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Abstract

In this paper, we introduce a discrete time-finite state model for pedestrian
flow on a graph in the spirit of the Hughes dynamic continuum model. The
pedestrians, represented by a density function, move on the graph choosing
a route to minimize the instantaneous travel cost to the destination. The
density is governed by a conservation law whereas the minimization principle
is described by a graph eikonal equation. We show that the discrete model
is well-posed and the numerical examples reported confirm the validity of the
proposed model and its applicability to describe real situations.

1 Introduction

In [18], Hughes introduced a by now classical fluidodynamical model to study the
motion of a large human crowd (see also [17], [19], [20], [25] and [6] for a review).

The crowd is treated as a “thinking fluid” and it moves at the maximum speed
towards a common destination or goal, taking also into account the environmental
conditions. In fact, people prefer to avoid crowded regions and this assumption
is incorporated in a potential field which gives the direction of the motion. The
potential field is described by the solution of an eikonal equation giving the optimal
paths to the destination, integrated with respect to a cost proportional to the local
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crowd density. Hence, for each instant of time, an individual looks at the global
configuration of the crowd and updates his/her direction to the exit trying to avoid
the crowded, motion expensive regions.

Many situations related to pedestrian motion, for example the study of a crowd
escaping from a building, can be described as the problem of finding the shortest
path in a network. A model to simulate the behavior of pedestrian motion on
networks is therefore important for designers to analyze the performance results in
terms of number of nodes and connectivity of the environment.

In this paper we introduce both a model for pedestrian motion on networks
which on one side can be viewed as a discrete time-finite state analogous of the
Hughes model, and a numerical discretization of the Hughes system defined on a
graph. The system is composed by a graph eikonal equation where the cost depends
on the density of the population, and a graph conservation law which governs the
evolution of the population. We show that, under some natural assumptions on the
flux, the graph Hughes system is well-posed for any time n ∈ N. Moreover, it shares
with the corresponding continuous model some qualitative properties, like e.g. the
interpretation of the solution of the graph eikonal equation as a distance from the
boundary.

The model here described bears some resemblance to the rational behavior model
studied in [13]. People know at each time the global distribution of the population
on the graph and, therefore, they accordingly modify their strategy to reach the
exit. In [13] this behavior is obtained by introducing an optimization problem at
the junctions, whereas here the optimal strategy is given by the solution of the
eikonal equation.

We also present an algorithm for the solution of the discrete problem. We
consider several examples and we show that the discrete Hughes system captures
the natural behavior of the crowd.

The paper is organized as follows. In Section 2, we recall the Hughes model
and we formulate its analogous on networks. In Section 3, we derive the discrete
Hughes system on a graph and in Section 4 we prove the well-posedness of this
problem. Section 5 is devoted to the algorithm for the solution of the problem and
to numerical experiments aimed at confirming the validity of the proposed model.
We conclude the paper with final comments and remarks reported in Section 6.

2 The Hughes model

From a mathematical point of view the Hughes model consists in the following
system

∂tρ− div(ρf2(ρ)∇u) = 0, x ∈ Ω, (1)

|∇u| = 1

f(ρ)
, x ∈ Ω, (2)

where Ω is a bounded domain of Rn and ρ, which takes value in [0, 1], is a density
field representing the concentration of the pedestrian at (x, t). The problem is
completed with some boundary conditions: the initial configuration of the mass

ρ(x, 0) = ρ̄(x), x ∈ Ω,
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and a no-flux condition on the boundary

ρf2(ρ)∇u = 0, x ∈ ∂Ω, (3)

for the continuity equation (1); the Dirichlet boundary condition

u(x) = 0, x ∈ ∂Ω,

for the eikonal equation (2). The function f(ρ) is typically given by 1−ρ, hence the
(absolute value of the) flux is given, as in many other models related to pedestrian
and vehicular motion, by g(ρ) = ρvmax(1 − ρ). The term vmax, which can be
always normalized to 1, is a maximal speed at which an agent would travel in ideal
environment conditions and the term ρ(1 − ρ), the so called fundamental diagram
(see [16]), indicates that the velocity of a pedestrian is proportional to the crowd
density (recall that ρ ∈ [0, 1]).
The direction of the motion is given by the potential term ∇u. If the cost 1/f(ρ(t))
is bounded, i.e. if ρ(t) < 1, the solution of the eikonal equation (2) at time t is
given by

u(x) = inf{dt(x, y) : y ∈ ∂Ω} (4)

where the distance function dt : Ω× Ω→ R+ is defined as follows

dt(x, y) = inf

{∫ S

0

1

f(ρ(ξ(s), t))
ds : S > 0, ξ ∈ GSx,y

}
,

with GSx,y the set of the absolute continuous curves in Ω such that ξ(0) = y, ξ(S) = x

and |ξ̇(s)| = 1 a.e. in [0, S]. The term 1/f(ρ(t)) can be interpreted as the current
cost associated to the curve ξ(s) and the solution u of (2) selects the curves which
minimize the cost for reaching the boundary. Hence, people are directed towards
the boundary trying to avoid crowded regions.
Existence of a solution to (1)-(2) is still an open problem, the main difficulty is given
by the possible concentration of population for some t which results in the blow-up
of the cost term 1/f(ρ(t)). Partial results are available only in the one-dimensional
case (see [3, 4, 14]); note that in R, since |∂xu| = ∂xu sign(∂xu), the first equation
in (1) simplifies as

∂tρ− ∂x (ρf(ρ) sign(∂xu)) = 0

and the solution of the eikonal equation admits an almost explicit representation
formula. Moreover, there have been several approaches which regularize the flux
function in order to obtain a well-posed problem. In [14], a regularization of the
eikonal equation (2) has been introduced in order to avoid the possible blow-up of
|∇u|, leading to the system

∂tρ− div(ρf2(ρ)∇u) = 0,

− ε∆u+ |∇u|2 =
1

(f(ρ) + δ)2
,

(5)

for some ε, δ > 0. Also for this system, existence and uniqueness of a weak solution
have been obtained in the one dimensional case.
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2.1 The Hughes model on networks

In the recent years, the theory of entropy solutions for conservation laws and of
viscosity solutions for Hamilton-Jacobi equations have been extended to the case
of networks (see [16] and [8], [21] respectively), imposing appropriate transition
conditions at the intersections.

