
08 July 2025

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Inferential Logic: A Machine Learning Inspired Paradigm for Combinational Circuits / Tenace, V.; Calimera, A.. - 2018-
:(2019), pp. 149-154. (Intervento presentato al convegno 26th IFIP/IEEE International Conference on Very Large Scale
Integration, VLSI-SoC 2018 tenutosi a ita nel 2018) [10.1109/VLSI-SoC.2018.8644808].

Original

Inferential Logic: A Machine Learning Inspired Paradigm for Combinational Circuits

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/VLSI-SoC.2018.8644808

Terms of use:

Publisher copyright

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2797443 since: 2020-02-26T10:08:27Z

IEEE Computer Society

Inferential Logic: a Machine Learning Inspired

Paradigm for Combinational Circuits

Valerio Tenace, Andrea Calimera

Dipartimento di Automatica e Informatica, Politecnico di Torino, Torino (Italy)

Abstract—Machine learning (ML) theories and tools suggest
alternative forms to conceive and represent relationships among
data. The same theories find their application in the Boolean
domain, where logic functions can be described as inference rules.
This paper introduces Inferential Logic, a novel paradigm that
leverages the ML concept of statistical inference for the design of
combinational logic circuits, the Inferential Logic Circuits (ILCs).
The new design concept is conceived for low-power circuits that
run quasi-exact computation in error-resilient applications, but it
also provides an exact run-mode that can be dynamically enabled
when accuracy scaling is not an option.

I. INTRODUCTION

Machine learning (ML) is a paradigm in which hardware or

software systems replicate a few simple learning/reasoning

mechanisms proper of the human brain to resolve complex

relationships among data [1]. The strength of ML tools lies

under their ubiquity; they orthogonally apply to problems

of different nature using statistical models on the collected

data, just as the brain does through inductive reasoning over

previous acquired knowledge.

Although the first evidence of such techniques dates back

to the mid-19th century, recent advancements in computer

architectures and massively parallel computing have prompted

renewed interest on the matter. ML is inspiring new research

trends which might have huge impact on many commercial and

scientific fields. The Electronic Design Automation (EDA) is

not an exception. The EDA community is mainly focusing

on efficient hardware mapping of brain-inspired computing

models, e.g., deep learning, while little effort is being spent on

investigating how to take advantage of biological mechanisms

to solve EDA problems. In this context, most noticeable

contributions include the works by Li Wang [2], [3], where

ML techniques are shaped to address testing and verification

of digital circuits by means of several supervised and unsuper-

vised techniques. Inspired by a previous work by Guzey [4],

Li Wang also describes the concept of a supervised Boolean

function learning mechanism where a statistical model eval-

uates the output of the function in order to reconstruct the

original logic. Apart from these examples, very few has been

done in terms of design strategies; for instance, a proper flow

to build logic circuits using ML is currently not available.

In our view, the potential of ML techniques should be ex-

ploited more efficiently in order to create logic circuits that

mimic how the human brain works, namely, to implement

inaccurate, yet fast logic reasoning [5], [6]. This paradigm

shift encompasses the replacement of exact logic rules and

Boolean operators in favor of statistical models and inference

tools.

Moving towards this objective, in this paper we describe

a new design methodology where the representation of a

generic Boolean function is obtained by means of a learning

problem. The goal is to represent the behavior of a logic

function through a more compact abstract model that works

as a statistical description of the function itself. Such de-

scription is then used to infer the outcomes of the Boolean

function up to a certain level of accuracy. Once mapped on

a piece of hardware, the resulting circuit runs the quasi-exact

computation of the logic function; we called this block the

Inference Unit. However, since for some applications accuracy

degradation is not an option, we describe how the inferential

model can be reinforced in order to reach the full description

of the logic function, hence, the exact computation. In such

a case the Inference Unit is supported by an auxiliary unit

called Supervisor Unit. We refer to this new class of circuits

as Inferential Logic Circuits (ILCs) and we provide a complete

framework for their logic synthesis and optimization.

