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A three dimensional model of multicellular aggregate
compression.

Chiara Giverso∗a, Salvatore Di Stefanoa, Alfio Grilloa and Luigi Preziosi a

Multicellular aggregates are an excellent model system to explore the role of tissue biomechan-
ics, which has been demonstrated to play a crucial role in many physiological and pathological
processes. In this paper, we propose a three-dimensional mechanical model and apply it to the
uniaxial compression of a multicellular aggregate in a realistic biological setting. In particular, we
consider an aggregate of initially spherical shape and describe both its elastic deformations and
the reorganisation of cells forming the spheroid. The latter phenomenon, understood as remod-
elling, is accounted for by assuming that the aggregate undergoes plastic-like distortions. The
study of the compression of the spheroid, achieved by means of two parallel, compressive plates,
needs the formulation of a contact problem between the living spheroid itself and the plates, and is
solved with the aid of the augmented Lagrangian Method. The results of the performed numerical
simulations are in qualitative agreement with the biological observations reported in the litera-
ture and can also be used to estimate quantitatively some fundamental aggregate mechanical
parameters.

1 Introduction1

Multicellular aggregates, and specifically multicellular2

spheroids (MCS), represent one of the most valid in vitro systems3

to study the dynamics of multicellular three-dimensional systems,4

being an intermediate step between monolayer growing cells and5

tissue culture1,2. In particular, living spheroids, made up of ei-6

ther healthy or malignant cells up to a size of 100-600 µm, are7

rather simple to prepare and well mimic in vivo phenomena oc-8

curring inside tissues and organs, encompassing growth, struc-9

tural reorganisation, cell-cell and cell-extracellular environment10

interactions, response to external and endogenous stimuli, em-11

bryogenesis, malignant invasion, wound healing, and tissue en-12

gineering1,3–8. Furthermore, multicellular aggregates are an ex-13

cellent model system to explore the role of tissue biomechanics,14

which has been demonstrated to play a crucial role in many phys-15

iological and pathological conditions. For instance, even though16

embryogenesis and morphogenesis (i.e. the complex set of events17

through which a living organism acquires its final shape) are un-18

der genetic control, genes by themselves do not create forms and19
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shapes. This is achieved by physical forces, which drive struc- 20

ture formation in a delicate interplay of genetic, molecular and 21

physical factors9. In the same way, cancer cell invasion and the 22

formation of metastasis is controlled by genetic mutations and al- 23

tered patterns of gene expression, but the physical motion of cells 24

in the surrounding environment is determined by the mechanical 25

properties of the cells and the extracellular environment and by 26

their complex interactions10–16. Therefore, the development of 27

three dimensional cell culture models to bridge the gap between 28

cell-based assays and animal studies has gained the attention in 29

the last decades, with the intent of reducing experimental uncer- 30

tainties arising from monolayer cell cultures and hence the costs 31

of subsequent in vivo drug screening processes. However, the cor- 32

rect interpretation of the experimental results obtained in these 33

living multicellular settings requires the thorough understanding 34

of the overall biophysical and mechanical properties of such sys- 35

tems, which emerge in a complex manner from the properties of 36

the individual constituents (i.e. cells, extracellular matrix, liquid, 37

vessels, etc.) forming the system and from the interplay among 38

them, possibly mediated by subcellular molecules and organelles. 39

This task is really challenging since cells and biological tissues are 40

complex media, made of multiple subelements, with different me- 41
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chanical properties and with various biological functions17: each42

