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Random Coordinate Minimization Method with Eventual Transverse
Directions for Constrained Polynomial Optimization

Giuseppe C. Calafiore, Carlo Novara and Corrado Possieri

Abstract— In this paper, we propose a novel algorithm for
the solution of polynomial optimization problems. In particular,
we show that, under mild assumptions, such problems can be
solved by performing a random coordinate-wise minimization
and, eventually, when a coordinate-wise minimum has been
reached, an univariate minimization along a randomly chosen
direction. The theoretical results are corroborated by a nu-
merical example where the given procedure is compared with
several other methods able to solve polynomial problems.

I. INTRODUCTION

Several problems arising from system analysis and control
design can be recast into optimization problems involving
polynomial objective and constraint functions. Some remark-
able examples are the computation of the parametric stability
margin of a control system affected by uncertainty [1], the
estimation of the domain of attraction of an equilibrium of
a nonlinear systems [2], the estimation of the fundamental
matrix from point correspondences [3], the robust design of
control systems that satisfy several specifications [4], and the
simultaneous stabilization of multiple plants [5].

Thus, a lot of research effort has been spent to design
procedures to address such problems, which may be surpris-
ingly difficult to solve [6]. Among the tools that are available
in the literature to solve these (generically non-convex)
programming problems [7], convex relaxations are some of
the most widely employed. A convex relaxation is essentially
a convex problem whose solution provides information about
the solution to the original problem. Methods belonging to
such a class are sum-of-squares (briefly, SOS) optimization
[8], [9], the method of moments [10], [11], and linear-matrix-
inequality (breifly, LMI) relaxations [12], [13]. The drawback
of these methods is that, although the convex relaxation can
be solved with very efficient methods, non-convex constraints
are usually substituted with relaxed, but often nonequivalent,
constraints that lead to conservative solutions to the problem
[14]. As an example, the largest real γ such that f(x) − γ
is an SOS is just a lower bound on min f(x) that need not
be tight when dealing with global problems [15], especially
if the degree of f and the number of variables involved in
the minimization problem is large [16]. Nonetheless, when
dealing with positivity on bounded domains [17], [18], the
cone of SOS polynomials is densely embedded in the cone
of positive polynomials [19], i.e., there is no gap.

The main objective of this paper is to propose a novel
algorithm to solve polynomial optimization problems that
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does not rely on convex relaxations. In particular, we show
that, if one performs a random coordinate descent up to a
coordinate-wise minimum and, when such a minimum is
reached, performs a minimization along a random transverse
direction, then one obtains a sequence that asymptotically
converges to the global solution of the optimization problem.

The main advantage of this procedure with respect to the
global minimization is that, at each of its steps, one has to
solve just an univariate problem that can be easily addressed
(even exactly [20], [21]) using standard tools [22]. The
main difference between the algorithm proposed here and
the one given in [23] is that here transverse coordinates are
allowed just once that a coordinate-wise minimum is reached,
whereas in [23] they are allowed at each iteration. This leads
to a substantially different procedure that may lead to faster
convergence times, especially in the case that the problem to
be solved is convex or coordinate-wise convex [24].

Differently from classical nonlinear programming meth-
ods, such as gradient-based algorithms [25], the given algo-
rithm asymptotically tends to the globally optimal solution.

II. PROBLEM STATEMENT

A. Notation

Let Z, N, R, R>0, and R>0 denote the sets of integer,
natural, real, nonnegative real, and positive real numbers,
respectively. Let B, Bo and S denote the closed and open
unit balls and the unit sphere in the Euclidean norm, re-
spectively. The symbol 1, n denotes the set {1, 2, . . . , n}.
The symbol vi denotes the i-th coordinate direction in the
Euclidean space and V

.
= {v1, . . . ,vn}. Given a vector

h = [ h1 · · · hm ], the inequality h 6 0 is understood
entry-wise, i.e., h1 6 0, . . . , hm 6 0. The symbols ∨ and ∧
denote the logical or and and operators, respectively.