Experimental results collected from an ILC embedded into an

error-resilient application demonstrate that quasi-exact compu-

tation achieves an average accuracy of 94%, yet using 22× less

devices w.r.t. a circuit counterpart obtained with a state-of-the-

art standard design flow. Moreover, we quantify the figures of

merit of other ILC benchmarks thus to give a fair comparison

against a multi-level logic optimizer that obeys Boolean rules.

II. BACKGROUND

In the panorama of machine learning, Classification Trees

(CTs) represent a class of methods for the construction of

classification models. Solving a classification problem encom-

passes two main stages: the training stage, which aims at

generating the statistical abstract representation of the model,

i.e., the CT; the validation stage, which quantifies the level of

accuracy of the trained CT.

The training stage makes use of a labeled data-set with n

observations; each observation is described by p predictor

variables X = {x1, . . . xp} and is labeled by one of the m

available classes yi ∈ Y = {y1, . . . ym}. During the validation

stage, the CT is used to classify never occurred samples

described by X over the label-set Y ; the accuracy is given

by the number of new samples that are correctly classified.

Building a CT implies the search of a “good” partitioning of

the input space [7]. A CT implements a recursive partitioning

using a proper sequence of comparisons between predictor

variables and numeric thresholds. Let us assume to have a

training data-set of people living in a city described through

several predictors, or features, such as X={Age, Weight,

Figure 1. Visual description of a Classification Tree. Logical structure (left),
domain partitioning (right).

Salary, Height, Nationality}. If the objective is to classify peo-

ple by gender, i.e., Y = {Male, Female}, an abstract model

with reasonably good accuracy would select which predictors

are the most significant among the available predictors X in

order to separate the training population into two different, and

ideally disjoint clusters. This concept is graphically depicted in

Figure 1, where the selected predictors are Height and Weight.

The most important components learned during training are:

the best list of split predictors, i.e., for each iteration which

variable xk ∈ X is able to separate the training data-set into

different groups with the lowest level of impurity [8], and the

evaluation of the optimal threshold for each slipt. These two

concepts are combined together into a statistical dispersion

index called Gini index [8]. It is therefore possible to assume

that a CT can be used to select which predictors better describe

the training population.

Both predictor variables and labels can assume any type of

value, e.g., Weight and Height are real numbers, Male or

Female are categorical values; entirely-binary classification

problems come with predictors and labels in the form of binary

variables, i.e., True or False, 0 or 1.

III. COMPUTING THROUGH INFERENCE

A. Exact and Quasi-Exact Representation

A generic Boolean function F can be defined as an entirely-

binary classification problem with a training set described by

its truth table. The evaluation of an input pattern encompasses

the classification on two possible labels: logic-0 or logic-1. As

per the description given in Section II, a CT selects the most

significant predictors, namely, the primary inputs that best

describe the function F . Since the selection is done through

a statistical method, it is unlikely that a CT gives a complete

cover of F . In that sense, a CT is a quasi-exact description of

F . To notice that this is slightly different from the classical

concept of approximate logic function. Indeed, the CT may

cover both the ON-set and the OFF-set of F .

In order to better understand this concept and describe how

to achieve an exact representation, let us resort to a simple

function F : B
3 → B defined as in (1). It represents the

function to be learned, and its ON-set is graphically depicted

in Figure 2-a by means of a positional cube representation.

F(a, b, c) = (a ∧ b) ∨ (a ∧ c) ∨ ¬a (1)

!"# !$#

%&'()(&*+",-'.&/*+0&-

!!#

102304+*(-'.&/*+0&-! "##-

"

$ /

5

!/#

6)+7+&",-'.&/*+0&-

!$#

Figure 2. Positional cube notation of the example functions.

Let us then consider a function I : B3 → B defined as in (2),

being its cube representation reported in Figure 2-b.

I(a, b, c) = a (2)

Assume that I is used to mimic F : three over eight minterms

are covered, i.e., I ≡ F for three input patterns over eight. I
covers a sub-set of the ON-set of F and part of the OFF-set

of F (red bullet in Figure 2-a). As mentioned above, this is

what we refer as the quasi-exact representation. In order to

achieve an exact representation, I has to be flanked by an

extra function S : B3 → B which fires iff function I infers a

wrong output value. A possible expression for S is given by

(3).