A network N = (V, E) is composed by a finite collection of points V := {vi}i∈I
in Rn connected by continuous, non self-intersecting edges E := {ej}j∈J . We define
N := |V|,M := |E| and I := {1, . . . , N}, J := {1, . . . ,M}. Each edge ej ∈ E
is parametrized by a smooth function πj : [0, lj ] → Rn, lj > 0. Given vi ∈ V,
Inci := {j ∈ J : vi ∈ ej} denotes the set of edges branching out from vi, and we
denote by dvi := |Inci| the degree of vi. A vertex vi is called a boundary vertex if
dvi = 1 and ∂N denotes the set of boundary vertices.
For a function u : E → R, uj : [0, lj ] → R is the restriction of u to ej , i.e. u(x) =
uj(y) for x ∈ ej , y = π−1j (x), and ∂ju(vi) is the oriented derivative of u at vi along
the arc ej defined by

∂ju(vi) =

{
lim
h→0+

(uj(h)− uj(0))/h, if vi = πj(0),

lim
h→0+

(uj(lj − h)− uj(lj))/h, if vi = πj(lj).

The Hughes system on the network N is given by

∂tρj(x, t)− ∂x (ρj(x, t)f(ρj(x, t)) sign(∂xuj)) = 0 x ∈ ej , t > 0 , j ∈ J ,
|∂xuj | = 1

f(ρj(x,t))
x ∈ ej t > 0 , j ∈ J ,∑

j∈Inci
ρj(vi, t)f(ρj(vi, t)) sign(∂ju(vi)) = 0 , t > 0 , i ∈ I,

uj(vi) = uk(vi) j, k ∈ Inci , i ∈ I,
ρj(x, 0) = ρ̄j(x) , x ∈ N , j ∈ J ,
uj(x) = 0 , x ∈ ∂N , j ∈ J ,

(6)

where the derivatives ∂xuj must be interpreted as derivatives with respect to y =
π−1j (x), which parametrizes the edge ej .
The system (6) is formally equivalent to M scalar Hughes systems defined on the
edges coupled via the transition conditions at the internal vertices where we require
the conservation of the flux for the density ρ, while the continuity for u. We recall
that, if we consider the two equations separately, the previous transition condi-
tions are sufficient to get existence of weak solutions for both the equations (for
the Hamilton-Jacobi equation also uniqueness, whereas some additional junction
conditions are required to obtain the same for the conservation law [16, 7]). In
principle these two approaches could be combined to study the Hughes system on
networks, but it seems very difficult since even in the Euclidean case the existence
of a solution is still an open problem. Hence, in Section 3 we will consider a discrete
similar system to (6) on a graph, where the solution is defined only on the vertices
and the edges are reduced to connection information. In this way we will be able
to obtain some well-posedness results. Finally, we observe that it is possible to

4



consider the following network version of the regularized system (5)

∂tρj(x, t)− ∂x (ρj(x, t)f(ρj(x, t)) sign(∂xuj)) = 0 x ∈ ej , t > 0, j ∈ J ,
−ε ∂xxuj + |∂xuj |2 = 1

(f(ρj(x,t))+δ)2
x ∈ ej , j ∈ J ,∑

j∈Inci
ρj(vi, t)f(ρj(vi, t)) sign(∂ju(vi)) = 0 , t > 0 , i ∈ I,

uj(vi) = uk(vi) j, k ∈ Inci , i ∈ I,∑
j∈Inci

ε ∂ju(vi) = 0 , i ∈ I,

ρj(x, 0) = ρ̄j(x) , x ∈ N , j ∈ J ,
uj(x) = 0 , x ∈ ∂N , j ∈ J ,

where, as stated above, the derivatives ∂xuj and ∂xxuj must be interpreted as
derivatives with respect to y = π−1j (x), which parametrizes the edge ej . Note that,
with respect to the first order system, a Kirchhoff law for u at the internal vertices
has to be added.

3 The Hughes model on graph

In this section, after a preliminary paragraph that introduces our notation on graph,
we focus on the discrete Hughes system and its interpretation as a discrete-time
finite state model for pedestrian flow on a graph.

3.1 Basic notations

Let us consider a weighted graph Γ = (V,E,w) where V denotes the set of vertices,
E ⊂ V × V the set of the edges and w : V × V → R the weights of the edges
with w(x, y) > 0 if (x, y) ∈ E and w(x, y) = 0 otherwise. In what follows we will
use the notation wxy := w(x, y) for the sake of simplicity. The weight wxy is a
parameter which takes into account several properties of the edge (x, y) such as
length, capacity, velocity (small weights correspond to a better connection between
x and y). The graph is assumed to be finite, simple, connected and undirected,
hence wxy = wyx for any (x, y) ∈ E.
We set y ∼ x if (x, y) ∈ E and we denote by I(x) = {y ∈ V : y ∼ x} the set of the
neighbors of x and by |I(x)| the degree of x, i.e. the cardinality of the set I(x). We
set

D = max
x∈V
|I(x)|. (7)

