
// BUSY
final long endBusy = System.currentTimeMillis() + markerLength;
final Thread[] ts = new Thread[N_THREADS];
Runnable busy = ()->{ // Busy code

while(endBusy>System.currentTimeMillis()){
for(int i=0; i<markerLength;++i){ }

}};
Arrays.setAll(ts, t -> new Thread(busy, " PowTrAn " +t));
for(Thread t : ts) t.start(); // start busy threads
for(Thread t : ts) t.join(); // wait for all busy threads
// SLEEP
Thread.sleep(markerLength);

}

As mentioned above, markers are placed before and after each
execution of the observed task, so in practice, a marker separates
two tasks.

3.2. Extract.power function

The starting point of the analysis process is a power trace
(e.g., a vector data comprised of numeric values). The primary
function of the package, extract.power processes the power
trace, and produces the results with its prototype shown in List-
ing 3), .

Listing 3: The extract.power function prototype.
library(powtran)
res <- extract.power(data, # samples

t.sampling , # sampling period
N, # num. repetitions (30)
marker.length, # marker step duration
baseline # method for baseline computation

)

This function requires the following arguments:

• data: the power trace collected using any power monitor,
• t.sampling: the sampling period used to collect the trace,
• N: the number of task repetitions in the trace,
• marker.length: the expected width of the marker pulse,
• baseline: the method used to compute the baseline

power, i.e. the background power not linked to the software
under test.

The output of the function includes a table with the energy
consumed by each task repetition, that can be plotted to produce
a control chart or visualized via other PowTrAn functionalities.

Specifically, the output contains the work units that have been
identified within the power trace. The work unit is defined as
an atomic time window during which the execution of the an-
alyzed software is subdivided. For each work unit, the following
information is reported:

• start and end sample index of the work unit,
• duration in seconds,
• real power levels: for the work unit (P.real) and for the

two idle phases preceding and following the work unit
(P.idle.left and P.idle.right),

• effective power (P) and energy (E).

A control chart can be generated starting from the analysis
result to visually assess the results of the analysis using the
standard plot() function provided by the package.

The function performs four steps of pre-processing, including
reconciliation through marker detection (Section 3.5), task iden-
tification of task data (Section 3.4), reference identification, and
size reduction (Section 3.5).

3.3. Marker detection

The first step to enable processing of the power traces requires
reconciling them to the timings of software tasks by detecting the
markers inserted into the power trace.

Two factors are affect the detection of the markers:

• noise makes the detection of the markers edges difficult, and
the measurement of the power level imprecise,

• size increases the complexity of the processing phase,4 and
the appropriate algorithms must be selected carefully. Also,
graphical representations must use a downsampled version
to make the trace discernible and avoid severe performance
issues when using vector formats like PDF.

The procedure to analyze the data is comprised of five steps,
detailed in the following subsections.

3.3.1. Step detection
A preliminary phase of the marker detection consists of iden-

tifying the rising edges of the marker pulses. Any noise present
in the signal produces spurious edges that must be discarded to
detect the markers correctly.

These spurious edges can be removed with a low-pass filter
that eliminates high-frequency noise. However, the typical im-
plementation of a low-pass filter uses an FFT, that provides poor
performance on large-signals, and marker steps can also result in
the Gibbs phenomena [26]. A similar result can be achieved by
considering a moving average that is computationally faster.

The power signal with the embedded markers (see Fig. 2) can
be considered similar to a piecewise constant (PWC) signal [27],
which can be analyzed by piecewise constant smoothing, or as a
level-set recovery. The power trace during the experimental task
is not guaranteed to be constant, so the signal is not precisely
PWC.

Instead, we adopt a level-set recovery approach based on
kernel density estimation using the following procedure:

• estimate the kernel density,
• identify the primary peaks in the density function,
• determine the thresholds between the power level clusters,
• represent the signal as a sequence of level runs.

3.3.2. Identification of markers
Markers can be identified based on three key characteristics:

• any individual marker pulse begins with a rising edge,
• markers must match a repeating pattern, with a set number

of cycles,
• an individual marker pulse has a predefined width that

should be recognizable within a specified level of tolerance.

4 For an experiment that is lasting 1 min, at a sampling rate of 10 kHz, we
get 600k samples.

L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512 5

Fig. 2. The power signal with embedded markers.

Fig. 3. A plot of the adopted periodic function.