S(a, b, c) = ¬a ∨ (¬b ∧ ¬c) (3)

It is therefore clear that I and S should collaborate to achieve

the exact representation of F . Indeed, S plays the role of a

Supervisor that can be used as a flag to decide whether I has

to be corrected.

The composite function F̃ = S ◦ I can be graphically

represented as the projection of the cube of I (Figure 2-b) into

the 4th dimension S (Figure 2-c). The resulting hypercube is

described by the following algebraic expression:

F̃(a, b, c,S) = S ∧ ¬a ∨ ¬S ∧ a (4)

under the following satisfiability don’t care (SDC) condition:

SDC(S) = ¬S ∧ F ⊕ I (5)

e.g., {¬S ∧ ¬a} in our example. Such SDC is imposed by

construction: S fires iff I is wrong.

F̃ can be graphically simplified by: (i) collapsing minterms

on the versor Ŝ on the inner cube, (ii) dropping unreachable

vertices (bold dotted lines in the picture). Indeed, both I and

S have same support-set. The result is the 3-D cube of F .

The equivalent Boolean operation is the substitution S → F̃ ,

which leads to the final relationship in (6). This transformation

brings back to the original Boolean function F .

F̃(a, b, c) = ((¬a ∨ (¬b ∧ ¬c)) ∧ ¬a) ∨ (¬(¬a ∨ (¬b ∧ ¬c)) ∧ a)

= (a ∧ b) ∨ (a ∧ c) ∨ ¬a

= F(a, b, c)
(6)

To summarize: Any n-ary Boolean function F can be described

as:

F = (S ∧ ¬I) ∨ (¬S ∧ I), (7)

where I is a k-ary inferential function with k < n, and S is

a n-ary supervisor function that fires iff I 6= F .

It is important to notice that this transformation does not

impose, nor require, any specific characteristics on F .

B. Inferential Logic

The architecture of an Inferential Logic Circuit (ILC), Fig-

ure 3, is a straightforward implementation of the Boolean

formulation described in Section III-A. It consists of two

main logical blocks: (i) the Inferential Unit (IU), which

implements the CT function I; (ii) the Supervisor Unit (SU),

which restores the output of F when I yields to an incorrect

prediction.

,;>$#M*0"#'

()*&

8)=$#$)&*@/'

()*&

CD
CE

C)

D

L

!

"

#
CD
CE

CF

Figure 3. Inferential Logic Circuit architecture.

An ILC can run under two operating modes.

Quasi-exact computing: inputs Xk = (x1, . . . , xn) are eval-

uated by the IU; its output is similar to the Boolean function

F . The accuracy of the IU is defined as the ratio between the

number of correctly-classified inputs and the total number of

inputs, i.e., 2n.

Exact computing: inputs Xk = (x1, . . . , xn) are evaluated by

both the IU and the SU. Two are the possible outcomes: (i) the

input pattern belongs to the set of misclassified patterns, hence

the output inferred by the IU is wrong and the SU drives the

complement of IU towards the primary output; (ii) the input

pattern belongs to the set of correctly classified samples, hence

the value inferred by IU is propagated to the output.

C. Design Flow

Figure 4 gives an overview of the proposed design flow. It

starts with an exhaustive description of the digital circuit

defined through a truth table (2n permutations). Such table

represents the training set. Building the CT is demanded to

a Matlab script that leverages the fitctree function. Once

the CT is generated, the validation phase takes place; each

entry of the truth table is classified by means of the CT and

results are collected into two separate sets: the classified set

C, and the misclassified set M. The former is a Boolean

description of the CT, that is, the function I : B
k → B.

