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Abstract6

A computational algorithm for solving anelastic problems in finite deformations is7

introduced. The presented procedure, termed Generalised Plasticity Algorithm (GPA)8

hereafter, takes inspiration from the Return Mapping Algorithm (RMA), which is9

typically employed to solve the Karush-Kuhn-Tucker (KKT) system arising in finite10

Elastoplasticity, but aims to modify and extend the RMA to the case of more general11

flow rules and strain energy density functions as well as to non-classical formulations of12

Elastoplasticity, in which the plastic variables are not treated as internal variables. To13

assess its reliability, the GPA is tested in two different contexts. Firstly, it is used for14

solving two classical problems (a shear-compression test and the necking of a circular15

bar). In both cases, the GPA is compared to the RMA in terms of structural set-up,16

computational effort and flexibility, and its convergence is evaluated by solving several17

benchmarks. Some restrictions of the classical form of the RMA are pointed out, and18

it is shown how these can be overcome by adopting the proposed algorithm. Secondly,19

the GPA is applied to characterise the mechanical response of a biological tissue that20

undergoes large deformations and remodelling of its internal structure.21

Keywords: Finite Strain Elastoplasticity, Return Mapping Algorithm, Generalised Plas-22

ticity Algorithm.23

1 Introduction24

Anelastic processes constitute a widely investigated research subject of both theoretical25

and computational Mechanics. They play an important role in the characterisation of the26

mechanical response of continuum bodies that undergo reorganisations of their internal27

structure, besides deforming under the action of applied stimuli.28

The interest in the evolution of the internal structure of continuum bodies ranges over29

various physical contexts, including industrial and biomechanical problems. In the case of30

industrial applications, a confident description of the elastoplastic behaviour of building31

materials, such as metals, is necessary to characterise their mechanical properties under32
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severe working conditions. In Biomechanics, the mathematical description of anelastic33

processes is required, for instance, to study the growth and remodelling (structural adap-34

tation) of biological tissues. These phenomena are of great importance in the evolution35

and differentiation of tissues both in physiological and pathological situations, and apply36

to bone, articular cartilage, blood vessels and tumours. In all these cases, efficient and37

robust numerical methods have to be supplied to simulate reliably the material response.38

Although the physics behind the onset of anelastic distortions in industrial materials39

is very different from that inherent in biological tissues, the mathematical models and40

the computational strategies addressing anelastic problems share many common features,41

and take inspiration from the Theory of Elastoplasticity, a rich research theme to which42

many authors have contributed (cf., e.g., [1, 2] and the references therein), and in which43

many efforts have been put for developing numerical methods (cf., e.g., [3, 4, 5, 6, 7, 8, 9]).44

In addition, reference should be made to the fundamental theories of Toupin [10] and45

Mindlin [11, 12].46

To the best of the authors’ knowledge and understanding, the crucial differences among47

the various models of Elastoplasticity arise when the issues of plastic flow and hardening48

are addressed. Taking for granted the Bilby-Kröner-Lee (BKL) multiplicative decomposi-49

tion of the deformation gradient into an elastic and a plastic part, and describing hardening50

through a suitable hardening variable (in general, a second-order tensor field), the classical51

models of Elastoplasticity often treat the tensor of plastic distortions and the hardening52

variable as internal variables (cf., e.g., [13, 14, 15]). This is, however, not always the case.53

Indeed, both in Elastoplasticity and in the Biomechanics of tissue remodelling, there exist54

theories in which the tensor of plastic distortions is viewed as a kinematic entity that,55

together with the standard motion, determines the kinematics of a body [16, 17]. Another56

aspect, in which models of Plasticity differ from each other, is the formulation of the flow57

rule. Many models assume associative flow rules, which means that the plastic strain rate58

is derivable from the function defining the yield surface of the considered material [1]. In59

other circumstances, instead, non-associative flow rules must be considered (cf., e.g., [18]).60

In Biomechanics, the BKL decomposition was introduced by Rodriguez et al. [19],61

who associated the processes of growth and remodelling with the occurrence of anelastic62

distortions. In [20], the anelastic distortions accompanying growth were interpreted as63

“local rearrangement of material inhomogeneities”, and their evolution was shown to be64

driven by the Mandel stress tensor. In the theories of tumour growth [21] and remodelling65

of cellular aggregates [22], the “evolving natural configurations” [23] were exploited to66

define the anelastic distortions related with these processes.67

A common computational method used to solve elastoplastic problems is the Return68

Mapping Algorithm (RMA). In its classical form, the RMA is a closest point projection69

method, presented under the hypotheses of associative flow rule and isotropic elastoplastic70

material behaviour [15]. The elastoplastic problem is reduced to a constrained optimisation71

problem, subjected to a set of Karush-Kuhn-Tucker (KKT-) conditions. Other algorithms72

have their origin in optimisation theory, like, e.g., the methods of Sequential Quadratic73

Programming (SQP) [24].74

This manuscript sets itself two scopes. The first one is to present an algorithm that,75

on the one hand, can be applied to complex, non-linear anelastic problems (such as those76

involving the derivatives of plastic distortions) and that, on the other hand, may serve77

as a basis for developing an efficient solver for Structural Mechanics. Since it has been78

conceived as a generalisation of the classical RMA, and it has been applied for solving79

both elastoplastic problems of industrial interest and biomechanical problems of tissue80

remodelling, the proposed procedure has been named Generalised Plasticity Algorithm81
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(GPA). The GPA accounts for geometric and kinematic non-linearities, as well as for the82

non-linear constitutive behaviour of the considered materials.83

The GPA is formulated in two contexts. In the first one, it aims to be an alternative to84

the classical RMA for elastoplastic models that fail to comply with all the hypotheses on85

which the standard RMA is based. To encompass more general flow rules, and to account86

for the cases in which the flow rules cannot be decoupled from the weak form of the87

momentum balance law, the GPA requires a linearisation with respect to the deformation88

and one with respect to the tensor of anelastic distortions. This means that, compared89

with the classical RMA, an additional linearisation iteration is performed in the GPA. In90

contrast to the SQP method, the GPA is not found by formulating a sequence of quadratic91

subproblems. Rather, the KKT-system is linearised with respect to the deformation and92

the tensor of anelastic distortions in the full non-linear elastoplastic regime.93

The second scope of this work is to highlight the connection between mathematical94

modelling and numerics. Indeed, the GPA, which is inspired by the theories developed95

in [16, 17], stems from the fact that a model in which the standard motion and the96

anelastic distortions are viewed as equally ranked kinematic descriptors (rather than as97

a kinematic descriptor and an internal tensor variable) naturally requires a reformulation98

of the Principle of Virtual Powers. This, in turn, leads to the necessity of adapting the99

already well-established numerical methods of inelastic processes to more general solution100

strategies, thereby including novel discretisation schemes and linearisation algorithms.101

Although the computational effort required by the GPA is higher than that of the102

RMA, the GPA seems to be more versatile and applicable to a wider variety of flow rules,103

elastoplastic behaviours, formulations of Elastoplasticity, and biomechanical problems.104

The paper is organised as follows. Section 2 summarises the theoretical basis of the105

work. In section 3, all constitutive assumptions are reviewed in detail. In section 4, the two106

types of problems addressed in the paper, referred to as ‘Pr1’ and ‘Pr2’, are formalised.107

Section 5 is dedicated to review the RMA, while the proposed algorithm, the GPA, is108

presented in section 6. The problem ‘Pr1’ encompasses the von Mises J2 theory of isochoric109

and associative plasticity, and is solved by applying both the standard RMA and the110

GPA in order to evaluate the functionality of the latter algorithm. The problem ‘Pr2’ is111

formulated in a more general framework, and its applicability to the biomechanical context112

is evidenced. The numerical results are shown in section 7, where the differences between113

the GPA and the RMA are discussed in detail. The philosophy of the work and some ideas114

for future research are discussed in section 8.115

2 Theoretical Background116

The formalism adopted hereafter follows [25], with some modifications. In the following,117

B is the three-dimensional manifold describing a solid body, S is the three-dimensional118

Euclidean space and I ⊆ R is the interval of time over which the evolution of the body is119

observed. A motion is the one-parameter family of smooth mappings χ( · , t) : B→ S, with120

t ∈ I. The set Ct = χ(B, t) ⊂ S is referred to as current configuration. For every X ∈ B121

and t ∈ I, there exists a spatial point x ∈ Ct such that x = χ(X, t). In the following, S is122

assumed to be equipped with the structure of affine space.123

Given the space of free vectors V, obtained by translating the points of S, the space124

TxS = {vx ∈ V | vx = y − x, y ∈ S} is the tangent space of S at x. Its dual space Tx
∗S is125

the cotangent space at x. The disjoint unions TS = tx∈STxS and T ∗S = tx∈STx∗S are the126

tangent bundle and cotangent bundle, respectively. With analogous notation, TXB denotes127

the tangent space of B at X, and its dual space, T ∗XB, is the cotangent space at X. Then,128
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TB = tX∈BTXB and T ∗B = tX∈BT ∗XB are the tangent bundle and the cotangent bundle129

of B, respectively.130

The velocity of a material particle passing through x = χ(X, t) at time t is denoted131

by v(x, t) ∈ TxS. It holds that v(x, t) = u(X, t) = χ̇(X, t), where the superimposed dot132

stands for partial differentiation with respect to time, and u( · , t) : B→ TS is defined by133

u(X, t) = v(χ(X, t), t). The tangent map of χ( · , t) at X, with t ∈ I, is the deformation134

gradient tensor Tχ(X, t) = F (X, t) : TXB → Tχ(X,t)S, with J := det(F ) > 0 for all t ∈ I135

and for all X ∈ B.136

Given the metric tensor g : TS→ T ∗S, the pull-back of g through χ is the right Cauchy-137

Green deformation tensor C = FT.F = FTgF : TB→ T ∗B, with FT : T ∗S→ T ∗B. The138

tensor G : TB→ T ∗B is the material metric tensor.139

The second-order tensor field `( · , t) : B→ TS⊗ T ∗S is the velocity gradient expressed140

in terms of the points of B, i.e. `(X, t) = gradv(x, t), with x = χ(X, t). It is related to the141

material velocity gradient, Gradu = Ḟ , through ` = Ḟ F−1. It holds that Ċ = FT2dF ,142

where d = sym(`[) denotes the symmetric part of `[ = g` : TS→ T ∗S.143

Sometimes the kinematics of a continuum body is formulated in terms of one chosen144

reference configuration rather than in terms of B. Some words of caution on possible abuses145

of the concept of ‘reference configuration’ are given in [17, 20, 26].146

2.1 Bilby-Kröner-Lee Decomposition of the Deformation Gradient147

One of the theoretical pillars of finite Elastoplasticity is the multiplicative decomposition148

of F into an elastic and a plastic part [27]:149

F = FeFp. (1)