The period of the repeating pattern is identified by finding
the maximum of the auto-correlation function [28]. The offset
of the first marker pulse with respect to the beginning of the
power trace is identified by finding the maximum of the cross-
correlation function applied to the trace and an ideal pulse train
with the previously determined period.

Once the periodicity and phase of the trace are determined,
the edges that most likely initiate the marker pulses are identified
by means of a cross-correlation of a periodical function with the
edges, as shown with the relative plot in Fig. 3, defined as:(
1 + cos

(
(x − first) ·

n · 2π
last − first

))2

(1)

3.4. Identification of work units

This task consists of detecting the beginning and end of the
work units within the power trace, by observing the rising edges
of the marker pulses as a reference:

• the beginning of the work unit is estimated to be k marker
pulse widths after the previous edge, where k = 1+

sleeptime
busytime ,

• the end of the work unit is estimated to be one width before
the next edge.

This design decision offers the double advantage of being easy
to implement and avoiding the issue of spurious edges that would
have otherwise hampered solutions based only on edge detec-
tion. A work unit attributable to the task under consideration is
illustrated in Fig. 4.

Fig. 4. A work attributable to the task under consideration.

3.5. Effective power and baseline estimation

After identifying the work units, the power consumed by the
system to conduct the task can be computed and is subject to two
main decisions described in the following.

(1) What is the amount of power ascribed to the program under
test? A first approximation might be that the program consumes
the power recorded during the work unit (or its average). How-
ever, such a value also includes the power consumed by the idle
system. A difference exists between real and effective power,
where the former is a measured value, and the latter is the
portion specifically used for performing a computational task.

The measured power must be compared to a baseline value
that is not directly used for the computational tasks under con-
sideration. Such a baseline power is typically a result of the idle
system or other processes executed concurrently.

As shown in Fig. 4, the baseline power is estimated based
on the power measured during the sleep phases of the markers,
and this can be performed by following several strategies. In
general, local and global estimations can be distinguished by the
following:

• Local: only the sleep phases immediately before and af-
ter the task under consideration are considered, which of-
fers the advantage of offsetting possibly non-constant back-
ground processes,

• Global: all sleep phases enclosing the tasks are considered,
which offers the advantage of filtering local noises by aver-
aging the levels.

6 L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512

Table 2
Alternate strategies for energy computation.
Scope Pros/Cons

Local Discards background processes that are not uniform during
the experiment’s execution time, especially erratic processes
that occur unevenly.

Global Filters measurement noise occurring during the experiment.

Zero Applies the total system power without discerning between
the process under consideration and other background
processes, but is not a precise measurement.

Table 3
The details about the case studies.
Device Algorithm Array size Time [ms] Samples

Raspberry Pi 1A Bubble sort 10k 817 712698
LG Nexus 4 Quick sort 50k 86 3703

The selection of the specific sleep period to consider de-
pends on the behavior of the system. For example, an energy-
demanding task could trigger a frequency scaling [29] that alters
the baseline on the local scale.

In addition to these two strategies, PowTrAn allows using a
zero baseline, i.e., all power consumption is attributed to the
software under test. This option can be applied when a ranking
among the alternatives is the objective of the measurement: as
the precise amount of power consumed by a software to per-
form a task is not relevant, and the goal is to understand which
software is consuming more (see Table 2).

(2) What level of detail must be considered? One option is to
consider all the individual power values recorded in the trace,
while the other is to calculate an average. Because the goal is to
compute the energy (i.e., the integral of power over time), the
basic average is equivalent in terms of the final results and more
efficient in terms of memory resources.

To perform a size reduction on the data, each work unit has
the energy consumed by the task under evaluation computed by:

E = t · (P − Pbaseline). (2)

where t is the task time, P is the average power measured during
the task execution, and Pbaseline is the baseline power correspond-
ing to the power consumption not directly attributable to the task
execution.

4. Illustrative examples and validation

Validation of power analysis software should address the fol-
lowing aspects:

• ability to synthesize the power trace to reduce the data size,
• processing performance,
• potential to assess the quality of the collected data.

To illustrate the issues regarding the analysis of power traces,
we consider two case studies on the two platforms of a Raspberry
Pi 1A and an LG Nexus 4. Both devices use a CPU-based on ARM
architecture. The Raspberry Pi 1A device adopts a single-core 32-
bit CPU running at 700 MHz, and the Nexus 4 utilizes a quad-core
64-bit CPU, running at 1.5 GHz.