Given a compact set A ⊂ Rn, ‖x‖A
.
= infy∈A ‖x − y‖2

denotes the `2 distance between x ∈ Rn and A.
A function % : Rn → R>0 is positive semidefinite with

respect to A ⊂ Rn, denoted % ∈ pd(A), if %(x) =
0 ⇐⇒ x ∈ A. A continuous function α : R>0 →
R>0 is of class K∞ if it is strictly increasing, α(0) = 0,
and limr→+∞ α(r) = +∞. A function f : Rn → R is
radially unbounded on Ω ⊂ Rn, denoted f ∈ ru(Ω), if
for every {xk}k∈N such that xk ∈ Ω for all k ∈ N and
limk→+∞ ‖xk‖2 = +∞, one has limk→∞ f(xk) = +∞.

Uni(C) denotes the uniform distribution over the compact
set C, whereas ∼ reads as “has distribution”.

Following [26], letting x = [ x1 · · · xn ]>, with n ∈
N, be a vector of variables, the ring of all the polynomials
in x with coefficients in R is denoted R[x].



B. Problem statement

Given f, h1, . . . , hm ∈ R[x], consider the following poly-
nomial minimization problem (briefly, PMP):∣∣∣∣ min f(x),

with hi(x) 6 0, i = 1, . . . ,m.
(1)

The main purpose of this paper is to design a procedure for
computing a solution to the PMP (1), i.e., find f? ∈ R and

x? ∈ Ω
.
= {x ∈ Rn : h(x) 6 0},

where h
.
= [ h1 · · · hm ]>, such that

f? = f(x?) = min
x∈Ω

f(x).

Since f need not be convex on the feasible set Ω, the
minimization problem (1) is generally NP-hard, even for
simple instances of the constraint set [27].

Due to the fact that a lot of problems arising from the
analysis and design of control system can be reduced to a
PMP in the form (1), a lot of research effort has been spent
to specifically solve it (see [23] for a review of the different
methods available in the literature to pursue such a goal).

III. RANDOM COORDINATE DESCENT WITH EVENTUAL
TRANSVERSE DIRECTIONS

The algorithm that we propose to solve the PMP (1) is
described in words as follows: perform a classical random
coordinate descent on the PMP (1) while there exists a
coordinate direction such that, by performing a step of the
coordinate descent along such a direction, the objective
function f decreases of at least ω ∈ R>0. On the other
hand, when such a condition does not hold, pick a random
direction sk ∈ S and perform a transverse descent along
such a direction. More formally, we update the estimate of
the solution to the PMP (1) according to the following rule

xk+1 ∈ xk + λk sk, (2a)

where
λk = arg min

λ∈Ω
sk

(xk)

f(xk + λ sk), (2b)

the set Ωs(x) is defined as

Ωs(x) = {λ ∈ R : hj(x + λ s) 6 0, j = 1, . . . ,m}, (2c)

sk ∼ Uni(V), if xk ∈ D1, or sk ∼ Uni(S), if xk ∈ D2, with

D1
.
= {x ∈ Rn : ∃i ∈ 1, n ∧ xi ∈ R s.t.

f(x)− f(xi,x−i) > ω ∧ h(xi,x−i) 6 0}, (2d)
D2

.
= {x ∈ Rn : f(x)− f(xi,x−i) 6 ω,

∀xi ∈ R s.t. h(xi,x−i) 6 0, i ∈ 1, n}, (2e)

while x−i
.
= [ x1 · · · xi−1 xi+1 · · · xn ]> and

f(xi,x−i)
.
= f(x1 . . . , xn).

Note that, since the set D1 can be equivalently defined as
D1 =

⋃n
i=1{x ∈ Rn : ∃xi ∈ R s.t. f(x) − f(xi,x−i) >

ω ∧ h(xi,x−i) 6 0}, which is the finite union of closed
sets, it is closed [28]. Similarly, since the set D2 can be
equivalently defined as D2 =

⋂n
i=1{x ∈ Rn : f(x) −

f(xi,x−i) 6 ω, ∀xi ∈ R s.t. h(xi,x−i) 6 0}, which is the
finite intersection of closed sets, it is closed. Furthermore, by
construction D1 ∪ D2 ⊃ Ω, although they do not constitute
a partition of Ω since D1 ∩ D2 6= ∅.

