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EXPLICIT FORMULAS FOR RELAXED DISARRANGEMENT DENSITIES
ARISING FROM STRUCTURED DEFORMATIONS

ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

ABSTRACT. In this paper we derive explicit formulas for disarrangement densities of
submacroscopic separations, switches, and interpenetrations in the context of first-
order structured deformations. Our derivation employs relaxation within one mathe-
matical setting for structured deformations of a specific, purely interfacial density, and
the formula we obtain agrees with one obtained earlier in a different setting for struc-
tured deformations. Coincidentally, our derivation provides an alternative method for
obtaining the earlier result, and we establish new explicit formulas for other measures
of disarrangements that are significant in applications.

Keywords: Structured deformations, relaxation, disarrangements, interfacial density, bulk
density, isotropic vectors.
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1. INTRODUCTION

Structured deformations provide a multiscale geometry that captures the contri-
butions at the macrolevel of both smooth geometrical changes and non-smooth geo-
metrical changes (disarrangements) at submacroscopic levels. For each (first-order)
structured deformation (g,G) of a continuous body, the tensor field G is known to
be a measure of deformations without disarrangements, and M := ∇g −G is known
to be a measure of deformations due to disarrangements. The tensor fields G and
M together deliver not only standard notions of plastic deformation, but M and its
curl deliver the Burgers vector field associated with closed curves in the body and
the dislocation density field used in describing geometrical changes in bodies with
defects. Recently, Owen and Paroni [13] evaluated explicitly some relaxed energy
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2 ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

densities arising in Choksi and Fonseca’s energetics of structured deformations [4]
and thereby showed: (1) (trM)

+ , the positive part of trM , is a volume density of
disarrangements due to submacroscopic separations, (2) (trM)

− , the negative part
of trM , is a volume density of disarrangements due to submacroscopic switches and
interpenetrations, and (3) |trM | , the absolute value of trM , is a volume density of
all three of these non-tangential disarrangements: separations, switches, and in-
terpenetrations. The main contribution of the present research is to show that a
different approach to the energetics of structured deformations, that due to Baía,
Matias, and Santos [1], confirms the roles of (trM)

+ , (trM)
− , and |trM | established

by Owen and Paroni. In doing so, we give an alternative, shorter proof of Owen and
Paroni’s results, and we establish additional explicit formulas for other measures of
disarrangements.

In order to motivate our study and to provide necessary background, we discuss
briefly in the following subsections of this introduction some concepts and results
from the multiscale geometry of structured deformations. (Readers familiar with
this material may wish to skip to the last subsection of the introduction where our
main results are summarized.)

1.1. Structured deformations and disarrangement densities in the setting
of Del Piero and Owen. The need in continuum mechanics to include the effects of
multiscale geometrical changes led Del Piero and Owen [7] to a notion of structured
deformations as triples (κ, g,G) , where

• the injective, piecewise continuously differentiable field g maps the points of
a continuous body into physical space and describes macroscopic changes in
the geometry of the body,

• the piecewise continous tensor field G maps the body into the space of linear
mappings on the translation space of physical space and satisfies the "accom-
modation inequality"

0 < C < detG(x) 6 det∇g(x) at each point x (1.1)

where ∇ denotes the classical gradient operator, and
• κ is a surface-like subset of the body that describes preexisting, unopened

macroscopic cracks.
A geometrical interpretation of the field G is provided by the Approximation The-

orem [7]: for each structured deformation (κ, g,G) there exists a sequence of injec-
tive, piecewise smooth deformations fn and a sequence of surface-like subsets κn of
the body such that

g = lim
n→∞

fn (1.2)

G = lim
n→∞

∇fn (1.3)

and

κ =

∞⋃
n=1

∞⋂
p=n

κp

The limits in (1.2) and (1.3) are taken in the sense of L∞ convergence. A sequence
n 7−→ fn of piecewise smooth, injective functions satisfying (1.2) and (1.3) is called
a determining sequence for the pair (g,G) , and each term fn is interpreted as de-
scribing the body divided into tiny pieces that may individually undergo smooth ge-
ometrical changes and that also may undergo disarrangements, i.e., may separate or
slide relative to each other. In this context, we write fn  (g,G) . From (1.3) we
see that G captures the effects at the macrolevel of smooth geometrical changes at
submacroscopic levels, and we call G the deformation without disarrangements.
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Del Piero and Owen [6] proved that, for every structured deformation (κ, g,G) , for
every determining sequence n 7−→ fn for (g,G) , and for every point x where g is
differentiable and where G is continuous, there holds

lim
r→0

lim
n→∞

∫
J(fn)∩Br(x)

[fn](y)⊗ ν(y) dHN−1(y)

|Br(x)|
= ∇g(x)−G(x). (1.4)

Here, HN−1 denotes the (N−1) -dimensional Hausdorff measure on RN , Br(x) de-
notes the open ball centered at x of radius r , |Br(x)| denotes its volume (i.e., its
N -dimensional Lebesgue measure), J(fn) denotes the jump set of fn , i.e., points
where fn can suffer jump-discontinuities, and [fn](y)⊗ ν(y) is the tensor product of
the jump [fn] of fn with the normal ν to the jump set. This result permits us to call
the tensor

M(x) := ∇g(x)−G(x) (1.5)
the deformation due to disarrangements, because it captures, in the limit as n tends
to infinity, the volume density of separations and slips between pieces of the body as
described by the approximating deformations fn . We may then regard the tensor
field M as a tensorial disarrangement density that, for every determining sequence
n 7−→ fn for (g,G) , reflects the limits of interfacial discontinuities of the approximat-
ing deformations fn . Moreover, (1.2) and (1.3) along with the definition of M (1.5)
yield the alternative formula for the disarrangement density:

M = ∇( lim
n→∞

fn)− lim
n→∞

∇fn.

Consequently, M measures quantitatively the lack of commutativity of the classical
gradient ∇ and the limit operator limn−→∞ for L∞ -convergence.

The trivial algebraic relation
∇g = G+M (1.6)

together with the identification relations (1.3) and (1.4) shows that the macroscopic
deformation gradient ∇g has an additive decomposition into its part G without dis-
arrangements and its part M due to disarrangements. Because G has invertible
values, (1.6) leads immediately to two multiplicative decompositions for ∇g :

∇g = G(I +G−1M) = (I +MG−1)G.

The disarrangement density M and the deformation without disarrangements G
have an additional property significant in the description of defects and dislocations
in a continuous body in three dimensions. We consider a smooth surface S with
smooth bounding closed curve γ , both contained in a region in the body where g and
G are smooth. The relation (1.6) and the smoothness of g imply

0 =

∮
γ

∇g(x)dx =

∮
γ

G(x)dx+

∮
γ

M (x) dx.

The vector
∮
γ
M (x) dx measures the displacement due to disarrangements along γ

and may be called the Burgers vector [7] for γ arising from the given structured
deformation. Application of Stokes’ Theorem to

∮
γ
G(x)dx and

∮
γ
M (x) dx and use

of the previous relation yields the formulas for the Burgers vector:∮
γ

M (x) dx =

∫
S

curlM(x)ν(x)dAx = −
∫
S

curlG(x)ν(x)dAx.

The second-order tensor field curlM = −curlG thus determines the Burgers vector
associated with γ for every closed curve and corresponds to familiar measures of
dislocation density [9, 12]. In this manner, the disarrangement density tensor M
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determines both the Burgers vector and the dislocation density tensor, both basic
tools in modelling the effects of submacroscopic defects on the response of solids.