Table 3 lists the complete details about these case studies,
which are distinct in many respects, so the resulting energy
data cannot be directly compared. However, these two examples
allow for assessment of how the software behaves in different
conditions.

For both case studies, the task consisted of sorting an array of
integer type elements. Each case applies different algorithms to

Table 4
The results from the analysis (an excerpt of the complete data).
Sample index Power

Start End t P real P baseline P effective E

18136 26282 0.815 2.653 2.417 0.236 0.192
41276 49454 0.818 2.653 2.416 0.236 0.193
64446 72604 0.816 2.654 2.418 0.237 0.194
87596 95759 0.816 2.654 2.418 0.237 0.194
110756 118931 0.818 2.656 2.418 0.239 0.196
133926 142092 0.817 2.654 2.418 0.238 0.194
157086 165255 0.817 2.655 2.418 0.239 0.195
180246 188410 0.816 2.654 2.418 0.238 0.194
203406 211563 0.816 2.654 2.418 0.237 0.194
226556 234721 0.817 2.654 2.418 0.237 0.194

...

perform this computation, specifically a quick sort for the Nexus
4 and bubble sort for the Raspberry Pi. In each experiment, we
repeated the task 30 times, as several repetitions were required
to average measurement errors.

4.1. Synthesis

The results from the analysis of the first case study are re-
ported in Table 4.

Starting from 7.1·105 samples, the PowTrAn analysis produced
a table with the information concerning each of the 30 repetitions
of the measured task, with the first ten are sampled in Table 4.

Every line in the table reports the data synthesized from a
repetition, and includes the following information:

• the start and end index of the specific sample in the se-
quence,

• the task duration, and based on this case with 8146 samples
(from 18136 to 26282) and a frequency of 10 kHz, resulting
in a value of 0.816 s,

• the real power, i.e., is the average power consumption mea-
sured during the execution of the task,

• the baseline power computed for this case has been com-
puted using a local scope, so a slight difference is observed
in each record,

• the effective power computed as the difference between the
above two values,

• the energy consumed to perform the task.

4.2. Performance

PowTrAn demonstrated the processing of one million samples
per second, producing the aggregate data described above. In
practice through our tests, we processed 2.5 min of power traces
per second.

4.3. Quality assessment

Figs. 5 and 6 present the control charts generated by the
package for assessment of the quality of the collected power
trace. Each control chart is divided into two areas:

• the top portion reports a miniature view of the analyzed
trace, where the work units and markers are identified;

• the bottom portion includes four diagrams that report the
results of the analysis, including:

– the top right chart shows the distribution of the aver-
age power detected in the work units, represented in
details with a strip chart and summarized with a box
plot;

L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512 7

Fig. 5. A summary control plot for the Raspberry Pi.

Fig. 6. A summary control plot for the Android Nexus 4.

8 L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512

– the bottom right chart shows the distribution of the
work units durations, using the same visualization as
the previous,

– the bottom left chart shows the distribution of the
energy consumed by each work unit,

– the top right diagram shows power vs. duration, and
also reports the iso-energy curves, which provides an
opportunity to diagnose possible outliers in the results.

This last chart described is also useful consider possible trade-
offs between speed and power. As modern processors scale the
operating frequency automatically to adapt to varying workloads,
the same task executed at a low frequency could last longer and
consume lower power, while the opposite occurs at higher fre-
quencies. We expect two such runs to consume a similar amount
of energy, i.e., to appear approximately on the same iso-energy
line. Thus, these reference lines enable a diagnosis of executions
that consume similar energy for alternate duration vs. power
configurations.

By comparing the two control charts, we observe the follow-
ing:

• the trace for the Raspberry Pi is more regular compared to
the one recorded with the Nexus,

• the distribution of power is narrow and symmetrical for the
Raspberry Pi while it is more dispersed and skewed for the
Nexus,

• the two duration distributions appear similar,
• reviewing the power vs. duration chart, two behaviors are

observed. For the Raspberry Pi, a cloud of data points that
follows the iso-energy lines where, in most cases, a longer
duration corresponds to lower power, thus resulting in ap-
proximately similar energy. For the Nexus 4, a different pat-
tern is observed with a tight cluster of data points and a set
of points scattered around with varying levels of duration
and energy,

• the Raspberry shows a clean symmetric shape in the energy,
while the Nexus energy is highly skewed.

The analysis of the summary control plot represents a crucial
step for evaluating the quality of the power trace and guiding the
following additional analysis.