Therefore, letting J1 = D1 ∩Ω and J2 = D2 ∩Ω (which
are closed sets since D1, D2, and Ω are closed and satisfy
J1 ∪ J2 = Ω by construction) and letting the set-valued
mapping G : Ω× S⇒ Ω be defined as

G(x, s)
.
= {y ∈ Ω : ∃λ? ∈ R s.t. y = x + λ? s

∧ f(y) 6 f(x + λ s), ∀λ s.t. h(x + λ s) 6 0},

the algorithm dynamics given by (2) can be rewritten in the
form of the difference inclusion

xk+1 ∈ G(xk, sk1), xk ∈ J1, (3a)

xk+1 ∈ G(xk, sk2), xk ∈ J2, (3b)

where {sk1}k∈N and {sk2}k∈N are two sequences of indepen-
dent, identically distributed (i.i.d.) random variables defined
from the probability space (Ψ,F ,P). Namely, the random
variables sk1 : Ψ → V (resp., sk2 : Ψ → S) are such that
the probability measure µ1(F )

.
= P(ψ ∈ Ψ : sk1(ψ) ∈ F )

(resp., µ2(F )
.
= P(ψ ∈ Ψ : sk2(ψ) ∈ F )) is well defined and

independent of k for each F in the Borel σ-field on V (resp.,
S). In particular, s1 ∼ Uni(V) and s2 ∼ Uni(S).

Define the set A of all the solutions to the PMP (1),

A .
= {x ∈ Ω : f(x) 6 f(y), ∀y ∈ Ω}.

The following lemma establishes some regularity proper-
ties of the set-valued map G(x, s).

Lemma 1 ([23]). Assume that A 6= ∅ and that either Ω
is compact or f ∈ ru(Ω). Then, the set A is compact, the
set-valued mapping G : Ω× S⇒ Ω is locally bounded and
s 7→ graph(G(·, s)) .

= {(x,y) ∈ Rn × Rn : y ∈ G(x, s)} is
measurable with closed values. Moreover, one has that

G(Ω,S)
.
=
⋃
x∈Ω

⋃
s∈S

G(x, s) ⊂ Ω.

Lemma 1 states that the stochastic difference inclusion (3)
satisfies the assumptions of [29], [30], [31], thus establishing
existence and completeness of maximal random solutions.
The set of all such solutions starting at x0 ∈ Ω is R(x0).

We now recall the definition of asymptotic stability in
probability for (3). A compact set A ⊂ Rn is stable in
probability for (3) if for each ε ∈ R>0 and σ ∈ R>0 there
exists δ ∈ R>0 such that

x0 ∈ (A+ δ B) ∩ Ω, {xk}k∈N ∈ R(x0)

=⇒ P(xk(ψ) ∈ A+ εBo, k ∈ N) > 1− σ. (4)

On the other hand, the set A ⊂ Rn is attractive in probability
for (3) if for each ε ∈ R>0, σ ∈ R>0 and ∆ ∈ R>0, there
exists K ∈ R>0 such that

x0 ∈ (A+ ∆ B) ∩ Ω, {xk}k∈N ∈ R(x0)

=⇒ P(xk(ψ) ∈ A+ εBo, k > K) > 1− σ. (5)



The set A ⊂ Rn is asymptotically stable in probability for (3)
if it is both attractive and stable in probability for (3) [29].

Establishing that the set A is asymptotically stable in
probability for an algorithm attempting at solving an opti-
mization problem is a particularly desirable property. In fact,
the condition given in (4) implies that if one already possess
an accurate solution x0 to the optimization problem, then its
(pseudo)optimality is not lost by applying the optimization
algorithm with x0 as initial guess. On the other hand, the
condition given in (5) implies that, although the initial guess
of the optimization algorithm is far from optimality, its state
eventually converge to an arbitrarily good approximate of the
solution. In the following theorem, we prove that indeed the
set A is asymptotically stable in probability for (3).

Theorem 1. Let the assumptions of Lemma 1 hold and
assume, additionally, that there exists ν? ∈ R>0 such that
the set (A+νB)∩Ω has nonzero measure for all ν ∈ (0, ν?).
Then, the set A is asymptotically stable for (3).

