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Abstract: Sequence-to-sequence deep neural networks have become the state of the art for a
variety of machine learning applications, ranging from neural machine translation (NMT) to speech
recognition. Many mobile and Internet of Things (IoT) applications would benefit from the ability
of performing sequence-to-sequence inference directly in embedded devices, thereby reducing the
amount of raw data transmitted to the cloud, and obtaining benefits in terms of response latency,
energy consumption and security. However, due to the high computational complexity of these
models, specific optimization techniques are needed to achieve acceptable performance and energy
consumption on single-core embedded processors. In this paper, we present a new optimization
technique called dynamic beam search, in which the inference complexity is tuned to the difficulty
of the processed input sequence at runtime. Results based on measurements on a real embedded
device, and on three state-of-the-art deep learning models, show that our method is able to reduce
the inference time and energy by up to 25% without loss of accuracy.

Keywords: recurrent neural networks; edge computing; energy efficiency

1. Introduction

In recent years, deep neural networks (NN) are increasingly gaining popularity due to their
outstanding results in various tasks, such as object detection, speech recognition and image
classification [1]. In particular, sequence-to-sequence networks, such as recurrent neural networks
(RNNs) and the more recent transformers [2] are now considered state-of-the-art for applications
involving data sequences (translation, summarization, question answering, etc.). The success of deep
learning is mainly due to the increasing availability of large datasets and high performance hardware
(mostly GPUs on cloud servers) to speed-up training [3–5].

Indeed, despite bringing an outstanding leap in accuracy, deep NNs are very computationally
complex and memory-intensive. This is true not only for training, but also for the actual
classification/regression (inference) phase. While for most applications training is a one-time task,
and can therefore be performed in the cloud, there is a growing demand for executing NN inference
on embedded systems (so-called “edge” nodes), in order to enhance the features of many Internet
of Things (IoT) applications [3]. In fact, edge inference could yield benefits in terms of data privacy,
response latency and energy efficiency, as it would eliminate the need of transmitting high volumes of
raw data to the cloud [4–19].

However, edge devices are often equipped with low cost embedded processors and limited
amounts of memory. Even more importantly, they are tightly constrained from the point of view of
energy consumption, as they are expected to operate for years using the limited energy capacity of
a small form-factor battery.

Electronics 2020, 9, 337; doi:10.3390/electronics9020337 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-2872-7071
https://orcid.org/0000-0001-9595-7216
https://orcid.org/0000-0002-1369-9688
http://dx.doi.org/10.3390/electronics9020337
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/2/337?type=check_update&version=2


Electronics 2020, 9, 337 2 of 21

Various approaches have been proposed in order to reduce the complexity of deep NN inference,
and consequently, its execution time and energy consumption, in order to enable its execution on edge
devices. One of the most popular approaches is to design custom hardware accelerators to implement
the most critical operations involved in the inference phase, which are typically multiplications
of large matrices and vectors, in a fast and efficient way. Most accelerators have been designed
for convolutional neural networks (CNNs), due to their outstanding results in computer vision
applications [3,6,7,12,16], but more recently, hardware acceleration of sequence-to-sequence models,
such as RNNs and transformers, has also been investigated extensively [10,15,17–19].

While these solutions are extremely effective, the addition of a dedicated hardware accelerator to
an IoT device is not always feasible due to the tight cost budgets associated with this type of system.
Therefore, other researchers have investigated algorithmic solutions that can improve NN inference
efficiency when it is executed on general purpose embedded CPUs as well. Seminal approaches
of this type include optimizations of the data representation format (i.e., quantization) aimed at
reducing computational complexity and memory occupation [13,20,21] or simplifications of the
network architecture [3,14,22].

However, those initial efforts are static in nature, meaning that optimizations are performed at
design time and are consequently independent from the specific input datum that the network is
processing. More recently, some researchers have shown that dynamic (input-dependent) optimizations,
applied at runtime, can lead to superior results [5,8,9,11,23–27]. The rationale of dynamic solutions is
that not all inputs are equally hard to process for a NN. As an example, sentences in a translation task
can be easy or hard to translate depending on the existence of multiple similar interpretations [9].

Different types of dynamic inference optimizations have been proposed in literature.
Some researchers have developed “big/little” systems in which two NNs of different sizes and
complexities are used depending on the input complexity [5,8,11,28]. Conditional [24] and
hierarchical/staged [25–27] inference are other effective forms of dynamic optimization. However,
all these works focus on CNNs, which process fixed size inputs.

In this work, which extends [9], we apply dynamic inference optimizations to sequence-to-
sequence models. Contrarily to big/little solutions, we use a single network at all times and do not
rely on custom training procedures nor quantization, although all these optimizations are orthogonal
to our approach. Conversely, we use a parameter of the inference algorithm, called beam width (BW),
which controls the number of invocations of the network for a given input, and hence the inference
time and energy consumption. Although dynamic BW optimizations have been considered in the
past [29], our work is the first, to the best of our knowledge, to use this parameter for energy efficiency.

With respect to [9], the following are the main contributions of this work:

• We propose a new policy for setting the BW at runtime depending on the input, based on
Shannon’s Entropy, and compare it to the previously proposed solution based on the standard
deviation of the top-k scores.