In (1), F accounts for the global change of shape of the body, Fp describes the total150

plastic distortions responsible for the evolution of the body’s internal structure, and Fe151

represents the total elastic distortion (in Kröner’s terminology [27], a ‘distortion’ is the152

superposition of deformation and rotation). A thorough explanation of the physics be-153

hind (1) can be found, e.g., in [2]. The tensor field Fp( · , t) transforms the body elements154

of B into a collection Kt of stress-free body elements, which is referred as ‘body’s natural155

state’. The whole elastic distortion, Fe, is the distortion that has to be applied to the156

elements of Kt to get the global configuration Ct. Since the body elements collected in the157

conglomerate Kt may become geometrically incompatible, Kt does not generally form a158

configuration in the Euclidean space. However, a continuous stress-free configuration can159

be reconstructed in some suitably defined non-Euclidean space [2, 27], whose curvature is160

induced by incompatibility. The body’s natural state is not unique, since it is defined up161

to an orthogonal transformation [17, 28].162

If (1) is viewed as the composition of tangent bundle maps [29], it is possible to in-163

troduce the mapping χκ( · , t) : B → S that serves as the base map for the bundle map164

Fp. The set Cκ = χκ(B, t) ⊂ S, which represents the subregion of space S associated165

with the body’s natural state, is termed ‘intermediate configuration’. The total plastic166

distortion can be identified with the map Fp(X, t) : TXB → Tχκ(X,t)S, even though167

Fp is not the tangent map to χκ. Accordingly, the total elastic distortion is written as168

Fe(X, t) ≡ F (X, t)Fp
−1(X, t) : Tχκ(X,t)S → Tχ(X,t)S. To complete the physical frame169

within which Fp and Fe are conceived, the concepts of material uniformity and homo-170

geneity should be discussed [26, 30, 31].171

Granted the multiplicative decomposition (1), and denoting by η(ξ) the metric tensor172

associated with TξS, where ξ = χκ(X, t), one can define be = Fe.Fe
T = Feη

−1Fe
T and173
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Bp = Fp
−1η−1Fp

−T. The former is the left Cauchy-Green tensor generated by the elastic174

distortions, while the latter is the inverse of Cp = Fp
T.Fp = Fp

TηFp, i.e. the right Cauchy-175

Green tensor induced by the plastic distortions. It holds that be = FBpF
T.176

The decomposition (1) also implies that the velocity gradient ` splits additively as177

` = `e + FeLpFe
−1︸ ︷︷ ︸

:=`p

= `e + `p, (2)

where `e = ḞeFe
−1 and Lp = ḞpFp

−1 denote, respectively, the rates of elastic and plastic178

distortions. The rates of be and Bp are related to each other by means of the expressions179

Lvbe = F
˙

[F−1beF
−T]FT = FḂpF

T, (3a)

Ḃp = −F−1Fe(η
−12Dpη

−1)Fe
TF−T, (3b)

where Lvbe is the Lie derivative of be, while Dp = sym(ηLp) is the symmetric part of the180

fully covariant tensor ηLp.181

Another consequence of (1) is the decomposition J = JeJp, where Je := det(Fe) > 0182

and Jp := det(Fp) > 0 are the volumetric parts of the elastic and plastic distortions,183

respectively. The time derivatives of Je and Jp are related to the traces of `e and `p by184

the expressions J̇e = Jetr(`e) and J̇p = Jptr(Lp) = Jptr(`p). Furthermore, by defining the185

deformation gradient tensor as F = J1/3F [32, 33], an expression is obtained in which186

J1/3i and F represent, respectively, the purely volumetric contribution and the volume-187

preserving part of the overall deformation (here, i : TS→ TS is the identity tensor in TS).188

Thus, from (1) and the identity J = JeJp, it follows that F = FeFp.189

A usual assumption both in metal plasticity and in the biomechanics of remodelling of190

biological tissues is that plastic distortions are isochoric, i.e. they must comply with the191

constraint Jp = 1. This requirement places the restriction192

J̇p = −1
2 [det(Bp)]−1/2 tr(Bp

−1Ḃp) = 0, (4)

which means that the time derivative of Bp is orthogonal to Bp
−1 in the sense that their193

double contraction vanishes identically, i.e. tr(Bp
−1Ḃp) ≡ Bp

−1 :Ḃp = 0. When (4) applies,194

the relation (3b) becomes195

Ḃp = −F−1Fe(η
−12 dev(Dp)η−1)Fe

TF−T, (5)

where dev(Dp) = Dp − 1
3tr
(
η−1Dp

)
η is the deviatoric part of Dp, and Bp = Fp

−1.Fp
−T

196

is the volume-preserving part of Bp. Since the condition Jp = 1 is enforced, (5) remains197

invariant under the substitution of F and Fe with F and Fe, respectively.198

Decompositions of the type (1) were proposed by many authors in problems related199

to growth and remodelling of biological tissues, which were studied either as monophasic200

continua [20, 21, 34, 35, 36, 37] or as mixtures [38, 39, 40, 41, 42, 43, 44]. A review on201

constitutive theories relying on (1) was done in [45].202

2.2 Principle of Virtual Powers and Dissipation203

Only a purely mechanical framework is considered hereafter. The body mass is assumed to204

be conserved. Thus, if % denotes the spatial mass density of the body, and %R is its backward205

Piola transform (i.e. %R(X, t) = J(X, t)%(χ(X, t), t)), the mass balance law reduces to206

%̇R = 0, which holds at all X ∈ B and for all t ∈ I, i.e. %R(X, t) ≡ %R(X) for all times.207
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Within the classical theory of finite Elastoplasticity, the elastoplastic behaviour of a208

body is described by its motion, χ, the plastic part of the total deformation, Fp, and the209

hardening variable α. In the standard theory, these three types of variables are not treated210

in same way, at least conceptually. Indeed, while χ is the solution of the set of equations211

governing the body dynamics, Fp and α are regarded as internal variables determined by212

solving evolution laws [13, 15, 46], which are not introduced on the same footing as χ.213

In other words, neither Fp nor α appear explicitly in the formulation of the Principle of214

Virtual Powers (PVP), which is established by defining the set of virtual (test) velocities215

as the collection of all admissible realisations of the type216

H̃ := {ũ : B→ TS | ũ|∂BD
= 0}. (6)

In (6), ∂BD is the Dirichlet-boundary of B, i.e. the portion of ∂B over which position217

boundary conditions are enforced, and ũ|∂BD
is the restriction of ũ to ∂BD.218

For a first-grade material, the PVP reads219 ∫
B

P : gGrad ũ =

∫
B

bR.ũ +

∫
∂BN

fR.ũ , ∀ ũ ∈ H̃ , (7)

and expresses the weak form of the local balance of momentum. In (7), P :T ∗B→ TS is the220

first Piola-Kirchhoff stress tensor (it is related to Cauchy stress by the Piola transformation221

σ(χ(X, t), t) = [J(X, t)]−1P (X, t)FT(X, t)1); bR(X, t) = J(X, t)b(χ(X, t), t) is the body222

force per unit volume of B (whereas b is the body force per unit volume of Ct), and collects223

both inertial force and long-range interactions; fR expresses the contact forces f , which224

act on the boundary of the current configuration, per unit area of ∂B; finally, ∂BN is the225

Neumann-boundary of B, i.e. the portion of ∂B over which surface forces are applied (it226

holds that ∂BD ∪ ∂BN = ∂B, and ∂BD ∩ ∂BN = ∅). The forces fR and f are reciprocally227

related by [47]228

fR(X, t) = J(X, t)f(χ(X, t), t)

√
N(X).C−1(X, t).N(X), (X, t) ∈ ∂BN × I. (8)

The left- and the right-hand-side of (7), denoted by Pint(ũ) and Pext(ũ), are defined over229

H̃, and are referred to as virtual internal power and virtual external power, respectively.230

A standard localisation argument associates (7) with its corresponding strong form231

Div(P ) = −bR, in B× I, (9a)

P .N = fR, on ∂BN × I, (9b)

PFT = FPT, in B× I. (9c)

In (9b), N is the unit vector normal to ∂BN. Equation (9c) follows from the physical232

condition that Pint(ũ) must satisfy the Principle of Material Frame Indifference.233

The dissipation associated with a fixed region Ω ∈ B is defined by [16]234 ∫
Ω
DR = −

˙∫
Ω
ψR + Pnet(Ω) ≥ 0 , (10)

where DR is the dissipation density, ψR is the body’s stored energy function, and the net235

power Pnet(Ω) is defined as236

Pnet(Ω) =

∫
∂Ω

(P .N).u +

∫
Ω
bR.u =

∫
Ω
P :gGradu . (11)

1Rigorously speaking, FT should be expressed as a functions of x and t. That is, in introducing the
Piola transformation of σ, we are committing the slight abuse of notation FT(X, t) ≡ FT(χ(X, t), t).
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By substituting (11) into (10), and localising the results, one obtains237

DR = −ψ̇R + S : 1
2Ċ ≥ 0 , (12)

where S = F−1P : T ∗B→ TB is the second Piola-Kirchhoff stress tensor. By introducing238

the quantities ψκ = Jp
−1ψR and Dκ = Jp

−1DR, (12) transforms as follows239

Dκ = −ψ̇κ + Sκ :Fp
−T 1

2ĊFp
−1 ≥ 0 , (13)

with Sκ = Jp
−1FpSFp

T being the second Piola-Kirchhoff stress tensor associated with Cκ.240

3 Constitutive Theory241

If the material under study is uniform, the constitutive description of its inelastic behaviour242

can be done by having recourse to the Principle of Material Uniformity [13, 20, 26, 30, 48,243

49, 50], and the stored energy ψκ can be expressed constitutively as a function depending244

solely on the tensor of elastic distortions, Fe, and the hardening variable. Moreover, since245

constitutive laws must be objective, it must hold that ψ̂R(F ,Fp, α,X) = Jpψ̂κ(Ce, α),246

with Ce = Fe
TgFe being the Cauchy-Green tensor of elastic distortions. The hardening247

parameter α is introduced with respect to Cκ, and is assumed to be a scalar in the following.248

3.1 Decoupling of the Stored Energy Function249

To simplify the forthcoming calculations, the stored energy function ψ̂κ(Ce, α) is given in250

the decoupled form [15]251

ψ̂κ(Ce, α) = Ŵκ(Ce) + Ĥκ(α) , (14)

where Ĥκ(α) is referred to as hardening potential. By substituting the time derivative of252

ψ̂κ into (13), and hypothesising that the material exhibits hyperelastic behaviour from Cκ,253

the following results are obtained:254

Sκ = 2
∂ψ̂κ
∂Ce

= 2
∂Ŵκ

∂Ce
, (15a)

Σ = η−1CeSκ , (15b)

q = −∂ψ̂κ
∂α

= −∂Ĥκ
∂α

, (15c)

Dκ = Σ :ηLp + qα̇ ≥ 0 . (15d)

Given Ŵκ and Ĥκ explicitly, Sκ, the Mandel stress tensor Σ, and the generalised force255

q dual to the hardening rate α̇ are expressed constitutively by (15a), (15b) and (15c),256

respectively. Since it has been assumed that anelastic (plastic) distortions are isochoric,257