Proof. Let x? be any point in A and let f? = f(x?). Since
the set A is nonempty and the polynomial f is continuous
f? ∈ R. Thus, let V : Ω→ R>0 be any smooth function such
that V (x) = f(x)−f? for all x ∈ Ω and lim‖x‖→∞ V (x) =
+∞. Such a function exists since either Ω is compact or
f ∈ ru(Ω). Since the set A is compact, V (x) = 0 if and
only if x ∈ A, and V is radially unbounded, by [32, p. 54],
there exist class K∞ functions α and α such that

α(‖x‖A) 6 V (x) 6 α(‖x‖A).

Furthermore, by considering that G(Ω,S) ⊂ Ω and that, by
definition of the set-valued mapping G : Ω×S⇒ Ω, f(g) 6
f(x) for all g ∈ G(x, s) and all s ∈ S, one has that

sup
g∈G(x,s)

V (g) 6 V (x), ∀(x, s) ∈ Ω× S.

Additionally, in view of the definition of the set D1 given in
(2d), one has that, for all x ∈ J1,

1

n

n∑
i=1

sup
g∈G(x,vi)

V (g) 6 V (x)− ω

n
.

On the other hand, given x ∈ J2 \ A, let υ∗ = f(x)−f?

2 ∈
R>0 and let υ� = min{υ∗, υ?}. Since (A + νB) ∩ Ω has
nonzero measure for all ν ∈ (0, ν?), the set

Lυ�
.
= {x ∈ Rn : f(x)− f? 6 υ�} ∩ Ω

has nonzero measure. Therefore, for each x ∈ J2 \ A,
there exists a measurable selection Sx of S such that
supg∈G(x,s) V (g) 6 V (x)

2 for all s ∈ Sx. Hence, for all
x ∈ J2, there is %̄ ∈ pd(A) such that∫

S
sup

g∈G(x,s)

V (g)µ1(ds1) = Γ

∫
S

sup
g∈G(x,s)

V (g) ds1

6 Γ

(
V (x)

2

∫
S

1 ds1 + V (x)

∫
S\S

1 ds1

)
6 V (x)− 1

2
ΓV (x)

∫
Sx

1 ds1

6 V (x)− %̄(x), (6)

where Γ = 1
2πn/2

∫∞
0
x

n
2−1e−xdx. Therefore, letting

%(x)
.
= min

{ω
n
, %̄(x)

}
,

where %̄(x) is any function in pd(A) such that %̄(x) 6
1
2 ΓV (x)

∫
Sx 1 ds, that is a function in pd(A), it results that∫

S
sup

g∈G(x,s)

V (g)µ1(ds1) 6 V (x)− %(x), x ∈ J1,∫
S

sup
g∈G(x,s)

V (g)µ2(ds2) 6 V (x)− %(x), x ∈ J2.

Therefore, the assumptions of Corollary 1 of [33] are
satisfied by the discrete-time dynamics of the stochastic
difference inclusion (3) and hence the set A is asymptotically
stable in probability for (3).

Note that the hypotheses of Theorem 1 are met if Ω is a
regular closed set (i.e., the closure of its interior coincides
with the set itself). In the remainder of this section, some
further insights on the random solutions of (3) are given.

In the following corollary, we prove that solutions to (3)
eventually jump outside the set J1 with probability 1.

Corollary 1. Let the assumptions of Theorem 1 hold. Then,
for each ∆ ∈ R>0 and σ ∈ R>0, there is K ∈ N such that

x0 ∈ (A+ ∆ B) ∩ J1, {xk}k∈N ∈ R(x0)

=⇒ P(∃k 6 K such that xk(ψ) /∈ J1) > 1− σ. (7)

Proof. Note that, by definition of the set D1 in (2d), one
has that x ∈ J1 if and only if there exists i ∈ 1, n
and g ∈ G(x,vi) such that f(x) − f(g) > ω. Since, by
construction, G(A,S) ⊂ A, this implies that there exists
ε ∈ R>0 such that (A + εBo) ∩ J1 = ∅ (and hence, since
J1 ∪ J2 = Ω and A ⊂ Ω, one has that A is a subset of
J2). This implies that P(∃k 6 K such that xk(ψ) /∈ J1) >
P(xk(ψ) ∈ A+ εBo, k > K). Thus, the proof is concluded
by the fact that, by Theorem 1, the set A is asymptotically
stable in probability for (3) and hence (5) holds.