By means of an in-house software package, described later in

Section IV-A, the CT structure is synthesized, optimized and

mapped onto a MUX-INV netlist. The resulting logic circuit is

the Inferential Unit of Figure 3. M is a Boolean description of

the Supervisor Unit (SU), i.e., the function S : Bn → B, and it

is synthesized with the ABC synthesis tool [9]. According to

(7), output signals of the Inferential and Supervisor units are

then plugged into a MUX. The obtained ILU architecture is

!"#$%&'(&)*+",*"+-

!"#$%#&'

./0$"0*-&1#),$0))#2#,0*#34

!"#$%#&'

564*7-)#8-&5"9-+/#)3+&:4#*

!()*'

564*7-)#8-&;42-+-4*#0$&:4#*

!+,-./012345/65#7'

<-4-+0*-&;='&0+,7#*-,*"+-

!+,-./012345/65#7'

>"4,*#340$&/0$#%0*#34

!"/82%1+7 93()*'

?,,"+0,6&-)*#10*#34

!+,-./012345/65#7'

@"0)#A-B0,*&,319"*0*#34&2$3C .B0,*&,319"*0*#34&2$3C

!#40+6&*+0#4#4D&)019$-)

!50.3$#&%2'

Figure 4. Design flow generating Exact and Quasi-Exact Computing Flows.

then validated thought exhaustive functional simulations and

Boolean equivalence checking.

IV. LOGIC SYNTHESIS OF THE INFERENTIAL UNIT

As previously discussed, the Supervisor is synthesized with a

standard multi-level flow. Here we focus our discussion on

an efficient synthesis flow tailored on quasi-exact Boolean

function representations.

A. From CTs to Mux-Inverter Trees

A CT is a rooted and directed acyclic graph defined as

Γ = (Φ ∪ D ∪ Θ ∪ E). The set of decision vertices d ∈ D

with two outgoing edges e0, e1 ∈ E are associated with a

threshold operation on a primary input variable xk ∈ X .

Such nodes drive the connection between nodes at the lower

levels with those at the upper levels of the tree structure.

For instance, if xk > Th (being Th the threshold selected

at training time by the Gini index), then the left branch is

connected to the current node’s output, right branch otherwise.

Terminal nodes θ ∈ Θ with out-degree 0 represent the class

to which a given input pattern belongs to. Finally, root nodes

φ ∈ Φ with in-degree 0 represent the output value assumed by

the Boolean logic function F(X). From the definition above,

the representation of decision nodes using Boolean gates may

look prohibitive due to the complexity involved in designing

a threshold comparator. However, since training samples are

always described by means of Boolean variables, the CT

algorithm will always select a threshold subject to (8), where

max(k) and min(k) represent the maximum and minimum

values assumed by the input feature k, namely 1 and 0.

Th =
max(k) +min(k)

2
= 0.5 (8)

It is thereby possible to reduce the threshold comparator

through the equivalences reported in (9).

(xk ≥ 0.5) ≡ (xk = 1)

(xk < 0.5) ≡ (xk = 0)
(9)

Such equations suggest that decision vertices can be reduced

to a simple identity comparator, not dissimilar to decision

nodes in Binary Decision Diagrams (BDDs) [10]. The built-

in functionality can then be reduced to an If-Then-Else (ITE)

primitive, where the selection variable is represented by the

primary input xk ∈ X , and the true and false branches are

represented by the left and right child nodes, respectively. As a

consequence, the most simple transposition of a decision node

is a single Multiplexer (MUX). Without loss of generality, we

can say that any CT grown on a fully-Boolean training sample

can be represented by means of a tree of MUXes. Obviously,

other circuit implementations do exist.

B. Synthesis Flow

Figure 5 describes the adopted synthesis flow for the in-

ferential unit. First, the CT structure described as a list of

!"#$%$&'()**

!"#$%&'()*+,&-,./*0"1%*

2344*5"6,.,78

+,-.'/#(+0(#,()**

!"#$%&'()*+,&-,./8

0'12-,3,45(%6""$-4(7(

8'/$3,4(6--,#6#$,-

!"#$%&'()*+,&-,./8

0'12-,3,45(

3$9/6/5

:;-1#$,-63(<$%;36#$,-<

!9&:)5("/8

=,>'/(7(0$%$-4(

%'6<;/'%'-#<

!;,"/)<"/)8

+0(<#/;1#;/'

6--,#6#$,-

Figure 5. Synthesis flow for the Inferential Unit.

ITE statements is converted into a BDD structure and then

optimized according to the following three rules:

1) Node elimination: a node having both left and right

branches connected to the same child node represents a

don’t care. Therefore, it is eliminated from the structure.

2) Node sharing: if two, or more, nodes share the same

child nodes, then they are said to be equivalent. It is

then possible to merge them into a single node.