cell is bounded by the plasma membrane to form a closed object43

containing the nucleus and a fluid, the cytosol (made of water,44

soluble proteins, sugar and salt), in which numerous organelles45

are immersed. Each subcellular element is different from the oth-46

ers and mechanical properties are non-homogenously distributed47

inside each of them18. This high heterogeneity in cell compo-48

sition and in subcellular properties makes mechanical and bio-49

logical response difficult to be modelled even for a single cell.50

Furthermore, cells are able to actively interact with each other to51

form tissues and MCSs, containing both cells, fluids (embedded52

inside each cell and in the intracellular space) and possibly extra-53

cellular matrix (ECM). The rheological properties of such materi-54

als are quite uncommon and are characterized by the occurrence55

of many phenomena at the subcellular, cellular and macroscopic56

scales. The mechanical properties of the cytoskeleton, the cell57

membrane, the cell cytoplasm and the nucleus determine the me-58

chanical response of an individual cell in isolation, whilst the me-59

chanical behaviour of an ensemble of cells or a tissue is not merely60

the sum of each single contribution. Rather, it arises through61

the association and disassembling of adhesion molecules between62

the cells and the extracellular matrix19,20 and through articulate63

mechanisms of communications and transduction of both exter-64

nal and internal stimuli. In general, the elastic or elasto-plastic65

behaviour of a MCS results from a complex interplay between cell66

bulk, mainly represented by cytoskeleton and organelles, and cell67

surface, which involves, in particular, its actomyosin cortex21. On68

the other hand, viscous effects are mainly due to the presence of69

the liquid. In particular, the ability of an aggregate to behave as70

an elasto-plastic material or as a viscous fluid depending on the71

experimental conditions, is related to the cell adhesion properties,72

to the type of interactions among the cells and to the contraction73

of the cell cortex. All these phenomena can lead, in general, to74

the presence of stress thresholds (which can be viewed as “energy75

barriers”21) that have to be overcome for the activation of the ag-76

gregate’s dynanics to occur21.77

This variety of behaviours has le to the definition of many dif-78

ferent mathematical models of multicellular aggregates and living79

tissues, each of them focusing on different biological aspects at80

different time and space scales (see Table 1 for a non-exhaustive81

review of previous modelling effort of quiescent multicellular ag-82

gregates and the works of Gonzalez-Rodriguez et al.22 and Stirbat83

et al.23 and Khalifat et al.24 for a more comprehensive review of84

rheological properties of multicellular aggregates). Inspired by85

cell sorting experiments on embryonic aggregates, in most cases,86

tissues have been described as liquids, characterized by a viscosity87

and a surface tension3,22,25. Consequently, fluid-like constitutive88

equations have been advocated to model the mechanical response89

of growing living systems26–28,28–34 and quiescent multicellular90

aggregates22,25,35–37. However, biological experiments21 show91

that the behaviour of an aggregate can strongly deviate from the 92

one of a liquid. Thus, this approach gives back a not completely 93

satisfying approximation of the by far more complex behaviour 94

of cellular aggregates, which also display solid-like properties re- 95

lated to the adhesive characteristics of the cells21,38 and to the 96

mechanical properties of the single cell in a cluster39. In par- 97

ticular, because of the occurrence of residual stresses, the stress 98

asymptotic plateau can be sensibly higher than the one predicted 99

by the pure surface tension in liquid models35–37; some aggre- 100

gates (e.g. Chinese hamster ovary (CHO) cell aggregates) are not 101

always able to fuse and round up within the time of experiments 102

or simulations; the aggregate shape after relaxation sometimes 103

displays a strong deviation from that of a liquid drop21. Thus, 104

in some cases, cell aggregates are better described as solids with 105

linear or nonlinear elasticity21,40–48. At the same time, it is not 106

correct to consider MCSs as elastic solids, because they are com- 107

posed of living material: the cells forming the aggregates dupli- 108

cate and die continuously, the ECM constantly remodels because 109

of cell reorganisation and, even in absence of growth and death, 110

cells can rearrange their relative adhesion complexes in response 111

to external mechanical stimuli. Moreover, living systems mani- 112

fest anelastic reorganisation of the internal structure and resid- 113

ual stresses41,44,49, two unique features with no analogy in liq- 114

uids50–53. In particular, the description of such phenomena can 115

be achieved by assuming a plastic-like behaviour of the biological 116

structures under study51,54. Thus, the debate about the best me- 117

chanical modelling approach is still open and a comprehensive 118

model of multicellular aggregates and living tissues is far from 119

being developed. Then, a specific MCS mechanical model should 120

be chosen depending on the phenomena we are interested in and 121

on the time and length scale of the observation, recalling that 122

cell aggregates behave as fluids on the timescales of cell division 123

(mitosis) and apoptosis, which characterise growth (many hours 124

or few days)9,21,23,37,55,56, and as elasto-plastic solids on shorter 125

timescales of the order of some minutes or few hours. Therefore, 126

if we want to focus only on the description of cell compression 127

during the time lapse of a biological experiment of the type stud- 128

ied in the sequel, elasto-plastic models will better describe cell 129

behaviour, whereas the long-time fluid-like behaviour is more ap- 130

propriate for capturing cell proliferation and death55,57. 131

In this paper, in order to move a step towards a more re- 132

alistic description of multicellular aggregate mechanical proper- 133

ties, we focus on the typical uniaxial compression of a living 134

spheroid9,25,35–37. In this test, an initially spherical aggregate 135

is placed on a lower compression plate, made of non-sticking 136

(glass or steel) material, in an inner chamber filled with tissue- 137

culture medium (maintained at 37◦C by a circulating water bath 138

through the outer chamber). The spheroid is rapidly compressed 139

against fixed upper compression plate by a stepping motor, which 140

is programmed to produce a deformation of a definite magni- 141
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Table 1 Mathematical models of quiescent multicellular aggregates

Scale Model Constitutive behaviour Reference
Continuous 1D adhesion energy model liquid with surface tension 25

Continuous 1D adhesion energy model viscous liquid with surface tension 58

Continuous 1D spring and dashpot model visco-elastic liquid
with surface tension

35–37,59

Continuous 1D continuous mechanical model incompressible visco-elastic liquid 6

Continuous 1D continuous mechanical model visco-elasto-plastic solid 50,53,60,61

Continuous 2D phase-field model complex fluids 62

Continuous dynamic network
of bounded/unbounded springs elastic 23

Hybrid 1D macroscopic model+
2D Cellular Potts Model visco-elasto-plastic material 21

Discrete 2D Cellular Potts Model area and volume elastic constraint 63

Discrete 3D lattice model with
kinetic Monte Carlo (KMC) method surface tension constraint 64

tude9,25,35–37. Then, to perform a stress relaxation test, the force142

exerted by the aggregate on the upper plate is recorded (by mea-143

suring the apparent weight of the upper compression plate with144

a Cahn-Ventron electrobalance, connected to the upper compres-145

sion plate9), while maintaining the deformation constant, until it146

reaches a constant stationary value. When this state is reached,147

the compression plates are separated and the aggregate is let148

free to possibly regain its initial shape (shape recovery test). Dur-149

ing the release phase, the aggregate shape is continuously video150

recorded: it is observed that, if the compression is maintained151

for a very short time, the aggregate will bounce back to its initial152

shape, thus behaving as an elastic (or viscoelastic) solid; on the153

other hand, if the compression is maintained for a longer time,154

and if it is sufficiently high to induce the reorganization of the155

cellular structure, the initial configuration is no longer recovered156

after the compression plate is removed (at least for the times for157

which other phenomena, such as growth and apoptosis, do not158

occur). This denotes an elasto-plastic (or visco-elasto-plastic) be-159

haviour of the living structure, which cannot be captured by the160

pure fluid model, based essentially on the existence of a surface161

tension holding together the cell aggregate35–37.162

Starting from the elasto-plastic model proposed in50,60,65 and163

the elasto-visco-plastic model presented in53,61, we here propose164

a three-dimensional model of multicellular aggregate compres-165

sion at constant deformation, supported by three-dimensional166

numerical simulations of the problem in a realistic geometry in167

order to overcome some limitations of previous works. Specif-168

ically, in50,60 it was proposed to apply the theory for materials 169

with evolving natural configurations, introduced in66–69, to suc- 170

cessfully investigate cell aggregate growth and remodelling, by 171

coupling the visco-elastic behaviors with a yield condition, gener- 172

ating a plastic reorganization inside the structure, when the stress 173

becomes too high. The viscous contribution of the liquid, em- 174

bedded inside the cells and filling the voids of the multicellular 175

structure, was then introduced53,61 in order to fit the stress-free 176

evolutions of spheroids observed in35–37 when the constant de- 177

formation is removed. However, in all these works50,53,61, the 178

representation of the whole experimental setting is highly simpli- 179

fied, postulating a homogeneous and constant cell density and a 180

homogeneous deformation inside the whole body. The deforma- 181

tion on the normal plane to the applied force or displacement is 182

then imposed in order to guarantee the conservation of the total 183

aggregate volume and mass. Under these simplifying assump- 184

tions, the model was reduced to a set of two ordinary differential 185

equations53,61, that can be easily studied analytically. This is of 186

course a simplification of the real phenomenon, since, even when 187

the aggregate compression is directed only along one direction, 188

the deformation of the living body and the cell density inside are 189

not homogeneous and the determination of the correct shape of 190

the system is determined by solving the mass and momentum bal- 191

ance inside the whole structure in the fully three dimensional set- 192

ting, with proper boundary conditions. In this regard, we resort 193

to other works54,70–72, in which three dimensional visco-elasto- 194

plastic models for biomechanical problems are presented. Such 195
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works have been conceived to address totally different kind of196