The tensorial relations (1.5) and (1.4) yield upon application of the trace operator
the scalar relation

lim
r→0

lim
n→∞

∫
J(fn)∩Br(x)

[fn](y) · ν(y) dHN−1(y)

|Br(x)|
= trM(x) (1.7)

in which [fn](y) · ν(y) is the scalar product of the jump and of the normal at y . The
formula (1.7) tells us that trM is a scalar (bulk) disarrangement density that cap-
tures the components of the jumps of fn that are normal to the jump set. Moreover,
this scalar disarrangement density at x , trM(x), allows for cancellation of positive
and negative contributions of [fn](y) · ν(y) at points y near x to the integral on
the left-hand side of (1.7). Thus, trM(x) does not distinguish between jumps with
[fn](y) · ν(y) > 0 that pull apart small pieces of the body near x and jumps with
[fn](y) · ν(y) < 0 that cause small pieces near x to switch places. Because the ap-
proximating fn are injective, the possibility for the case [fn](y) · ν(y) < 0 that fn can
cause adjacent small pieces of the body to interpenetrate is ruled out.

Owen and Paroni [13] refined the scalar disarrangement density trM by replacing
[fn](y) ·ν(y) by its positive part throughout the jump set of fn , or by its negative part
throughout the jump set:

([fn](y) · ν(y))+ = 1
2 (|[fn](y) · ν(y)|+ [fn](y) · ν(y)) (1.8)

([fn](y) · ν(y))− = 1
2 (|[fn](y) · ν(y)| − [fn](y) · ν(y)). (1.9)

The field ([fn] · ν )+ on the jump set is a scalar (interfacial) disarrangement density
that measures separations of pieces of the body caused by fn , while the field ([fn]·ν )−

is a scalar (interfacial) disarrangement density that measures the switching of pieces
of the body caused by fn . Since we have

|[fn](y) · ν(y)| = ([fn](y) · ν(y))+ + ([fn](y) · ν(y))−,

the field |[fn](y) · ν(y)| is a scalar disarrangement density that measures both sep-
arations and switches. We fix a part P of the body, we integrate (1.8) or (1.9) over
J(fn) ∩ P and use the formula (1.7) to obtain the relations

lim inf
n→∞

∫
J(fn)∩P

([fn](y) · ν(y))±dHN−1(y)

=
1

2
lim inf
n→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y)

± 1

2
lim inf
n→∞

∫
J(fn)∩P

[fn](y) · ν(y)dHN−1(y)

=
1

2
lim inf
n→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y)± 1

2

∫
P
trM(x)dLN (x).

(1.10)

Consequently, the limiting behavior of the integral of ([fn](y) · ν(y))± in (1.10) as n
tends to ∞ is determined by the behavior of the integral of |[fn](y) · ν(y)| , and we
restrict our attention to the latter. We expect that

lim inf
n→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y),

unlike

lim inf
n→∞

∫
J(fn)∩P

[fn](y) · ν(y)dHN−1(y),
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will depend upon the choice of determining sequence for (g,G) . Therefore, we are
led to consider the most economical manner in which separations and switches can
arise among the determining sequences for (g,G) :

V |·|(g,G;P) := inf

{
lim inf
n→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y) : fn  (g,G)

}
. (1.11)

The number V |·|(g,G;P) so defined has the dimension of volume, and we call V |·|(g,G;P)
the (minimal) volume swept out by disarrangements in P for (g,G) . If we replace
|·| everywhere in (1.11) by ” + ” or everywhere by ” − ” , then we call the number
V+(g,G;P) the (minimal) volume swept out by separations in P for (g,G) , and the
number V−(g,G;P) the (minimal) volume swept out by switches in P for (g,G) . The
formulas (1.10) imply the simple formulas

V±(g,G;P) = 1
2V
|·|(g,G;P)± 1

2

∫
P
trM(x)dLN (x)

and, in view of the form of the second term on the right-hand side, raise the follow-
ing basic question: does the volume swept out by disarrangements V |·|(g,G;P) as
defined in (1.11) have an associated disarrangement density which, when integrated
over P , recovers V |·|(g,G;P) . If so, what specific information can be obtained about
the dependence of the integrand upon the structured deformation (g,G)?

While the setting for structured deformations described in this subsection is quite
suitable for formulating refined field equations in continuum mechanics [8] that re-
flect the influence of submacroscopic geometrical changes in a body, this setting has
not provided answers to questions such as the ones just raised. Part of the difficulty
with the setting provided in [7] lies in the choice of smoothness placed on g and its
approximates fn , while another part lies in the requirement that g and fn be injec-
tive. An alternative setting provided by Choksi and Fonseca [4] was proposed for
dealing with such questions and is described briefly in the next subsection.

1.2. Structured deformations and disarrangement densities in the setting
of Choksi and Fonseca. We describe here a few essential elements of the treatment
of structured deformations by Choksi and Fonseca [4]. The articles [3], [1], [2],
and [15] also provide summaries of that treatment, and [1], [2], and [15] provide
alternative settings for structured deformations. The summary in [3] is intended for
those interested in immediate applications in continuum mechanics, while [1] sets
the stage for applications of structured deformations to thin bodies [11]. The article
[15] reexamines the results of [4] in a broader setting while providing refinements of
counterparts of the Approximation Theorem and the identification relation (1.4).

According to Choksi and Fonseca, a structured deformation is a pair (g,G) in
which g : Ω −→ RN , with Ω an open subset of the space RN of N -tuples of real
numbers, and G : Ω −→ RN×N , with RN×N the space of N×N matrices with real
entries. The mapping G is assumed to be integrable on Ω , G ∈ L1(Ω;RN×N ) , and
g is assumed to be in the space SBV (Ω;RN ) , i.e., g is a function of bounded varia-
tion with the additional property that its distributional derivative Dg , as a bounded
measure, has zero Cantor part:

Dg = ∇gLN + [g]⊗ νHN−1. (1.12)

Here the integrable mapping ∇g is the density of the absolutely continuous part
∇gLN of Dg with respect to N -dimensional Lebesgue measure LN , and [g] ⊗ ν is
the density of the singular part [g]⊗νHN−1 of Dg with respect to (N−1) -dimensional
Hausdorff measure HN−1 . The singular part is concentrated on J(g) , the jump set of
g , and, as usual, [g] denotes the jump in g and ν denotes the normal to the jump set
J(g) . It is important to note that ∇g in the present setting is no longer the classical
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gradient of a smooth field and, consequently, need not be curl-free. Nevertheless,
∇g satisfies an integral version of the property of approximation by linear mappings
that defines the classical gradient of smooth fields .