Lp is trace-free, which implies that only the deviatoric part of Σ is constrained by the258

residual dissipation inequality (15d). Moreover, a consequence of the decoupled form of259

the stored energy function is that the stress does not depend on the hardening function260

and, similarly, the force-like variable q does not depend on deformation.261

3.2 Isotropy262

Although there exist theoretical models and computational algorithms elaborated for263

finite-strain elastoplasticity of anisotropic materials (cf., e.g., [51, 52, 53, 54, 55]), the264
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majority of the numerical methods rely, to the authors’ knowledge, on the hypothesis of265

isotropic material behaviour [2, 15, 24, 46, 56].266

There are at least two big advantages implied by isotropy. The first one is that the267

issue of plastic spin does not arise at all (see, e.g., [30]); the second advantage is that the268

flow rule can be formulated in terms of Bp, so that no evolution law for Fp is actually269

needed (in some cases —e.g., for polycrystals [57]— evolution laws for Fp are prescribed,270

in accordance to Mandel’s isoclinicity rule [2], under the assumption of vanishing plastic271

rotations, so that the plastic variable is either Vp or Up, depending on whether the right272

or the left decomposition of Fp = Rp.Up = Vp.Rp is chosen).273

For a hyperelastic isotropic material, the stored energy function Ŵκ depends on Ce274

exclusively through its invariants, i.e.275

I1 = Î1(Ce) = tr(η−1Ce) = tr(BpC) , (16a)

I2 = Î2(Ce) = 1
2

{
[Î1(Ce)]

2 − tr[(η−1Ce)
2]
}

= 1
2

{
I2

1 − tr(BpCBpC)
}
, (16b)

I3 = Î3(Ce) = det(Ce) = J2 . (16c)

This property necessarily implies that the Mandel stress tensor Σ, which by definition276

must satisfy the equality ΣCeη
−1 = η−1CeΣ

T (cf. (15b)), must be symmetric itself, i.e.277

Σ = ΣT. Indeed, by setting Ŵκ(Ce) = Ŵκ(Î1(Ce), Î2(Ce), Î3(Ce)), one obtains278

Σ = 2β1η
−1Ceη

−1 + 2β2[I1η
−1Ceη

−1 − η−1Ceη
−1Ceη

−1] + 2β3I3η
−1 , (17)

with {βi = ∂Ŵκ
∂Ii
}3i=1. Since Σ is symmetric, the first summand on the right-hand-side279

of (15d) becomes Σ : ηLp = Σ : Dp, meaning that only the symmetric part of the rate of280

plastic distortions contributes to dissipation. This result rules out the plastic spin, i.e. the281

skew-symmetric part of ηLp, which cannot thus be determined in terms of thermodynamic282

arguments [30]. Finally, by invoking the kinematic relations (3), the inequality (15d) can283

be rewritten as284

Dκ = −1
2

(
gdev(τκ)be

−1
)

: Lvbe + qα̇ ≥ 0 , (18)

where τκ = FeSκFe
T = g−1Fe

−TηΣFe
T is the Kirchhoff stress tensor associated with285

the body’s natural state. Furthermore, setting τ = Jpτκ (with Jp = 1), it is also useful286

to introduce the material Mandel stress tensor ΣR = G−1FTgτF−T. The constitutive287

expressions of τκ and ΣR read288

τ̂κ(F ,Bp) = 2β1be + 2β2 (I1be − begbe) + 2β3I3g
−1 , (19a)

Σ̂R(F ,Bp) = (2β1 + 2β2I1)G−1CBp − 2β2G
−1CBpCBp + 2β3I3G

−1 . (19b)

The tensor ΣR is not symmetric in general, but it has the properties ΣRCG
−1 =

(
ΣRCG

−1
)T

,289

GΣRBp
−1 =

(
GΣRBp

−1
)T

and BpGΣR = (BpGΣR)T. The first one follows from its own290

definition, while the second and the third one follow from isotropy [30].291

3.3 Rate-Independent Plasticity and Yield Criterion292

The hypothesis of rate-independent plasticity requires the introduction of a yield criterion293

[16]. To this end, let Tτ and Tq be the spaces of Kirchhoff stresses and stress-like hardening294

functions q (cf. (15c)), and let fτ : Tτ × Tq → R be a yield function defined by295

fτ (τκ, q) = ϕτ (dev(τκ)) +
√

2
3 [q − τy], (20)

where the positive parameter τy is the yield stress, and the function ϕτ depends on τκ296

through the deviatoric part of it for consistency with (18).297
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The set A = {(τκ, q) ∈ Tτ × Tq : fτ (τκ, q) ≤ 0} is referred to as the set of admissible298

stresses. In accordance with von Mises classical theory of J2-plasticity, the function ϕτ is299

defined here as ϕτ (dev(τκ)) = ‖dev(τκ)‖ =
√

tr[(gdev(τκ))2]. Consequently, one obtains300

∂fτ
∂τκ

(τκ, q) = gng ≡ n[, n =
dev(τκ)

‖dev(τκ)‖
, (21)

with ‖n‖ = 1. The inequality fτ (τκ, q) < 0 defines the instantaneous elastic range of the301

material. Plastic flow begins when the boundary of A is reached, i.e. when fτ (τκ, q) = 0.302

3.4 Principle of Maximum Plastic Dissipation and Flow Rules303

To formulate the Principle of Maximum Plastic Dissipation (PMPD), the dissipation Dκ304

(cf. (18)) has to be viewed as a non-negative, real-valued function defined over the set305

A. The PMPD affirms that Dκ reaches its maximum when it is computed for the actual306

values of stress τκ and hardening function q that characterise the material, i.e.307

Dκ(τκ, q) = max
(r,ϑ)∈A

{Dκ(r, ϑ)}. (22)

Since the maximisation is performed under the constraint that the pair (r, ϑ) ∈ A be308

admissible, the condition (22) allows to reformulate (18) into a constrained optimisation309

problem, which can be studied by introducing the Lagrangian function310

Lκ(r, ϑ, γτ ) = Dκ(r, ϑ)− γτfτ (r, ϑ), (r, ϑ) ∈ A, (23)

where γτ is an unknown Lagrange multiplier. Maximising (23) leads to the optimality311

conditions [15, 46]312

Lvbe = −2γτngbe , (24a)

α̇ = γτ

√
2

3
, (24b)

γτ ≥ 0, fτ (τκ, q) ≤ 0, γτfτ (τκ, q) = 0 . (24c)

Equations (24) determine the Karush-Kuhn-Tucker (KKT) system, and are also referred313

to as KKT-conditions. By invoking (3a), (24a) can be rewritten in terms of Ḃp, i.e.314

Ḃp = −2γτF
−1(ngbe)F

−T . (25)

A consequence of (19a) is that the product ngbe is commutative. Moreover, by recalling315

the identity dev(τ ) = g−1F−TG dev(ΣR)FT, (25) becomes316

Ḃp = −2γτ BpG
dev(ΣR)

‖dev(τ )‖
. (26)

According to (24c), γτ is zero when the material is in its elastic range, i.e. when317

fτ (τκ, q) < 0, and is greater than zero, when the yield surface is reached, i.e. when318

fτ (τκ, q) = 0. In the case in which γτ is positive, it is determined by the consistency319

condition γτ ḟ(τκ, q) = 0, which leads to the expression320

γτ =
n[ : JeA : d

n[ : JeA : n[ + (2/3)∂2
αĤκ

=
−n[ : JeBp : 1

2Lvbe

n[ : JeA : n[
, (27)
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with321

JeA = JeC + τκ⊗ g−1 + g−1⊗ τκ , (28a)

JeC = Fe⊗Fe : Cκ : Fe
T⊗Fe

T, Cκ = 4
∂2Ŵκ

∂Ce
2

(Ce) , (28b)

JBp = F⊗F : Bp : F−1⊗F−1 , Bp = 2
∂Ŝ

∂Bp
(C,Bp) . (28c)

The fourth-order tensors A and C are referred to as tensor of the effective elastic moduli322

and spatial elasticity tensor, respectively. Moreover, S = Ŝ(C,Bp) = JpFp
−1SκFp

−T is323

the constitutive expression of the material second Piola-Kirchhoff stress tensor. According324

to (27), the multiplier γτ (when it is nonzero) is defined as a function of F , Ḟ , Bp and α,325

i.e. γτ = γ̂τ (F , Ḟ ,Bp, α).326

In conclusion, equations (24a) and (24b), largely adopted in von Mises J2-theory of327

Elastoplasticity, can be reformulated as evolution laws for the plastic variables Bp and α:328

Ḃp =

{
−R̂(F , Ḟ ,Bp, α), if γτ = γ̂τ (F , Ḟ ,Bp, α) > 0 (fτ (τκ, q) = 0) ,
0 if γτ = 0 , (fτ (τκ, q) < 0) ,

(29a)

α̇ =

{ √
2
3 γ̂τ (F , Ḟ ,Bp, α), if γτ = γ̂τ (F , Ḟ ,Bp, α) > 0 (fτ (τκ, q) = 0) ,

0 if γτ = 0 , (fτ (τκ, q) < 0) ,
(29b)

where the negative of the tensor-valued function R̂ is defined by the right-hand-side of (26).329

Clearly, the definition of R̂ depends on the choice of the stored energy density function330

Ŵκ, and of the hardening potential Ĥκ.331

3.5 Other Types of Flow Rules332

In some biomechanical contexts, as those addressing the structural reorganisation of cell333

aggregates, plasticity-like models have been developed in which hardening is usually not334

accounted for, and the anelastic distortions model the reorganisation of the adhesion bonds335

connecting the cells. The onset of this type of anelastic processes is taken into account336

by introducing a yield stress in the constitutive laws. The symmetric part of the rate of337

plastic distortions is driven by stress according to laws of the type [58]338

Dp = ζp ηdev(Σ)η = ζp Fe
Tgdev(τκ)Fe

−Tη , (30)

where ζp is a plastic multiplier. By invoking (3b), the flow rule (30) becomes339

Ḃp = −2
(
Jp
−1ζp

)
BpGdev (ΣR) . (31)

In (30) and (31), ζp is defined by2
340

ζp = Jpλ

[
ϕ(τ )−

√
(2/3) τy

ϕ(τ )

]
+

, (32)

where λ is a non-negative phenomenological coefficient (with units [λ] = (s · MPa)−1),341

[f]+ = f, if f > 0, and [f]+ = 0 otherwise, and ϕ(τ ) = ‖dev(τ )‖. Since the constraint342

2The definition of γp given in [58] is slightly different from that reported here, where the expression of
γp in (32) has been introduced for consistency with the rest of the paper.
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Jp = 1 applies, it holds that τ = τκ, and (31) becomes343

Ḃp = −2γpBpG
dev(ΣR)

‖dev(τ ) ‖
, (33a)