biological tissues and biomechanical tests. Hence, they do not al-197

low to obtain information on the mechanical behaviour of a MCS198

under uniaxial compression. Furthermore, those models do not199

tackle contact boundary conditions, which naturally occur when200

the aggregates boundaries come in contact with the upper and201

lower plates. This is a non trivial problem to solve when elasto-202

plasticity is involved and it causes a series of technical difficulties203

both in commercial softwares and in user-defined codes.204

In this work we present a fully three dimensional model for205

cell aggregate compression and the numerical simulations con-206

sidering the real biological setting. In particular the mathematical207

model is introduced in Section 2, then the model is numerically208

solved to reproduce stress relaxation experiments and shape re-209

covery tests in Section 3. Finally, the main outcomes of this work210

and future improvements are discussed in Section 4.211

2 Materials and Methods212

Even though we do not perform the biomechanical tests on213

living aggregates, in order to understand the chosen modelling214

and numerical set-up, we here briefly report the standard pro-215

tocol of the parallel-plate compression technique introduced by216

Steinberg and co-workers25,35–37, which is one of the most widely217

used to characterize tissue properties. In this method, as already218

described in Section 1, an aggregate is placed inside a thermally219

isolated chamber filled with tissue-culture medium between two220

non-adhering parallel plates and compressed with a fixed defor-221

mation. A force sensor measures the evolution of the compres-222

sion force, whereas the aggregate’s profile is continuously video223

recorded.224

In this section, referring to the biomechanical experiments re-225

ported in the literature, we first present the general mathematical226

model for a living aggregate and we then introduce the boundary227

conditions necessary to describe the uniaxial compression test at228

constant deformation. Finally we show how the proposed model229

can be numerically implemented.230

2.1 The aggregate model231

To derive the in-silico three-dimensional model of cell aggre-232

gate compression and release tests at the macroscopic scale, we233

refer to experimental procedures based on multicellular aggre-234

gates with radii of hundreds micrometers25,35–37 up to some mil-235

limiters (e.g. some kind of avascular tumour spheroids). Consid-236

ering a cell radius in the range of 5-10 µm, such kind of multi-237

cellular spheroids contain a number of cells of the order of thou-238

sands up to hundreds thousand of cells1,21. Given this high num-239

ber of cells, MCS can be computationally expensive to be nu-240

merically simulated by means of discrete models and previous241

discrete models focused on a smaller number of cells21,73. Fur-242

thermore, the scale of the imposed displacements is comparable243
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Fig. 1 Geometry of the in-silico model of cell aggregate compression.
(a) Three dimensional numerical domain: Ωs0, Ωu0 and Ωb0 represent
the spheroid, the upper and lower plates in their reference and, in this
case, initial configurations, respectively. (b) Two dimensional geometry
obtained exploiting the axial symmetry of the original problem. (c) Current
configurations Ωs(t), Ωu(t), Ωb(t) for the spheroid, the upper and lower
plates, respectively. In the picture, we sketched the Dirichlet boundary
Γd = Γd

u ∪Γd
b, the free traction boundary Γ t(t) = Γ t

u(t)∪Γ t
b(t)∪Γ t

s(t), and
the contact boundary Γc(t) = Γc

u(t)∪Γc
b(t).

with the scale of the spheroids used in the numerical simulations 244

and, thus, well-separated from the cell scale. Therefore, in order 245

to obtain a general model of multicellular aggregates mechanical 246

behaviour, continuous model could be more appropriate. Thus, 247

we define the three regions of space at time t, Ωs(t), Ωu(t) and 248

Ωb(t) occupied, respectively, by the cellular spheroid, the upper 249

and the bottom plates of the compressing apparatus (see Fig. 1). 250

The boundaries of these three regions at time t are denoted with 251

Γs(t), Γu(t) and Γb(t). The mass and momentum balance laws in 252

the three regions Ωs(t), Ωu(t) and Ωb(t) read 253

∂tρα +∇ · (ρα vα ) = 0, with α = s,u,b , (1)

ρα v̇vvα = ρα (∂tvvvα +vvvα ·∇vvvα ) = ∇ ·Tα , with α = s,u,b , (2)

where ρα is the mass density, vα is the velocity and Tα is the 254

Cauchy stress tensor of the material in the α-domain. We remark 255

that, in the present setting, where a deformation is rapidly im- 256

posed to the MCS, inertial effects are not negligible. To close the 257

equation of motion (2), together with the balance of mass (1), we 258

need to prescribe proper constitutive equations that account for 259

the behavior of the materials in each domain. 260

Mechanical response of living aggregates. As stated in Sec- 261

tion 1, the description of the mechanical response of living sys- 262

tems is still an open problem. In this work, we decided to focus 263

on the occurrence of plastic behaviours at the macroscopic scale, 264

neglecting cell growth, viscous effects (due to the presence of the 265

liquid encapsulated inside the structure) and other phenomena 266

related to possible cellular heterogeneity and to mechanotrans- 267

duction (i.e., the ability of cells to transform mechanical external 268

stresses into biochemical signals and vice versa)74. Even in this 269

simplified setting, living media, when subjected to external loads, 270
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undergo an internal reorganization due to the rupture and for-271

mation of bonds among the different cells composing the aggre-272

gates38. This aspect poses a series of theoretical difficulties that273

can be adressed resorting to the theory of evolving natural con-274

figurations41,66–68, which enables to separate the contributions275

related to elastic distortions from the ones related to anelastic276

distortions (e.g. growth and remodelling) and to model each of277

them individually, through a multiplicative decomposition of the278

deformation gradient tensor75. Calling Ωs0 and Ωs, respectively,279

the reference and the actual configuration of the cellular aggre-280

gate, we introduce the smooth motion281

χs(t, ·) : Ωs0 7−→ R3 ,X 7−→ x = χs(t,X) ∈Ωs(t)⊂ R3 ,

where X denotes the material coordinates associated with Ωs0,282

whereas x denotes the spatial coordinates associated with Ωs. The283

material gradient of the map χs defines the deformation gradient284

tensor Fs := Grad χs.285

Because of the occurence of remodeling in the living medium,286

the global undeformed configuration Ωs0 is generally not stress-287

free70,75. It is then possible to introduce the so called “natural”288

state Ωsn of the tissue under study, understood as a collection of289

relaxed, or stress free, body pieces66,75. In this way, it is possible290

to decouple the deformation of the medium under study from Ωs0291

to Ωs into two components: the first one describes how material292

body pieces are distorted and relaxed towards the natural state,293

whereas the second one refers to the accommodating part of the294

deformation gradient tensor75. The structural changes of the295

MCS are modelled by means of a second-order distortion tensor,296

denoted with Fp, and describing incompatible strains and mate-297

rial inhomogeneities triggered by cellular re-organisation61,70,75.298

On the other hand, the accommodating distortions, determining299

the actual configuration of the multicellular aggregate from the300

relaxed natural state, are represented by the second-order tensor301

Fn. We remark that, although the body pieces in the natural state302

do not generate a configuration in the standard sense, they can303

be still thought of as a configuration if this is intended as a Rie-304

mannian manifold characterized by the curved metric induced by305

Fp
76,77. Hence, the multiplicative decomposition of the deforma-306

tion gradient F reads75,78 (see Fig. 2)307

F = FnFp .

We remark that neither Fp nor Fn is necessarily the gradient of a308

deformation. Rather, they should be regarded as primitive kine-309

matic entities that define, together with the motion, the basic310

kinematic parameters that are necessary and sufficient for de-311

scribing the kinematics of a remodeling living tissue75. In anal-312

ogy with53,54,70,75, we assume that the mechanical response from313

Ωsn to Ωs is hyperelastic. Of course, this is a simplification of the314

behaviour of a biological medium, which, in principle, would be315

better approximated by using a viscoelastic constitutive model.316

F

Fn
Fp

s0 s

sn

Fig. 2 Diagram of the multiplicative decomposition of the deformation
gradient tensor F in the framework of evolving natural configurations: the
reference configuration, Ωs0, the current configuration, Ωs, the natural
state Ωsn.

Nevertheless, since in the case of not growing living media, the 317

characteristic times of the rate dependent response of the ma- 318

terial are much less than the characteristic times of remodelling 319

and of mechanical loading (expect for the loading and unloading 320

phases)18,79,80, the material can be thought of as hyperelastic, 321

without introducing a significant error. The variations of volume 322

due to the elastic and the anelastic distortions are denoted by 323

Jn := det(Fn) and Jp := det(Fp), respectively, and the multiplica- 324

tive decomposition of F implies J := det(F) = JnJp. Then, we will 325

assume Fp to be isochoric, so that Jp = 1 and J = Jn 326

To close the description of the living aggregate behaviour we 327

have to define the strain energy density of the system per unit 328

volume of the natural state and prescribe a proper evolution law 329

for Fp. For what concerns the strain energy density we assume 330

that the cellular aggregate can be considered to behave like an 331

isotropic hyperelastic solid with a strain energy density of the 332

Holmes&Mow type81, i.e. 333

Wsn = α0 [exp(Ψ)−1] , (3a)

Ψ = α1 [I1−3]+α2 [I2−3]−β log(I3) , (3b)

where I1 := tr(Cn), I2 := 1
2
[
(trCn)

2− tr(C2
n)
]

and I3 := det(Cn) 334

represent the three orthogonal invariants of the elastic 335

right Cauchy–Green deformation tensor Cn = FT
n Fn, whereas 336

α0, α1, α2, β are the coefficients related to material properties and 337

are related to the mechanical parameters of the tissue, the shear 338

modulus µ and the Poisson’s ratio ν , by 339

α0 =
µ(1−ν)

2β (1−2ν)
, α1 = β

1−3ν

1−ν
, α2 = β

ν

1−ν
, β =α1+2α2 .