Choksi and Fonseca [4] prove a version of the Approximation Theorem with ap-
proximating deformations fn also in SBV (Ω;RN ) and with (1.2) and (1.3) replaced
respectively by

fn → g in L1(Ω;RN ) (1.13)
and

∇fn ⇀ G weakly in the sense of measures. (1.14)
We note that no restriction in the form of the accommodation inequality (1.1) or in the
form of a requirement of injectivity of g or fn is imposed in the present context. We
again use the term determining sequence to describe a sequence n 7−→ fn satisfying
(1.13) and (1.14) for a given structured deformation (g,G) , and we again write fn  
(g,G) when (1.13) and (1.14) both hold. The properties of distributional derivatives
along with relations (1.12), (1.13), and (1.14) justify the calculation

∇gLN + [g]⊗ νHN−1 = D lim
n→∞

fn

= lim
n→∞

Dfn

= lim
n→∞

(∇fn LN + [fn]⊗ νHN−1)

= GLN + lim
n→∞

([fn]⊗ νHN−1)

where the convergence indicated in the last three lines is weak convergence in the
sense of measures. We conclude that the singular parts [fn]⊗ νHN−1 of the approx-
imating deformations fn converge in the same sense and that their limit satisfies

lim
n→∞

([fn]⊗ νHN−1) = (∇g −G)LN + [g]⊗ νHN−1. (1.15)

In particular, the restriction of the limiting measure limn→∞([fn] ⊗ νHN−1) to the
complement of the jump set J(g) agrees with the corresponding restriction of (∇g −
G)LN = M LN . Consequently, the tensor field M = ∇g −G retains in this broader
setting for structured deformations its identity as a tensor density of disarrange-
ments for (g,G) . The formula (1.15) shows that when M = ∇g − G 6= 0 , while
all of the measures [fn] ⊗ νHN−1 are supported on sets J(fn) of LN -measure zero
and so have LN -parts zero, the limit measure limn→∞([fn] ⊗ νHN−1) has LN -part
MLN non-zero. This observation points to the fact that the jump sets J(fn) can dif-
fuse in the limit throughout the domain Ω so that the limiting measure limn→∞([fn]⊗
νHN−1) is supported in part on sets of positive LN -measure. This provides a coun-
terpart in the SBV -setting to the relation (1.4) in which the limit of jumps on the
left-hand side delivers the LN -density M . (See [15] for a detailed derivation of a
counterpart of (1.4) in a somewhat broader setting for structured deformations than
SBV .)

We note briefly that the scalar density of disarrangements trM = tr(∇g −G) that
counts only normal components of jumps and that emerged in the previous setting
also appears in the present setting when one takes the trace of every member of
(1.15): if fn  (g,G) , then

lim
n→∞

([fn] · νHN−1) = tr(∇g −G)LN + [g] · νHN−1.

However, as was the case in the setting of Del Piero and Owen, replacement of [fn] ·ν
by ([fn] · ν)± or by |[fn] · ν| need not yield a limit of the corresponding measures and,
if a limit exists, the limit may depend upon the choice of determining sequence n 7−→
fn . The setting of Choksi and Fonseca was formulated as a means of resolving these
difficulties, and we summarize some aspects of that resolution in the next subsection.
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1.3. Relaxation of energies for structured deformations. Optimal functions
arising from structured deformations such as the one (1.11)

V |·|(g,G;P) = inf

{
lim inf
n−→∞

∫
J(fn)∩P

|[fn](y) · ν(y)| dHN−1(y) : fn  (g,G)

}
introduced in Section 1.1 can be analyzed using the results of Choksi and Fonseca
[4] on "relaxation of energies" for structured deformations. In that approach, the
integral

∫
J(fn)∩P |[fn](y) · ν(y)| dHN−1(y) is replaced by an initial energy functional

E(fn) =

∫
Ω

W (∇fn(y))dLN (y) +

∫
J(fn)∩Ω

ψ([fn](y), ν(y))dHN−1(y)

defined for fn ∈ SBV (Ω;RN ) . By imposing conditions on the initial bulk energy
density W and on the initial interfacial energy density ψ , the goal is to obtain for
the relaxed energy I(g,G) defined by

I(g,G) := inf

{
lim inf
n→∞

(∫
Ω

W (∇fn(y))dLN (y)+∫
J(fn)∩Ω

ψ([fn](y), ν(y))dHN−1(y)

)
: fn  (g,G)

}
a representation of the form

I(g,G) =

∫
Ω

H(∇g(y), G(y))dLN (y) +

∫
J(g)∩Ω

h([g](y), ν(y))dHN−1(y)

and to deduce properties of the relaxed bulk energy density H and the relaxed inter-
facial energy density h . Because our present interest lies in the case of disarrange-
ment densities, and not on the full energetics of structured deformations, we shall
restrict our attention to the case W = 0 , and we record the following adaptation for
the case W = 0 of results from [4] (see [13, Theorem 3] for further comments and
other adaptations).

Theorem 1.1. Let SN−1 = {ν ∈ RN : |ν| = 1}. Let Ω be a bounded open subset of RN
and ψ : RN × SN−1 → [0,+∞) be such that
(H1) there exists a constant C > 0 such that

0 6 ψ(ξ, ν) 6 C|ξ|

for all (ξ, ν) ∈ RN × SN−1 ,
(H2) ψ(·, ν) is positively homogeneous of degree 1:

ψ(t ξ, ν) = t ψ(ξ, ν)

for all t > 0 and (ξ, ν) ∈ RN × SN−1 ,
(H3) ψ(·, ν) is subadditive, i.e., for all ξ1, ξ2 ∈ RN and ν ∈ SN−1 ,

ψ(ξ1 + ξ2, ν) 6 ψ(ξ1, ν) + ψ(ξ2, ν).

Then, for any p > 1 , if we define

I(g,G) := inf

{
lim inf
n→∞

∫
J(un)∩Ω

ψ([un], ν) dHN−1 : un ∈ SBV (Ω;RN ),

un → g in L1(Ω;RN ),∇un
∗
⇀ G,

sup
n

(
|∇un|Lp(Ω;RN×N ) + |Dun|(Ω)

)
< +∞

}
,
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we have

I(g,G) =

∫
Ω

H(∇g(x), G(x)) dLN +

∫
J(g)∩Ω

h([g](x), ν(x)) dHN−1(x),

where

H(A,B) := inf

{∫
J(u)∩Q

ψ([u], ν) dHN−1 : u ∈ SBV (Q;RN ),

u|∂Q = Ax, |∇u| ∈ Lp(Q),

∫
Q

∇u dLN = B

}
,

(1.16)

and

h(ξ, η) := inf

{∫
J(u)∩Qη

ψ([u], ν) dHN−1 : u ∈ SBV (Qη;RN ),

u|∂Qη = uξ,η,∇u = 0 a.e.
}
,

(1.17)

with

uξ,η(x) :=

{
0 if − 1

2 6 x · η < 0,
ξ if 0 6 x · η < 1

2 .
(1.18)

Here, Q = (−1/2, 1/2)N and Qη denotes the unit cube centered at the origin and with
two faces normal to η .

In the right-hand side of (1.17) we have corrected an inconsequential misprint that
is present in the corresponding formula in Theorem 3 of [13].

Another approach to relaxation of energies for structured deformations in the full
BV setting is provided in [1]. A structured deformation in [1] is a pair (g,G) ∈
BV 2(Ω;RN )×BV (Ω;RN×N ) , where BV 2(Ω;RN ) := {u ∈ BV (Ω;RN ) : ∇u ∈ BV (Ω;RN×N )} .
The counterpart of the Approximation Theorem in this context asserts that there ex-
ists a sequence fn ∈ BV 2(Ω;RN ) such that both fn → g and ∇fn → G in the
L1 -norm. In this case we write fn  (g,G) .