• We test the proposed solution on three state-of-the-art sequence-to-sequence networks, with different
internal architectures and targeting different applications (translation and summarization).

• We measure the actual inference time and energy consumption obtained with our approach on
a real ARM-based embedded device.

Our results show that, thanks to the proposed dynamic BW optimization, we are able to enrich the
Pareto frontier [30] in the energy vs. inference quality plane, generating many previously unavailable
options for designers to select at runtime. Moreover, in some instances, we are able to reduce the
inference time and energy by up to 25% with no penalty in terms of output quality.
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2. Background and Related Works

2.1. Encoder-Decoder Sequence-To-Sequence Neural Networks

Deep neural networks are now considered state-of-the-art for a variety of applications,
ranging from computer vision to speech recognition and translation, and to radio-frequency signal
processing [31–37]. Sequence-to-sequence neural networks process a variable length sequence of input
data (a text sentence, a time series, radio signals, etc.) and produce in output another data sequence,
in general of a different length (e.g., a translation of the input sentence) [31]. Most sequence-to-sequence
NNs are based on the encoder-decoder (Enc/Dec) architecture schematized in Figure 1.

Encoder Decoder

ŷi

Output Sel.

x1 (I) x2 (love) x4 (<EOS>)x3 (you) ŷ0 (null) ŷ1 (ich) ŷ2 (liebe) ŷ3 (dich)

Figure 1. Architecture of an encoder-decoder sequence-to-sequence neural network.

Internally, an Enc/Dec network actually includes two separate NNs, called the encoder and the
decoder respectively (green blocks). The architecture of these two networks may vary; the standard
approach is to implement both encoder and decoder as recurrent neural networks (RNNs), either
with the “vanilla” architecture or with one of its variants, such as the gated recurrent unit (GRU)
or the long-short term memory (LSTM). However, encoder-decoder architectures are not limited to
RNNs, and can also be realized with temporal convolutional networks (TCNs) [38] or with transformer
NNs [2], which have now become state-of-the-art for translation tasks.

To illustrate the high-level functionality of an Enc/Dec network during the inference phase, we
will use as an example the translation of English text to German.

To perform a translation, first the encoder network processes the elements of the input sequence
X = x<1>, ..., x<N> (i.e., the words of a sentence in English) and produces a representation of said
sequence in a high-dimensional space. This representation is then fed to the decoder, which is in
charge of producing the elements of the output sequence Y = y<1>, ..., y<M> (i.e., the words of
a sentence in German). More specifically, the decoder works in “steps.” In the generic i-th step,
it takes as input the encoder’s output and the elements of the output sequence translated until that
point (i.e., y<1>, ..., y<i−1>). It uses these inputs to predict a probability distribution p<i> over all
possible words of the German dictionary. The k-th element of this distribution (p<i>

k ) represents the
likelihood of a “partial translation” that starts with y<1>, ..., y<i−1> and that has y<i> equal to the k-th
word of the dictionary.

The simplest way to use the decoder during inference is shown in Figure 2. Initially, the decoder
uses the encoder’s output and a “null” input to generate a probability distribution for the starting
word of the output sentence. The word with the highest probability (ich in the example) is selected
as the first predicted word and fed-back to the decoder, which combines it with its previous inputs
to predict the second word of the sentence (liebe). This process is repeated until the decoder predicts
a special end Of sentence (EOS) word.

The scheme described in Figure 2 is known as greedy search. In this approach, the output selection
block (orange square in Figures 1 and 2) takes into consideration only one word in each decoding step;
i.e., the one corresponding to the most likely partial translation up to that point, or argmaxk(p<i>

k ) in
mathematical terms.

However, this partial sentence does not always correspond to the beginning of the most likely
translation overall. Therefore, greedily considering just one word per step may lead to discarding
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good translations and worsen the quality of results. For these reasons, greedy search is rarely used
in practice.

ŷ2 (liebe) ŷ3 (dich)

ENC DEC

ŷ0 (null)

ŷ0 (ich)

Out. Sel.

ENC DEC

ŷ0 (null) ŷ1 (ich)

Out. Sel.

ŷ2 (liebe)

ENC DEC

ŷ0 (null) ŷ1 (ich)

Out. Sel.

Step 1 Step 2 Step 3

Figure 2. Operation of the decoder network during the inference phase when using a greedy
search algorithm.

What is actually used is an algorithm called beam search, which is schematized in Figure 3
(the encoder is not drawn to avoid over-complicating the figure). With beam search, the output
selection block does not sample a single word from the output dictionary. Rather, the BW most likely
partial translations are kept at every step, where BW is a parameter of the algorithm called beam
width. The example shown in Figure 3 corresponds to the case of BW = 3. As is clear from the figure,
in each step the decoder is invoked three times, one for each partial sentence. This generates three
probability distributions, which are then considered together in the output selection phase, to identify
the new three most likely partial sentences to use as input for the following step. As schematized by
the light-orange “beams” in Figure 3, these may come either from different invocations of the decoder
or all from the same. The three selected partial sentences are then expanded in the following step,
and the whole procedure is repeated until all branches predict an EOS. In other words, beam search
corresponds to expanding a tree of possible translations, where the degree at each level of the three is
maintained always equal to BW.