(4)
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Then, the Cauchy stress tensor reads340

Ts = J−1
n Fn

(
2

∂Wsn

∂Cn

)
FT

n . (5)

We remark that the strain energy function (3) implies a com-341

pressible multicellular aggregate. Indeed, even though, to our342

knowledge, quantitative measurements are not available in the343

literature82, during compression, single cells inside the aggregate344

can highly change their volume, thanks to an exchange of liquid345

through the cellular membrane and even through compaction of346

the nuclear material83. Then, when we deal with incompressible347

media, we need to partially reformulate the continuum problem348

at hand, by considering incompressibility as a kinematical con-349

straint, appended to the balance of linear momentum by means350

of a suitable Lagrange multiplier. In general, such method or, in351

the same way, penalty methods, may lead to numerical issues84.352

Thus, we preferred to consider a compressible spheroid, with a353

strain energy density largely employed for biological porous me-354

dia81.355

The last equation needed to close the MCS mechanical de-356

scription is the one governing the time evolution of the plastic-357

like distortions53,54. Because of the huge quantity of cross-links358

among the cells and of the low amount of extracellular matrix359

embedded in cellular aggregates22, the mechanical properties360

of cellular aggregates results to be isotropic. In light of these361

considerations, the structural reorganisation of cellular spheroids362

relies on an isotropic description and its evolution law can be363

conveniently written as a time differential equation in the ten-364

sor field Bp = F−1
p F−T

p , which is the inverse of the right Cauchy-365

Green tensor Cp = FT
p Fp, associated with the plastic-like distor-366

tions (see85,86 for a review on this topic). In this context, the367

evolution law representing plastic-like behaviour of cellular ag-368

gregates, previously proposed by Preziosi et al.60 and Giverso and369

Preziosi61 can be recast in the form70,87
370

Ḃp =−
2
λp

[
1−

τy

f (T′s)

]
+

BpM′s (6)

where [·]+ denotes the positive part of its argument, λp is a ma-371

terial parameter related to the reorganization time due to remod-372

elling, τy is the yield stress of the aggregate, f (T′s) is a frame-373

invariant equivalent measure of the stress T′s, Ms = JFT TsF−T
374

is the Mandel stress tensor of the cell aggregate and the apex375

(·)′ denotes the deviatoric part of the tensor field to which it is376

applied. We remark that eq. (6) assumes that remodelling mani-377

fests itself as a rate-dependent plasticity model of Perzyna-type75,378

which means that remodelling occurs only when f (T′s) exceeds379

the threshold stress value τy, and is modulated by the timescale380

λp
53,61,70,75. This assumption captures the essential phenomena381

occurring inside the aggregate at the cell scale: if we consider a382

cluster of cells subjected to a sufficiently high stress, some of the383

adhesive bonds among the cells may break and eventually reform 384

in other places. Finally, we notice that, while the left-hand-side 385

of eq. (6) is symmetric by definition, the right-hand-side is sym- 386

metric only for isotropic media, for which the Mandel stress ten- 387

sor Ms satisfies the symmetry condition88 BpMs = (MsBp)
T , as in 388

this case. For anisotropic materials, eq. (6) is no longer valid, 389

and the way in which remodelling is conceived must take into ac- 390

count the evolution of the anisotropy71,72. For example, this is 391

the case of fibre-reinforced tissues, whose macroscopic mechani- 392

cal properties and remodelling are substantially influenced by the 393

distribution of the fibres embedded in the extracellular matrix. 394

Mechanical response of the compressive apparatus. The up- 395

per and bottom compressive plates are made of inert material, so 396

that no biological remodelling might occur. Furthermore, their 397

deformation is so small that plastic distortions cannot be trig- 398

gered. Therefore, in the regions Ωu and Ωb the introduction of 399

virtual natural configurations is not needed and we assume that 400

the compressive apparatus behaves as a linear elastic solid, which 401

implies that the Cauchy stress tensor can be constitutively pre- 402

scribed as 403

Tα = Cα : εεεα in Ωα with α = u,b (7)

where Cα =Cα (Eα ,να ) is the fourth-order stiffness tensor, which 404

depends on the Young’s modulus Eα and the Poisson’s ratio να 405

of the plates, because of the isotropy of the plates, with εεεα = 406

1/2
[
∇uα +(∇uα )

T ] being the infinitesimal strain tensor, given uα 407

the displacement vector field inside the plates. 408

2.2 Boundary conditions of the aggregate model. 409

In order to fulfil the definition of the aggregate model, we 410

have to assign proper conditions at the boundaries. In general, 411

we can divide the boundary of a body into the following different 412

regions: 413

1. the Dirichlet boundary Γd(t), on which displacements are 414

prescribed; 415

2. the traction boundary Γ t(t), on which the surface traction 416

t = Tsn is prescribed; a special case of this condition is a free 417

surface, when t = 0 is imposed; 418

3. the contact boundary Γc(t), on which the boundaries of 419

the two adjacent domains are in contact, moving with the 420

same normal velocity, and with the normal component of 421

the traction continuously transferred. For frictionless con- 422

tact boundaries, only the normal force is transferred, on the 423

other hand, when friction is accounted for, the additional 424

friction force is calculated from the relative motion of the 425

two bodies and the contact pressure. 426

In particular, to describe the uniaxial compression test of cellu- 427

lar aggregates, we impose a null displacement on the upper side 428
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Fig. 3 Spatio-temporal evolution of the normalized spheroid density ρ̃ := ρs/ρs0 = J−1 (top row) and von Mises stresses T mises
α :=

√
3/2 ||T′α ||, with

α = {s,u,b} (bottom row) inside each domain. The loading and unloading ramp time is equal to 5 s, whereas the compression is maintained for 30 s.
The simulations are obtained using ũmax

z = ūmax
z /(2R) = 0.3 and the set of parameters reported in Table 2.

of the upper plate Γd
u (t) and a vertical displacement ramp uz(t)429

on the lower boundary of the bottom plates, Γd
b (t), such that430

Γd(t) = Γd
u (t)∪Γd

b (t) (see Fig. 1-(c)). Frictionless contact bound-431

ary conditions apply on the two contact regions between the ag-432

gregate and the upper and lower plates, Γc(t)=Γc
u(t)∪Γc

b(t), with433

Γc
u(t) and Γc

b(t) being the contact boundary between the spheroid434

and the upper and bottom plate, respectively (see Fig. 1-(c)).435

Free surface boundary conditions are imposed on the remaining436

portions of the domains, Γ t
α (t) with α = s,u,b. We observe that,437

whilst the location of the boundaries Γd
u and Γd

b is known, the438

boundaries Γc
u(t), Γc

b(t) and Γ t
α (t) change in time, depending on439

whether the surfaces of the two bodies come in contact or detach,440

and that the sets Γc
u(t) and Γc

b(t) can possibly be empty.441

Therefore, the following set of boundary conditions (BCs) de-442

scribes the uniaxial compression test443

u|Γd
u
= 0 , (8)

u|
Γd

b
= uz(t)ez , (9)