The energy functional considered in [1], under assumptions on the initial bulk and
surface energy densities similar to the ones in [4], reads

E(fn) =

∫
Ω

W (∇fn(y),∇2fn(y)) dLNy +

∫
J(fn)

ψ([fn](y), ν(y)) dHN−1(y)

+

∫
J(∇fn)

ψ1([∇fn](y), ν(y)) dHN−1(y),

and the relaxed energy I(g,G) is defined by

I(g,G) := inf
{

lim inf
n→∞

E(fn) : fn  (g,G)
}
. (1.19)

A crucial result in [1] is that (1.19) can be divided into two first-order relaxed
energies, namely, I(g,G) = I1(g,G) + I2(G) , where the term I1(g,G) captures the
structured deformation, whereas I2(G) only depends on the deformation without
disarrangements G . In the relevant case for the present paper, i.e., W = ψ1 = 0 , the
results in [1] give I2 = 0 and

I1(g,G) := inf

{
lim inf
n→∞

∫
J(fn)∩Ω

ψ([fn](y), ν(y))dHN−1(y) : fn  (g,G)

}
.

Defining SBV 2(Ω;RN ) := {u ∈ SBV (Ω;RN ) : ∇u ∈ SBV (Ω;RN×N )} , the following
representation theorem holds
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Theorem 1.2 (see [1, Theorem 3.2]). For every (g,G) ∈ SBV 2(Ω;RN )×SBV (Ω;RN×N ) ,
given ψ under the same hypotheses (H1)-(H3) of Theorem 1.1, we have that

I(g,G) =

∫
Ω

H(G(x)−∇g(x)) dLN +

∫
J(g)∩Ω

h([g](x), ν(x)) dHN−1(x),

where, given A ∈ RN×N , ξ ∈ RN , and η ∈ SN−1 ,

H(A) := inf

{∫
J(u)∩Q

ψ([u], ν) dHN−1 : u ∈ SBV 2(Q;RN ),

u|∂Q = 0,∇u = A a.e. in Q

} (1.20)

and

h(ξ, η) := inf

{∫
J(u)∩Qη

ψ([u], ν) dHN−1 : u ∈ SBV 2(Qη;RN ),

u|∂Qη = uξ,η,∇u = 0 a.e. in Q

}
,

(1.21)

with uξ,η defined as in (1.18).

Remark 1.3. It is worth noticing that the minimum problems defining (1.20) and
(1.21) are formally performed in SBV 2(Ω;RN ) , but the result is the same if SBV 2 is
replaced in these relations by SBV , due to the requirement that ∇u be constant.

1.4. Explicit formulas for relaxed disarrangement densities. Owen and Pa-
roni [13] applied Theorem 1.1 to the specific disarrangement densities |[fn](y) · ν(y)|
and ([fn](y) · ν(y))± introduced in Section 1.1 and obtained for each of these densi-
ties an explicit formula for the corresponding relaxed disarrangement densities H
in (1.16) and h in (1.17). Among their results ([13],Theorem 4) are the following
(obtained by setting L(x) = I in their Theorem 4):

Theorem 1.4. The initial disarrangement densities

ψ|·|(ξ, ν) := |ξ · ν| (1.22)

ψ±(ξ, ν) := (ξ · ν)±

satisfy the hypotheses (H1)-(H3) in Theorem 1.1 and have relaxed disarrangement
densities given by

H |·|(A,B) = |tr(A−B)| , h|·|(ξ, ν) = |ξ · ν| = ψ|·|(ξ, ν), (1.23)

and
H±(A,B) = (tr(A−B))±, h±(ξ, ν) = (ξ · ν)± = ψ±(ξ, ν).

Specifically, when the minimal volume swept out by disarrangements V |·|(g,G;P)
is defined in the Choksi-Fonseca setting by (1.11), then (1.23) yields the explicit for-
mula

V |·|(g,G;P) =

∫
P
|tr(∇g(x)−G(x))| dLN (x)+

∫
J(g)∩P

|[g](x) · ν(x)| dHN−1(x) (1.24)

for the (minimal) volume swept out by separations and switches among approxima-
tions fn that determine (g,G) . Relation (1.24) provides answers in the setting of
Choksi and Fonseca to the questions raised at the end of Section 1.1: V |·|(g,G;P) has
both a bulk disarrangement density |tr(∇g −G)| = |trM | and an interfacial disar-
rangement density |[g] · ν| . Similarly, Theorem 1.4 shows that the (minimal) volume
swept out by separations alone, V+(g,G;P) , has the bulk disarrangement density
(trM)+ and the interfacial disarrangement density ([g] · ν)+ , with a corresponding
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result for V−(g,G;P) , the (minimal) volume swept out by switches and interpene-
trations (the approximations fn in the Choksi-Fonseca setting are not required to
be injective, so that interpenetrations can arise there, unlike in the setting of Del
Piero-Owen).

1.5. Summary of the research presented in the present article. In the proof
of Theorem 1.4 given in [13], the significant part of the argument addresses the
verification of the inequality

H |·|(A,B) 6 |tr(A−B)| (1.25)

where H |·|(A,B) is given by the right-hand side of (1.16) with ψ([u], νu) replaced by
ψ|·|([u], ν) = |[u] · ν| . This inequality was proved in [13] by constructing a family
uε of piecewise affine mappings on the unit cube Q each of whose jump set J(uε)
is formed by two (planar) ends and by a lateral surface constructed from solution
curves of the differential equation ẋ = (A−B)x . The lateral surface, by construction,
contributes nothing to the integral

∫
J(u)∩Qη |[u] · ν| dHN−1 , and the contributions of

the two ends can be calculated explicitly for A−B lying in a dense subset of RN×N .
Proposition 5.2 of [4] provides sufficient regularity of H |·|(A,B) to establish (1.25)
for all A−B ∈ RN×N .

As one of the main results in this article, we provide an alternate, shorter proof
of (1.25) that employs a different family uε of piecewise affine mappings that does
not involve solution curves of ẋ = (A− B)x . Our approach is based on the following
observation. With A,B ∈ RN×N , p > 1 , and with Q = (−1/2, 1/2)N there hold

|tr(A−B)| 6 inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = Ax on ∂Q, ∇u ∈ Lp(Q),

∫
Q

∇u(x)dLN (x) = B

}
6 inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = 0 on ∂Q, ∇u = B −A a.e.

}
.

(1.26)

The first follows by moving the absolute value outside the integral and using the
Gauss-Green Theorem for the space SBV (Q;RN ) of special functions of bounded
variation, while the second follows by noting that if u satisfies the last set of condi-
tions, then the function x 7−→ u(x) + Ax satisfies the first set of conditions. In this
paper, we wish to show that

inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;R
N

),

u(x) = 0 on ∂Q, ∇u = B −A a.e.

}
6 |tr(A−B)|

(1.27)

so that the two infima in (1.26) have common value |tr(A−B)| .
The second main contribution of the present research concerns the alternative

approach to structured deformations and to relaxed energies due to Baía, Matias,
and Santos [1] discussed at the end of Subsection 1.3. According to that discussion
the second infimum in (1.26) (see (1.20) and Remark 1.3)

inf

{∫
J(u)

|[u](x) · ν(x)| dHN−1(x) : u ∈ SBV (Q;RN ),

u(x) = 0 on ∂Q,∇u = B −A a.e. in Q

}
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is the bulk disarrangement density for the same interfacial disarrangement density
ψ|·|([u], ν) (1.22) studied by Owen and Paroni in the setting of Choksi and Fonseca.
Consequently, our proof of (1.27) establishes the equality of the bulk disarrange-
ment densities obtained in two different settings for structured deformations. Thus,
the geometrical significance of the expression |tr(A−B)| described in [13], namely,
a volume density of volume swept out by non-smooth, submacroscopic geometrical
changes, is strengthened by the fact that one and the same expression arises from
two different schemes of relaxation. We note that the two different schemes of re-
laxation also deliver the same formula for the (relaxed) interfacial disarrangement
density h : h = ψ|·| (see [13] for the routine verification that applies to both schemes).