For example, based on the two plots described above, the
energy consumption values for the program running on the Rasp-
berry Pi are accurate. On the other hand, the values collected on
the Android device are less accurate, so before proceeding with
the analysis of the data, an outlier removal phase must be con-
sidered. While this process of removing outliers is not included
in PowTrAn, the software provides sufficient information about
which data might be reviewed as potential outliers.

5. Impact and conclusions

We presented PowTrAn, an R-based power trace analyzer that
constitutes the first step of an analysis workflow integrated into
the R ecosystem.

PowTrAn represents a novel software package for processing
physical power consumption measurements with offline reconcil-
iation that utilize markups. This paper provided a comprehensive
description of the R package, and the software has already been
applied in previous research, including:

• an analysis of various sorting algorithms, including bubble,
counting, merge and quick sort, that were implemented in
three programming languages (Java, ARM, and C) [30],

• a comparison of different image encoding and decoding
algorithms run on mobile devices [31],

• the creation of a CPU power model for a Single Board Com-
puter [32].

These works demonstrate the applicability of the PowTrAn
package to a variety of application domains. We previously re-
fined the initial ideas concerning the insertion of the markers as
well as the analysis approach during earlier studies [30,31].

We also tested PowTrAn in multiple conditions spanning op-
erating systems, environments, and applications, and we demon-
strated it could produce accurate results even in noisy systems.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Ardito L, Procaccianti G, Torchiano M, Vetró A. Understanding green
software development: A conceptual framework. IT Prof 2015;17(1):44–50.
http://dx.doi.org/10.1109/MITP.2015.16.

[2] Bornholt J, Mytkowicz T, McKinley KS. The model is not enough: Under-
standing energy consumption in mobile devices. In: Proceedings of 2012
IEEE hot chips 24 symposium (HCS). 2012, p. 1–3. http://dx.doi.org/10.
1109/HOTCHIPS.2012.7476509.

[3] Fairley P. Blockchain world - Feeding the blockchain beast if bitcoin ever
does go mainstream, the electricity needed to sustain it will be enor-
mous. IEEE Spectr 2017;54(10):36–59. http://dx.doi.org/10.1109/MSPEC.
2017.8048837.

[4] Mochocki B, Lahiri K, Cadambi S. Power analysis of mobile 3D graphics. In:
Proceedings of the conference on design, automation and test in Europe:
Proceedings. DATE ’06, 3001 Leuven, Belgium, Belgium: European Design
and Automation Association; 2006, p. 502–7.

[5] Ardito L, Coppola R, Morisio M, Torchiano M. Methodological guidelines
for measuring energy consumption of software applications. Sci Program
2019;2019:16. http://dx.doi.org/10.1155/2019/5284645.

[6] Mills D, Martin J, Burbank J, Kasch W. Network time protocol version 4:
Protocol and algorithms specification. RFC 5905, RFC Editor; 2010, URL
http://www.rfc-editor.org/rfc/rfc5905.txt.

[7] Minar N. A survey of the NTP network. 1999, URL http://www.media.mit.
edu/~nelson/research/ntp-survey99/.

[8] R Core Team. R: A language and environment for statistical computing.
Vienna, Austria: R Foundation for Statistical Computing; 2018.

[9] Atitallah YB, Mottin J, Hili N, Ducroux T, Godet-Bar G. A power con-
sumption estimation approach for embedded software design using trace
analysis. In: 2015 41st euromicro conference on software engineering and
advanced applications. 2015, p. 61–8. http://dx.doi.org/10.1109/SEAA.2015.
34.

[10] Ahmed K, Liu J, Yoshii K. Enabling demand response for HPC systems
through power capping and node scaling. In: 2018 IEEE 20th interna-
tional conference on high performance computing and communications;
IEEE 16th international conference on smart city; IEEE 4th international
conference on data science and systems (HPCC/SmartCity/DSS). 2018, p.
789–96. http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00133.

[11] Wu X, Chang H-C, Moore S, Taylor V, Su C-Y, Terpstra D, et al. Mummi:
multiple metrics modeling infrastructure for exploring performance and
power modeling. In: Proceedings of the conference on extreme science and
engineering discovery environment: Gateway to discovery. ACM; 2013, p.
36.

[12] Pathak A, Hu YC, Zhang M. Where is the energy spent inside my app?: fine
grained energy accounting on smartphones with eprof. In: Proceedings of
the 7th ACM European conference on computer systems. ACM; 2012, p.
29–42.