(Tα n)|Γ t
α
= 0 , with α = s,u,b , (10)

(vs ·n−vα ·n)|Γc
α
= 0 , with α = u,b , (11)

(nTs n−nTα n)|Γc
α
= 0 , with α = u,b . (12)

2.3 Finite element numerical simulations 444

Equations (1), (2) and (6) with the constitutive assumptions 445

(5) and (7) and the BCs (8)-(12) were numerically solved to re- 446

produce an unconfined uniaxial compression test of a cellular 447

spheroid. Exploiting the symmetry of the cellular spheroid and 448

of the compressive apparatus, the model equations can be rewrit- 449

ten in cylindrical coordinates and solved into the two dimensional 450

domain of Fig. 1-(b). The top boundary of the upper plate was 451

fixed, accordingly to the BC (8), while on the bottom bound- 452

ary of the lower plate the controlled vertical displacement uz(t) 453

was imposed. The analytical expression of uz(t) is specified later, 454

in the context of the uniaxial compression and release test. On 455

the remaining boundaries, stress-free boundary conditions (10) 456

are applied when the plates and the spheroid are not in contact, 457

while frictionless contact conditions (11)-(12) are imposed when 458

the plates and the aggregate come into contact. We remark that 459

the presence of contact surfaces is a source of complexity for the 460

performed simulations. Indeed, the extent of the contact region 461

evolves in time and is an unknown of the problem calculated 462

from the relative displacement, which, in turn, depends on the 463

momentum balance. Therefore, boundary conditions depend on 464

the solution itself, so that portions of the boundary that are free 465

with BCs of the type (10) may come in contact, thereby acquir- 466

ing BCs of the type (11) and (12). In this respect, the contact 467

Journal Name, [year], [vol.],1–17 | 7



BCs (11) and (12) can be conveniently accounted for by employ-468

ing the “augmented Lagrangian method”89,90. This method imple-469

ments a penalty regularization of the standard Lagrangian multi-470

plier method by incorporating both a Lagrange multiplier and a471

penalty term to solve the contact constraints and impose the con-472

ditions (11) and (12). Indeed, while in the standard formulation473

of the Lagrange multiplier method, the Lagrange multiplier is an474

unknown, in the augmented Lagrangian method, it is computed475

algorithmically and its initial estimation is iteratively improved,476

until the constraint violation is small enough (or equivalently, un-477

til the multiplier stops changing appreciably).478

The Lagrangian numerical simulations have been ob-479

tained using the finite element software (FEM) COMSOL480

Multiphysics R©(version 5.3a). The contact boundary conditions481

(11) and (12) are imposed by combining the routine expressly482

written to solve the evolution law of plastic deformations with483

the built-in environment for contact constraints in COMSOL Mul-484

tiphysics, developed by taking inspiration of the work by Simo485

and Laursen90. We then choose a segregated approach, where486

the contact pressures are solved in a separate lumped step, which487

is the default solver when the augmented Lagrangian formulation488

is used. Given the numerical issues arising from the treatment of489

contact boundary conditions in the case of an elasto-plastic model490

of cellular aggregates, we have performed several tests to choose491

a proper mesh for solving the aggregate compression problem492

presented in our work. The dimension of the mesh elements at493

the border of the cell aggregate should be at least half the typical494

dimension of the elements at the upper and lower plates bound-495

aries, to give a good resolution of the contact patch and stress496

state in the contact regions. In particular, computations involv-497

ing a spheroid of 100 µm in radius were performed using a mesh498

of 7978 triangular elements in the spheroid bi-dimensional sec-499

tion and 380 triangular elements inside the 2D sections of each500

plate, for a total of 8736 elements. The number of mesh elements501

have then been adapted to the cases of greater spheroid radii.502

To verify the quality of our mesh, we have used a functionality503

implemented in COMSOL Multiphysics R©and we have obtained a504

positive response. As last step, before using the mesh described so505

far, we have performed several refinements and solved the same506

benchmark tests. In doing this, we have noticed no significant507

changes in the results, with an increasing of the time needed to508

complete the simulations (i.e., few hours of computation instead509

of one or even more days). The choice of this kind of mesh has510

represented, for us, the best compromise between computational511

efficiency and accuracy, also in the light of running several sets of512

simulations.513

3 Results and discussion514

In this section, we apply the aggregate model presented in515

Section 2 to reproduce the uniaxial compression-release test of a516

MCS and the stress relaxation and shape recovery curves. The517

Table 2 Values of the material parameters used in the numerical simula-
tions.

Parameter Value in the simulations Reference
R 100 µm 1,3–5

λp 0.001(kPa · s)−1 54

τy 2 kPa 87

µ 20kPa 43,54,91,92

ν 0.2 54,91,92

numerical results are discussed on the basis of available experi- 518

mental data reported in the literature. 519

3.1 Typical compression-release test 520

We first study the case in which the aggregate is compressed at 521

a given deformation maintained for a certain amount of time and 522

then released. We impose the following vertical displacement 523

uz(t) =


ūmax

z
t

tramp
, for t < tramp,

ūmax
z , for tramp ≤ t < tend − tramp,

−ūmax
z

t− tend

tramp
, for tend − tramp ≤ t < tend ,

(13)

where tramp is small compared to the compression time tc = 524

tend − 2 tramp. Figure 3-top reports the normalized spheroid den- 525

sity ρ̃ := ρs/ρs0 = J−1 in the case in which remodelling is 526

triggered: after the sudden imposition of the deformation, the 527

cellular density highly increases in the region close to the upper 528

and lower plates and decreases close to the middle point of the 529

outer boundary, where J > 1, as a consequence of the volumet- 530

ric expansion of the spheroid along the radial direction. As the 531

compression is maintained, the cells reorganize and redistribute 532

inside the aggregate and the compaction of the cells inside the 533

spheroid decreases. When the compression is released the density 534

of cells inside the deformed aggregate continues to be inhomoge- 535

neous and different from the initial one (see last picture in the 536

top row of Fig. 3). We remark that the total mass of the cellular 537

spheroid is preserved during the compression and release of the 538

cellular aggregate. Finally, we note that, the plates being slightly 539

deformable, their normalized density is almost constant. 540

Looking at the distribution of the stress inside the cellular 541

aggregate, we plot the von Mises stress T Mises
s =

√
3/2||T′s|| in- 542

side the spheroid (see Fig. 3-bottom). In this case it is possi- 543

ble to observe that the maximum of the stress occurs not in the 544

contact area but inside the spheroid, at some distance from the 545

contact boundaries. We remark that this result recalls Hertz’s the- 546

ory of contact. Although this comparison may be worth further 547

investigations, here we do not examine possible analogies with 548

Hertz’s theory because it is developed under the hypothesis of 549

perfect elastic materials, absence of friction forces and moder- 550

ate area of the contact materials. It is also possible to see that, 551

as the compression is maintained, the stress inside the spheroid 552
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Fig. 4 Spatio-temporal evolution inside Ωs of the components of the remodelling tensor Bp = C−1
p where Cp = FT

p Fp is the plastic Cauchy-Green
deformation tensor. The parameters in the simulations are the same used for the results in Fig. 3. Notice that the in the lower and upper plate no
remodelling occurs (gray regions).