The explicit formulas for disarrangement densities considered here in the context
of structured deformations will provide scalar fields that can enter as variables in
constitutive relations for the response of three-dimensional bodies. For this purpose,
frame-indifferent variants of the specific fields obtained here are available through
known factorizations of structured deformations in which the factor that tracks dis-
arrangements is unchanged under changes in frame [7]. Our explicit formulas also
are starting points for the study of examples in other contexts involving structured
deformations: second-order structured deformations [14] in which second gradients
and their limits enter into submacroscopic changes in geometry, as well as processes
for dimension reduction [11] in the presence of disarrangements that describe thin
structures undergoing submacroscopic slips, separations, and switches.

In Section 2 we provide a "tilted cube" construction for the family uε of functions
employed in proving (1.27). The common orientation of the tilted cubes is determined
in Section 3 by means of a known result on the isotropic vectors of symmetric linear
mappings. The proof of (1.27) is completed in Section 4, and the paper concludes in
Section 5 with some additional explicit formulas for disarrangement densities.

During the review of this article, the research [16] was brought to our attention in
which explicit formulas for the bulk and interfacial relaxed energies are established
for a broad class of purely interfacial initial energies that includes the ones studied
here.

2. PROOF OF THE UPPER BOUND INEQUALITY

In what follows, a proof of (1.27) is given. The proof requires the following instance
of Lemma 4.3 in [10].

Lemma 2.1. Let M ∈ RN×N and a bounded open set Ω ⊂ RN be given, with Ω
having Lipshitz boundary. There exist a number C(N) > 0 , independent of M and
Ω , and u ∈ SBV (Ω;RN ) such that

(1) u|∂Ω = 0
(2) ∇u = M, LN − a.e. on Ω
(3) |Dsu| (Ω) 6 C(N) ‖M‖LN (Ω).

Here, ∇u and Dsu denote the absolutely continuous and the singular parts of
the distributional derivative Du = ∇uLN + Dsu of u , and |Dsu| denotes the total
variation of the singular part. In addition, ‖M‖ := (tr(MTM))1/2 is the Euclidean
norm of the matrix M . We shall now use the Lemma to verify (1.27) for M = A−B .
To this end, let an integer n > 1 be given and consider the frame

Fn := Q \ (1− 2
n+2 )Q.

We may apply the Lemma to obtain an SBV function u(n) : Fn → RN satisfying
• u(n)|∂Fn = 0
• ∇u(n) = M , LN − a.e. on Fn
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• the total variation
∫
J(u(n))

∣∣[u(n)]
∣∣ (x)dHN−1(x) of u(n) satisfies∫

J(u(n))

|[u(n)]|(x)dHN−1(x) 6 C(N) ‖M‖
(

1− (1− 2
n+2 )N

)
(2.1)

In preparation for defining an appropriate function u on Q\Fn = (1 − 2
n+2 )Q , we

write M̂ := 1
2 (M +MT ) for the symmetric part of M , and we choose an orthonormal

basis ei, i = 1, . . . , N of RN that consists of eigenvectors of M̂ :

M̂ei = λiei, i = 1, . . . , N.

We let m be a positive integer and cover (1− 2
n+2 )Q by a collection Cn,m of congruent,

non-overlapping open cubes Ckn,m , k = 1, . . . ,Kn,m , each of edge-length 1/m , each
with the ith pair of opposite faces orthogonal to the unit vector Rei , for i = 1, . . . , N .
Here, R is an orthogonal N×N matrix, RRT = RTR = I , to be determined presently.
We require in addition that each each cube Ckn,m satisfies

(1− 2
n+2 )Q ∩ Ckn,m 6= Ø.

We denote by ckn,m the center of Ckn,m , and we define un,m : (1− 2
n+2 )Q→ RN

un,m(x) :=

{
M(x− ckn,m) if x ∈ (1− 2

n+2 )Q ∩ Ckn,m for some k = 1, . . . ,Kn,m,
0 if x ∈ (1− 2

n+2 )Q\ ∪Kn,mk=1 Ckn,m.

Using standard reasoning we conclude that un,m ∈ SBV ((1 − 2
n+2 )Q;RN ) with

∇un,m = M , LN − a.e. on (1− 2
n+2 )Q . Moreover, the trace of un,m on ∂((1− 2

n+2 )Q)

is bounded pointwise by
√
N

2m ‖M‖ . Consequently, the function u
(n)
m : Q→ RN defined

by

u(n)
m (x) :=

{
u(n)(x) for x ∈ Fn,
un,m(x) for x ∈ (1− 2

n+2 )Q

belongs to SBV (Q;RN ) , has gradient M , LN− a.e., and has zero trace on ∂Q . More-
over, the jump set of u(n)

m satisfies

J(u(n)
m ) ⊂ J(u(n)) ∪ ∂((1− 2

n+2 )Q) ∪ J(un,m). (2.2)

Since u
(n)
m has outer trace 0 on ∂(1 − 2

n+2 )Q, there holds for HN−1 − a.e. x in
∂((1− 2

n+2 )Q) ∣∣∣[u(n)
m ](x)

∣∣∣ 6 √N
m
‖M‖

and, consequently,∫
∂((1− 2

n+2 )Q)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6

√
N

m
‖M‖ 2N(1− 2

n+2 )N−1. (2.3)

We note from (2.1) that∫
J(u(n))

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6 C(N) ‖M‖ (1− (1− 2
n+2 )N ), (2.4)

and it remains to obtain a corresponding estimate for
∫
J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) .
To this end, we note that

J(un,m) ⊂
Kn,m⋃
k=1

∂Ckn,m ,
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and we shall seek an upper bound for
∫
∪Kn,mk=1 ∂Ckn,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) . For

each k = 1, . . . ,Kn,m and i = 1, . . . , N, we denote by φk,i+n,m and φk,i−n,m the two faces
of the cube Ckn,m ∈ Cn,m orthogonal to Rei . We note that one face φk,i+n,m of Ckn,m has
outer normal ν+

i,k = +Rei , while the opposite face φk,i−n,m has outer normal ν−i,k =
−Rei .

We suppose now that the face φk,i+n,m of Ckn,m ∈ Cn,m satisfies

φk,i+n,m ⊂ (1− 2
n+2 )Q. (2.5)

Then there is a cube Ck
′

n,m ∈ Cn,m that shares the given face with Ckn,m , and we have
at each point x ∈ φk,i+n,m

[u(n)
m ](x) · ν(x) = (M(x− ck

′

n,m)−M(x− ckn,m)) · ν+
i,k(x)

= M(ckn,m − c
k′

n,m) · ν+
i,k(x)

= M(− 1
mν

+
i,k(x)) · ν+

i,k(x)

= − 1

m
M̂Rei ·Rei

so that ∫
φk,i+n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =

∫
φk,i+n,m

1

m
|M̂R ei ·Rei|dHN−1(x)

=
1

mN
|M̂R ei ·Rei|.