We denote by Vb ⊂ V the set of the boundary vertices of the graph and by V0 = V \Vb
the set of the internal vertices.
A path connecting x to y is given by a finite subset γ = {x0 = x, x1, . . . , xN = y}
of V such that xk ∼ xk+1, k = 0, . . . , N − 1. We denote by Gxy the set of the paths
γ connecting x to y. The geodetic distance between two adjacent vertices x, y is

d(x, y) = wxy

whereas for two arbitrary vertices x, y ∈ V we define

d(x, y) := min{d(x0, x1) + d(x1, x2) + · · ·+ d(xN−1, xN )}, (8)

where the minimum is taken over all the finite paths γ ∈ Gxy.
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3.2 The discrete Hughes model

Given a weighted graph Γ, we consider the following discrete Hughes system for a
n ∈ N

ρn+1(x) = ρn(x)−
∑
y∼x

λhnyx · sgn(un(y)− un(x)), x, y ∈ V,

max
y∼x

{
−u

n(y)−un(x)
wyx

− 1
1−ρn(y)

}
= 0, x ∈ V0, y ∈ V,

ρ0(x) = ρ̄(x), x ∈ V,
un(x) = 0, x ∈ Vb,

(9)

where hnyx denotes the flux between x and y and λ is a positive constant. To define
the flux hnyx in (9) we consider a function h satisfying

h(0, 0) = h(1, 1) = 0, (10)

m−(v) ≤ ∂1h(v, u) ≤ 0 ≤ ∂2h(v, u) ≤ m+(u), (11)

for a continuous function m : R → R, where a− = min(a, 0), a+ = max(a, 0) and
∂1h and ∂2h denotes the derivatives of h with respect to the first or the second
argument, respectively.. We set

hnyx =

{
h(ρn(y), ρn(x)), if δnyx = 1,

h(ρn(x), ρn(y)), if δnyx = −1,
(12)

where δnyx = sgn(un(y)− un(x)) with un given by the second equation in (9).
In order to give specific examples of h, we consider flux functions which are consis-
tent with g(ρ) = ρ(1− ρ), i.e. h(ρ, ρ) = g(ρ) for ρ ∈ R, such as the Lax-Friedrichs
flux

h(ρn(y), ρn(x)) =
1

2

(
ρn(y)(1−ρn(y))+ρn(x)(1−ρn(x))

)
− 1

λ
(ρn(y)−ρn(x)). (13)

Other examples of flux verifying (10)-(11) are given by the Godunov flux

h(ρn(y), ρn(x)) =


min

[ρn(x),ρn(y)]
g(ρ), if ρn(x) ≤ ρn(y),

max
[ρn(y),ρn(x)]

g(ρ), if ρn(x) ≥ ρn(y),

and by the Engquist-Osher flux

h(ρn(y), ρn(x)) =
1

2

(
ρn(y)(1−ρn(y))+ρn(x)(1−ρn(x))

)
−1

2

∫ ρn(y)

ρn(x)

|g′(ρ)|dρ. (14)

In all the previous examples h is consistent with g and satisfies (10)-(11) with
m(v) = g′(v). Note that the discrete conservation law in (9) coincides with the nu-
merical scheme for (1) introduced in [24] if the graph Γ is given by the discretization
points of an interval [a, b] and h is consistent with g(ρ) = ρ(1 − ρ) (see also [17]).
In the case of a network, it corresponds to discretize the conservation law (1) inside
the edges and to impose the conservation of the flux at the vertices. We also refer
to [7],[16] for different numerical discretizations of conservation law on networks in
the framework of vehicular traffic motion. Concerning the Eikonal equation (2), we
recall that approximations of Hamilton-Jacobi equations on networks are discussed
in [12] for finite differences and in [10] for semi-Lagrangian schemes.
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The system (9) has been introduced as a discretization of the continuous prob-
lem (1)-(2), but nevertheless it inherits some dynamical properties of the original
model and it can be interpreted as a discrete-time finite state model for the flow of
pedestrians on a graph in the following way. At the initial time, there is a continuum
of indistinguishable players distributed on the vertices of the graph Γ according to
a density function ρ̄, where ρ̄(x) represents the crowd at the vertex x. As in the
original Hughes model [18], we assume that people have a complete knowledge of
the environment and they choose the minimum distance path to their destination
Vb, but they have difficult to move against the flow which is proportional to the
local crowd density. Each vertex x ∈ V represents a point at which people can
choose which route (x, y) ∈ E to take and the subset Vb ⊂ V represents the goal,
e.g. the exit of the environment.
The term sgn(un(y) − un(x)) (with sgn(0) = 0), where un : V → R is the solution
of the graph eikonal equation in (9) at the time n, gives the direction of the flow.
The function un, see (24) for more details, is given by the distance function from
the boundary integrated along the cost 1/(1−ρn) which penalizes the vertices with
high density ρn.
The pedestrians having reached a vertex x ∈ V at a given time n are stirred to the
arc which minimizes the distance un from the boundary. Moreover, if x ∈ Vb then
un(x) = 0 and δnyx > 0 for each y ∈ V0 such that (x, y) ∈ E. Hence, the flow is
always in the direction of the boundary, i.e. the individuals having already reached
the destination cannot reenter in the environment.

If we consider the flow h given e.g. by (13), the first of the two terms tell us
that the velocity of the pedestrians along the arc (x, y) is given by the average of
the velocity at x and y; the second term is a small viscosity term given by the graph
laplacian

− 1

λ

∑
y∼x

(ρn(y)− ρn(x))δnyx (15)

which can be interpreted as a a stochastic perturbation of the flux at x.

4 Analytical results for the Hughes model on graph

In this section we prove existence and uniqueness of the solution of the discrete
Hughes model. We study separately the discrete eikonal equation and the discrete
conservation law present in the system (9) and then we will arrive to the well-
posedness of the discrete system.