[13] Banerjee A, Chong LK, Chattopadhyay S, Roychoudhury A. Detecting energy
bugs and hotspots in mobile apps. In: Proceedings of the 22nd ACM
SIGSOFT international symposium on foundations of software engineering.
ACM; 2014, p. 588–98.

[14] Sinha A, Chandrakasan AP. JouleTrack-a Web based tool for software
energy profiling. In: Proceedings of the 38th design automation conference
(IEEE Cat. No.01CH37232). 2001, p. 220–5.

[15] Kansal A, Zhao F, Liu J, Kothari N, Bhattacharya AA. Virtual machine power
metering and provisioning. In: Proceedings of the 1st ACM symposium on
cloud computing. SoCC ’10, New York, NY, USA: Association for Computing
Machinery; 2010, p. 39–50. http://dx.doi.org/10.1145/1807128.1807136.

http://dx.doi.org/10.1109/MITP.2015.16
http://dx.doi.org/10.1109/HOTCHIPS.2012.7476509
http://dx.doi.org/10.1109/HOTCHIPS.2012.7476509
http://dx.doi.org/10.1109/HOTCHIPS.2012.7476509
http://dx.doi.org/10.1109/MSPEC.2017.8048837
http://dx.doi.org/10.1109/MSPEC.2017.8048837
http://dx.doi.org/10.1109/MSPEC.2017.8048837
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb4
http://dx.doi.org/10.1155/2019/5284645
http://www.rfc-editor.org/rfc/rfc5905.txt
http://www.media.mit.edu/~nelson/research/ntp-survey99/
http://www.media.mit.edu/~nelson/research/ntp-survey99/
http://www.media.mit.edu/~nelson/research/ntp-survey99/
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb8
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb8
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb8
http://dx.doi.org/10.1109/SEAA.2015.34
http://dx.doi.org/10.1109/SEAA.2015.34
http://dx.doi.org/10.1109/SEAA.2015.34
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00133
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb11
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb12
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb13
http://dx.doi.org/10.1145/1807128.1807136

L. Ardito, M. Torchiano, R. Coppola et al. / SoftwareX 12 (2020) 100512 9

[16] Shin D, Shim H, Joo Y, Yun H-S, Kim J, Chang N. Energy-monitoring
tool for low-power embedded programs. IEEE Des Test 2002;19(4):7–17.
http://dx.doi.org/10.1109/MDT.2002.1018129.

[17] Spiliopoulos V, Sembrant A, Kaxiras S. Power-sleuth: A tool for inves-
tigating your program’s power behavior. In: Proceedings of the 2012
IEEE 20th international symposium on modeling, analysis and simulation
of computer and telecommunication systems. MASCOTS ’12, USA: IEEE
Computer Society; 2012, p. 241–50. http://dx.doi.org/10.1109/MASCOTS.
2012.36.

[18] Milano F. An open source power system analysis toolbox. IEEE Trans Power
Syst 2005;20(3):1199–206.

[19] Milano F. A python-based software tool for power system analysis. In:
2013 IEEE power energy society general meeting. 2013, p. 1–5.

[20] Naumann S, Dick M, Kern E, Johann T. The GREENSOFT model: A reference
model for green and sustainable software and its engineering. Sus-
tain Comput: Inform Syst 2011;1(4):294–304. http://dx.doi.org/10.1016/j.
suscom.2011.06.004, URL http://www.sciencedirect.com/science/article/pii/
S2210537911000473.

[21] Dong M, Zhong L. Self-constructive high-rate system energy modeling for
battery-powered mobile systems. In: Proceedings of the 9th international
conference on mobile systems, applications, and services. MobiSys ’11,
New York, NY, USA: Association for Computing Machinery; 2011, p.
335–48. http://dx.doi.org/10.1145/1999995.2000027.

[22] Jung W, Kang C, Yoon C, Kim D, Cha H. Devscope: a nonintrusive and online
power analysis tool for smartphone hardware components. In: Jerraya A,
Carloni LP, Chang N, Fummi F, editors. CODES+ISSS. ACM; 2012, p. 353–62,
URL http://dblp.uni-trier.de/db/conf/codes/codes2012.html#JungKYKC12.

[23] Krintz C, Gurun S. A run-time, feedback-based energy estimation model
For embedded devices. In: Proceedings of the 4th international conference
on hardware/software codesign and system synthesis (CODES+ISSS ’06).
2006, p. 28–33.