Dec

Dec
Dec

Dec

ŷ 1 
(er

)

Dec
Dec

Dec

Dec
Dec

Dec

ŷ1 (ich)

ŷ
1 (sie)

ŷ2 (mag)

ŷ2 (liebe)

Etc.

ŷ3 (dich)

Step 1 Step 2 Step 3

ŷ2 (liebe)

Out. Sel.

Out. Sel. Out. Sel.

ŷ3 (ihn)

ŷ3 (sie)

ŷ1 (ich)

ŷ0 (null)
ŷ1 (ich)

ŷ1 (sie)

ŷ2 (liebe)
ŷ1 (ich)

ŷ2 (liebe)
ŷ1 (ich)

ŷ2 (liebe)
ŷ1 (ich)

Figure 3. Operation of the decoder network during the inference phase when using a beam search
algorithm with BW = 3.

Clearly, the one above is a very high-level description, and the details of the operation of the
two NNs vary depending on their implementation. The reader can refer to [31] for more details.

2.2. Related Works

2.2.1. Custom Hardware Designs

One of the most popular approaches to obtain more energy efficient inference for neural networks
is through custom hardware accelerators, targeting field-programmable gate arrays (FPGAs) [15,19,39]
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or application-specific integrated circuit (ASICs) [3,6,28,40]. These are custom-built architectures
that optimize the most energy-intensive operations involved in the inference process (typically
multiply-and-accumulate loops). The majority of custom accelerator designs have been proposed for
convolutional neural networks (CNNs), particularly for image processing, while fewer works have
targeted sequence to sequence architectures [18,19,41], such as the ones considered in this work. While
hardware accelerators are able to improve the energy efficiency by several orders of magnitude,
they are mostly suitable for high-end applications, for which a heterogeneous systems-on-chip with
dedicated hardware blocks for a specific functionality can be afforded. On the contrary, due to the
very tight budget constraints, most embedded and IoT devices are equipped with general purpose
microprocessing units (MPUs)/microcontroller units (MCUs), and cannot afford to include such a
complex custom block.

2.2.2. Static Optimizations

An orthogonal way to obtain more energy efficient inference is through approximate
computing [3,4,20,42–45]. The general idea of this paradigm is to reduce the accuracy, precision or
reliability of the operations involved in the inference process, in order to increase their energy
efficiency. The most common form of approximate computing used in the context of deep learning
is quantization, which consists in substituting the floating point operations involved in the inference
with low-precision integer operations (e.g., with 8-bit or less per operand). A large number of research
works have shown that applying quantization leads to more efficient deep learning models without any
significant deterioration of the network accuracy [3,4,13,20,42,46,47]. The energy benefits deriving from
quantization are due to two main reasons. First, replacing floating points with low-precision integers as
a format for the network parameters (weights) and intermediate data (activations) significantly reduces
the memory footprint of the model (e.g., by four times when using 8-bit integers), thereby reducing the
energy costs for data movement. Second, the energy costs of integer operations are typically lower than
those of floating point ones in MPUs/MCUs, even when a hardware floating-point unit is available.

Binarization is the most extreme form of quantization, in which either weights or activations
(or both) are constrained to assume a binary value (i.e., either 0 or 1) [6,44]. In this case, besides
the aforementioned memory occupation reduction, a further advantage is that most of the inference
internals reduce to a sequence of bit-wise operations. However, the accuracy of binary neural networks
is currently acceptable only for relatively simple tasks [44].

Another energy optimization technique that can be traced to approximate computing ideas is
pruning [7,19,22,48], which consists of “switching off” those network connections (or entire neurons)
that affect the output the least. These are typically selected with an iterative heuristic search algorithm,
alternated with retraining phases. As for quantization, pruning leads to a reduction in the memory
footprint of the network, whose weights can now be represented using a sparse matrix format, and in
the energy consumption of internal operations, such as those related to “switched off” elements can be
directly skipped.

Both quantization and pruning can be used in conjunction with custom hardware designs such as
those mentioned above. Indeed, most of the aforementioned accelerators use quantization internally.
Pruning is slightly less common because skipped computations break the regularity of the inference
workload, complicating the control needed to fully utilize the parallel array of processing elements
included in accelerators [3]. However, these approaches can also be applied in general purpose
MPUs/MCUs, as many modern instruction sets support reduced precision operations, often in
conjunction with single-instruction multiple-data (SIMD) parallelism [49,50].

As for hardware acceleration, quantization and pruning, they have mainly been applied
to convolutional neural networks [4,7,13,20,42,48] and fully-connected feed-forward neural
networks [4,20,47]. Fewer works have been proposed using these techniques on sequence-to-sequence
models [19,22,46], mostly due to the fact that some of these models (recurrent neural networks and
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variants) include feed-back connections, which favor the propagation of errors and therefore hinder
the application of approximate computing strategies.

Importantly, quantization and pruning are also orthogonal to dynamic algorithmic optimizations
such as the one proposed in this work. In fact, most of those solutions, including ours, are based on
reducing the number of operations performed to obtain the inference result. Therefore, they are equally
effective both when applied on a floating point model and on an equivalent quantized model.

2.2.3. Dynamic Optimizations

All works mentioned above implement static optimizations, meaning that the changes applied to
the network models to increase its energy efficiency are decided at design time. On the other hand,
dynamic approaches have also been proposed in the literature [5,8,9,11,24–27,29] over the last few years.