3) Variable ordering: an good variable order is selected

as to guarantee the lowest cardinality for the decision

diagram [11].

Those transformations are performed with an in-house C

program that leverages the CUDD package [12] for decision

diagram manipulations.

As a final stage, the reduced and ordered BDD is mapped into

a MUX-INV tree, where MUXes are used to map decision

nodes, and INVs are used to eliminate constant terminal

nodes and to invert signals along negated edges. The obtained

annotated Verilog netlist is then validated through functional

simulations and post-synthesis analyses.

V. EXPERIMENTAL RESULTS

In this section we demonstrate the effectiveness of the pro-

posed ILC paradigm. First, we show that Inferential Comput-

ing is particularly effective in error-resilient applications; we

provide a case-study analysis for a widely-used edge detection

technique, i.e., the Sobel operator [13]. We describe in detail

the adopted implementation and provide an accurate analysis

of the obtained results in terms of output accuracy, area, and

power efficiency. Second, we quantify area and power of ILC

circuits against an open-source multi-level synthesis flow: the

ABC synthesis tool [9]. Quality-of-result for quasi-exact and

exact computing is also assessed.

A. Edge Detection Through The Sobel Operator

In order to appreciate the potential of the proposed technique,

we resort to a real-life error-resilient application. In the field

of machine vision, edge detection is the operation of detecting

significant local changes in an image. Given a matrix of pixels

I , a step edge is associated to a peak in the first derivative of

I . Edges can be detected by means of a gradient operator.

In our analysis, we employee the Sobel operator, defined as

in (10).

G =



1 0 −1
2 0 −2
1 0 −1


 (10)

Let us assume to have a 3x3 gray scale image I , where each

element ix,y of the matrix represents a pixel in the image. The

Sobel operator G applied to I returns the matrix convolution:

an element-wise multiply and accumulate function, as in (11);

the result of such convolution represents the intensity of the

pixel stored in the output matrix C at position (x,y).

Cx,y = I ⊗G =



ix−1,y−1 ix−1,y ix−1,y+1

ix,y−1 ix,y ix,y+1

ix+1,y−1 ix+1,y ix+1,y+1


⊗G

= ix−1,y−1 · 1 + ix−1,y · 0 + · · ·+ ix+1,y+1 · (−1)
(11)

Such operation is then iterated over all the pixels contained

in I , thus to generate a new image containing information on

horizontal edges.

The circuit we implemented performs the convolution reported

in (11) between G and a gray scale source image where each

pixel is in the range [0−255]. The input of the circuit is com-

posed of the value of the 6 pixels involved in the convolution.

Input space cardinality was reduced by considering only the

three most significant bits for each pixels, with a total of 18

primary inputs. A threshold operator on the result of (11) was

also applied as to eliminate noise on the resulting images.

As a consequence, the output of the circuit is represented by

a single bit subject to the following rule: if C is below the

intensity threshold, then the output pixel does not represent

an edge (output 0); otherwise the function evaluates to 1.

& ' ()*+,

& ' -).+,

& ' -)/0,

& ' /)-/,

1"-2'3+,4+5#*'$6 789:;
<,='3+$#>%/5$6 ?@9A7A

0&BC !&DE

Figure 6. Result comparison with circuit implementing the Sobel operator.
Original image (left), E-MS (center), Q-IU (right).

The exhaustive truth table was then generated by means of

a Matlab script. The experimental setup is composed of two

design flows, summarized as follows.

Quasi-Exact Computing via Inferential Unit (Q-IU): only

the Inferential Unit composing the architecture illustrated

in Section III is employed. Mapping and optimization as

described in Section IV are also applied.

Exact Computing via Multi-level Synthesis (E-MS): the

benchmark is processed with the ABC synthesis tool and

mapped on a technology library at the 45nm node consisting

of 32 logic primitives. The design is optimized by using

the built-in collapse command. We first analyze the

quality-of-result of the Q-IU implementation. Figure 6 shows

a few sample images1 of size 150×150 pixels used for

the evaluation process. Error rate (ε) was computed as the

pixel-wise difference between the exact solution provided by

the E-MS circuit, and the quasi-exact counterpart obtained

through the Q-IU. Starting from the topmost picture in

Figure 6, error rates for each image are: 2.09%, 8.19%,

8.57%, and 5.85%.