4.1 The eikonal equation on graph

We study the graph eikonal equation (see [5], [22] for related results){
max
y∼x

{
−u

n(y)−un(x)
wyx

− 1
1−ρn(y)

}
= 0, x ∈ V0, y ∈ V, n ∈ N,

un(x) = 0, x ∈ Vb, n ∈ N.
(16)

We assume that, for any n ∈ N,

0 ≤ ρn(x) ≤ 1− δ, ∀x ∈ V, (17)
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for some δ > 0, hence there exists a constant M such that

1 ≤ 1

1− ρn(x)
≤M, ∀x ∈ V. (18)

Theorem 4.1 Let us assume that the condition (17) holds. Then, for any n ∈ N,
there exists a unique solution of (16), given by the formula

un(x) = min

{
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
: y ∈ Vb, γ ∈ Gxy

}
(19)

(with the convention
∑−1
k=0 = 0).

Existence. The function un in (19) is well defined (i.e., the minimum is
achieved) since, for each fixed x, the set of admissible paths connecting x to the
boundary Vb is finite. We first show that for x ∈ V0

max
y∼x

{
−u

n(y)− un(x)

wyx
− 1

1− ρn(y)

}
≤ 0. (20)

Given y ∼ x, let z ∈ Vb and γ = {x0 = y, x1, . . . , xN = z} ∈ Gyz be such that

un(y) =

N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
.

Then, {x, x0, . . . , xN = z} ∈ Gxz is a path connecting x to z ∈ Vb and therefore

−(un(y)− un(x)) ≤ −
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
+

wx0x

1− ρn(x0)
+

N−1∑
k=0

wxk+1xk

1− ρn(xk+1)

=
wx0x

1− ρn(x0)
=

wyx
1− ρn(y)

,

from which we can conclude that (20) holds.
Let us show now that for x ∈ V0

max
y∼x

{
−u

n(y)− un(x)

wyx
− 1

1− ρn(y)

}
≥ 0. (21)

Let z ∈ Vb and γ = {x0 = x, x1, . . . , xN = z} ∈ Gx,z be such that

un(x) =

N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
.

Since x1 ∼ z and {x1, . . . , xN} ∈ Gx1z, we get

−(un(x1)− un(x)) ≥ −
N−1∑
k=1

wxk+1xk

1− ρn(xk+1)
+

N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
=

wx1x

1− ρn(x1)
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and, therefore,

max
y∼x

{
−u

n(y)− un(x)

wyx
− 1

1− ρn(y)

}
≥ −(un(x1)− un(x))− wx1x

1− ρn(x1)
≥ 0.

Combining (20) and (21), we get (16).
Note that the positivity of the cost 1/(1− ρn) implies un(x) > 0 for any x ∈ V0.

If x ∈ Vb, considering the stationary path γ = {x0 = x} ∈ Gxx which gives a null
cost, we have

0 ≤ un(x) = min

{
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
: y ∈ Vb, γ ∈ Gxy

}
≤ 0

and therefore un(x) = 0.
Uniqueness. Let un, vn be two solutions of (16) and in addition we assume that

max
V
{un− vn} = δ, for a strictly positive δ. We define also W := arg max

V
{un− vn}

and m := min{vn(x) : x ∈W}.
Let x ∈ W be such that vn(x) = m. Since un(x) = vn(x) = 0 for x ∈ Vb, then

x belongs to V0. Let z ∼ x be such that

max
y∼x

{
−v

n(y)− vn(x)

wyx
− 1

1− ρn(y)

}
= −v

n(z)− vn(x)

wzx
− 1

1− ρn(z)
.

Hence,

−v
n(z)− vn(x)

wzx
− 1

1− ρn(z)
= 0 ≥ −u

n(z)− un(x)

wzx
− 1

1− ρn(z)

from which un(z) − vn(z) ≥ un(x) − vn(x) = δ. It follows that z ∈ W and, by
−w−1zx (vn(z) − vn(x)) ≥ 1

1−ρn(z) > 0, we get m = vn(x) > vn(z), which is in

contradiction with the definition of m. In the next proposition, we give some
regularity properties of un.

Proposition 4.1 Let un be the solution of (16). Then

d(x, y) ≤ un(x) ≤Md(x, y) ∀x ∈ V, y ∈ Vb, (22)

|un(y)− un(x)| ≤Md(x, y) ∀x, y ∈ V, x ∼ y, (23)

where d and M are defined in (8) and (18), respectively.

Let x ∈ V be. Then, for any y ∈ Vb and for any γ = {x0 = x, x1, . . . , xN = y} ∈ Gxy,
by the inequalities in (18) we have

N−1∑
k=0

wxk+1xk
≤
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
≤M

N−1∑
k=0

wxk+1xk
.

Therefore the bounds (22) follow immediately.
Let x ∼ y and γ = {x0 = y, x1, . . . , xN = z} ∈ Gyz be, where z ∈ Vb is an

optimal path for un(y). Then, {x, x0, . . . , xN = z} ∈ Gxz is a path connecting x to
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z ∈ Vb and, therefore,

un(x)− un(y) ≤ wyx
1− ρn(y)

+

N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
−
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)

=
wyx

1− ρn(y)
≤Md(x, y)

which proves the property (23). Let us define the following function on the graph
Γ:

dn(x, y) := min

{
N−1∑
k=0

wxk+1xk

1− ρn(xk+1)
: γ ∈ Gxy

}
, x, y ∈ V, n ∈ N.

Then, the solution of (16) can be written as

un(x) = inf{dn(x, y) : y ∈ Vb} (24)

(cf. with the formula (4) in the continuous case). Therefore, un is the distance
from the boundary taking into account the distribution of the population on the
graph: the term 1/(1−ρn(y)), which is the cost of passing from x to y, penalizes the
vertices adjacent to x with high population density. The term sgn(un(y)−un(x)) in
(9), which can be seen as the normalized discrete gradient of un, gives the direction
of the minimizing path to the boundary. Moreover, if ρn ≡ 0, then dn coincides
with the path distance d defined in (8).