Note that, although Corollary 1 establishes that the so-
lutions of (3) eventually jump out of the set J1 almost
surely, this does not implies that they do not visit the set
J1 again. Indeed, there may exist x ∈ J2 and s2 ∈ S such
that g ∈ J1, for some g ∈ G(x, s2). This is one of the
key facts that ensures asymptotic stability in probability of
the set A for (3). However, as it has been established in
Corollary 1, x ∈ A + εBo implies that x ∈ J2 and hence
random solutions to (3) are in J2 when they are close to A.

Finally, it is worth noticing that, if the set A is known, then
results wholly similar to [23, Thm. 2] can be used to find
bounds on the number of iterations that have to be carried
out to determine an η-accurate solution to the PMP (1). An
alternative approach to compute such bounds is to employ
the Lyapunov function V given in the proof of Theorem 1.
However, since such a function is essentially the objective
function f of the PMP (1), such bounds are largely dependent
on the optimization problem to be solved.



IV. IMPLEMENTATION NOTES

In Section III, it has been proved that the set of all
the solutions to the PMP (1) is asymptotically stable in
probability for the minimization method given in (2). The
main objective of this section is to show how such a method
can be actually implemented to solve the PMP (1).

By Theorem 1, if the procedure given in (2) is run
indefinitely starting at x0 ∈ Ω, then the sequence {xk}k∈N

converges to A in probability. In numerical practice, how-
ever, such iterations have to be interrupted. In view of the
proof of Corollary 1, if x is close to A, then x is also in J2.
Hence, in order to interrupt the iterations of the proposed
procedure when a sufficiently good estimate of the solution
to the PMP (1) has been obtained, we require that,

xk ∈ J2 ∧
|f(xk)− f(xk−1)|
|f(xk)|+ 1

6 ε, (8)

for L consecutive steps, where ε is a numerical tolerance. In
fact, notice that, when f(xk)� 1, one has that

|f(xk)− f(xk−1)|
|f(xk)|+ 1

' |f(xk)− f(xk−1)|
min{|f(xk)|, |f(xk−1)|}

,

that is the relative improvement obtained by using an it-
eration of the proposed method. On the other hand, when
f(xk)� 1, one has that

|f(xk)− f(xk−1)|
|f(xk)|+ 1

' |f(xk)− f(xk−1)|,

that is the absolute improvement obtained by using an
iteration of the proposed method. Therefore, letting K be the
step at which the iterations of (2) are interrupted, requiring
that (8) holds for k = K − L + 1, . . . ,K, essentially
corresponds to require that the obtained estimate is in the
set of the block-coordinate (pseudo)minima and that the
improvement obtained using transverse directions is lower
than the given threshold for at least L steps.

Thus, consider Algorithm 1 that implements (2).
It can be easily noticed that the sequence {xk}Kk=0 in Al-

gorithm 1 is a random sample of a solution of the stochastic
difference inclusion (3). In order to reduce its computational
complexity, such an algorithm has been designed in order to
avoid checking at each step whether xk is in J1 or in J2.
In fact, rather than checking if either x ∈ J1 or x ∈ J2, the
algorithm iteratively removes from the set V the directions
that are such that no improvement is obtained by updating
the solution along such a direction. Hence, when eventually
V is empty, a transverse direction is taken since x ∈ J2.

In order to carry out Algorithm 1, an initial feasible guess
x0 ∈ Ω has to be known. If this is not the case, however,
it is possible to find x0 ∈ Ω by solving the following PMP
with an additional variable η,∣∣∣∣ min η,

with hi(x)− η 6 0, i = 1, . . . ,m.
(11)

Note that x0 = 0 and η0 = max{h1(0), . . . , hm(0)}
is always in the feasible set of the PMP (11), whence
Algorithm 1 can be applied to solve such a problem.