1Considered images were obtained through an open-source repository. All
images are released as public domain.

These values lead to a fundamental observation: Inferential

logic is actually capable to extrapolate the most significant

operations of a Boolean function, i.e., the ones with a higher

computational and expressive power. This observation is sup-

ported by comparing the performance of the two implementa-

tions: the Q-IU is composed of 14 gates only, thus ensuring a

22× smaller area w.r.t. the E-MS counterpart. Such a huge area

saving translates to 7.3× less dynamic power consumption.

B. ILC vs. Multi-level

It is important to understand that the objective of this section

is not to demonstrate how ILC circuits could replace standard

synthesis flows, but rather to provide a clearer picture of pro’s

and con’s of adopting the inferential paradigm in accuracy-

critical applications. The adopted experimental setup can be

summarized as follows.

ILC performing exact computing (E-ILC): benchmarks are

represented with the architecture illustrated in Section III; the

Inference Unit is designed by means of the mapping and

optimization steps described in Section IV; the Supervisor

Unit is obtained with a standard multi-level ABC synthesis

flow. Notice that the design of the Supervisor Unit is not

optimized, as to provide a worst-case analysis. Multi-output

logic functions are elaborated by isolating and processing each

output cones separately.

ILC performing quasi-exact computing (Q-ILC): in this

case each benchmark is composed of the Inference Unit alone;

the design encompasses the stages described in Section IV.

Multi-level Synthesis (MS): benchmarks are processed with

the ABC synthesis tool. Each benchmark is optimized by

means of the built-in fx command.

Considered benchmarks are general-purpose open-source cir-

cuits belonging to the LGSynth91 suite. Designs are elaborated

by means of their exhaustive truth table descriptions with

digital files compliant to the Espresso format definition. In

all considered synthesis flows we adopt the same CMOS

technology library at the 45 nm node consisting of 32 logic

primitives. Power estimations are conducted by means of Syn-

opsys PrimeTime simulations. It is important to underline that

truth tables represent a readily available circuit description for

our purposes; obviously, they represent a bottleneck, especially

with big circuits. However, the objective of this work is not to

provide an ultimate solution, but rather to illustrate a proof-of-

concept for future ML-driven design flows. Alternative design

methodologies to overcome this issue, e.g., derive CTs from

RTL descriptions, are part of future works.

Figure 7 shows the accuracy of both E-ILC and Q-ILC

implementations; numbers have been obtained by means of

exhaustive functional simulations for each considered bench-

mark. The plot demonstrates the E-ILC architecture yields

designs which are fully compliant with the original Boolean

network specifications. On the other hand, Q-ILC designs

achieve remarkable accuracy: 90% on average.

Table I reports the total number of devices for each benchmark

processed with the three considered implementations. Notice

that the area of the E-ILC is due to the contributions of both

the Supervisor and the Inferential units. Numbers suggest that

0

25

50

75

100

9s
ym

al
u4

m
ax

64

rd
73

sy
m

10

ta
bl
e3

_z
13

A
c
c
u
ra

c
y
 (

%
)

Q−ILC E−ILC

Figure 7. Quality of result analysis: E-ILC vs. Q-ILC.

Table I
OBTAINED NUMBER OF DEVICES WITH Q-ILC, E-ILC, AND MS DESIGN

FLOWS. REPORTED SAVINGS ARE W.R.T. MS.

ILC
MS

Q-ILC Savings (%) Supervisor E-ILC Savings (%)

9sym 13 87.61 52 65 38.09 105

max64 8 91.11 100 108 -20 90

rd73 18 73.13 42 60 10.44 67

sym10 10 93.71 107 117 26.41 159

table3 z13 9 93.83 137 146 0 146

alu4 288 84.72 1409 1697 9.97 1885

Average 57.66 87.35 307.83 365.5 10.56 408.66

E-ILC implementations achieve excellent results. Indeed, E-

ILC shows an average gate count that similar to the MS

counterparts (10.56% smaller). As one might observe, there

are cases where area gets larger, e.g., the max64. Nonetheless,

these results suggest that the proposed ICL architecture can

allow to achieve acceptable results in terms of area occupation.