decreases and, when the compression is removed, the spheroid553

returns stress-free at the boundary (see the blue line, reporting554

the normal stress, on the spheroid boundary in the last picture555

of Fig. 3-bottom), while residual stresses appear inside the ag-556

gregate (see last picture of Fig. 3-bottom). The amount of von557

Mises stress inside the multicellular structure is the chosen frame-558

invariant measure of the stress f (T′s) that drives cell reorgani-559

zation. Therefore, no remodelling occurs in the regions where560

T Mises
s is below the threshold τy = 2kPa for plastic reorganization.561

In particular, if T Mises
s < τy everywhere in Ωs, the spheroid de-562

forms elastically and no residual stresses and deformations can be563

observed when the imposed deformation is removed and the den-564

sity of the cellular aggregate returns equal to the initial one (not565

shown in the figures). Furthermore, when the spheroid deforms566

purely elastically, no decreases in the stresses inside the multicel-567

lular structure (stress relaxation) can be observed. In fact, the568

decreasing of the amount of stress is due to the onset of plastic-569

like distortions. In this case, indeed, the stress contributes to the570

change of internal structure of the medium under study.571

To quantify the amount of remodelling triggered by T Mises
s , in572

Fig. 4 we report the radial, axial and shear component of the573

remodelling tensor Bp = C−1
p . We observe that the radial com-574

ponent BRR
p is less than 1 almost everywhere in the aggregate, 575

since, when the aggregate is compressed, remodelling in the ra- 576

dial direction occurs due to the expansion of the structure along 577

the radial axis and only a small region close to the middle point of 578

the outer boundary experiences compressive radial remodelling. 579

The axial component BZZ
p of Bp is bigger than 1 everywhere since 580

remodelling occurs due to compression in the axial direction. Fi- 581

nally BRZ
p is a measure of the remodelling due to shear. The sign 582

of the shear remodelling is in agreement with the convention used 583

for shear stresses: positive shear stresses act clockwise, while neg- 584

ative shear stresses act counter-clockwise. The point delimiting 585

the contact area between the spheroid and the upper plate de- 586

fines the starting point of the 45◦ plane that identifies a change 587

of sign in the shear remodelling. Close to the lower plate, in the 588

region below the 45◦-plane, BRZ
p is negative since shear is nega- 589

tive there, while in the region above the 45◦-plane, BRZ
p is positive 590

since the shear is positive there. Similar reasoning applies to the 591

region close to the upper plate, with a change of sign due to the 592

convention on the sign of shear stresses. 593
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(a) (b) (c)

(d) (e) (f)

Fig. 5 Stress relaxation curves for different values of the parameters (a) τy, (b) λp, (c) µ and ν , (d) R and (e) normalized imposed deformation, i.e.,
ũmax

z = ūmax
z /(2R). The curves are obtained integrating the stress exerted by the aggregate over the surface of contact with the upper plate, while

maintaining the compression of the aggregate at a constant deformation. (f) Contact area between the spheroid and the upper plate for different values
of normalized imposed deformation, ũmax

z = ūmax
z /(2R).

3.2 Stress relaxation curves594

In order to compare the predicted numerical results with595

the available stress relaxation curves reported in the litera-596

ture9,35–37,93, we integrate the normal stress exerted by the ag-597

gregate on the surface of contact with the upper plate to compute598

the total force acting on the plate, when the compression is main-599

tained. The numerical results show that, when remodelling is600

triggered, the initial force transferred to the upper plate by the601

compressed aggregate is relaxed as the compression at constant602

deformation is maintained. Furthermore, the amount of relax-603

ation of the initial force depends on the threshold stress set for604

the activation of plasticity, since the force exerted on the upper605

plate at the equilibrium depends on the value of τy (see Fig. 5-606

a). This behaviour, which is not observed when the aggregate607

behaves elastically, is in agreement with the results obtained in608

the one dimensional analysis reported by Giverso et al.53. The609

time required to relax the initial stress is related to the inverse610

of the parameter λp (see Fig. 5-b). Indeed it is possible to de-611

fine the plastic reorganization time as tp = (µλp)
−1, where µ is612

the shear modulus of the cellular aggregate. We remark that the 613

parameter τy does not affect the value of the initial force exerted 614

by the aggregate on the upper plate as shown by the maxima in 615

Fig. 5-a, while it determines the equilibrium force on the contact 616

areas. Conversely, λp does not affect the initial and the final value 617

of force exerted on the upper plate. 618

In order to take into account of the variety of tissues, we have 619

then exploited the effect of varying the cell mechanical parame- 620

ters µ and ν on the MCS response. The mechanical parameters 621

are strongly dependent on the cell type considered and a wide 622

range of parameters can be found in the literature. Specifically, 623

supported by biological evidences, we take the shear modulus µ 624

varying between 3 kPa and 40 kPa43,94 and the Poisson’s ratio 625

ν ranging between 0.2 and 0.4543,92. The resulting stress re- 626

laxation curves (Fig. 5-c) show that the mechanical parameters 627

mostly affect the value of the initial stress exerted on the upper 628

plate, with higher initial stresses for increasing value of µ. Then, 629

for the same value of µ, the Poisson’s ratio ν further magnifies the 630

initial stress exerted on the upper plate. We also observe that, for 631
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increasing values of the parameter µ, the plastic reorganization632