Algorithm 1

Input: the PMP (1), ω ∈ R>0, x0 ∈ Ω, a numerical
tolerance ε ∈ R>0, and a positive integer L ∈ N

Output: estimates x̂? and f̂? of x? ∈ A and f?,
1: k ← 0, κ ← 0, V ← {v1, . . . ,vn}
2: while κ 6 L do
3: pick vi in V uniformly at random
4: define f̆(λ)

.
= f(x + λvi) and h̆(λ)

.
= h(x + λvi)

5: let λ? be a solution to the univariate PMP∣∣∣∣ min f̆(λ),

with h̆j(λ) 6 0, j = 1, . . . ,m
(9)

6: y← xk + λ? vi
7: if f(xk)− f(y) > ω then
8: k ← k + 1, xk ← y, V ← {v1, . . . ,vn}, κ ← 0
9: else

10: V ← V \ {vi}
11: if V = ∅ then
12: pick s in S uniformly at random
13: define f̌(λ)

.
= f(x+λ s) and ȟ(λ)

.
= h(x+λ s)

14: let λ? be a solution to the univariate PMP∣∣∣∣ min f̌(λ),

with ȟj(λ) 6 0, j = 1, . . . ,m
(10)

15: k ← k+1, xk ← xk−1+λ? s, V ← {v1, . . . ,vn}
16: if |f(xk)−f(xk−1)|

|f(xk)|+1
6 ε then

17: κ ← κ + 1
18: else
19: κ ← 0
20: return x̂? = xk and f̂? = f(xk)

At each step of Algorithm 1, one has to solve an univariate
PMP (namely, (9) and (10)). Such problems can be easily
solved using the tools given in Section IV.A of [22], i.e.,
by computing the set of all the real roots of the (univariate)
polynomials df(λ)

dλ and hj(λ), j = 1, . . . ,m [34], [35] and
comparing the values attained by f(λ) at such points. Note
that the PMPs (9) and (10) can be solved even exactly using
either symbolic computation or SOS-based tools [15].

V. NUMERICAL EXAMPLE

In this section, we show the effectiveness of the proposed
minimization method by using it to solve a PMP that cannot
be easily solved by means of other methods. In particular,
we show how Algorithm 1 allows us to compute the distance
between a polynomial surface and the origin.

Computing the distance between the point y and the
surface V .

= {x ∈ Rn : h(x) = 0} corresponds to solving∣∣∣∣ min ‖x− y‖22,
with h(x) = 0.

(12)

The following proposition establishes that a solution to the
PMP (12) can be determined by solving the following PMP∣∣∣∣ min ‖x− y‖22,

with h(x) 6 0.
(13)



Proposition 1. Let (x?, f?) ∈ Rn × R be a solution to the
PMP (13). Then, it is also a solution to the PMP (12).

Proof. The statement is proved by showing that if (x?, f?)
is a solution to the PMP (13), then h(x?) = 0. Assume, by
contradiction, that h(x?) < 0. Since Z := {x ∈ Rn : h(x) <
0} is open and x? ∈ Z , there exists an open neighborhood
Q of x? such that h(x) < 0, ∀x ∈ Q. Therefore, there is
λ ∈ (0, 1) such that, letting x̂ = λx? + (1−λ)y, h(x̂) 6 0.
Hence, the `2 distance between x̂ and y is

‖x̂− y‖22 = λ ‖x? − y‖22 = λ f? < f?,

i.e., (x?, f?) is not a solution to the PMP (13), thus leading
to a contradiction and concluding the proof.

In view of Proposition 1, let n = 3 and consider the
following PMP (taken from Section VII.B of [13] and deeply
analyzed in [36], where it is shown that a tight lower bound
may be difficult to obtain)∣∣∣∣ min ‖x‖22,

with h(x) 6 0,
(14)

where ‖x‖22 = x2
1 + x2

2 + x2
3 and

h(x) = 10
(
x6

3 − 3x2
1x

2
2x

2
3 + x2

1x
4
2 + x4

1x
2
2

)
− ‖x‖62 + 1.

Note that ‖x‖22 ∈ ru(R3) and that, for each point x
in the feasible set of the PMP (14) and each ε ∈ R>0,
the set (x + εBo) ∩ {x ∈ R3 : h(x) 6 0} has nonzero
measure. Furthermore, by using the tools given in [22], it
can be derived that the set A of the optimal solutions to
the PMP (14) is nonempty. Therefore, the hypotheses of
Theorem 1 are met and hence A is asymptotically stable
in probability for (3), i.e., the proposed method can be used
to compute a solution of the PMP (14).