In this case, changes to the models are applied during runtime, depending on the datum that
is currently being processed by the network. This input-dependent approach makes sense when
different data have different complexity, which is common in most real applications. As two intuitive
examples, classifying a blurry image in which the subject occupies a small portion of the frame
and is in an unfavorable orientation (e.g., a person seen from the back) is definitely more complex
than classifying a clear image, with a well oriented subject occupying most of the frame. Similarly,
translating a long, ambiguous sentence is also more complex than translating a short, clear one.

In these scenarios, a static optimization would either over-approximate complex inputs,
thereby lowering the final accuracy, or under-approximate simple ones, wasting energy. In contrast,
a dynamic approach allows one to use different “levels” of optimization depending on the input
complexity, tailoring the model to the specific input.

In [11] a dynamic optimization based on a “big/little” architecture is proposed. This solution
consists of two CNNs with different sizes, and consequently different energy consumption. For each
new input, the “little” network is ran first. The output produced by this network is then used to
compute a confidence score of the classification being correct. Depending on the value of this score,
either the result of the “little” network is kept, or a new inference is executed on the same input using
the “big” network. Under the assumption that most inputs are easy to classify, the “little” network will
be the only one necessary most of the time. Therefore, the overall energy consumption will be similar
to a solution that only uses the “little” network, but with an increased accuracy due to the selective
application of the more accurate “big” network.

The drawback of this approach is that the memory required by this architecture is much larger
than for a standard network, since two different sets of weights have to be stored, one for the “little”
network and one for the ”big“ one. Furthermore, the effort required for model design and the time
required to train the model are almost doubled. To overcome these limitations, in [5] “little” networks
are derived from the layers of “big” networks, by deactivating a portion of each layer. While this
solves the memory issue, it still requires a complex and non-standard training procedure. In [8] a
similar approach is proposed where the “little” and “big” networks are replaced by two different
quantizations of the same network. Finally, conditional inference [24] is a similar approach, in which
only the initial layers of a network are used to classify easy inputs. When the confidence scores of these
“partial” classifiers are low (i.e., for difficult inputs), the remaining layers of the network are executed.

Hierarchical (or staged) inference [25–27] is another form of algorithmic dynamic optimization.
In this case, the overall task is split into sub-tasks of increasing complexity, each performed by
a differently optimized model. For example, an automated medical diagnosis can be split first by a
healthy vs. unhealthy classification, and then followed by a more precise classification of the type of
disease [25]. The former is then performed using a simpler network (e.g., smaller or more aggressively
quantized), while the latter is left to a larger and more resource-consuming network, which is however
invoked only when the first classification result is “unhealthy.”

The great majority of dynamic optimization techniques for deep learning have been proposed
for convolutional or fully-connected networks. In the context of sequence-to-sequence architectures,
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the only approach similar to ours is the one of [29], which however, does not target energy efficiency.
To the best of our knowledge, ours is the first dynamic optimization approach at the algorithm level
for energy reduction that applies to generic sequence-to-sequence models.

3. Proposed Method

3.1. Motivation

As mentioned in Section 2.1, sequence-to-sequence models often rely on the beam search algorithm
to explore the space of possible output sequences during decoding. The main parameter of this
approach, controlling the width of the search tree (that is, the number of partial sequences kept at each
decoding step) is the beam width (BW). This value has a considerable impact both on the accuracy
of the results and on the inference complexity. Setting BW to 1 corresponds to using greedy search,
with low memory and computational requirements, but leading to suboptimal results. With larger
values of BW, the final accuracy improves substantially, but the memory requirements and the number
of computations grow as well.

High end servers can handle large values of BW through parallelization on multi-core CPUs or
GPUs. In contrast, edge IoT devices are normally equipped with an embedded CPU, often single-core,
and no GPU. In the single-core scenario, it is easy to see that an increase in BW would result in a
linearly proportional increase of the execution time of each decoder step, since the BW “Dec” calls
in each step of Figure 3 have to be executed sequentially. This is confirmed by the plots of Figure 4,
which show the dependency between the average inference time per input sequence (normalized to
the case of BW = 1) and the value of BW. The three plots refer to the three models considered in our
experiments and are obtained by profiling a real embedded processor (ARM Cortex-A53). Both the
models and the hardware platform will be described in Section 4.

The measurements for different BWs in the graphs are linearly interpolated, to show that indeed
the dependency is almost linear, although not exactly due to the optimizations performed by the
inference framework (e.g., the use of SIMD instructions). Besides the overall execution time of the
model, the graphs also show the individual contributions of the encoder and decoder networks.
As expected, encoding time is independent from BW, whereas the increase in the overall model
execution time is mostly due to the decoder. This breakdown also shows that the decoder contributes
to a significant portion of the overall inference time; hence, optimizing it, as we do in this work,
is relevant.

Additionally, whatever the type of model used (e.g., a LSTM rather than a Transformer) each “Dec”
step involves exactly the same operations, consisting mostly of large matrix and vector multiplications.
Therefore, the power consumption of a single-core CPU should remain constant throughout the
inference, regardless of BW. This is confirmed by Figure 5, showing the average power per input
sequence measured on the same embedded device for the three models, and for three different BW
values. The plots report the total power of the embedded board, which has a baseline consumption of
1.77 W when idle. As shown, power remains approximately constant during inference and is actually
slightly larger for BW = 1 (again probably due to hardware-related optimizations).
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Figure 4. Normalized inference time for different fixed beam width values on an embedded device.