(2.6)

The same argument shows that if

φk,i−n,m ⊂ (1− 2
n+2 )Q

then ∫
φk,i−n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
1

mN
|M̂R ei ·Rei|. (2.7)

If (2.5) holds for i = 1, . . . , N , then we may sum the last relation over i to conclude
that

N∑
i=1

∫
φk,i+n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
1

mN

N∑
i=1

|M̂R ei ·Rei|

>
1

mN

∣∣∣∣∣
N∑
i=1

M̂R ei ·Rei

∣∣∣∣∣
=

1

mN

∣∣∣∣∣
N∑
i=1

RT M̂R ei · ei

∣∣∣∣∣
=

1

mN
|tr(RT M̂R)| = 1

mN
|trM | .

(2.8)

In (2.8) equality holds if and only if all of the numbers M̂R ei · Rei , i = 1, . . . , N ,
have the same sign:

(M̂R ei ·Rei )(M̂R ej ·Rej ) > 0, for i, j = 1, . . . , N. (2.9)

The last two inequalities lead us to consider the problem

Find min
RRT=I

N∑
i=1

|M̂R ei ·Rei| > |tr M̂ | = |trM | , (2.10)
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with equality holding if and only if there exists an orthogonal matrix R satisfying
(2.9).

3. ASIDE ON ISOTROPIC VECTORS

We note that the sign inequality (2.9) suggests looking for unit vectors v such that

M̂v · v = 0, (3.1)

the isotropic vectors for M̂ [5]. In particular, in the special case tr M̂ = 0 , the
existence of N mutually orthogonal isotropic vectors v1, . . . , vN would insure that the
matrix R defined by Rei = vi for i = 1, . . . , N would satisfy (2.10) in the form 0 = 0 .
More generally, even when tr M̂ 6= 0 , the existence of isotropic vectors is useful. In
fact, the symmetric matrix M̂ − 1

N (tr M̂)I has zero trace, so we suppose that there
exist N mutually orthogonal isotropic unit vectors v1, . . . , vN for M̂− 1

N (tr M̂)I . The
relation (3.1) with M̂ replaced by M̂ − 1

N (tr M̂)I then becomes

0 =
(
M̂ − 1

N
(tr M̂)I

)
vi · vi = M̂vi · vi −

tr M̂

N

so that M̂vi · vi = tr M̂
N for i = 1, . . . , N . Again, if we define a linear mapping R on

RN by Rei = vi for i = 1, . . . , N then R is orthogonal, it satisfies the sign inequality
for M̂ (2.9), and it delivers equality in (2.10) in the form

∑N
i=1

∣∣∣ tr M̂N ∣∣∣ = |tr M̂ | .
The following result ([5], Corollary 15) provides the desired existence of complete

orthonormal sets of isotropic vectors.

Theorem 3.1. A symmetric matrix A ∈ RN×N possesses an orthonormal set of N
isotropic vectors if and only if trA = 0 .

This theorem and the preceding discussion permit us to conclude: for every matrix
M ∈ RN×N ,

min
RRT=I

N∑
i=1

|MRei ·Rei| = min
RRT=I

N∑
i=1

|M̂R ei ·Rei|

=|tr M̂ | = |trM | ,

and a minimizing rotation matrix R is one carrying the orthonormal basis of RN con-
sisting of eigenvectors of M̂ into an orthonormal basis of RN consisting of isotropic
vectors of M̂ − 1

N (tr M̂)I . For this minimizing rotation matrix, we have

|M̂R ei ·Rei| =
1

N
|trM | for i = 1, . . . , N . (3.2)

We remark that minimizers are not unique, in general, even when one eliminates
trivial permutations of isotropic vectors. In fact, for N = 3 there are examples of
minimizers for which two of the three terms in

∑3
i=1 |M̂R ei · Rei| vanish, while the

third equals |trM | , so that only two of the three vectors Rei are isotropic vectors for
M̂ .

For the convenience of the reader, we provide the recursive step used in proving the
existence of orthonormal bases made up of isotropic vectors for a traceless symmetric
matrix A ∈ RN×N . We interpret A in the usual way as a linear mapping on RN ,
endowed with the standard inner product. Then the nullspace KerA of A and
its orthogonal complement (KerA)⊥ are complementary A -invariant subspaces of
RN , and all vectors in KerA are isotropic vectors for A . If (KerA)⊥ is the zero
subspace, then A = 0 and every vector in RN is an isotropic vector for A , and every
orthonormal basis of RN meets the desired requirement. If (KerA)⊥ is not the
zero subspace, then we seek additional isotropic vectors for A in (KerA)⊥ . To this
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end, the traceless symmetric linear mapping A 6= 0 has both positive and negative
eigenvalues so that

min
|u|=1

Au · u < 0 < max
|u|=1

Au · u

and, since the unit sphere in RN is connected and since the quadratic form u 7−→
Au · u is continuous, there exists a unit vector v1 ∈ RN such that Av1 · v1 = 0 . Writ-
ing v1 as a sum of two orthogonal vectors, one in KerA and the other in (KerA)⊥

and using the invariance of (KerA)⊥ under A shows that we may without loss of
generality assume that v1 ∈ (KerA)⊥ . The linear span Lsp(KerA ∪ {v1}) has di-
mension one larger than that of KerA and consists solely of isotropic vectors for A .
Consequently, we need to search for isotropic vectors of A in (Lsp(KerA ∪ {v1}))⊥
which has dimension one less than (KerA)⊥ . To procede further, we define a linear
mapping A1 on RN by

A1 = A− v1 ⊗Av1 −Av1 ⊗ v1

where the formula (a⊗ b)v := (b · v)a , for all a, b, v ∈ RN , defines the standard tensor
product a ⊗ b ∈ Lin(RN ;RN ) . From the fact that v1 is an isotropic vector for A
and from the formula tr((a ⊗ b) = a · b it is easy to see that A1 is traceless; because
(a⊗b)T = b⊗a , it follows that A1 is symmetric. In addition, if v ∈ (Lsp(KerA∪{v1}))⊥
is an isotropic vector for A1 , then we have not only v · v1 = 0 but also

0 = A1v · v
= (Av − (Av1 · v)v1 − (v1 · v)Av1) · v
= Av · v − (Av1 · v)(v1 · v)− (v1 · v)(Av1 · v)

= Av · v.

Thus, every isotropic vector for A1 that is in (Lsp(KerA ∪ {v1}))⊥ is an isotropic
vector for A , and dim((Lsp(KerA∪{v1}))⊥) = dim((KerA)⊥)−1 . To be able to apply
the forgoing considerations to A1 , we need only show that (Lsp(KerA ∪ {v1}))⊥ is
invariant under A1 . To this end, let v ∈ (Lsp(KerA ∪ {v1}))⊥ , vκ ∈ KerA , and
α ∈ R be given, and consider

A1v · (vκ + αv1) = A1v · vκ +A1v · αv1

= v ·A1vκ + αv ·A1v1

= 0 + αv · (Av1 − (Av1 ⊗ v1)v1 − (v1 ⊗Av1)v1)

= αv · (Av1 − (v1 · v1)Av1 − (Av1 · v1)v1)

= αv · (Av1 −Av1 − 0) = 0.