γp := λ
[
‖dev(τ ) ‖ −

√
(2/3)τy

]
+
, (33b)

with [γp] = s−1. Although γp is not a Lagrange multiplier, since it does not have to comply344

with a consistency condition of the type (27), the flow rule (33a) satisfies the dissipation345

inequality. Moreover, comparing (33a) with (26), one can show that the two flow rules are346

identical up to the specification of γτ and γp. Thus, the right-hand-side of (33a) can be347

expressed by means of a tensor-valued function R̂(F ,Bp). The dependence on Ḟ does not348

appear, since γp is not restricted by any KKT-consistency condition of the type (27).349

4 Statement and Solution of the Problems ‘Pr1’ and ‘Pr2’350

For simplicity, the external forces bR and fR are set equal to zero from here on. Thus,351

it holds P .N = 0 on ∂BN (cf. (9b)). Consequently, the problem ‘Pr1’ can be stated as352

follows:353

4.1 Problem ‘Pr1’354

Let Ŵκ(Ce), Ĥκ(α), fτ , γτ , and R be given such that355

P = P̂ (F ,Bp) = Jpτ̂κ(F ,Bp)F−T = Jp

[
Fe

(
2
∂Ŵκ

∂Ce
(Ce)

)
Fe

T

]
F−T , (34a)

q = −K(α) = −∂Ĥκ
∂α

(α) , (34b)

γτ =

{
0, if fτ (τκ, q) < 0,

γ̂τ (F , Ḟ ,Bp, α) > 0, if fτ (τκ, q) = 0,
(34c)

R =

{
0, if fτ (τκ, q) < 0,

R̂(F , Ḟ ,Bp, α), if fτ (τκ, q) = 0,
(34d)

where γ̂τ and R̂ are known functions of their arguments, with R̂ being specified in (25).356

357

Find χ ∈ H, Bp ∈ L2(B× I, TB⊗ TB) and α ∈ L2(B× I,R) such that

P(χ,Bp, ũ) :=

∫
B

P̂ (F ,Bp) : gGrad ũ = 0, ∀ ũ ∈ H̃, (35a)

Ḃp = −R, Bp(X, 0) = Bp0(X) in B, (35b)

α̇ = γτ

√
2
3 , α(X, 0) = α0(X) in B. (35c)

358

359

Here, L2(B× I, TB⊗ TB) and L2(B× I,R) denote, respectively, the spaces of all tensor-360

valued and scalar-valued functions that are (Lebesgue) square-integrable in B, while H is361

the subset of
(
H1(B× I, S)

)3
characterised by the property362

H =
{
χ ∈

(
H1(B× I, S)

)3
: χ(X, t) = χb(t), ∀ (X, t) ∈ ∂BD × I

}
, (36)

with
(
H1(B× I, S)

)3
being the Sobolev space of all functions χ( · , t), t ∈ I, valued in363

the three-dimensional Euclidean space S that are square-integrable in B and whose weak364
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derivatives Dkχ( · , t), with |k| ≤ 1, are all square-integrable in B, too (here, k denotes365

a multi-index) [59]. Moreover, in (36), χb is the prescribed value of the motion on the366

body’s Dirichlet-boundary ∂BD. The space of virtual velocities H̃ can now be identified367

with the functional space
(
H1

0 (B, S)
)3

, i.e. H̃ =
(
H1

0 (B, S)
)3

, which is the Hilbert sub-368

space of
(
H1(B, S)

)3
defined as the closure of the space of test-functions in

(
H1(B, S)

)3
,369

and characterised by the property that all functions ũ ∈
(
H1

0 (B, S)
)3

vanish on ∂BD [59].370

The problem ‘Pr1’ (formulated by (34a)–(35c)) stems from the von Mises J2 theory of371

isochoric and associative plasticity, since the rate of plastic distortions is deviatoric and372

proportional to the associated measure of stress. On the other hand, granted isotropy,373

and provided that R complies with some restrictions related to dissipation (e.g., resid-374

ual dissipation inequality [15], or maximisation of plastic work [2]), equation (35b) can375

also be generalised to comprehend many other types of flow rules, which might be even376

fully phenomenological, and need not be associative in general. For this reason, it is also377

useful to consider modified versions of ‘Pr1’, which do not strictly follow from the KKT-378

conditions (24), like, for instance, the problem referred to as ‘Pr2’ in this paper.379

4.2 Problem ‘Pr2’380

Let Ŵκ(Ce) and R̂(F ,Bp) be given, and let the first Piola-Kirchhoff stress tensor be defined381

by382

P = P̂ (F ,Bp) = Jpτ̂κ(F ,Bp)F−T = Jp

[
Fe

(
2
∂Ŵκ

∂Ce
(Ce)

)
Fe

T

]
F−T . (37)

383

Find χ ∈ H and Bp ∈ L2(B× I, TB⊗ TB) such that

P(χ,Bp, ũ) :=

∫
B

P̂ (F ,Bp) : gGrad ũ = 0, ∀ ũ ∈ H̃, (38a)

Ḃp = −R̂(F ,Bp), Bp(X, 0) = Bp0(X) in B. (38b)

384

385

The tensor-valued function R̂ of the flow rule (38b) can be given, for example, by the386

right-hand-side of (33a), with γp defined in (33b) [58], or by more general expressions that387

lead to non-associative plasticity [2].388

5 A Review of the Return Mapping Algorithm for ‘Pr1’389

Looking at some literature (see, e.g., [15, 46, 60]), the RMA is usually formulated under390

two hypotheses, which add themselves to those discussed in sections 3.1–3.4. The first391

hypothesis is that the strain energy density Ŵκ(Ce) used in ‘Pr1’, can be decoupled into392

a pure volumetric contribution, Ûκ(Je), and a purely isochoric contribution, Wκ(Ce). In393

particular, a quasi-incompressible Neo-Hookean material is considered, i.e.394

Ŵκ(Ce) = Ûκ(Je) +Wκ(Ce), (39a)

Ûκ(Je) = 1
2κ
{

1
2(Je

2 − 1)− ln(Je)
}
, (39b)

Wκ(Ce) = 1
2µ
{

tr
(
η−1Ce

)
− 3
}
, (39c)

where κ and µ are the bulk and shear moduli, respectively, and Ce = Je
2/3Ce [32, 33], with395

det(Ce) = 1. In (39a)–(39c), as well as in all the following calculations, both Je =
√

det(Ce)396

andCe are to be regarded as functions ofCe. Direct consequences of this hypothesis are the397

equalities β1 = µ
2Je
−2/3 and β2 = 0, which lead to dev(τκ) = µdev(be), with be = Je

−2/3be.398
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The second hypothesis is that the right-hand-side of (24a) can be approximated by399

1
3tr(gbe)n, so that the flow rule becomes400

Lvbe = −2
3γτ tr(gbe)n. (40)

This is obtained by enforcing the decomposition be = 1
3tr(gbe)g

−1 + dev(be) in (24a), and401

neglecting the term ngdev(be) with respect to the right-hand-side of (40). To justify this402

approximation it suffices to notice that, when plastic flow occurs (i.e. when the condition403

fτ (τκ, q) = 0 is satisfied), ngdev(be) becomes404

ngdev(be) = Je
2/3 ‖dev(τκ)‖

µ
ngn = Je

2/3

√
2
3 (K(α) + τy)

µ
ngn. (41)

This result amounts to say that the term ngdev(be) can be dropped because it is of the405

same order as the ratio between the yield stress in the presence of hardening,
√

2
3(K(α) +406

τy), and the shear modulus, which is usually small for the majority of metals [46]. Even407

though, as stated by Simo [46], this approximation is not essential, it simplifies considerably408

the numerical treatment of the flow rule and the determination of γτ .409

Although the strain energy density (39) reduces the computational effort (since it is410

independent of I2), it might be unrealistic in some situations. In fact, it applies to elastically411

quasi-incompressible materials (for which Je is close to unity), but fails to reproduce the412

correct elastic response of materials for which this assumption cannot be done. Indeed,413

the use of (39) for materials not satisfying quasi-incompressibility suppresses unjustifiably414

some independent elastic parameters from the material’s elasticity tensor [61, 62, 63, 64,415

65].416

5.1 Algorithmic Determination of the KKT-Multiplier417

This Section largely follows the theory reported in [15]. The crux of the RMA is describing418

the time-discrete evolution of Bp and α jointly with the discretised KKT-conditions (24)419

and the weak form of the momentum balance (35a). For this purpose, at each instant of420

time tn ∈ I, n ∈ N, the body is assumed to be characterised by two states: The actual state421

is that determined by the functions χn, Bpn and αn, which represent the actual solution of422

‘Pr1’ at time tn. The trial state, instead, is the one in which the body would find itself, if423

no plastic evolution took place within the time step ∆tn = tn− tn−1, n ≥ 1. By definition,424

the trial state is determined by the functions χtrial
n , Btrial

pn = Bp(n−1) and αtrial
n = αn−1,425

where χtrial
n is the solution to (35a) at time tn, if Bpn were substituted in the constitutive426

expression of the first Piola-Kirchhoff stress tensor with the stepwise constant function427

Bp(n−1) [15].428

The introduction of the trial state, the particularly simple strain energy density specified429

in (39), and the approximated flow rule (40) allow to express the time-discrete form of (40)430

in terms of stress and, above all, to consider the stress at time tn as a function of the431

deformation gradient and trial quantities only.432

By recalling (3a), the Lie-derivative of be at time tn ∈ I is approximated by433

(Lvbe)n = Fn
Bpn −Bp(n−1)

∆tn
Fn

T, n ∈ N, n ≥ 1, (42)

where Fn is the tangent map of χn, and the time derivative Ḃp has been replaced by a434

finite difference. Moreover, substituting (42) into the left-hand-side of (40) leads to [15]435

ben = ben
trial − 2

3γτn∆tntr
(
gben

)
nn, (43)
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with ben = J
−2/3
en ben, ben = FnBpnFn

T, ben
trial = J

−2/3
en ben

trial, and ben
trial = FnBp(n−1)Fn

T,436

which implies that tr(gben) = tr(gben
trial). Hence, taking the deviatoric part of both sides437

of (43), and multiplying the resulting expression by µ, one obtains438

sn = sn
trial − 2

3µγτn∆tntr
(
gben

trial
)
nn, (44)

where the notation sn = dev(τκn) = µ dev(ben), and sn
trial = µdev(ben

trial) has been used.439

Finally, setting sn = ‖sn‖nn and sn
trial = ‖sntrial‖nntrial, equation (44) can be rewritten as440

[15]441 [
‖sn‖+ 2

3µγτn∆tntr
(
gben

trial
)]
nn = ‖sntrial‖nntrial. (45)

Since the sum in brackets on the left-hand-side of (45) is a non-negative scalar, the tensors442

nn and nn
trial are parallel to each other, and, since they also have the same norm, it must443

hold that nn = nn
trial. Therefore, equation (45) also implies the equalities444

sn = sn
trial − 2

3µγτn∆tntr
(
gben

trial
)
nn

trial, (46a)