This means that, similarly to execution time, energy consumption can also be expected to grow
linearly with BW. These two observations motivate our proposed technique. In fact, they show that
reducing the average BW used by a sequence-to-sequence model could yield a simultaneous reduction
of the execution time and of the energy consumed by an embedded device. In the following, we show
how this reduction can be achieved by dynamically adapting BW to the processed input.

3.2. Dynamic Beam Search

For many deep learning tasks, data might not be all equally difficult to process,
and sequence-to-sequence models are not an exception in this regard. In fact, some inputs can
be easily decoded, since few partial sequences are much more likely then the others. In this case,
a large value of BW would result in more computations then necessary, with a consequent waste of
time and energy. Other inputs are much harder to process and require keeping more partial sequences
in order to produce an acceptable quality output. In this case, a small BW would yield poor accuracy.

In this work, we propose dynamic beam search; i.e., a solution in which BW is adapted dynamically
at each decoding step depending on the difficulty of the processed input.
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Figure 5. Average power per input sequence with different fixed Beam Width values during inference
on an embedded device.

Figure 6 shows, schematically, the decoding process performed by the network when using this
technique. The differences with respect to a standard beam search are embedded in the output selection
block, which determines the number of partial sequences to keep in the next decoding step based
on the outputs from the current step. In the example of Figure 6, the number of decoder calls is first
expanded to 2; then reduced to 1; and finally expanded again to 3.

Dec

Dec
Dec

ŷ1 (ic
h)

Dec

Dec
Dec

Dec

ŷ1 (sie)

ŷ2 (liebe)

ŷ3 (dich)
Out. Sel.

Out. Sel.
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ŷ0 (null)
ŷ1 (ich)

ŷ2 (liebe)
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ŷ2 (liebe)
ŷ1 (ich)

ŷ2 (liebe)
ŷ1 (ich)

Etc.Step 1 Step 2 Step 3

Figure 6. A high level overview of dynamic beam search.
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More specifically, we propose to use the output probabilities produced by the decoder as a proxy
for the number of partial sequences that should be expanded in the next step. The general intuition
behind this association is that if the distribution of output probabilities is very skewed, then few partial
sequences are much more probable than others; hence, BW should be decreased, and vice versa.

Clearly, the effectiveness of dynamic beam search depends on the availability of an actual mapping
policy, able to map such probability distribution to the appropriate BW value for the next step. In the
following section we describe two of such policies: the first one is based on Shannon’s entropy, which
is a formal measure of the uncertainty of a distribution, whereas the second one is based on a heuristic
estimate of such uncertainty computed using only the top-k output probabilities. The two policies are
then compared experimentally in Section 4.

Importantly, besides being able to yield accurate results, mapping policies should also be fast to
compute on low-end hardware. In fact, their evaluation must be executed after each decoding step.
Thus, the time and energy overhead that they introduce should be minimal, to avoid overshadowing
the benefits of dynamic beam search. This motivates the analysis of heuristic solutions.

3.2.1. Entropy Mapping

The first BW mapping policy considered in our work is based on computing the Shannons’
Entropy (H) on the output probabilities produced by the decoder; i.e.,

H = −
N

∑
i

loge(Pi)Pi (1)

The natural logarithm is used instead of the classical base-2, because many popular deep learning
frameworks, including the one used in this work, allow sequence-to-sequence models to directly
produce log-probabilities (in base e) as outputs. Consequently, using base-e avoids the base change
and reduces the computational burden associated with the evaluation of (1).

The computed entropy is then mapped to a corresponding BW using (conceptually) a line
equation, as shown by the red curve of Figure 7. Smaller values of entropy correspond to a lower
average uncertainty, and therefore to a higher “confidence” of the decoder in selecting the most likely
partial sequences. Consequently, these values are mapped to smaller beam widths. On the contrary,
larger values of H correspond to a more uncertain distribution, and are therefore mapped to a larger
BW. Clearly, since BW can only assume integer values, the linear mapping is actually rounded to the
nearest integer, effectively producing the relationship shown by the blue line in Figure 7.

Figure 7. Linear mapping from the entropy of the decoder output probabilities to the selected
beam width.

This policy introduces four new hyper-parameters associated with the inference algorithm:
the minimum and the maximum beam width accepted (BWmin, BWmax) and the parameters of the line
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equation (slope and intercept). These four parameters need to be tuned on the target dataset in order
for the policy to be effective.

The entropy, being a measure of uncertainty, is a formally correct way to measure how “confused”
the network is about the current input. While this is a desirable property, this policy uses the entire
array of output probabilities in order to estimate uncertainty. Therefore, the overheads associated with
its evaluation can be non negligible on a low-end device.

3.2.2. Standard Deviation Mapping

This policy, first introduced in [9], estimates the confidence of the network using only the top-k
probabilities from the decoder outputs. The idea behind this approach is that only the most probable
partial sequences will be selected for expansion in the next decoding step. Therefore, in order to set
the optimal BW, it is sufficient to estimate how different these top probabilities are among each other.
This is done computing their standard deviation, which is a simple measure of variability in a sample.