4.2 The conservation law on graph

In this section we study the problem{
ρn+1(x) = ρn(x)−

∑
y∼x

λhnyxδ
n
yx, x ∈ V, n ∈ N,

ρ0(x) = ρ̄(x) x ∈ V, n = 0,
(25)

where hnyx satisfies (10)-(11), λ is a positive constant and δnyx is equal to 1 if the
flux is directed from y to x and to −1 viceversa (for (9), δnyx = sgn(un(y)−un(x))).
We rewrite equation (25) as

ρn+1(x) = G(ρn(x), {ρn(y)}y∈I(x)) (26)

for a map G : R× R|V | → R.

Proposition 4.2 Let us assume

Dλ‖m‖L∞(0,1) ≤ 1, (27)

where D is defined in (7) and m in (11). Then, the map G is monotone in [0, 1],
i.e. if ρn(x), ζn(x) ∈ [0, 1] for all x ∈ V , n ∈ N, then

ρn(x) ≤ ζn(x) ∀x ∈ V ⇒ ρn+1(x) ≤ ζn+1(x) ∀x ∈ V.

Observe that

G(ρn(x), {ρn(y)}y∈I(x)) = ρn(x)−
∑
y∼x
δnyx=1

λh(ρn(y), ρn(x)) +
∑
y∼x

δnyx=−1

λh(ρn(x), ρn(y)).
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We first prove that ∂G/∂ρn(y) ≥ 0 for y ∈ I(x). This follows immediately by (11)
and by the identity

∂G

∂ρn(y)
=

{
−λ∂1h(ρn(y), ρn(x)), if δnyx = 1,

λ∂2h(ρn(x), ρn(y)), if δnyx = −1.
(28)

Moreover, by (27) we have

∂G

∂ρn(x)
= 1−

∑
y∼x
δnyx=1

λ∂2h(ρn(y), ρn(x)) +
∑
y∼x

δnyx=−1

λ∂1h(ρn(x), ρn(y))

≥ 1−
∑
y∼x
δnyx=1

λm+(ρn(x)) +
∑
y∼x

δnyx=−1

λm−(ρn(x)) ≥ 1−Dλ‖m‖L∞(0,1) ≥ 0 (29)

and therefore G is increasing in ρn(x).

Proposition 4.3 Let us assume that (27) holds and that 0 ≤ ρ̄(x) ≤ 1 ∀x ∈ V .
Then,

(i) 0 ≤ ρn(x) ≤ 1 ∀x ∈ V , n ∈ N.

(ii) If 0 ≤ ρ̄(x) < 1 and the inequality in (27) is strict, then 0 ≤ ρn(x) < 1
∀x ∈ V , n ∈ N.

(iii)
∑
x∈V

ρn(x) =
∑
x∈V

ρ̄(x), ∀n ∈ N.

(iv)
∑
x∈V
|ρn+1(x)− ρn(x)| ≤

∑
x∈V
|ρ1(x)− ρ̄(x)|, ∀n ∈ N.

By using (10), the monotonicity of the map G and the following

0 = G(0, {0}y∈I(x)) ≤ G(ρn(x), {ρn(y)}y∈I(x)) ≤ G(1, {1}y∈I(x)) = 1,

it follows that
0 ≤ ρn(x) ≤ 1, ∀n ∈ N, ∀x ∈ V.

Hence, (i) holds.
If Dλ‖m‖L∞(0,1) < 1, by (29) the map G is strictly increasing in ρn(x). Moreover,
by (28), G(1, {ρ̄(y)}y∈I(x)) is the sum of terms non decreasing in ρ̄(y). Hence, if
0 ≤ ρ̄(x) < 1, then, for any x ∈ V ,

ρ1(x) = G(ρ̄(x), {ρ̄(y)}y∈I(x)) < G(1, {ρ̄(y)}y∈I(x)) ≤ G(1, {1}y∈I(x)) = 1,

and iterating on n ∈ N we get (ii).
To prove the equality in (iii) , we observe that

hnyxδ
n
yx + hnxyδ

n
xy = 0 ∀x, y ∈ V, x ∼ y. (30)

In fact, if δnyx = 1, then δnxy = −1 and by (12) we have

hnyxδ
n
yx + hnxyδ

n
xy = h(ρn(y), ρn(x))− h(ρn(y), ρn(x)) = 0.

11



We proceed similarly if δnyx = −1. Since for each x ∈ V there is a corresponding
node y ∈ V for which (30) holds, we immediately get∑

x∈V
ρn+1(x) =

∑
x∈V

ρn(x)−
∑
x∈V

∑
y∼x

hnyxδ
n
yx =

∑
x∈V

ρn(x). (31)

Iterating the previous argument on n ∈ N we get (iii).
To prove (iv), we consider the case n = 1 and we observe that∑

x∈V
|ρ2(x)− ρ1(x)| =

∑
x∈V

(ρ2(x)− ρ1(x))+
∑
x∈V

(ρ1(x)− ρ2(x))+

=
∑
x∈V

(
G(ρ1(x), {ρ1}y∈I(x))−G(ρ̄(x), {ρ̄}y∈I(x))

)+
+
∑
x∈V

(
G(ρ̄(x), {ρ̄}y∈I(x))−G(ρ1(x), {ρ1}y∈I(x))

)+
. (32)

Moreover, by the monotonicity of G, see (i), and the mass conservation in (31), we
can write ∑

x∈V

(
G(ρ1(x), {ρ1}y∈I(x))−G(ρ̄(x), {ρ̄}y∈I(x))

)+
≤
∑
x∈V

(
G(ρ1 ∨ ρ̄(x), {ρ1 ∨ ρ̄}y∈I(x))−G(ρ̄(x), {ρ̄}y∈I(x))

)+
=
∑
x∈V

G(ρ1 ∨ ρ̄(x), {ρ1 ∨ ρ̄}y∈I(x))−G(ρ̄(x), {ρ̄}y∈I(x))

=
∑
x∈V

(ρ1 ∨ ρ̄)(x)− ρ̄(x) =
∑
x∈V

(ρ1(x)− ρ̄(x))+,

and similarly∑
x∈V

(
G(ρ̄(x), {ρ̄}y∈I(x))−G(ρ1(x), {ρ1}y∈I(x))

)+
≤
∑
x∈V

(
ρ̄(x)− ρ1(x)

)+
.