On the other hand, the portion of area taken by the Q-ILC is

substantially smaller, with an average gate saving of 87.35%.

Another important concern relates to power consumption.

Figure 8 depicts the normalized dynamic power recorded for

each implementation. On average, the Q-ILC implementation

achieves 13× (10×) lower dynamic power consumption w.r.t.

MS (E-ILC). The E-ILC almost matches the power profile of

the MS implementation, still with a 16% saving on average.

Also in this case, there might be benchmarks for which E-ILC

consumes more power, e.g., max64.

It is worth to emphasize that, even without aggressive logic

optimizations, ILC circuits show similar performance of multi-

level counterparts, yet with an additional feature: the possi-

bility to readily adopt an on-line, adaptive, trade-off strategy

between accuracy and power consumption. Indeed, through a

dedicated power-knob, ILCs could switch between (i) quasi-

exact computations, for devices with scarce power budgets,

e.g., a mobile device running out of power, as to achieve

minimal power consumptions still having a good quality of

result, or (ii) exact computations, which can be used whenever

accuracy scaling is not an option.

0

50

100

9s
ym

al
u4

m
ax

64

rd
73

sy
m

10

ta
bl
e3

_z
13

N
o
rm

a
liz

e
d
 D

y
n
a
m

ic
 P

o
w

e
r

Q−ILC E−ILC MS

Figure 8. Normalized dynamic power for the three considered design flows.

VI. CONCLUSIONS

In this paper we introduced for the first time a novel design

paradigm for combinational circuits, the Inferential Logic

Circuits. The proposed ML-inspired synthesis flow yields

digital circuits that leverage statistical inference to process the

outcome. Experimental results demonstrate that the proposed

quasi-exact computation is a viable solution for error-resilient

applications; it achieves 90% accuracy using 87.35% fewer

devices w.r.t. a multi-level logic design; the same circuits can

also deliver exact computations with 100% accuracy.

REFERENCES

[1] H. Brink, J. Richards, and M. Fetherolf, Real-world machine learning.
Manning Publications Co., 2016.

[2] L.-C. Wang and M. S. Abadir, “Data mining in eda - basic principles,
promises, and constraints,” in Proceedings of the 51st Annual Design

Automation Conference, ser. DAC ’14. ACM, 2014, pp. 159:1–159:6.
[3] L.-C. Wang, “Experience of data analytics in eda and testprinciples,

promises, and challenges,” IEEE Transactions on Computer-Aided De-

sign of Integrated Circuits and Systems, vol. 36, no. 6, pp. 885–898,
2017.

[4] O. Guzey et al., “Extracting a simplified view of design functionality
based on vector simulation,” in Haifa Verification Conference. Springer,
2006, pp. 34–49.

[5] V. Tenace and A. Calimera, “Activation-kernel extraction through ma-
chine learning,” in CAS (NGCAS), 2017 New Generation of. IEEE,
2017, pp. 5–8.

[6] R. G. Rizzo, V. Tenace, and A. Calimera, “Multiplication by inference
using classification trees: A case-study analysis,” in Circuits and Systems

(ISCAS), 2018 IEEE International Symposium on. IEEE, 2018, pp. 1–5.
[7] A. J. Izenman, “Modern multivariate statistical techniques,” Regression,

classification and manifold learning, 2008.
[8] J. L. Gastwirth, “The estimation of the lorenz curve and gini index,”

The review of economics and statistics, pp. 306–316, 1972.
[9] B. L. Synthesis and V. Group, “ABC: A System for Sequential Synthesis

and Verification,” http://www.eecs.berkeley.edu/ alanmi/abc/, 2016.
[10] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Computers,

vol. 27, no. 6, pp. 509–516, 1978.
[11] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-

decision diagrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3,
pp. 293–318, 1992.

[12] F. Somenzi, “CUDD: CU decision diagram package-release 2.4. 0,”
University of Colorado at Boulder, 2009.

[13] R. Jain, R. Kasturi, and B. G. Schunck, Machine vision. McGraw-Hill
New York, 1995, vol. 5.