time decreases, accordingly to its definition, i.e., tp = (µλp)
−1. On633

the other hand, the size parameters of the model, i.e., the radius634

of the spheroid R (Fig. 5-d) and the normalized imposed defor-635

mation ũmax
z = ūmax

z /(2R) (Fig. 5-e), significantly influence both636

the initial force and the one at the stationary condition, with in-637

creasing contact forces for both increasing MCS radius (keeping638

ũz
max fix) and imposed normalized deformations (at fixed τy). The639

increase in the normalized force exerted by the aggregate on the640

upper plate, in the case of increasing imposed deformations, is641

mainly due to the increase in contact area (Fig. 5-f). Then, for642

very small deformations, such as for the blue curve of Fig. 5-e,643

the stress is slightly above the threshold value required to induce644

the internal reorganization of the cellular spheroid, so that the645

stress relaxation is less perceivable. On the other hand, as the646

imposed deformation increases, the stress inside the aggregate647

rises and the rearrangement of the cells inside the structure leads648

to an intense relaxation of the initial load exerted on the upper649

plate. Furthermore, the increase in the imposed vertical displace-650

ment leads to a higher deformation of the multicellular structure651

and to an almost linear increase in the contact area between the652

spheroid and the upper plate (Fig. 5-f).653

We remark that the reported stress relaxation curves are qual-654

itatively in agreement with the experimental curves reported in655

the works of Forgacs et al.35–37, Jakab et al.9 and Andolfi et al.93.656

Indeed, by compressing multicellular spheroids composed by ei-657

ther limb bud mesoderm, or heart ventricles, or livers cells taken658

from chicken embryos, they observed that the initial force (nor-659

malized with respect to the gravitational acceleration) exerted660

by the aggregate on the upper plate which is in the range 7-8661

mg is relaxed to a load in the range 2.5-4 mg for a compres-662

sion at constant deformation maintained for 160 s. On the other663

hand, in the experimental work of Jakab et al.9 on Chinese Ham-664

ster Ovary (CHO) cells, stress relaxation is achieved on longer665

timescale (≈ 400− 1000s). In this work, without performing a666

quantitative analysis and without conducting a direct validation667

(which would require further biological data and details on the668

mechanical tests), we showed in Fig. 5 that our model is able to669

reproduce a sufficiently wide range of normalized stresses. We670

achieved that by varying the parameters of the model, so that dif-671

ferent cellular populations can be described by varying the com-672

bination of the parameters of our model, possibly supported by673

other mechanical tests. Specifically, in contrast to what has been674

done in35–37, where viscous effects are included, we reproduce675

here the typical stress relaxation curves reported in the literature676

by resorting solely to the reorganization of the cells inside the677

structure. Indeed, as anticipated in the Introduction, as long as678

relatively short timescales are considered, this process seems to679

be the fundamental mechanism occurring in the biomechanical680

tests addressed in this work. In fact, upon a detailed analysis of681

the biological experiments in which the displacement of fluores- 682

cently labeled cells is followed by confocal microscopy during ag- 683

gregate compression9, it is possible to see that tissue relaxation 684

is driven predominantly by cell shape changes, a unique prop- 685

erty of living systems with no analogy in liquids. Furthermore, 686

using field emission scanning electron microscopy (FESEM) to 687

visualize individual cells in a precompressed, compressed, and 688

postcompressed equilibrated aggregate9, it is possible to see that 689

after compression a pressure gradient is set up. This is put in 690

evidence by the fact that cells in the vicinity of the compressive 691

plates and toward the vertical axis of symmetry of the compressed 692

aggregate are deformed more strongly than those near the equa- 693

tor and side boundary, which denotes a solid-elastic behaviour 694

of the cellular aggregate under compression, in accordance also 695

with our simulations (before the occurrence of plasticity). Then, 696

whilst when the aggregate is described as a viscoelastic material, 697

any internal stress created by the initial compression is dissipated 698

by the time the system reaches equilibrium and the remaining 699

stresses are encapsulated only at the interface between the ag- 700

gregate and the surrounding tissue culture medium35–37, in the 701

case of an elasto-plastic model, such as the one proposed here, 702

residual stresses may appear inside the structure, in accordance 703

with41,44,49. Therefore, even though stress relaxation curves can 704

be reproduced only accounting for viscosity, elasto-plastic models 705

might be more adequate to capture the biological phenomenon. 706

For the sake of completeness, we point out that a quantitative 707

differences between the experimental curves9,37,93 and the ones 708

that can be obtained with our model are due to the possible pres- 709

ence of more than one relaxation time for living tissues, such as 710

seems to be recorded in the biomechanical tests9,37. However, 711

the smaller relaxation time is of the order of very few seconds9,37
712

and it is probably related only to the recording of the elastic re- 713

sponse9 , whereas the biggest relaxation time, which is of the 714

order of 20-40 seconds in37,93 and 70-120 seconds in9, reflects 715

the global cellular rearrangement. Therefore, in the present pa- 716

per, being interested in modelling anelastic behaviour in living 717

systems, we have chosen to incorporate only the longer relax- 718

ation phenomenon which is due to the reorganization occurring 719

inside the structure. The presence of more than one relaxation 720

time and its origin, should be further investigated and clarified 721

before being properly included in a MCS model. 722

3.3 Shape recovery curves 723

In this Section, we study the shape recovery behaviour of 724

cellular aggregates after the release of a constant deformation 725

maintained for different compression times tc = tend − 2 tramp. As 726

observed in the previous subsection, whilst the shape relaxation 727

curve reported in the literature can be reproduced even without 728

resorting to the plastic-like behaviour of the aggregate, the capa- 729

bility of the multicellular structure to maintain an amount of the 730
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Fig. 6 (a) Height-width ratio chart for different values of imposed deformation and (b) corresponding aggregate deformed shapes. The height-width
ratio is obtained dividing the height by the width of the deformed aggregate, after release of the imposed deformation (normalized with respect to the
initial diameter of the spheroid, i.e., ūmax

z /(2R)), for different values of compression time tc = tend − 2 tramp. On the right the displacement inside the
spheroid is plotted.

Fig. 7 Height-width ratio at the stationary state for different values of µ

and ν , for an imposed deformation of ũmax
z = 0.3.

imposed deformation when the compression is released cannot731

be explained using a simple viscoelastic model. Indeed, as ob-732

served in the work of Forgacs et al.36,37, when the compression is733

released, cell aggregates that were subjected to a very brief com-734

pression spring back almost to their original shapes, whereas mul-735

ticellular structures compressed for a longer time do not. In par-736

ticular, if the shape of the aggregates after deformation released737

is observed for 10-15 minutes, the MCSs maintain their deformed738

Fig. 8 Height-width ratio chart for different values of λp, for an imposed
deformation of ũmax

z = 0.29. The numerical results are compared with the
experimental results extrapolated from the work of Forgacs et al. 37.

shape. Only incubating the aggregates for 24 hours will lead to 739

cell spheroids rounding up again, which is probably due to the 740

occurrence of other reorganization inside the structure and pos- 741

sibly cell proliferation57. The capability of the MCS to maintain 742

an amount of the deformation is due to the rearrangement of the 743

internal structure, as experimentally observed on both chick95
744

and amphibian embryonic cells96. The rearrangement of the cell 745

internal structure and of the bonds among the cells should be con- 746
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verted in the model in the existence of a plastic behaviour.747