The standard deviation is then associated to a value of BW, using again, a linear mapping,
as shown in Figure 8. However, this time the slope of the curve is negative, since larger values
of standard deviation correspond to a bigger difference among the top-k scores, which should be
associated with a smaller BW, and vice versa.

This policy is significantly faster to evaluate than the entropy mapping. However, it is clearly
a heuristic, since it does not consider the entire array of output probabilities. In this case, five new
hyper-parameters are associated with the inference process: BWmin and Bmax, the slope and intercept
of the curve, and the value of k; i.e., the number of top scores considered.

Figure 8. Linear mapping from the standard deviation of the top-k output probabilities to the selected
beam width.

3.3. Implementation Details

In this section, we focus on some of the implementation details of the proposed dynamic beam
search technique, and on the steps required to deploy it on an embedded device.

Importantly, dynamic beam search only modifies the inference algorithm, and not the actual
sequence-to-sequence neural network. This means that, although deploying this technique on top of
an existing model does require some code modifications (to support the variable BW), dynamic beam
search can be applied to pretrained models without the need for retraining. This is an important feature,
not only because it makes deployment faster, but also because it does not require the availability of
training data, which for advanced sequence-to-sequence models is not always easily accessible [51,52].

Another consequence of dynamic beam search not requiring modifications of the underlying
neural network architecture is that this approach can be applied on top of any model. Therefore,
our technique is orthogonal to (and can be combined with) NN architecture optimizations targeting
efficiency, such as compression methods (quantization, pruning, etc.) [3,4,13,20,42,46,47].

Moreover, dynamic beam search is also almost fully orthogonal to the framework used to describe
the model (e.g., TensorFlow or PyTorch [53,54]). The only requirement is that the framework supports
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a dynamic computation graph; that is, that tensors dimensions can be varied during the inference
process. This is required since in practice, increasing/decreasing BW involves changing one of the
dimensions of the input tensors passed to the decoder in the next step. PyTorch has always supported
dynamic computation graphs, whereas TensorFlow has recently added support for them. Therefore,
the proposed technique can be applied on top of either framework.

The use of dynamic graphs also influences the memory occupation of our proposed method.
Since the underlying neural network is not modified when using dynamic beam search, the weights
and biases memory sizes do not change. The only tensor sizes that are influenced by our techniques are
those related to the decoder inputs and activations, which are replicated BWi times, where BWi is the
beam width used at decoding step i. However, this is true for both fixed beam search with BW > 1 and
dynamic beam search; therefore, it cannot be considered an overhead of our method. In particular, the
maximal inputs and activations’ memory used by our method is equal to the one used by a fixed beam
search approach with BW = BWmax. In any case, the additional memory due to replicating inputs and
activations is minimal; for example, for the summarization (SUMM) network introduced in Section 4,
moving from a BW of 1 to a BW of 5 only requires 1.4% more memory.

Despite not requiring training, implementing dynamic beam search still involves tuning the
hyper-parameters of the two policies described in Sections 3.2.1 and 3.2.2 for the target dataset.
The typical solution to perform this kind of tuning is to run a grid-search on validation data. However,
doing so directly on the embedded device would be time-expensive, given that the validation set may
contain a large number of inputs and that the target device is inherently slow. Therefore, we propose
to follow the procedure depicted in Figure 9.

Pareto FrontierGPU server Embedded Device

Dataset DatasetGrid Search

Figure 9. Proposed method for hyper-parameter tuning.

In this approach, grid search is performed on a high-end device, such as a GPU, in order to
evaluate hundreds of design points (i.e., combinations of hyper-parameters) in a reasonable time.
For each point, a full inference on the entire validation set is performed using dynamic beam search,
and the obtained accuracy is recorded, together with the average BW. Having completed this process,
we propose to extract the Pareto frontier in the accuracy versus BW space, and only evaluate those
Pareto points on the actual embedded device. In this way, the number of measurements performed on
the final system, and hence the measurement time, are dramatically reduced.

The conversion between accuracy versus BW and accuracy versus time/energy Pareto frontiers
follows from the analysis of Section 3.1, according to which BW is almost linearly proportional to
both time and energy. Note that this certainly does not hold for the GPU used for the grid-search,
which is massively parallel, and this is the reason why we store results in terms of average BW and
not execution time. Under this assumption, moving from the average BW to the average execution
time/energy per sentence does not alter the relationship between the different design points tested,
nor, therefore, the Pareto frontier. As shown in Section 4, this method is effective at producing good
settings of the considered hyper-parameters.
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4. Results

4.1. Setup

The proposed methodology has been tested on three different sequence-to-sequence models,
two performing a translation task and one performing summarization [55]. In particular, we selected
the three recent models (>2017), each based on a different (state-of-the-art) neural network architecture;
i.e., LSTM, bidirectional LSTM (BiLSTM) and a transformer.

Among the translation networks, the first one is a RNN which translates German to English
(DEEN). It is composed of two BiLSTM layers with hidden size 500 (total number of parameters ≈ 50 M),
and it was trained for 20 epochs on the IWSLT ’14 DE-EN dataset [32]. The second one is a transformer
performing the translation from English to German (ENDE). It is composed of six layers, each with
a 512-dimensional output (total number of parameters ≈ 90M), and it was trained on the WMT
dataset [33]. The last network is a RNN for English summarization (SUMM). It is composed of two
LSTM layers with hidden size 500 (total number of parameters ≈ 85M), and it was trained for 20 epochs
on the Gigaword dataset [34].