By substituting the previous inequality in (32) we obtain∑
x∈V
|ρ2(x)− ρ1(x)| ≤

∑
x∈V

(ρ1(x)− ρ̄(x))+ + (ρ̄(x)− ρ1(x))+ =
∑
x∈V
|ρ1(x)− ρ̄(x)|

and, iterating, we get (iv). The term∑
x∈Vb

ρn(x)

represents the cumulative distribution of the population which has already reached
the exit at the time n. Since if x ∈ Vb then δnyx = 0 ∀y ∈ Vb with y ∼ x, there
is no flow inside the boundary. The assumption (11), which gives a bound on
the maximal admissible velocity of the flux, is exploited in conjunction with the
assumption (27) in order to get the monotonicity of the map G introduced in (26).
This property guarantees that pedestrians can move only of one vertex for unit time.
Hence, people on not adjacent vertices of the graph cannot interact in a single time
interval.

12



Remark 4.1 For the numerical simulation, we also consider a homogeneous Di-
richlet boundary condition in place of the no-flux boundary condition (3). The
corresponding conservation law on the graph is

ρn+1(x) = ρn(x)−
∑
y∼x

λhnyxδ
n
yx, x ∈ V0, n ∈ N,

ρn(x) = 0, x ∈ Vb, n ∈ N,
ρ0(x) = ρ̄(x), x ∈ V, n = 0.

If we denote with ρ̃n the solution of the previous problem and by ρn the solution of
(25), by the monotonicity of the scheme G it is immediate to see that ρ̃n ≤ ρn for
any n ∈ N. Hence, also ρ̃n satisfies properties (i) and (ii) in Prop. 4.3.

As an immediate consequence of the Proposition 4.3 and the assumption (17), we
have the well-posedness of the Hughes model on a graph.

Corollary 4.1 Assume that λD‖m‖L∞(0,1) < 1 and 0 ≤ ρ̄(x) < 1 ∀x ∈ V . Then
the problem (9) is well defined ∀n ∈ N.

By Proposition 4.3(ii) and the condition (17), the eikonal equation (16) is well
defined ∀n ∈ N. It follows that also the conservation law (25) is well defined
∀n ∈ N.

5 Numerical results for the Hughes model on graph

In this section we discuss the numerical implementation of the discrete Hughes sys-
tem (9), which is considered as a discretization of the continuous Hughes system (6)
on a graph Γ. We introduce a time step dt and a spatial step dx. The discretization
of the edges of the network N is done uniformly with respect to dx with the points
of the discretization giving the vertices of the graph Γ. The stability condition in
(27) is verified if

dt ≤ dx

D‖m‖L∞(0,1)
,

being λ = dt/dx in (25). The choice of the flux function h is an important point. It
is well known that a low order scheme gives poor accuracy on smooth regions of the
solutions, conversely a high order scheme could develop spurious oscillations bring-
ing to a high local error in non smooth regions of the solutions. We experimentally
observed that a good compromise is represented by the Engquist-Osher flux (14).
For this reason, from now on we will consider this form of the numerical flux h. In
the resolution of the system (9), the conservation law is explicit in time, hence its
computation does not present any difficulty. The resolution of the eikonal equation
is more delicate and we consider a value iteration technique. Taken an initial guess
u0(x), we iterate the explicit system

vk+1(x) = min
y∼x

{
vk(y) +

wyx

1−ρn(y)

}
, x ∈ V0,

vk+1(x) = 0, x ∈ Vb,
v0(x) = u0(x).

Under some non restrictive hypotheses (see [23]), such iteration is a contraction and
converges monotonically for k → +∞ to the solution un of (16). It has been shown
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the relevance of a good initial guess u0(x) to have a fast convergence (cf. [2]). A
perfect candidate to play this role is the function un−1(x) that is the solution of the
discrete eikonal equation at the previous time step.

5.1 Synthetic Tests

In this section we consider a simple network composed of five nodes and four edges
(see Figure 1, left) discretized to a graph as described above.

Figure 1: Scheme of the network and initial density.

Figure 2: Test 1 (Dirichlet boundary conditions): density and potential before the
first time of interaction.

The initial density ρ̄(x) (see Figure 1, right) is defined by the restriction on the
graph of the function

ρ̄(x1, x2) := max(0, 0.65− 4 (x1 + 1)2− 4x22, 0.75− (6 (x1− 0.2))2− (6 (x2− 0.8))2).
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The set of the boundary points Vb, i.e. the target points, is given by the vertexes in
(0.2,−0.8) and (0.8, 0), where un is imposed equal to zero.

We will consider two possible cases for the boundary conditions (BCs) for the
conservation law: the case with a no-flux condition (in such case the mass is con-
served inside the graph) and the case with a homogeneous Dirichlet condition on the
target points (see Remark 4.1). Those BCs are related to a different choice of the
model: the no-flux condition corresponds to target points where the crowd tends
to concentrate, for example the stage of a concert, the various points of interest
during the annual Hajj, see [1], etc. The homogeneous Dirichlet condition, instead,
corresponds to target points which can be seen as exits of large dimensions: any
mass touching them exits instantaneously from the graph.
First objective of this section is to show the stability of the discrete system: with
this aim we consider a first order numerical flux as in (14). The case with a second
order correction (stochastic perturbation adding diffusion) is more regular and it
will be take into account in the next Test 3.
We perform the simulation fixing the discretization parameter dx = 0.01 and the
time step dt = 0.002, hence the stability condition (27) is verified since we observe
‖m‖∞ ≤ 1− 2ρ ≤ 1 and dx/(Ddt) = 5/4.