We may conclude that A1v ∈ (Lsp(KerA∪ {v1}))⊥ as desired. In the third line of the
above computation we have used the side-calculation

v ·A1vκ = v · (A− v1 ⊗Av1 −Av1 ⊗ v1)vκ

= v ·Avκ − (Av1 · vκ)(v · v1)− (v1 · vκ)(v ·Av1) = 0.

The first term on the last line vanishes because vκ ∈ KerA , the second vanishes
because v ∈ (Lsp(KerA ∪ {v1}))⊥ and the third vanishes because v1 ∈ (KerA)⊥ .
The search for isotropic vectors for A on the A -invariant subspace (KerA)⊥ may now
be replaced by the search for isotropic vectors for A1 on the A1 -invariant subspace
(Lsp(KerA ∪ {v1}))⊥ of dimension one less than that of (KerA)⊥ .
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4. COMPLETION OF THE PROOF OF THE UPPER BOUND INEQUALITY

We may use (3.2) and the formulas (2.6), (2.7) to conclude that: if Ckn,m has a face
φk,i±n,m ⊂ (1− 2

N+2 )Q , then∫
φk,i±n,m

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) =
|trM |
NmN

=
|trM |
N
LN (Ckn,m). (4.1)

On the other hand, if a face φk,i±n,m of Ckn,m ∈ Cn,m fails to satisfy φk,i±n,m ⊂ (1− 2
N+2 )Q ,

then the argument used to verify (4.1) may be applied to φk,i±n,m∩ (1 − 2
n+2 )Q to

conclude that∫
φk,i±n,m ∩(1− 2

n+2 )Q

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) 6
|trM |
N
LN (Ckn,m). (4.2)

We now consider the cube C1
n,m ∈ Cn,m and choose V 1

n,m , one of its 2N vertices.
Exactly N faces φ1,j , j = 1, . . . , N , of C1

n,m meet at V 1
n,m . Because each cube Ckn,m ∈

Cn,m for k = 1, . . . ,Kn,m can be obtained from C1
n,m by a unique translation Tk , the

choices C1
n,m and V 1

n,m induce via Tk an assignment of N faces φk,j , j = 1, . . . , N to
Ckn,m . It is easy to show that for all k, k′ = 1, . . . ,Kn,m

k′ 6= k =⇒
{
φk
′,j : j = 1, . . . , N

}
∩
{
φk,j : j = 1, . . . , N

}
= Ø,

i.e., the set of N faces assigned to different cubes are disjoint. If we now apply the
mapping

Ckn,m 7−→
{
φk,j : j = 1, . . . , N

}
to each cube in the collection

Cint
n,m :=

{
Ckn,m ∈ Cn,m : Ckn,m ⊂ (1− 2

N + 2
)Q

}
,

then all of the faces φk,j so obtained will be included in (1 − 2
N+2 )Q , and we may

apply (4.1) to each such face to obtain for each Ckn,m ∈ Cint
n,m

N∑
j=1

∫
φk,j

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) = N
|trM |
N
LN (Ckn,m) = |trM | LN (Ckn,m).

We may sum both sides over the cubes Ckn,m ∈ Cint
n,m to obtain∑

Ckn,m∈Cintn,m

N∑
j=1

∫
φk,j

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) = |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m).

The faces represented on the left hand side need not include all of J(un,m) ⊂ ∪Kn,mk=1 ∂Ckn,m ,
because some faces of cubes Ckn,m ∈ Cint

n,m that are also faces of cubes Ck
′

n,m ∈ Cn,m\Cint
n,m

are left out, while proper subsets φk,i±n,m∩ (1 − 2
n+2 )Q of faces φk,i±n,m also are left out.

However, for those parts of J(un,m) , we may use (4.1) and (4.2) to estimate the in-

tegrals
∫
φk,i±n,m ∩(1− 2

n+2 )Q

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) , along with the fact that the cubes

whose faces contain these parts of J(un,m) all must contain points of ∂(1 − 2
n+2 )Q

and must together cover ∂(1 − 2
n+2 )Q . Combining all of these contributions to∫

J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) we obtain

0 6
∫
J(un,m)

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x)− |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m)

62 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m).

(4.3)
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The factor of 2 = 2N
N in the last expression reflects the fact that the LN -measure of

some of the cubes in the collection Cn,m\Cint
n,m has been counted more than once but

no more than 2N times through the use of the bound (4.2). The relations (4.3), (2.2),
(2.3), and (2.4) now yield the relation

0 6
∫
J(u

(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x)− |trM | LN (∪Ckn,m∈Cintn,mC
k
n,m)

62 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m) +

√
N

m
‖M‖ 2N(1− 2

n+2 )
N−1

+ C(N) ‖M‖ (1− (1− 2
n+2 )

N
).

(4.4)

We use in turn (4.4) to obtain an upper bound for∫
J(u

(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x).

Let ε > 0 be given and choose n so large that C(N) ‖M‖ (1− (1− 2
n+2 )

N
) < ε and, for

such an n , choose m so large that
√
N
m ‖M‖ 2N(1− 2

n+2 )
N−1

< ε . Because (1− 2
n+2 )Q

has finite LN−measure, we may choose m larger if necessary so that the cover Cn,m
of (1 − 2

n+2 )Q satisfies LN (∪Ckn,m∈Cn,mC
k
n,m) < LN ((1 − 2

n+2 )Q) + ε < 1 + ε . Finally,
because ∂(1 − 2

n+2 )Q has zero LN−measure and is covered by Cn,m\Cint
n,m , we may

again choose m larger, if necessary, so that 2 |trM | LN (∪Ckn,m∈(Cn,m\Cintn,m)C
k
n,m) < ε .

We conclude that for n and m so chosen∫
J(u

(n)
m )

∣∣∣[u(n)
m ](x) · ν(x)

∣∣∣ dHN−1(x) < |trM | (1 + ε) + 3ε = |trM |+ (|trM |+ 3)ε

and, since ε > 0 was arbitrary, that (1.27) holds. �

5. ADDITIONAL EXPLICIT FORMULAS FOR DISARRANGEMENT DENSITIES

Our discussion above shows that the particular choice of interfacial measure of
disarrangements ∫

J(u)∩Ω

|[u] · ν| dHN−1 (5.1)

for deformations u of a region Ω ⊂ RN leads in both the Choksi-Fonseca relaxation
scheme [4] and in the Baía-Matias-Santos relaxation scheme [1] to one and the same
bulk density of disarrangements∫

Ω

|tr(∇g −G)| dLN

for structured deformations (g,G) of that region. Moreover, our analysis here pro-
vides an alternative to the proof of this result given in [13] . In that article, it
was observed that replacement of |[u] · ν| by its positive part ([u] · ν)+ = 1

2 (|[u] · ν|+
[u] · ν) results in the replacement of |tr(∇g −G)| by its positive part (tr(∇g−G))+ =
1
2 (|tr(∇g −G)|+ tr(∇g −G)) in the relaxed bulk disarrangement density. (An anal-
ogous result holds for the negative parts, obtained by replacing "+" by "−" in the
definition of the positive parts.) As pointed out in [13], (tr(∇g − G)(x))+ may now
be interpreted as the minimum volume fraction at a point x ∈ Ω that can be swept
out by submacroscopic separations associated with deformations un approximating
the structured deformation (g,G) . Moreover, (tr(∇g −G)(x))− is the minimum vol-
ume fraction at x swept out by submacroscopic switches and interpenetrations, so
that |tr(∇g −G)(x)| = (tr(∇g −G)(x))+ + (tr(∇g −G)(x))− is the minimum volume
fraction swept out by submacroscopic separations, switches, and interpenetrations.
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The presence of the inner-product [u] · ν in the initial interfacial density (5.1) tells
us that only normal components of jumps will contribute and that alternative ini-
tial interfacial densities are required in order to capture contributions of tangential
components of jumps. In the remainder of this section we shall provide alternative
initial interfacial densities that not only capture contributions of tangential compo-
nents of jumps but also lead to specific formulas for the relaxed bulk disarrangement
density via the "tilted cube" construction provided in Sections 2 and 4 above.