Specifications of these models compatible with the OpenNMT framework in its PyTorch-based
version are available pretrained on the official OpenNMT website [55]. This framework was used
as a starting point to implement the dynamic beam search algorithm due to its ease of use and
flexibility. Moreover, the fact that OpenNMT is built on top of PyTorch enables the manipulation of
dynamic computation graphs at runtime, which—as mentioned in Section 3—is fundamental for the
proposed optimization. The default beam width in the original networks is five for all the three models.
Throughout our experiments, we always used the original trained models from OpenNMT; i.e., we did
not perform any form of retraining.

The initial hyper-parameter exploration to derive the Pareto frontier in the accuracy versus
beam width space was performed on a NVIDIA Titan XP GPU. Then, execution time and energy
measurements were performed on an embedded device equipped with a ARM Cortex-A53 and
1 GB RAM. To emulate a real-time application, in which the response latency must be minimized,
the inference batch size was set to one in all experiments on the embedded device.

Execution time measurements on the DEEN and ENDE networks have been performed on
their full validation sets, while for the SUMM network we used a reduced version of the Gigaword
validation set (2000 sentences randomly extracted and kept the same for all the tests) in order to
have a reasonable testing time. The accuracies of the models were measured with the standard
metric for the corresponding application. In particular, the quality of the translations was measured
with the BiLingual Evaluation Understudy (BLEU) [56] score, and that of summarization with the
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [57] score. Energy measurements were
performed by attaching a digital multimeter (HP/Agilent-34401A) to a thermally stable 1mOhm
shunt resistor, connected in series to the supply pin of the embedded board. Energy for all three
networks was measured by letting the embedded board perform inference on 300 randomly selected
inputs from the corresponding validation datasets. Since ours is the first energy-efficiency-oriented
dynamic inference optimization technique for sequence-to-sequence models, we can only compare it
against the state-of-the-art; i.e., a standard beam search approach with fixed BW. The fact that the three
benchmarks are based on different types of models is functional for demonstrating that our approach
is effective regardless of the underlying neural network architecture.

4.2. Design Space Exploration Results

As the first results, Table 1 reports the statistics of the design space exploration (DSE) process
performed on the two BW mapping policies. The table reports the total number of hyper-parameters
settings (total points) considered for each of the three models, and the corresponding DSE time on
GPU. It also reports the number of Pareto points that have been selected for further experimentation
on the actual embedded device, and the ratio between this number and the total number of points.
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We considered the same number of hyper-parameters combinations for each of the two policies,
for fairness of comparison, and the numbers in the table refer to a single policy. Therefore, the total
numbers for the entire exploration process are obtained by doubling the value in each cell. To get to the
final Pareto points, we further pruned the original Pareto front, removing points that were too similar
in terms of accuracy and average BW. The pruned set of points was used in all following experiments.

Table 1. Design space exploration statistics for the three target models.

Model Total DSE Time [H] Total Points Tested Pareto Points Selected Reduction

DEEN 20 200 17 12x
ENDE 60 200 17 12x
SUMM 7 200 13 15x

These results show that the DSE methodology introduced in Section 3 is indeed necessary.
In fact, the total DSE time is already very significant on a high-end GPU, and it would become
unacceptable (in the order of weeks/months) if the entire exploration had to be performed directly on
the embedded device.

4.3. Mapping Policies Overheads

In this section, we evaluate the overheads of the two proposed BW mapping policies in terms
of time and power consumption. For what concerns time, the minimum, maximum and median
evaluation times for the two policies on each target model are reported in Table 2. As shown,
the standard deviation mapping policy (Std. Dev.) is significantly faster than the entropy mapping
for the same model. This was expected, as the former only operates on the top-k output probabilities,
whereas the latter considers the entire array of probabilities. However, the time overhead of both
policies is minimal. In fact, the computation of the next BW to use in dynamic beam search takes less
than 1% of the average inference time (in the order of seconds for BW=1) on the SUMM model, which
is the smallest of the three. Therefore, the choice of the most appropriate policy should not be based
on complexity considerations, but rather on which of the two produces the best trade-off between
time/energy and accuracy.

Table 2. Execution time statistics for the two proposed BW mapping policies.

Model Policy Min. [s] Max. [s] Median [s]

DEEN Entropy 0.0054 0.0276 0.0165
Std. Dev. 0.0010 0.01458 0.0053

ENDE Entropy 0.0068 0.0345 0.0209
Std. Dev. 0.0011 0.0180 0.0068

SUMM Entropy 0.0106 0.0557 0.0326
Std. Dev. 0.0018 0.0302 0.0112

Figure 10 shows the average power per sentence consumed by the target embedded system while
running inference with the three models. As mentioned in Section 3.1, the baseline power of the idle
system is 1.77 W. The blue, orange and green curves are the same as in Figure 5; i.e., they correspond
to fixed beam width values equal to 1, 3 and 5 respectively. The new red curve corresponds to one
possible setting of hyper-parameters of the proposed dynamic beam search algorithm. The examples
refer to the entropy mapping policy, and the exact parameter values are reported in Table 3. These plots
clearly show that dynamically adapting the beam width at each decoding step does not influence
the average power consumed by the system, which remains the same as in the fixed BW scenario,
demonstrating that the proposed mapping policies do not introduce noticeable power overheads.
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Table 3. Policy parameters used for the plots of Figure 10.