‖sn‖ = ‖sntrial‖ − 2
3µγτn∆tntr

(
gben

trial
)
. (46b)

Equation (46a) is the time-discrete flow rule (43) written in terms of stress, while, through445

the introduction of the yield functions446

fτn := ‖sn‖ −
√

2
3

(
K(αn) + τy

)
, (47a)

fτn
trial := ‖sntrial‖ −

√
2
3

(
K(αn−1) + τy

)
, (47b)

equation (46b) can be rephrased as447

fτn = fτn
trial − 2

3µγτn∆tntr
(
gben

trial
)
−
√

2
3

(
K(αn)−K(αn−1)

)
. (48)

Consequently, the condition that plastic flow occurs at time tn, obtained by setting fτn = 0,448

is transformed into an equation that defines γτn implicitly [15]:449

2
3µγτn∆tntr

(
gben

trial
)

+
√

2
3

(
K

(
αn−1 +

√
2
3γτn∆tn

)
−K(αn−1)

)
= fτn

trial. (49)

In (49), fτn
trial is regarded as known, and the time-discrete version of (35c) has been used to450

express αn as a function of αn−1 and γτn. When the condition fτn
trial ≤ 0 applies, γτn = 0.451

In the case of non-linear hardening, (49) is non-linear too, and is solved numerically (e.g.452

by means of the Newton method). For linear hardening, Ĥκ is quadratic in α, and one453

obtains [15]454

γτn∆tn =


f trial
τn

2
3µtr(gben

trial)+
2
3H
, if fτn

trial > 0,

0, if fτn
trial ≤ 0,

(50)

where H is a constant material parameter having the same units as µ and defined by455

H =
∂K

∂α
(α) =

∂2Ĥκ
∂α2

(α). (51)

Both (49) and (50) determine γτn as a function of Fn (or, equivalently, as a functional456

of χn). Moreover, once γτn is computed, αn is obtained by αn = αn−1 +
√

2
3γτn∆tn, which457

is the time-discrete version of (35c). This decouples (35c) from (35a) and (35b).458
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The most important consequence of the assumptions discussed in this section is that,459

since nn = nn
trial and tr(gben) = tr(gben

trial) = tr(Bp(n−1)Cn), and none of these quantities460

depends on Bpn, the flow rule (43) allows to express Bpn as a non-linear function of χn:461

Bpn = B̂pn(χn) := Bp(n−1) − 2
3∆tnγτn(χn)tr(Bp(n−1)Cn)F−1

n nn
trialFn

−T, (52)

with γτn(χn) > 0. Here, it holds that Cn = Fn
TgFn.462

5.2 Time-Discrete Setting463

By performing a backward Euler method in time, the results obtained in section 5.1 allow464

to reformulate the problem ‘Pr1’ as follows:465

466

Given the initial data Bp0(X) and α0(X) for all X ∈ B, and the Dirichlet-boundary467

condition χbn(X) for all X ∈ ∂BD, find χn ∈
(
H1(B, S)

)3
, Bpn ∈ L2(B, TB ⊗ TB) and468

αn ∈ L2(B,R) such that χn = χbn, for all n ≥ 0 and X ∈ ∂BD and, for all n ≥ 1,469

Bpn =

{
Bp(n−1), if γτn = 0,

B̂pn(χn) = Bp(n−1) − R̂n(χn), if γτn > 0,
(53a)

αn =

{
αn−1, if γτn = 0,

αn−1 +
√

2
3γτn(χn)∆tn, if γτn > 0,

(53b)

P′(χn, ũ) =

{ ∫
B
P̂
(
χn,Bp(n−1)

)
: gGradũ = 0, if γτn = 0,∫

B
P̂
(
χn, B̂pn(χn)

)
: gGradũ = 0, if γτn > 0,

(53c)

where (53c) has to hold for all ũ ∈ H̃, γτn(χn) is determined either by (49) or by (50),470

and R̂n(χn) is defined as471

R̂n(χn) = 2
3∆tnγτn(χn)tr(Bp(n−1)Cn)F−1

n nn
trialFn

−T. (54)

The functional P′(χn, ũ) is non-linear in χn regardless of whether γτn is zero or positive.472

This is because the first Piola-Kirchhoff stress tensor is a non-linear constitutive functional473

of χn within the framework of finite deformations. Thus, iterative procedures (e.g. Newton474

method) are required to solve (53c). Note that the formulation of the RMA summarised475

above, which leads to (52) and (54), is such that Bpn can be expressed as an explicit476

function of χn. In other words, the time-discrete flow rule (52) can be rewritten as477

Gn(χn,Bpn) = Bpn −Bp(n−1) + R̂n(χn) = 0, (55)

with Gn being non-linear in χn and affine in Bpn. Consequently, no linearisation of the478

flow rule with respect to Bpn is necessary. However, this simplification cannot be done if479

the assumptions discussed in Section 5 (decoupling of the strain energy density function as480

in (39), and approximation of the flow rule as in (40)) cannot be invoked. For example, this481

can be the case described in ‘Pr2’, where no hypotheses are done on the right-hand-side482

of (38b). This motivates the study of problems of the same type as ‘Pr2’ by means of the483

Generalised Plasticity Algorithm (GPA) proposed in this paper.484

By using numerical quadrature rules within Finite Element Methods, the equations (49),485

(53a), (53b) and (54), are evaluated at the integration points of every finite element of the486

spatial discretisation of the problem.487

Although this work does use the assumption of isotropy, the proposed algorithm does488

not invoke an approximation of the flow rule. This has the repercussions that the plastic489
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variable Bpn cannot be rewritten as a function of the deformation χn, and, consequently,490

the flow rule cannot be decoupled from the balance of momentum. Rather, Bpn has to491

be regarded as an unknown having, at least in principle, the same ‘dignity’ as χn. If, on492

the one hand, this complicates the numerical treatment of the elastoplastic problem, on493

the other hand, it makes the computational algorithm more flexible and appliable also494

to those cases, which do not require that nn
trial is equal to nn. The proposed method is495

presented in detail in section 6.496

6 Discretisation and Linearisation of the Problem ‘Pr2’497

The discrete, linearised version of the problem ‘Pr2’ (cf. (37)–(38b)) is constructed in498

three steps. Firstly, a backward Euler method is used for discretising the flow rule (38b).499

Secondly, the time-discrete version of (38) is put in a form suitable for Finite Element500

analysis. Thirdly, the Finite Element Method is employed for the discretisation in space.501

6.1 The Generalised Plasticity Algorithm (GPA)502

The time-discrete version of the problem ‘Pr2’ can be formulated as follows:503

504

Find χn ∈
(
H1(B, S)

)3
and Bpn ∈ L2(B, TB⊗ TB) such that χn = χbn, for all n ≥ 0 and

X ∈ ∂BD and, for all n ≥ 1,

P(χn,Bpn, ũ) :=

∫
B

P̂ (χn,Bpn) : gGrad ũ = 0, ∀ ũ ∈ H̃, (56a)

G(χn,Bpn) = Bpn −Bp(n−1) + R̂n(χn,Bpn) = 0, Bp(X, 0) = Bp0(X) in B. (56b)

505

506

Equations (56) are generally highly non-linear and coupled with each other. To search for507

solutions, (56a) and (56b) are linearised at each time step in a two-stage fashion according508

to Newton’s method. At the kth and lth iteration, χn,k and Bpn,l are written as509

χn,k = χn,k−1 + hn,k, Bpn,l = Bpn,l−1 + Φn,l , k, l ≥ 1, (57)

where hn,k and Φn,l are the increments associated with χn andBpn, respectively. Thus, one510

can regard the deformation gradient tensor as a functional of the motion and write F n,k =511

F (χn,k) and F n,k−1 = F (χn,k−1) as well as Hn,k = DχF n,k−1[hn,k], the latter being the512

Gâteaux-derivative of the functional F with respect to the motion, evaluated at χn,k−1,513

and computed along the increment hn,k. It follows that DχF n,k−1[hn,k] = Gradhn,k.514

To describe the linearisation procedure in detail, it is useful to introduce the notation515

DχP(χn,k−1,Bpn, ũ)[hn,k] =

∫
B

gGradũ : A(χn,k−1,Bpn) : Hn,k , (58a)

DBpP(χn,Bpn,l−1, ũ)[Φn,l] =

∫
B

gGradũ : B(χn,Bpn,l−1) : Φn,l , (58b)

DBpG(χn,Bpn,l−1)[Φn,l] = Y(χn,Bpn,l−1) : Φn,l , (58c)

with516

A(χn,k−1,Bpn) : Hn,k = DχP̂ (χn,k−1,Bpn)[hn,k] , (59a)

B(χn,Bpn,l−1) : Φn,l = DBpP̂ (χn,Bpn,l−1)[Φn,l] . (59b)
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The fourth-order tensor A is the algorithmic acoustic tensor. The expressions defining517

explicitly A, B and Y depend strongly on the constitutive model and on the flow rule.518

The first stage of the GPA consists of linearising (56a) and (56b) with respect to Bp519

only. This defines two approximated expressions of P and G that read at the lth iteration520

∆P := P(χn,Bpn,l−1, ũ) +DBpP(χn,Bpn,l−1, ũ)[Φn,l] , (60a)

∆G := G(χn,Bpn,l−1) + Y(χn,Bpn,l−1) : Φn,l . (60b)

Note that ∆P and ∆G are, respectively, a scalar and a second-order tensor since they are521

obtained by linearising the internal virtual power and the flow rule.522

The dependence of G on Bpn (cf. (56b)) is such that Y is invertible. Therefore, the523

increment Φn,l can be expressed as a function of χn by setting (60b) equal to zero, i.e.524

Φn,l = −[Y(χn,Bpn,l−1)]−1 : G(χn,Bpn,l−1). (61)

By substituting the right-hand-side of (61) into (60a), Φn,l is eliminated statically from525

∆P (this is similar to an algorithm of Gauß-Seidel type), which becomes526

∆P = P(χn,Bpn,l−1, ũ)−DBpP(χn,Bpn,l−1, ũ)
[
[Y(χn,Bpn,l−1)]−1 : G(χn,Bpn,l−1)

]
.

(62)
At each time step, the motion χn is required to solve the equation ∆P = 0. However,527

∆P is defined in (62) as a highly non-linear functional of χn, ∆P ≡ ∆P(χn,Bpn,l−1, ũ).528

The second stage of the GPA consists, thus, of linearising ∆P with respect to χn, and529

setting equal to zero its linearised expression. At the kth iteration of this linearisation530

sub-procedure, one has to solve531

∆P(χn,k−1,Bpn,l−1, ũ) +Dχ∆P(χn,k−1,Bpn,l−1, ũ)[hn,k] = 0 . (63)

By introducing the auxiliary functional532

g(χn,Bpn,l−1, ũ) := DBpP(χn,Bpn,l−1, ũ)
[
[Y(χn,Bpn,l−1)]−1 : G(χn,Bpn,l−1)

]
, (64)

∆P becomes533

∆P(χn,Bpn,l−1, ũ) = P(χn,Bpn,l−1, ũ)− g(χn,Bpn,l−1, ũ) , (65)

and (63) can be rewritten as534

∆P(χn,k−1,Bpn,l−1, ũ) (66)

+ DχP(χn,k−1,Bpn,l−1, ũ)[hn,k]−Dχg(χn,k−1,Bpn,l−1, ũ)[hn,k] = 0 .