[24] Sembrant A, Eklov D, Hagersten E. Efficient software-based online phase
classification. In: Proceedings of the 2011 IEEE international symposium on
workload characterization. IISWC ’11, USA: IEEE Computer Society; 2011,
p. 104–15. http://dx.doi.org/10.1109/IISWC.2011.6114207.

[25] Chowdhury SA, Sapra V, Hindle A. Client-side energy efficiency of HTTP/2
for web and mobile app developers. In: IEEE 23rd international conference
on software analysis, evolution, and reengineering, SANER 2016, Suita,
Osaka, Japan, March 14–18, 2016 - Volume 1. 2016, p. 529–40. http:
//dx.doi.org/10.1109/SANER.2016.77.

[26] Stéphane M. A wavelet tour of signal processing (Third edition). 3rd ed..
Boston: Academic Press; 2009, p. iv. http://dx.doi.org/10.1016/B978-0-12-
374370-1.00001-X.

[27] Little MA, Jones NS. Generalized methods and solvers for noise removal
from piecewise constant signals. Proc R Soc A: Math Phys Eng Sci
2011;467:3115–40. http://dx.doi.org/10.1098/rspa.2010.0674.

[28] Shumway RH, Stoffer DS. Time series analysis and its applications. Springer
texts in statistics, Berlin, Heidelberg: Springer-Verlag; 2005.

[29] Hennessy JL, Patterson DA. Computer architecture: A quantitative
approach. 3rd ed.. Morgan Kaufmann; 2002.

[30] Rashid MRA, Ardito L, Torchiano M. Energy consumption analysis of algo-
rithms implementations. In: Proceedings of 9th international symposium
on empirical software engineering and measurement (ESEM 2015). IEEE
CS; 2015, p. 1–4. http://dx.doi.org/10.1109/ESEM.2015.7321210.

[31] Rashid MRA, Ardito L, Torchiano M. Energy consumption analysis of image
encoding and decoding algorithms. In: Proceedings of 4th international
workshop on green and sustainable software (GREENS), 2015, Vol. Green
and Sustainable Software. IEEE; 2015, p. 15–21. http://dx.doi.org/10.1109/
GREENS.2015.10.

[32] Ardito L, Torchiano M. Creating and evaluating a software power model
for linux single board computers. In: 2018 ACM/IEEE 40th international
conference on software engineering workshops. IEEE CS; 2018, p. 1–8.

http://dx.doi.org/10.1109/MDT.2002.1018129
http://dx.doi.org/10.1109/MASCOTS.2012.36
http://dx.doi.org/10.1109/MASCOTS.2012.36
http://dx.doi.org/10.1109/MASCOTS.2012.36
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb18
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb18
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb18
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb19
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb19
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb19
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://dx.doi.org/10.1016/j.suscom.2011.06.004
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://www.sciencedirect.com/science/article/pii/S2210537911000473
http://dx.doi.org/10.1145/1999995.2000027
http://dblp.uni-trier.de/db/conf/codes/codes2012.html#JungKYKC12
http://dx.doi.org/10.1109/IISWC.2011.6114207
http://dx.doi.org/10.1109/SANER.2016.77
http://dx.doi.org/10.1109/SANER.2016.77
http://dx.doi.org/10.1109/SANER.2016.77
http://dx.doi.org/10.1016/B978-0-12-374370-1.00001-X
http://dx.doi.org/10.1016/B978-0-12-374370-1.00001-X
http://dx.doi.org/10.1016/B978-0-12-374370-1.00001-X
http://dx.doi.org/10.1098/rspa.2010.0674
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb28
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb28
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb28
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb29
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb29
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb29
http://dx.doi.org/10.1109/ESEM.2015.7321210
http://dx.doi.org/10.1109/GREENS.2015.10
http://dx.doi.org/10.1109/GREENS.2015.10
http://dx.doi.org/10.1109/GREENS.2015.10
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb32
http://refhub.elsevier.com/S2352-7110(20)30025-X/sb32

	Pow[0pt]TrAn: An R Package for power trace analysis
	Motivation and significance
	Background and related work
	Software description
	Trace markers
	Extract.power function
	Marker detection
	Step detection
	Identification of markers

	Identification of work units
	Effective power and baseline estimation

	Illustrative examples and validation
	Synthesis
	Performance
	Quality assessment

	Impact and conclusions
	Declaration of competing interest
	References