Model BWmin BWmax Coeff. Intercept

DEEN 1 2 1.1 0.5

ENDE 1 2 4 0.5

SUMM 1 4 0.3 0.3
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Figure 10. Average power per input sequence with different fixed beam width values and with a
varying beam width set according to our proposed technique.

4.4. Accuracy Versus Execution Time

In this section, we compare static and dynamic beam search in terms of accuracy (measured
by the BLEU and ROUGE scores, depending on the application) and execution time. To that end,
we have run a dynamic beam search on the embedded board with both mapping policies, using the
hyper-parameters selected as Pareto points in Section 4.2. For each point, we have measured the
average execution time per sentence and the corresponding average score (BLEU/ROUGE). The results
of this analysis are reported in Figure 11. For comparison, the figure also reports the baseline results
obtained with a fixed BW (varied from 1 to 5 for all three networks). All time values are normalized
to the average execution time of one sentence using a fixed BW=1, in order to make our results less
device-dependent.

The figure shows the two main advantages of dynamic beam search. First, it greatly enriches
the set of possible complexity-accuracy points that can be selected by a designer implementing
sequence-to-sequence models on embedded devices. Importantly, these points can also be easily
switched at runtime (e.g., depending on the available battery charge), by simply replacing the
parameters of the BW mapping policy, which are passed as inputs to the inference function.
Second, in some conditions, a dynamic beam search allows one to greatly reduce the average execution
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time per sentence without reducing the output quality. This is particularly evident for the SUMM
network, where our dynamic beam search greatly outperforms the static solution, but it also applies
to the other two models. For example, on DEEN we are able to reduce the inference time up to 20%
while maintaining the same BLEU score achieved with a fixed BW of 5. On ENDE, the same BLEU of a
static BW of five is obtained with a 25% execution time reduction. Note that the high ROUGE scores
obtained with our technique on the SUMM network could also be obtained with a larger fixed BW
value (>5), but such a large value would greatly increase the average inference time.
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(c) Summarization (SUMM)

Figure 11. Translation/summarization accuracy (measured by BLEU and ROUGE scores respectively)
versus normalized execution time for the three target models using either static or dynamic beam search.

Figure 11 also shows that none of the two considered policies can outperform the baseline when
BW < 2. This is in contrast with our previous results of [9], which however, were obtained on a
different CPU architecture (not an embedded one), and was probably due to architecture-dependent
optimizations performed by the underlying inference framework in the case of a fixed BW = 1. We
did not investigate the reasons for this difference further, since one of our objectives was to develop a
technique orthogonal to the inference framework (which was used without modifications in all our
experiments); hence, those types of optimization are out of the scope of this work.
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Finally, the graphs also show that the two BW mapping policies perform very similarly, and that
despite being heuristic, the standard deviation mapping sometimes outperforms the entropy mapping.
The differences between the two policies are data dependent, which means that the selections among
the two should be done by empirically evaluating their respective performances on the target dataset.

4.5. Accuracy Versus Energy

In this last experiment, we analyze the trade-off between model accuracy and energy consumption.
Figure 12 shows the results of the same experiment of Figure 11 but reporting on the x-axis the
normalized energy per sentence rather than the execution time. The resulting trade-offs are almost
identical to those of Figure 11, as expected given the analysis of Section 4.3. Indeed, these plots simply
confirm that, regardless of the policy and hyper-parameters, time and energy remain proportional,
or in other words, that power remains constant throughout the inference process. All considerations
done in Section 4.4 on the effectiveness of our proposed technique apply here as well.
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Figure 12. Translation/summarization accuracy (measured by BLEU and ROUGE scores respectively)
versus normalized energy for the three target models using either static or dynamic beam search.
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5. Conclusions

We have proposed a novel, dynamic optimization technique for sequence-to-sequence deep
neural networks, called dynamic beam search, which is based on tuning the beam width at each
decoding step, depending on the difficulty of the processed sequence. Through the application of this
technique, we have shown that the average inference execution time and energy consumption can be
simultaneously reduced by up to 25% with no loss in output quality, when inference is performed on a
single-core embedded device. In the future, we plan on studying the effectiveness of this approach in
combination with other types of optimization, such as quantization.
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Abbreviations

The following abbreviations are used in this manuscript:

NMT neural machine translation
IoT Internet of Things
NN neural networks
Enc encoder
Dec decoder
RNN recurrent neural network
GRU gated recurrent unit
LSTM long-short term memory
TCN temporal convolutional network
EOS end Of sentence
BW beam width
FPGA field-programmable gate array
ASIC application-specific integrated circuit
CNN convolutional neural network
MPU microprocessing unit
MCU microcontroller unit
SIMD single-instruction multiple-data
GPU graphical processing unit
CPU central processing unit
BLEU bilingual evaluation understudy
ROUGE recall-oriented understudy for Gisting evaluation
DSE design space exploration
DEEN German to English network
ENDE English to German network
SUMM English summarization network
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