The Gâteaux-derivative of g can be expressed by means of a fourth-order tensor A′ such535

that536

Dχg(χn,k−1,Bpn,l−1, ũ)[hn,k] =

∫
B

gGradũ : A′(χn,k−1,Bpn,l−1) : Hn,k , (67)

which, by using (58a), allows to reformulate (66) as follows537

538

Find hn,k ∈
(
H1

0 (B, TS)
)3

such that, for all n ≥ 1 and k ≥ 1,

c(hn,k, ũ) = g(ũ), ∀ ũ ∈
(
H1

0 (B, TS)
)3
, (68)

539

540
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where541

c(hn,k, ũ) :=

∫
B

gGradũ : An,k−1,l−1 : Gradhn,k, (69a)

An,k−1,l−1 := An,k−1,l−1 − A′n,k−1,l−1, (69b)

g(ũ) := −P(χn,k−1,Bpn,l−1, ũ) (69c)

+

∫
B

gGradũ :
(
Bn,k−1,l−1 : Y−1

n,k−1,l−1

)
: Gn,k−1,l−1 ,

and the notation An,k−1,l−1 = A(χn,k−1,Bpn,l−1), Bn,k−1,l−1 = B(χn,k−1,Bpn,l−1), and542

Yn,k−1,l−1 = Y(χn,k−1,Bpn,l−1) has been used. The increments hn,k belong, for all n and543

for all k, to the same functional space as the test velocities, i.e. hn,k must vanish on ∂BD544

since, at each iteration and each time, the motion must comply with χb.545

The tangent operator An,k−1,l−1 has been calculated by determining the numerical546

derivative of the right-hand-side of the functional ∆P (cf. (65)) with respect to the motion547

χn. This is because the explicit expression of g in (64) is very cumbersome.548

6.2 Fully Discrete Linearised Setting549

Let then T be a regular triangularisation of Cl(B) = B ∪ ∂B —the closure of B— in Nh
550

non-overlapping elements {Ti}N
h

i=1, where h > 0 is the grid characteristic length. Moreover,551

let Pm(Ti) be the space of polynomials of order m over Ti, for all i = 1, . . . , Nh. Hence,552

setting for ease of notation V ≡
(
H1

0 (B, S)
)3

, the following linear finite element space is553

introduced554

V h
m := {ũh ∈ V : ũh|Ti ∈ (Pm(Ti))

3 , ∀Ti ∈ T , ũh|∂BD
= 0} , (70)

where the notation (Pm(Ti))
3 means that each component of the vector-valued function555

ũh|Ti , restriction of ũh to the element Ti, is a polynomial of degree m (in the following, m556

will be either 1 or 2). The space V h
m is spanned by the Lagrangian basis functions {ϕq}Mq=1,557

with M = dim(V h
m), so that the approximations of the test velocity ũ and of the increment558

hn,k can be written, at each time tn and at each Newton iteration step k, as559

ũh =

M∑
q=1

ũqϕq, hhn,k =
M∑
q=1

hqn,kϕ
q ∈ V h

m. (71)

The approximation of χn,k ∈ H is constructed as in (57). At each time tn, the sequence560

{χhn,k}k∈N is contained in the set Hh ⊂ H defined by561

Hh := {χhn ∈ H : χhn |∂BD
= χhbn}, (72)

where χhbn is the approximation of the boundary data χb at time tn. The approximated562

motion χhn,k−1, used to determine the right-hand-side of (57), is written as563

χhn,k−1 = yhn + hhn,k−1 (73)

with hhn,k−1 ∈ V h
m and yhn |∂BD

= χhbn. Finally, the finite element version of (68) becomes:564

565

Find hhn,k ∈ V h
m such that, for all n ≥ 1 and k ≥ 1,

c(hhn,k,ϕ
q) = g(ϕq), ∀ q = 1, . . . ,M . (74)

566

The integrals featuring in c( · , · ) and g( · ) are approximated by numerical quadrature.567
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7 Numerical Tests and Results568

Due to the high non-linearity of the considered problems, the load attributed via the569

Dirichlet boundary conditions is applied incrementally. This leads to better starting values570

for the Newton method in every incremental step. Moreover, a line search method is applied571

to ensure global convergence of the non-linear iterations.572

7.1 Comparison with the RMA for a Shear-Compression Test573

As a first benchmark for evaluating the implementation of the GPA, and comparing it574

with the RMA, the shear-compression test of a unit cube presented in [56] is investigated.575

The unit cube is made of a material that is assumed to exhibit perfect plastic behaviour,576

i.e. no hardening is considered. Thus, the energy densities ψ̂κ and Ŵκ differ from each577

other additively by a constant (cf. (14)), q vanishes identically (cf. (15c)), and the model578

is described by Ŵκ (cf. (39)) and the yield function fτ (τκ) = ‖dev(τκ)‖ −
√

(2/3)τy.579

Moreover, since q = −K(α) = 0, equation (49) delivers580

γτn∆tn =


f trial
τn

2
3µtr(gben

trial)
, if fτn

trial > 0,

0, if fτn
trial ≤ 0.

(75)

In an orthonormal Cartesian reference frame, the Dirichlet boundary conditions can be581

written as follows: For all t ∈ I ≡ [0, T ],582

χ1
b(X, t) = X1 + 0.3

t

T
, χ2

b(X, t) = X2 − 0.3
t

T
, χ3

b(X, t) = X3, on [X1, 1, X3], (76a)

χ1
b(X, t) = X1, χ2

b(X, t) = X2, χ3
b(X, t) = X3, on [X1, 0, X3], (76b)

with [X1, 1, X3] = [0, 1]×{1}× [0, 1], [X1, 0, X3] = [0, 1]×{0}× [0, 1]. The conditions (76)583

describe a cube clamped at the bottom surface, X2 = 0, and undergoing shear and com-584

pression at the top surface X2 = 1 with a deformation up to 30%. The material parameters585

used for this test are reported in Table 1 (even though hardening is not considered in this586

example, the material parameters H∞, H, and ω are reported in Table 1, since they shall587

be used in next benchmarks). Note that the parameters reported in Table 1 are taken from588

[15], and model the material behaviour of steel (cf. [6]).589

Table 1: Material parameters

bulk modulus κ 164206.00 N/mm2

shear modulus µ 80193.80 N/mm2

initial yield stress τy 450.00 N/mm2

saturation stress H∞ 715.00 N/mm2

linear hardening modulus H 129.24 N/mm2

hardening exponent ω 16.93

To check whether the GPA (cf. Section 6.1) produces results comparable with the RMA,590

the maximal eigenvalue of the Kirchhoff stress tensor τκ at the midpoint of the unit cube591

is computed (see Fig. 1). Both the RMA and the GPA determine the same results. In592

Figure 1, the deformation of the cube in the shear-compression test is shown at time593

t = T = 300 s. Moreover, in Table 2, the computed values of the invariants of the Mandel594

stress tensor Σ are reported for different deformations.595
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Figure 1: (Left) Maximal eigenvalue of τκ at X = (0.5, 0.5, 0.5) using the ‘RMA’ (green) and the ‘GPA’
(blue) with T = 300 s. (Right) Deformation of the unit cube in a shear compression test at t = T = 300 s.

Table 2: Comparison of the invariants of the Mandel stress tensor at t = T/300, t = T/3 and t = T , which
correspond to deformations of 0.1%, 10% and 30%, respectively. The models M1, M2, M3, M4, M5 can
be found in [56]. In the present paper, computations have been run with a modified version of model M4,

which is referred to M̃4 hereafter, while the results shown in [56] are taken as reference for comparisons. M̃4
combines the energy potential of the model M4 [56], with the flow rule (40). The deformation at t = T/300
serves to check for non-linear elasticity, since no plastic strains occur.

M1(10%) M1(30%) M2(10%) M2(30%) M̃4(10%) M̃4(30%)

Ī1(Σ) -9.485+02 -9.977+02 -9.251+02 -9.190+02 -9.218+02 -9.141+02

Ī2(Σ) 1.984+05 2.257+05 1.840+05 1.803+05 1.826+05 1.786+05

Ī3(Σ) -1.161+07 -1.473+07 -1.013+07 -9.936+06 -1.002+07 -9.944+06

M2(0.1%) M3(0.1%) M4(0.1%) M5(0.1%) M̃4(0.1%)

Ī1(Σ) -2.557+02 -2.550+02 -2.560+02 -2.563+02 -2.560+02

Ī2(Σ) -2.205+03 -2.253+03 -2.207+03 -2.210+03 -2.213+03

Ī3(Σ) 3.228+04 3.201+04 3.232+04 3.235+04 3.232+04

7.1.1 Structural Set-Up596

RMA: Let P n = P̂ (χn,Bpn) be the stress response defined by computingBpn as prescribed597

by (52) and substituting the result into the time-discrete version of the constitutive expres-598

sion of P (37). As stated in Section 5.2, P′(χn, ũ) is non-linear in χn. Therefore, an iterative599

scheme has to be applied to determine χn at each time step. Let then χn,k = χn,k−1 +hn,k,600

k ≥ 1, be the motion at the kth Newton iteration, where the increment hn,k solves the601

linearised equation602

P′(χn,k−1, ũ) +DχP
′(χn,k−1, ũ)[hn,k] = 0. (77)

In the computations performed in this paper, the Gâteaux-derivative DχP
′(χn,k−1, ũ)[hn,k]603

is approximated numerically. Then, the RMA is performed according to the scheme in604

Algorithm 1.605

GPA: The functionality of the GPA is outlined in Algorithm 2, where the notation606

Pn,k,l = P(χn,k,Bpn,l, ũ), Gn,k,l = G(χn,k,Bpn,l), (78a)

Bn,k,l =
∂P̂

∂Bp
(χn,k,Bpn,l), Yn,k,l =

∂G

∂Bp
(χn,k,Bpn,l), (78b)
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has been used. As explained in Section 6.1, the index l enumerates, at each time step,607

the iterations performed to linearise the equations with respect to Bpn. At the lth itera-608

tion, Bpn,l is computed as shown in (57), and the increment Φn,l is determined by (61).609

To control the linearisation error introduced by this procedure, line 15 of Algorithm 2610

is mandatory. As for the RMA, the Gâteaux-derivative in line 22 of Algorithm 2 is611

approximated by computing the numerical derivative of the defect equation in line 8.612

Algorithm 1 Solving the balance
equation using the ’RMA’
1: if X ∈ ∂BD then
2: Fn,0 = Tχbn;
3: else
4: Fn,0 = F (χn−1(X));
5: end if
6: k = 0;
7:
8: (Pn,k,Bpn) = RMA(Fn,k,Bp(n−1));
9:

10: rn,k := −P′n,k = −
∫
B
Pn,k : gGradũ;

11:
12: if

∥∥rn,k∥∥ ≤ εF then
13: (Fn,Bpn) = (Fn,k,Bpn);
14: else
15: determine hn,k+1 by solving:
16: DχP′n,k[hn,k+1] = rn,k;

17:
18: Fn,k+1 = Fn,k +DχFn,k[hn,k+1];
19: k = k + 1;
20: go to 8;
21: end if

Algorithm 2 Solving the balance
equation using the ’GPA’
1: if X ∈ ∂BD then
2: Fn,0 = Tχbn;
3: else
4: Fn,0 = F (χn−1(X));
5: end if
6: l = 0; Bpn,0 = Bp(n−1);
7: k = 0;
8: rn,k,l := −Pn,k,l+∫

B
gGradũ : Bn,k,l(Yn,k,l)−1 : Gn,k,l ;

9:
10: if

∥∥rn,k,l∥∥ ≤ εF then
11: compute Φn,l+1:
12: Φn,l+1 = −(Yn,k,l)−1 : Gn,k,l;
13: Bpn,l+1 = Bpn,l + Φn,l+1;
14:
15: if

∥∥∥G(Fn,k,Bpn,l+1 )
∥∥∥ ≤ εBp then

16: (Fn,Bpn) = (Fn,k,Bpn,l+1);
17: else
18: l = l + 1; go to 8;
19: end if
20: else
21: determine hn,k+1 by solving:
22: Dχrn,k,l[hn,k+1] = −rn,k,l.
23:
24: Fn,k+1 = Fn,k +DχFn,k[hn,k+1];
25: k = k + 1; go to 8;
26: end if

613

7.1.2 Computational Effort614

Even for the simple case of a unit cube, a good mesh resolution is required to obtain615

reliable results [56]. To this end, 32768 trilinear hexahedral elements have been used, which616

lead to 262144 non-linear problems in R7 (indeed, the unknowns of the problems are six617

independent components of Bp and the Lagrange multiplier γτ , the latter being computed618

with an 8-point Gauß quadrature rule) at every integration point for the defect evaluation619

and the computation of the consistent tangent. ‘Level 4’ denotes the finest grid, which620

consists of 32768 hexahedral elements, and is found by a threefold, uniform refinement of621

the coarsest grid, ‘Level 1’, consisting of 64 hexahedral elements. The solving strategies622

adopted in this paper are similar to those reported in [56]. The non-linear variational623

problem in χn (which involves 107811 unknowns) is solved by applying the Newton method624

and having recourse to numerical differentiation to approximate the tangent operators. The625

linear sub-problems occurring within the Newton-iterations are solved by a preconditioned626

Bi-CGSTAB method, in which the preconditioner is determined by means of a multigrid627

cycle with a multigrid method. A Gauß-Seidel method served as smoother in the geometric628

multigrid cycle. The non-linear convergence is ensured by means of a line-search method.629

It is important to remark that, for the GPA, additional effort has to be taken into630
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account to compute the increments Φn,l, which require the inversion of a fourth-order631

tensor at every integration point. Therefore, the generalised algorithm developed in this632

paper needs more computing time than the classical RMA (see Table 3). On the other633

hand, this increase of computational time can be viewed as a measure of the “weight” of634

the simplifying hypotheses (39) and (40) discussed in Section 5, right after equation (41).635

Table 3: Computing time (in CPU-h) for using the
RMA resp. the GPA in the shear-compression test.

Level 1 Level 2 Level 3 Level 4

RMA 0.010 0.111 0.950 9.042
GPA 0.040 0.429 3.281 33.172

For the von Mises J2 plasticity model presented in problem ‘Pr1’, only one iteration636

step in l, cf. Algorithm 2, was necessary to achieve a prescribed tolerance of εBp = 1 ·10−8
637

in the computations performed in this paper.638

7.2 Comparison with the RMA for the Necking of a Circular Bar639

The sample has initial length L0 = 26.667 mm and initial radius R0 = 6.413 mm. In640

cylindrical coordinates, X = (R,Θ, Z), R ∈ [0, R0], Θ ∈ [0, 2π), Z ∈ [−L0/2, L0/2] denote,641

respectively, the radial coordinate, the angle about the symmetry axis, and the axial642

coordinate of the original geometry (initial configuration) of the specimen. The material643

parameters are listed in Table 1. A description of this very well-documented problem can644

be found, for example, in [15, 56, 66].645

By exploiting the cylindrical symmetry of the bar, and assigning appropriate boundary646

conditions, the computations can be performed on one eight of the original geometry.647

However, the computational grid in the necking region is refined to a greater degree than648

in the rest of the specimen.649

As suggested in [15], a non-linear hardening law is chosen. In particular, the hardening650

potential is taken to be651

Ĥκ(α) = 1
2Hα

2 + (H∞ − τy)α+ (H∞ − τy) 1
ω [exp(−ωα)− 1] , (79a)

q = −K(α) = −∂Ĥκ
∂α

(α) = − [Hα+ (H∞ − τy) (1− exp(−ωα))] . (79b)

It should thus be necessary to apply a local Newton method to determine the plastic652

multiplier γτn in (49) in every global Newton iteration for χn. However, in order to reduce653

the computational effort, and since γτn can be viewed as a functional of χn through Fn654

(cf. (49)), γτn is computed explicitly with respect to χn in every global Newton step.655

The necking test is performed by applying to the specimen an axial displacement up to656

χzb(X,T )−Z = 7.0 mm (which corresponds to an elongation of about 26% of the original657

length), for all X ∈ [0, R0]×[0, 2π)×{L0/2}∪[0, R0]×[0, 2π)×{−L0/2}, which constitutes658

the Dirichlet-boundary. The final load is reached by several incremental loading steps.659

7.2.1 Grid Refinement660

The base-level, termed ‘Level 1’, consists of 120 hexahedral elements and the finer levels661

are generated by regular refinement of the grid. For instance, Level 2 is similar to the grid662

presented in [67].663

To obtain results in good agreement with those reported in [15], a fine computational664

grid with 61440 hexahedral elements was needed for the computations performed in this665
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paper. Such a fine grid was necessary to approximate adequately the physical behaviour666

and the change of geometry of the specimen (cf. Figures 2(a) and 2(b)). One reason for667

the necessity of such a refinement lies in the fact that volumetric locking effects, which668

might arise as a consequence of the hypothesis of isochoric plastic flow, need to be avoided.669

Another common approach to eliminate volumetric locking is to increase the polynomial670

order of the finite element spaces [68, 69] instead of decreasing the mesh size. Figure 2(d)671

shows that a good accuracy of the experimental data can already be obtained on grid level672

2 by using quadratic finite element ansatz functions.673

(a) Deformation of the circular bar ( 1
8

of
the original geometry) in a tensile test with
χzb(X,T ) − Z = 7.0 mm, X ∈ [0, R0] ×
[0, 2π)×{L0/2}∪ [0, R0]× [0, 2π)×{−L0/2}.
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(c) Comparison of RMA and GPA
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Figure 2: Comparison of the numerical results obtained in this work for the necking test to the experi-
mental data reported in [70]. The experiments 2499R (21 ◦C) and 2501R (71 ◦C) differ from each other in
the temperature of the specimen. The change of the sectional area where necking occurs is plotted against
the elongation in mm.

7.2.2 Convergence674

In Table 4, pointwise changes in the components of the displacement and in the normal675

components of the Cauchy stress tensor σ = J−1PFT are shown under uniform grid re-676

finement. Although almost 200000 degrees of freedom are assigned on Level 4, the region677

in which plastic evolution takes place is still not captured correctly (cf. Table 4). Never-678

theless, linear convergence behaviour for the displacements and the normal stresses can679

be observed at some representative sample points.680

To discuss the convergence properties of the RMA and the GPA, it is necessary to look681

at the Algorithms 1 and 2, and to recall that, in both cases, a non-linear problem in the682

motion χn has to be solved at each time step. In particular, the RMA solves (53c), while683

the GPA solves ∆P = 0, where ∆P is given in (62). Due to the high non-linearity of the684
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Table 4: Let P1 = (6.413, 0, 13.334); P2 = (6.413, 0, 10); P3 = (6.406, 0.785, 12) be three sample points of
the specimen expressed in cylindrical coordinates; wr := χr(P, t)−χr(P, 0) is the radial displacement and
wz := χz(P, t)− χz(P, 0) is the longitudinal displacement at P ∈ {P1, P2, P3} and t = 280 s.

elements DoFs plastic IPs wr(P1, t) diff. wr(P2, t) diff. wz(P3, t) diff.

Level 1 120 627 960 -1.548 -0.794 -1.815
0.590 0.194 0.997

Level 2 960 3843 4709 -2.138 -0.600 -2.812
0.423 0.170 0.469

Level 3 7680 26691 25539 -2.561 -0.530 -3.281
0.412 0.009 0.100

Level 4 70080 198531 110908 -2.973 -0.541 -3.381

σrr(P1, t) diff. σr(P2, t) diff. σzz(P3, t) diff.

Level 1 3.646+03 5.734+03 3.860+03
1.099+03 2.297+03 8.277+03

Level 2 2.547+03 8.031+03 12.137+03
0.489+03 4.558+03 3.475+03

Level 3 2.058+03 3.473+03 8.662+03
0.316+03 0.687+03 0.710+03

Level 4 1.742+03 2.786+03 7.952+03

equations, iterative linearisation schemes are employed. These introduce residuals at each685

iteration. For the RMA, the residual introduced at the kth iteration is denoted by rn,k686

(see line 10 of the Algorithm 1). For the GPA, the residual at the iterations k and l is687

denoted by rn,k,l (see line 8 of the Algorithm 2). Both the iterative schemes used in this688

paper converge, since the norm of the residual is smaller than, or equal to, a prescribed689

tolerance (cf. line 12 of Algorithm 1 for the RMA, and line 10 of Algorithm 2 for the690

GPA). It is also important, however, to establish how fast the iterative methods converge.691

This can be done by counting the number of iteration steps required for satisfying the692

conditions ‖rn,k‖ ≤ εF (line 12 of Algorithm 1) and ‖rn,k,l‖ ≤ εF (line 10 of Algorithm 2).693

Looking at Table 5, it can be observed that the non-linear convergence rates of the RMA694

and the GPA are comparable. For both algorithms, a line-search method is evident in the695

first iteration steps for achieving convergence. Moreover, in both cases the convergence is696

quadratic.697

Table 5: Comparison of the non-linear reduction of the norm (absolute value, in the present context) of
the residual as computed by the RMA and the GPA for the necking test on Level 4. The residual is the
right-hand-side of line 10 of the Algorithm 1 for the RMA, and of line 8 of the Algorithm 2 for the GPA.
The load applied at the Dirichlet boundary of the cylinder is χzb(X, t)− Z = 7 t

T
mm, with T = 280 s.