Therefore, we have focused on the results obtained by means of748

the employment of our elasto-plastic model in the case in which749

the compression is maintained for different times and we report in750

Fig. 6-a the spheroid height over width ratio for increasing values751

of the cumulative time under compression, tc, and for different752

values of normalized imposed deformations, ũmax
z := ūmax

z /(2R).753

From the reported curves it is possible to see that, in accordance754

with the biological evidences, if the compression is maintained755

for few minutes, the aggregate will bounce back to almost its ini-756

tial shape, since in this case the extent of the plastic rearrange-757

ment is not consistent. On the other hand, if the compression758

is maintained for a longer time, the aggregate remains flattened759

after subsequent releases from compression, signifying the attain-760

ment of the stationary state. This is also clear from the deformed761

configurations reported in Fig. 6-b, where the aggregate’s shape762

and the spatio-temporal evolution of the displacement inside the763

aggregate are reported for different values of cumulative time un-764

der compression and for different imposed deformations. We also765

show that, for the same value of normalized imposed deforma-766

tion and yield stress, the total plastic deformation of the MCS is767

highly influenced by the mechanical parameters µ and ν (see Fig.768

7), whilst it is not affected by the initial radius of the spheroid769

(not shown in the paper). We then compare the curves obtained770

from the numerical simulations for different values of λp with the771

experimental data reported in the work of Forgacs et al.37 (see772

Fig. 8). It is possible to see that the best fitting for the height773

over width ratio curves occurs for λp = 0.0005(kPa · s)−1, given774

an imposed deformation of 29% of the spheroid initial size. This775

observation is also in agreement with the experimental observa-776

tion reported in the work of Jakab et al.9, in which they observe777

that aggregates can be compressed up to a maximum of ≈ 30%778

of their original diameter, in order to avoid irreversible damage779

to the cells and intense shape modification of the cellular struc-780

ture. For the sake of completeness, we point out that the numer-781

ical height over width ratio curves have been obtained without782

allowing the relaxation of the MCS after each compression step,783

differently from what done in the experimental work of Forgacs784

et al.37. However, the difference between the numerical and the785

experimental protocols does not significantly affect the plastic de-786

formation of the aggregate, since in our model we do not include787

viscous effects and the plastic reorganization mainly occurs dur-788

ing the compression phases. To confirm this theoretical expecta-789

tion, we have also run a simulation in which the compression is790

removed at intervals (corresponding to the data points reported791

in Forgacs et al.37) and the spheroid is let free to relax for 11 s:792

the discrepancy between the two protocols leads to height over793

with ratios that differ less than 0.4% (results not shown here).794

Finally, we remark that in our numerical tests, the spheroid de-795

formation is maintained even for very long time, after the release796

of the imposed deformation. In order to reproduce the long-time 797

recovery of the initial spherical shape, other factors should be in- 798

cluded in the model, such as the presence of the external liquid 799

and the proliferation of cells, that have not been accounted for in 800

the present model. 801

4 Conclusions 802

Biological tissues show complex mechanical responses and 803

their mechanical behaviour is still far from being completely un- 804

derstood. In this work, we aim to move a step towards this in- 805

volved purpose by defining a setting to simulate the mechanical 806

behaviour of cell aggregates when they are subjected to a uniax- 807

ial compression test. In particular, we consider an elasto-plastic 808

model and we numerically solve it through finite element simu- 809

lations by imposing contact boundary conditions to simulate the 810

experimental set-up. With respect to previous mechanical models 811

on aggregates53,61, we here numerically solve the real three di- 812

mensional problem, with inhomogeneous deformation and com- 813

plex shape changes. By doing this, we have provided the visu- 814

alisation of a compression test on multicellular spheroids that re- 815

quires the formulation of a contact problem to extract information 816

on MCSs inelastic behaviour. We have observed, for instance, the 817

redistribution of the spheroid’s mass density in response to ap- 818

plied compressive loads, the reorganisation of the spheroid’s in- 819

ternal structure, described through the inelastic variable BBBp, and 820

the time evolution of the height-to-width ratio of the spheroid. 821

From the point of view of numerical simulations, within a fully 822

nonlinear regime, the contact boundary conditions are combined 823

with the evolution law of plastic deformations, with the latter 824

ones being determined by means of a routine expressly written for 825

the works54,70,71, and without having recourse to standard COM- 826

SOL packages. The numerical results demonstrate that the stress 827

relaxation curves reported in the literature could be explained by 828

assuming an elasto-plastic behaviour of the spheroids, i.e., with- 829

out taking into account viscous effects, differently from previous 830

models35–37. At the same time, they show that the permanent de- 831

formation observed after the application of the load/deformation 832

can be resolved in terms of plastic deformations. The results pre- 833

dicted by the numerical simulations are qualitatively in agree- 834

ment with the results of biological experiments and we have also 835

proposed some quantitative comparisons in order to estimate the 836

parameters of the model, by fitting available experimental data. 837

Future works will be devoted to the definition of a multiphase 838

model of cell aggregate compression, taking into account the vis- 839

cous contribution related to the presence of the culture medium 840

liquid inside the whole structure, to account for the description of 841

MCS non instantaneous recovery after release35–37. Some previ- 842

ous attempts to couple viscous effects with elasto-plasticity have 843

been done, for example, in53,61 where the viscous contribution 844

related to the intracellular liquid is considered. However, in that 845

case, the liquid motion is constrained to the one of the cellular 846
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phase, whereas when an aggregate is compressed between a par-847

allel plate apparatus, the liquid exudes from the lateral bound-848

aries of the MCS. Conversely, when the compression is removed,849

the liquid will slightly fill the porous cellular structure, leading to850

a viscous recovery of the cell shape after compression, in agree-851

ment with the biological observation. This phenomenon can be852

accurately described only considering a multi-phase model, with853

a cellular constituent responsible of the elasto-plastic behaviour854

and a liquid phase carrying the viscous contribution. Further-855

more, the definition of a multi-phase model will allow to investi-856

gate the mechanical contribution of the extracellular matrix that857

in the present model has been neglected and that can be possibly858

encapsulated inside living spheroids.859

Another point to investigate in future works could be the role of860

spheroid heterogeneous shapes97,98, that could lead to different861

quantitative results and to the intensification of the stresses in cor-862

respondence of bumps or, alternatively, to possible detachments863

in correspondence of pits in the contact region. However, het-864

erogeneous shapes will not alter the capability of the aggregate865

of partially relaxing the initial stress and of giving rise to plastic866

deformations, as long as remodelling is triggered. In the same867

way, heterogeneity in the composition could lead to regions with868

higher/lower remodelling and to more complex MCS shapes dur-869

ing the compression and release processes. For moderate hetero-870

geneities, the main results of the present work are not expected871

to vary significantly, although a rephrasing of the model might be872

necessary. Indeed, when a medium is heterogeneous, the multi-873

plicative decomposition of the deformation gradient tensor is not874

sufficient, alone, to describe the structural reorganisation of the875

medium itself. In fact, different material responses are possible876

at different points of the same medium, so that the strain energy877

density of the spheroid must depend explicitly on the material878

point at which it is evaluated. Accordingly, with reference to the879

spheroid’s natural state, one has to write Wsn(Cn,X), where the880

explicit dependence of Wsn on X must be prescribed and, in prin-881

ciple, in a heterogeneous material it is also possible that different882

plastic evolution laws apply at different body points.883

Future efforts will also be addressed to the definition of the ac-884

tive behaviour of living systems. Indeed, in spite of similarities885

of living tissues with inert soft materials and liquids, multicel-886

lular systems additionally display active responses that are not887

observed in inert soft materials22. In particular, the accurate de-888

scription of MCS compression cannot encompass the character-889

ization of cell active response when subjected to stresses. This890

response is due to mechanotransduction, which is the ability of891

cells to transform mechanical stresses into biochemical signals892

(and vice versa) in order to transfer information to and from the893

nucleus18,28,74. This ability of cells to deform and generate forces894

in an active manner, coupled with their extreme complexity and895

their non linear response to mechanical stimuli, outlines the need896

of a specific mathematical model to describe aggregate dynamics. 897

Finally, the development of specific mathematical models to 898

describe living system responses should be supported by exper- 899

imental tests. In particular, it would be interesting to perform ad 900

hoc biological experiments in order to quantify the anelastic be- 901

haviour of such systems, determining the tissue yield stress, which 902

physically arises from the critical force required to break intercel- 903

lular bonds and induce cellular reorganization. A definitive an- 904

swer to the debate of characterizing tissues as either viscoelastic 905

fluids or visco-elasto-plastic solids could arise from measuring the 906

frequency response of tissues to a periodic forcing22, which is a 907

much-needed experiment that, to our knowledge, has not been 908

previously reported. Then, until today, models of tissue mechan- 909

ics have often focused on partial descriptions of tissue behaviour 910

that are successful in explaining specific features at a certain scale 911

and under certain conditions. Future modelling efforts should ad- 912

dress the general applicability of theoretical models to different 913

tissues and various phenomena, as well as link the physics at dif- 914

ferent scales, by connecting the macroscopically measurable tis- 915

sue properties to the biomolecular and intracellular mechanisms, 916

to provide a comprehensive view of tissue mechanics22. 917

In conclusion, studying tissue mechanics provides the basis to 918

understand many physiological and pathological phenomena and 919

to foster tissue engineering, which aims to develop new strategies 920

of medical treatment based on artificial tissue regeneration7,22. 921

Proposing a three-dimensional elasto-plastic model of living sys- 922

tem behaviour aims at moving a step towards this ambitious goal. 923
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