Test 1 We start considering the case of homogeneous Dirichlet boundary condi-
tions. At the beginning of the simulation, the two initial masses start to move in
the direction of the two target points acting as exits. The mass coming from the
edge connecting (0.2, 0) to (0.2, 0.8) has a shorter path so it arrives on the junction
node and it turns in direction of the closer exit (0.8, 0) (Figure 1). In Figure 2 it is
possible to observe the first interaction time between the two masses: the arrival of
the mass coming from the edge connecting (−1, 0) to (0.2, 0.8) produces a conges-
tion near the exit (0.8, 0), therefore the other exit (0.2,−0.8) becomes convenient
as it is possible to observe in the graph of the drift potential u, see Figure 3 (below)
and compare with Figure 2 (below). Therefore, the exit (0.2,−0.8) attracts a part
of the mass (Figure 3 above). This phenomena is peculiar of the Hughes model and
it has been observed also in other works (see e.g. [20] or [14]). Once reached the
target, the mass exits from the graph (Figure 3 above, on the exit (0.8, 0)).

Test 2 In a second simulation we compute the same solution with the no-flux
boundary condition. In this case, the mass is conserved. The first part of the
test shows the same results as above: the masses are attracted by the target point
(0.8, 0), but, differently from the previous test, the mass starts to concentrate,
reducing its speed until the exit (0.2,−0.8) becomes convenient. When also this
second target point reaches its maximal value of the density getting congested, the
mass reaches a stable configuration (Figure 4). In the case of a coarse time step dt,
some oscillatory phenomena are observed in the second part of the test (chattering),
where essentially the mass changes alternatively objective between the two target
points. With a finer time discretization, those oscillatory effects are reduced till
disappearing, we observe a convergence to the steady state configuration of Figure
4. The study of a possible convergence to the solution of a stationary system (which
would assume the form of a stationary mean field game [9]) is a question of sure
interest and high difficulty that is, for the moment, out of the purposes of the
present paper. This test confirms even more than the previous case the stability of
the discrete system and the fact that the density is always strictly lower than the
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Figure 3: Test 1 (Dirichlet boundary conditions): density and potential after the
first time of interaction at (0.2,−0.8).

maximal value 1, even in the extreme case, when we force the mass to concentrate.

Test 3 As last simulation on this graph, we add to the conservation law a term of
the type (15), which can be interpreted, from a model point of view, as a stochastic
perturbation in the motion of the mass and, from an analytic point of view, as a
second order regularizing term in the equation. In Figure 5 it is possible to see
the effects of the diffusive term: the solution is more regular and congestion is not
present. This is a phenomenon observed also in [11]: the presence of a stochastic
noise prevents the mass to concentrate over a certain ratio. This has the indirect
effect to help the overall evacuation time (i.e. the first time step where the density
on the domain is null everywhere) for certain configurations of the system (we can
observe this comparing Figure 3 with Figure 5). Avoiding congestion brings also
some other macroscopic effects: in this case all the mass is exiting by the more
convenient “exit” located in (0.8, 0). Since this arc is not getting congested, the
agents do not change strategy using the other “exit” in (0.2,−0.8).

5.2 A Stadium evacuation test

The stadium at the Wuhan Sports Centre (Fig. 6, left) is a multi-use stadium
located in Wuhan, China. Completed in 2002, it was used as test benchmark for
mass-evacuation in [15]. The stadium has 42 bleachers (tiers of seats) distributed
on all 3 floors and has 9 exits (Fig. 6, right) for evacuation; the capacity declared of
the structure is of 54,357 spectators. Transforming a bit the structure (we consider
all the edges on the same plane) the evacuation network in this stadium (Fig. 6,
right) has 108 arcs and 63 nodes. After an uniform discretization of the arcs, the
number of nodes of the graph is around 7 ·103 with a similar number of connections.

The choice of the initial configuration of density can be variable with respect
to the aspect that we want to underline (by choosing a high initial uniform density
distribution, we can test the graph in an extremely crowded scenario; a random den-
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Figure 4: Test 2 (No-flux boundary conditions): stable configuration obtained for
t > 3.5.

sity choice can simulate some not standard cases of anomalous local concentration
of crowd, etc). In this test, we chose the following initial datum

ρ̄(x1, x2) := max(0, 0.7− 0.7x2 − 0.84y2),

(we always mean the restriction of such function on the nodes of the graph), this
distribution in our intention should render the higher concentration of spectators
in the areas closer to the court. We approximate uniformly the arcs using the
discretization step dx = 0.01 and we sample the time with dt = 0.002. Also in
this case the condition (27) is guaranteed (the maximum number of connections
per node D is 5) and the scheme is stable. In Figure 7 we can see the initial
distribution of the density and the potential driving the individuals toward one of
the exits. In Figure 8 it is shown the evolution of the system in various moments.
We can notice that, despite the general symmetry of the structure, the behavior
is highly conditioned by the position and the number of the exits. Of particular
interest is the difference between the evacuation of sectors A/B and C/D (refer to
Fig. 6). As it can be seen from the scheme, the sector A is served by only one exit,
differently from C, where two exits are present. Analogously, the sector D has 4 exits
conversely to sector B which has just two. This brings to an orderly and efficient
evacuation in the sectors C/D, with a well balanced use of the exits available. In
the other case (sector A/B), the observed dynamics are different: on the paths
toward the only three exits, in proximity to some nodes with multiple access, there
are the appearance of high density congested regions. We can observe also some
of the phenomena discussed previously: reduction of the speed in the congested
regions, changes of strategy, doubtful choice between two strategies (chattering).
This has the macroscopic effect to rise up the final time necessary to evacuate the
regions involved as we can observe in the last samples of Figure 8: the sectors C/D
are already empty, the sectors A/B, instead, show congestion and a laborious flow

17



Figure 5: Test 3 (Dirichlet BCs with diffusion ε = 1): Density at two different time
steps (t = 0.75 and t = 1.75).

through them. It is interesting to observe that a more efficient (for evacuation
purposes) graph is not trivially a graph with more exits but a structure that avoids
to drive big masses of agents to pass at the same time in the same nodes. This is
a consequence to the incapacity of the agents represented in the model to forecast
the future configuration of the system in order to choose the best strategy to adopt.
For those reasons, the model is particularly appropriate to simulate the behavior of
a crowd in a known graph in presence of unpredicted events (an evacuation order,
unusual high concentration in common transport facilities, etc.).