RMA t = 1 s t = 280 s GPA t = 1 s t = 280 s

nonlinear iteration step: 1 1.08+04 1.05+04 nonlinear iteration step: 1 1.07+04 1.05+04
2 6.81+02 6.34+02 2 1.07+03 8.58+02
3 5.51+02 5.48+02 3 3.20+02 8.24+02
4 5.50+00 4.37+02 4 7.72+01 3.92+02
5 5.26−02 2.70+02 5 7.63−01 6.44+01
6 4.63−04 2.15+01 6 5.42−03 4.65+00
7 2.86−06 1.01+01 7 3.91−05 1.48−01
8 2.54−08 7.64−01 8 3.53−07 1.96−02
9 3.53−10 5.99−02 9 2.39−09 6.04−04

10 3.04−03 10 9.79−06
11 4.11−05 11 8.67−08
12 1.40−06 12 7.12−09
13 1.55−08
14 6.58−09

7.3 Shear-compression Test for a biomechanical example698

To outline the wider field of application of the GPA in comparison to the classical RMA,699

a biological flow rule of the form of (33) is chosen, i.e.700

Ḃp = −2γpBpG
dev(ΣR)

‖dev(τ ) ‖
, (80a)

γp := λ
[
‖dev(τ ) ‖ −

√
(2/3)τy

]
+
. (80b)
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Figure 3: (Left) Maximal eigenvalue of τκ at X = (0.5, 0.5, 0.5) using the ‘GPA’ with T = 300 s. (Right)
Deformation of the unit cube in a shear compression test for the biomechanical model at t = T = 300 s.

The mechanical response of the considered soft tissue, which is assumed to be hyperelastic,701

is modelled by means of the Holmes-Mow strain energy density function [71, 72, 73, 74]702

Ŵκ(Ce) = α0

(
[Î3(Ce)]

−β exp
{
α1[Î1(Ce)− 3] + α2[Î2(Ce)− 3]

}
− 1
)
. (81)

In (81), α0 is a referential value of the strain energy density function, α1, α2 and β are703

model parameters, while Î1, Î2 and Î3 are defined in (16a)–(16c). Clearly, Ŵκ describes a704

material exhibiting isotropic elastic properties with respect to the natural state. As done705

in problem ‘Pr2’, Ŵκ is a function of Ce only. Moreover, hardening is disregarded here.706

Since this model is based on the problem formulation ‘Pr2’, the application of the707

RMA in its classical form is not possible. Consequently, the GPA is validated for this708

biomechanical problem using the shear-compression test of the unit cube of section 7.1.709

The incremental load at the boundary is described by the Dirichlet boundary conditions710

(76). The material parameters used for this test are reported in Table 6. The elastic711

parameters α0, α1, and α2 comply with the work of Garćıa and Cortés [72], who studied a712

model of articular cartilage. We selected β in such a way that β = α1 + 2α2 (cf. [71]). The713

material parameters incorporated in the phenomenological flow rule (80), which is suitable714

for biomechanical problems, are chosen in consistency with [58]. The computational grid715

consists of 32768 hexahedral elements.716

Table 6: Material parameters

α0 (N/mm2) α1 α2 β λ τy (N/mm2)

0.722 0.150 0.024 0.198 0.500 0.020

The deformation of the cube in the shear-compression test is similar to that from717

Section 7.1 at time t = T = 300 s (cf. Figure 1 and Figure 3). However, the maximal718

eigenvalue of the Kirchhoff stress tensor τκ at the midpoint of the unit cube differs from719

that found by the Neo-Hookean model (cf. Figure 1), and is plotted in Figure 3.720

7.4 Software Framework UG4721

The numerical methods presented in this work have been implemented in UG4, a novel722

version of the software framework UG (‘Unstructured Grids’) [75]. This toolbox provides723

fast, massive-parallel solvers for coupled partial differential equations like, e.g. geometric724

and algebraic multigrid methods. Its new tools for parallel communication (PCL) allow725

for an efficient scaling of the code on large numbers of processors [76].726

25



8 Discussion and Outlook727

As stated at the end of section 5.2, the algorithm proposed in this work treats Bp and χ728

as equally ranked variables, even though technical reasons lead to a ‘hierarchical’ solution729

strategy, which suggests to compute first the plastic increment, Φn,l, by solving (60b), and730

then to determine the increment of deformation, hn,k, by solving the problem (68). These731

reasons are also related to the fact that the weak form of the momentum balance law is732

solved by a Finite Element method, whereas the flow rule is defined pointwise and, as such,733

requires no spatial discretisation (rather, Bp is evaluated only at the integration points of734

the finite elements). The philosophy of the algorithm has been inspired by the observation735

that the modelling choices proposed in [16, 17] comply with the development of some736

generalised numerical procedures (cf., e.g., [77]) that tend to improve the efficiency of the737

‘standard’ algorithms of Computational Plasticity. In the authors’ opinion, this conceptual738

framework is suitable for a unified approach to the analysis of anelastic processes.739

The theory reported in [16, 17] is based on the fundamental concept according to which740

a body that deforms and changes its internal structure is characterised by a “multi-layer741

kinematics” [17]. The kinematic descriptor associated with the “visible” motion of the742

body is the “standard velocity” v (or u), while the kinematic descriptor accounting for743

the variation of the body’s internal structure is the generalised velocity Lp = ḞpFp
−1 (or744

Ḃp). Consistently with the concept of “multi-layer kinematics”, the space of generalised745

virtual velocities is generally a subset of746

H̃a := {(ũ, L̃p) ∈ TS× (TCκ ⊗ T ∗Cκ) | ũ|∂BD
= 0} , (82)

where the subscript ‘a’ indicates that H̃a is obtained by augmenting H̃ with L̃p (cf. (6)).747

It is important to remark that, in this framework, Fp is not an internal variable. This748

strong difference with the standard theory requires to reformulate the Principle of Virtual749

Powers. Indeed, a logical consequence of viewing L̃p as a virtual velocity is that one has750

to introduce the external and internal forces, M ext and M int, power-conjugate with L̃p.751

Thus, if the material constitutive behaviour is of grade zero with respect to Fp and of752

grade one in χ, one obtains753

Pext(ũ, L̃p) :=

∫
B

bR.ũ +

∫
∂BN

fR.ũ +

∫
B

M ext : ηL̃p , (83a)

Pint(ũ, L̃p) :=

∫
B

P :gGradũ +

∫
B

M int : ηL̃p . (83b)

By enforcing the PVP, i.e. setting P̃int(ũ, L̃p) = P̃ext(ũ, L̃p) for all (ũ, L̃p) ∈ H̃a, the754

local force balance M int = M ext is obtained, in conjunction with the standard one given755

in (9a)–(9c). Moreover, in the case of isochoric plastic distortions, and in the absence of756

hardening, the plastic dissipation reads (Mint + Σ) : ηLp ≥ 0, which suggests to express757

M int as the sum of a dissipative stress Y and the negative of the Mandel stress tensor Σ,758

so that M int = Y −Σ. This result, together with the force balance M int = M ext, leads759

to Y = M ext + Σ [16, 17]. If, for simplicity, M ext is assumed to vanish, then the more760

stringent equality Y = Σ is obtained. The latter equality is consistent with the standard761

theory, where the plastic dissipation is identified with Σ :ηLp.762

In the case of vanishing external forces, the PVP can be rewritten as763 ∫
B

P :gGradũ +

∫
B

(Y −Σ) : ηL̃p = 0 ∀ (ũ, L̃p) ∈ H̃a . (84)

When Y can be determined constitutively as a function Lp [20, 36, 42, 43], the PVP (84)764

produces a system of coupled equations in the unknowns χ and Fp. Since the equation765
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determining Fp stems from the second summand of (84), which is not local, suitable766

finite element basis functions for Fp and L̃p should be introduced, as it is done for χ767

and ũ. In particular, the algebraic form of the mixed problem (84), obtained after the768

finite element discretisation and linearisation of (84), leads to a block matrix, in which the769

extra-diagonal blocks couple the degress of freedom related to the standard deformation770

with those related to the plastic distortions. The same conclusions could be drawn also771

in the case of rate-independent plastic behaviour, by substituting the second term of (84)772

with the weak form of some flow rule [77]. As a consequence of this approach, Fp need not773

be evaluated only at the integration points, as it happens in the standard theory.774

If, on the one hand, the formulation (84) can be viewed as a reinterpretation of the775

standard theory of Elastoplasticity, on the other hand, spatial discretisations for Fp become776

mandatory for those constitutive theories whose grade in Fp is higher than the zeroth.777

This could happen, for instance, within the theory of defects in elasto-plastic materials (cf.,778

e.g., [78]). In this case, indeed, the Differential Geometry tools required by the theory, like779

the Bilby-type connection
(
A(p)

)A
BD

= (Fp
−1)Aβ∂XD(Fp)βB, involve the differentiation780

of Fp with respect to material coordinates. In such situations, or even in those in which781

the evolution law for Fp is given by [79]782

Ḟp = Z(Fp,Rp,GradRp, X) , (85)

where Rp is the fourth-order curvature tensor associated with the plastic metric tensor783

Cp = Fp
TηFp, spatial discretisations for Fp and L̃p become necessary. In this respect, it784

might be useful to consider computational algorithms like the one proposed in this paper.785

For the reasons outlined so far, the GPA seems to be a promising algorithm for those786

theories in which Fp represents a structural degree of freedom, rather than an internal787

variable. As it currently stands, the GPA is actually a step forward in this direction. In a788

future work, the possibility of applying the GPA to such a two-field formulation of finite789

strain Plasticity shall be investigated in the framework of Poroplasticity, and together with790

the possibility of establishing robust solvers, whose efficiency has been already shown for791

optimisation problems and for the Navier-Stokes equations by means of a simultaneous792

solving process [80][81]. This could be an interesting approach for a further development793

of efficient solvers for structural mechanical problems.794

Finally, the GPA could be a useful computational tool for problems in which plasticity795

is coupled with damage [82] as well as for biomechanical models of growth and tissue796

adaptation involving higher order gradients of the deformation (see, e.g., [83, 84, 85, 86]),797

for problems of remodelling of bone [87] and fibre-reinforced biological materials [88], and798

also for studying problems involving the mechanical interaction between fluid and porous799

matrix in compacting fluid-saturated grounds [89].800
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Zeitschrift für Angewandte Mathematik und Physik 2012; 63(6): 1119–1141.997

[87] Giorgio, I, Andreaus, U, Madeo, A. The influence of difference loads on the remodeling998

process of a bone and bioresorbable material mixture with voids. Continuum Mech999

Thermodyn 2014; DOI: 10.1007/s00161-014-0397-y1000

[88] Grillo, A., Wittum, G., Tomic, A., Federico, S. Remodelling in statistically ori-1001

ented fibre-reinforced materials and biological tissues Math Mech Solids 2014; DOI:1002

10.1177/10812865135152651003

32
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