Despite the PMP (14) seems to be simple (it involves
just three variables, the objective function is quadratic and
convex, and there is one constraint), it cannot be easily solved
by using methods taken from the literature. In fact1:
• the function findbound of the Matlab package
SOSTOOLS [9] returns γ = 0.9820 as a lower bound
for f? when invoked with maximum degree equal to 18
(execution time = 162.008 s);

• by choosing the almost right set of monomials, i.e., the
ones of degree 2 4, and 12 in x1, x2, x3, the Matlab
package SOSTOOLS returns γ = 0.98395 as a lower
bound for f? (execution time = 28.593 s);

• the function msol of the Matlab toolbox
GloptiPoly [37] returns 0.9898 as a lower
bound for f? when invoked with order 10 of the SDP
relaxation (execution time = 44.942 s);

• the Matlab function fmincon [38] is not able to
determine a feasible point and returns an error;

• the function optimize of the Matlab toolbox
Yalmip [39], interfaced with the nonlinear solver
PENLAB [40], returns an error;

1All the computations reported hereafter have been carried out on a laptop
with an Intel i5 CPU (2.4 GHz) and 8 GB, 1600 MHz, DDR3 RAM.

This is essentially due to the fact that the feasible set Ω of
problem (14) is unbounded. In fact, the performance of the
above toolboxes can be improved by adding bounds on the
optimization variables. For instance, by adding an additional
unit Euclidean ball constraint, GloptiPoly [37] returns 1
as a lower bound for f? when invoked with order 4 of the
SDP relaxation (execution time = 2.4111 s);

Hence, we applied the proposed technique to the PMP (14)
in order to verify its effectiveness. In particular, we used
Algorithm 1 with L = 100, ω = 10−3, ε = 10−3,
and with 1000 different initial conditions x0, which have
been determined by solving the PMP (11). Such a latter
problem has been solved through Algorithm 1 with the same
parameters as above and with x0 = 0 and η0 = h(0). The
average execution time required to determine both the initial
guess x0 and the solution x? to the PMP (14) via Algorithm 1
is 3.3807 s, which is smaller that the computational times
required to solve the problem by using other packages.

Figure 1 depicts 20 outcomes of such an algorithm.

Fig. 1: Sets W , A, and outcomes of Algorithm 1.

As shown by this figure, Algorithm 1 converges toward
a solution to the problem by firstly minimizing along the
coordinate directions and just eventually taking transverse
jumps. Note that different outcomes of Algorithm 1 need not
converge to the same point in A, which, in the considered
case, is constituted by 12 different optimal points. Indeed,
even in the case that xk1 is already close to a point in A,
there may exist k2 > k1 such that xk2 is close to another
point in A (see the outcome depicted in orange). Indeed, as
shown by Figure 1, if the set A is not a singleton, then the
proposed algorithm does not guarantee point-wise asymptotic
stability of A, i.e., every point in A need not be Lyapunov
stable although the overall set A is asymptotically stable.

To further corroborate our results, Figure 2 depicts
{f(xk)}k, where each {xk}k is one of the 1000 sequences
computed by Algorithm 1.

Fig. 2: Values attained by the polynomial f(x) along the
sequences computed by Algorithm 1.



As shown by such a figure, in all the 1000 simulations the
state hits the set {x ∈ Ω : f(x) 6 f? + 0.005} in less than
100 iterations, despite the application of Algorithm 1 for the
computation of the initial guess x0 may lead to quite large
initial values of the objective function f .

VI. CONCLUSIONS

In this paper, it has been shown that several polynomial
optimization problems can be solved by performing a ran-
dom coordinate-wise minimization and, eventually, when a
coordinate-wise minimum has been reached, by performing
a minimization along a random transverse direction.

In particular, it has been shown that, under mild assump-
tion, such a method converges to the set of the globally opti-
mal solutions to the polynomial minimization problem with
probability arbitrarily close to 1, provided that a sufficient
number of iterations are carried out. Thus, differently from
classical nonlinear optimization methods, such as gradient-
based algorithms [25], the given method asymptotically tends
to the globally optimal solution.

Robustness of the convergence of the considered algorithm
with respect to small perturbations follows by [41]. In fact,
the Lyapunov arguments used in the proof of Theorem 1
establish also practical and semi-global robustness of the pro-
posed minimization algorithm with respect to small errors,
such as those induced by numerical computations.

Finally, note that, as shown in Section V, the proposed
method seems to be very computationally efficient while
requiring minimal tuning of its parameters to guarantee
convergence.
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