6 Conclusions

In this paper we have presented a discrete Hughes model for pedestrian flow on a
graph. We have shown that, differently from the analogous continuous model on a
network, this discrete model is well-posed for any time n ∈ N under some natural
assumptions on the flux, continuing to share some qualitative properties with the
corresponding continuous model, as the interpretation of the solution of the graph
eikonal equation as a distance from the boundary, change of strategies, congestion,
etc.
Several tests have been shown, analyzing and comparing the results and the be-
haviors obtained with different conditions (no BCs, homogeneous Dirichlet BCs or
adding a diffusive term). The experimental examples have confirmed the validity
of the proposed model, showing that the discrete system is always stable, even in
the extreme case, when we force the mass to concentrate.
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Figure 6: The Wuhan Sports Centre (left) and the evacuation network considered
in our study (right).
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[6] (MR2834083) N. Bellomo and C. Dogbé, On the modeling of traffic and crowds:
a survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409–
463.

[7] (MR3268171) M. Briani and E. Cristiani, An easy-to-use algorithm for sim-
ulating traffic flow on networks: theoretical study, Netw. Heterog. Media, 9
(2014), 519–552.

[8] (MR3063108) F. Camilli and C. Marchi, A comparison among various notions
of viscosity solutions for Hamilton-Jacobi equations on networks, J. Math.
Anal. Appl., 407 (2013), 112–118.

19



Figure 7: Initial distribution of density on the graph (up) and drift potential in the
initial configuration (down).

[9] (MR3490887) F. Camilli and C. Marchi, Stationary mean field games systems
defined on networks, SIAM J. Cont. Optim., 54 (2016), 1085–1103.

[10] F. Camilli, A. Festa and D. Schieborn, An approximation scheme for a
Hamilton-Jacobi equation defined on a network, Appl. Numer. Math., 73
(2013), 33–47.

[11] E. Carlini, A. Festa, F.J. Silva and M.T. Wolfram, A Semi-Lagrangian scheme
for a modified version of the Hughes model for pedestrian flow Dyn. Games
Appl. (2016), 1–23

[12] (MR3311457) G. Costeseque, J.P. Lebacque and R. Monneau, A convergent
scheme for Hamilton-Jacobi equations on a junction: application to traffic,
Numer. Math., 129 (2015), 405–447.

[13] (MR3411586) E. Cristiani and F.S. Priuli, A destination-preserving model
for simulating Wardrop equilibria in traffic flow on networks, Netw. Heterog.
Media, 10 (2015), 857–876

[14] (MR2737207) M. Di Francesco, P.A. Markowich, J.F. Pietschmann and M.T.
Wolfram, On the Hughes model for pedestrian flow: the one-dimensional case,
J. Differential Equations, 250 (2011), 1334–1362.

[15] Z. Fang, Q. Li, Q. Li, L. D. Han and D. Wang, A proposed pedestrian waiting-
time model for improving space-time use efficiency in stadium evacuation sce-
narios, Build. Environ., 46 (2011), 1774–1784.

[16] M. Garavello and B. Piccoli, “Traffic Flow on Networks” AIMS Series on
Applied Mathematics, Vol. 1, American Institute of Mathematical Sciences,
2006.

20



[17] L. Huang, S.C. Wong, M. Zhang, C.W. Shu, and W.H.K. Lam, Revisiting
Hughes dynamic continuum model for pedestrian flow and the development of
an efficient solution algorithm, Transportat. Res. B-Meth., 43 (2009), 127–141

[18] R.L. Hughes, The flow of large crowds of pedestrians, Math. Comput. Simulat.,
53 (2000), 367–370.

[19] R.L. Hughes, A continuum theory for the flow of pedestrians, Transport. Res.
B-Meth., 36 (2002), 507–535.

[20] R. L. Hughes, The flow of human crowds, Annu. rev. fluid mech., 35 (2003),
169–182.

[21] P.-L. Lions and P. E. Souganidis, Viscosity solutions for junctions: well posed-
ness and stability, Rend. Lincei Mat. Appl. 27 (2016), 535-545.

[22] (MR3299118) J. Manfredi, A. Oberman and A. Sviridov, Nonlinear ellip-
tic partial differential equations and p-harmonic functions on graphs, Differ.
Integral Equ. 28 (2015), 79–102.

[23] (MR0543609) M. Puterman and S.L. Brumelle, On the convergence of policy
iteration in stationary dynamic programming, Math. Oper. Res., 4 (1979),
60–69.

[24] (MR1770068) J.D. Towers, Convergence of a difference scheme for conserva-
tion laws with a discontinuous flux, SIAM J. Numer. Anal., 38 (2000), 681–698.

[25] A. Treuille, S. Cooper and Z. Popov̂ıc, Continuum Crowds, ACM Trans.
Graph., 25 (2006), 1160–1168.

21



Figure 8: Distribution of density on the graph at various moments of the evolutions.
Respectively (from left to right, up to down) t = 0.0025, 0.75, 1.25, 2.
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