Let a ∈ RN be given and consider the following replacement for (5.1)∫
J(u)∩Ω

|[u] · a| dHN−1 (5.2)

in which the normal component [u] · ν of the jump in u is replaced by the component
[u] · a in the direction of a . To follow again the relaxation scheme in [1] we let A,B ∈
RN×N be given and require not only u ∈ SBV (Q,RN ) but also

u|∂Q = 0 , ∇u = B −A, LN − a.e. in Q. (5.3)

We now may use the Gauss-Green formula and (5.3) to write∫
J(u)∩Q

|[u] · a| dHN−1 =

∫
J(u)∩Q

|([u · a])ν| dHN−1

>

∣∣∣∣∣
∫
J(u)∩Q

([u · a])νdHN−1

∣∣∣∣∣
=

∣∣∣∣− ∫
Q

∇(u · a)dLN +

∫
∂Q

(u · a)νdHN−1

∣∣∣∣
=

∣∣∣∣−∫
Q

(∇u)Ta dLN +

∫
∂Q

(0 · a)νdHN−1

∣∣∣∣
=
∣∣(B −A)Ta

∣∣
For the "tilted-cube" construction provided in Sections 2 and 4, we replace the matrix
M by B −A , and the relation (2.6) has here the following counterpart∫

φk,i+n,m

∣∣∣[u(n)
m ](x) · a

∣∣∣ dHN−1(x) =

∫
φk,i+n,m

∣∣∣([u(n)
m ](x) · a)ν(x)

∣∣∣ dHN−1(x)

=

∫
φk,i+n,m

1

m
|((B −A)Rei · a)Rei| dHN−1(x)

=
1

mN

∣∣(Rei · (B −A)Ta)Rei
∣∣ ,

and this formula leads to the following counterpart of (2.8):
N∑
i=1

∫
φk,i+n,m

∣∣∣[u(n)
m ](x) · a

∣∣∣ dHN−1(x) =
1

mN

N∑
i=1

∣∣(Rei · (B −A)Ta)Rei
∣∣

>
1

mN

∣∣∣∣∣
N∑
i=1

(Rei · (B −A)Ta)Rei

∣∣∣∣∣
=

1

mN

∣∣(B −A)Ta
∣∣ .

(5.4)

The method employed in Sections 2 and 4 (where the symbol M was used in place
of B − A ) then requires the choice of a rotation R for which equality holds in the
second line of (5.4). If (B −A)Ta 6= 0 we may choose R to be any rotation satisfying
Re1 = (B−A)Ta /

∣∣(B −A)Ta
∣∣ , and this requirement is then met, because (Rei ·(B−

A)Ta)Rei = 0 for i = 2, . . . , N . If (B − A)Ta = 0 , then R can be chosen arbitrarily,
for example, R = I suffices.
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These observations show that the analysis in Section 4 for (5.1) may be carried
out step by step for the alternative initial density (5.2), provided that we replace
everywhere in Section 4 |trM | = |tr(B −A)| by

∣∣(B −A)Ta
∣∣ , the Euclidean norm of

the vector (B −A)Ta . If we now define

H(A,B, a) := inf

{∫
J(u)

|[u](x) · a| dHN−1(x) : u ∈ SBV (Q;RN ),

u |∂Q= 0, ∇u = B −A a.e.

}
,

then our observations amount to the formula

H(A,B, a) =
∣∣(B −A)Ta

∣∣ (5.5)

for the relaxed bulk energy density corresponding to the initial interfacial energy
(5.2) and arising from the scheme [1]. Moreover, an argument similar to that used in
establishing (1.26) shows that the formula (5.5) also holds for the relaxed bulk disar-
rangement density according to [4]. In the context of a given structured deformation
(g,G) on a region Ω , (5.5) implies that the particular choice of initial interfacial dis-
arrangement ∫

J(u)∩Ω

|[u] · a| dHN−1

for deformations u of a region Ω ⊂ RN leads in both the Choksi-Fonseca relaxation
scheme [4] and in the Baía-Matias-Santos relaxation scheme [1] to one and the same
relaxed bulk disarrangement density∫

Ω

∣∣(∇g −G)Ta
∣∣ dLN (5.6)

for structured deformations (g,G) of that region. The integral in (5.6) represents the
most economical way of introducing jumps in the direction of a while approaching in
the limit the given structured deformation (g,G) , including both jumps normal and
tangential to the discontinuity surfaces of approximating deformations u .

We note also the formula

max
i=1,...,N

H(A,B, δi) = ‖B −A‖row max

where on the left δ1, . . . , δN denotes the standard basis of RN and on the right
‖B −A‖row max denotes the maximum of the Euclidean norms of the rows of B − A .
The mapping ‖·‖row max : RN×N −→ R turns out to be a norm on RN×N , and our
interpretation of the integral in (5.6) leads us to interpret the integral∫

Ω

‖(∇g −G)(x)‖row max dL
N (x)

as a bulk measure of disarrangements that takes into account at each x ∈ Ω the di-
rection δi(x) that maximizes the relaxed bulk energy densities H(∇g(x), G(x), δi) for
i = 1, . . . , N . The bulk disarrangement density maxi=1,...,N H(A,B, δi) = ‖B −A‖row max

satisfies

max
i=1,...,N

H(A,B, δi) 6 inf

{
max

i=1,...,N

∫
J(u)

|[u](x) · δi| dHN−1(x) :

u ∈ SBV (Q;RN ), u|∂Q = 0, ∇u = B −A a.e.

}
,

and need not be the relaxed bulk energy density corresponding to the initial interfa-

cial energy max
i=1,...,N

∫
J(u)

|[u](x) · δi| dHN−1(x) .



20 ANA CRISTINA BARROSO, JOSÉ MATIAS, MARCO MORANDOTTI, AND DAVID R. OWEN

Acknowledgments. The authors warmly thank the CNA (NSF Grants No. DMS-
0405343 and DMS-0635983) at Carnegie Mellon University, Pittsburgh, USA and
CAMGSD (FCT grant UID/MAT/04459/2013) at Instituto Superior Técnico, Lisbon,
Portugal where this research was carried out. The research of A.C.B, J.M., and M.M.
was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) through the CMU-Portugal Program under
grant FCT-UTA_CMU/MAT/0005/2009 “Thin Structures, Homogenization, and Mul-
tiphase Problems”. The research of A.C.B. was partially supported by the Fundação
para a Ciência e a Tecnologia through grant PEst_OE/MAT/UI0209/2013. The re-
search of M.M. was partially supported by the European Research Council through
the ERC Advanced Grant “QuaDynEvoPro”, grant agreement no. 290888. M.M. is
a member of the Progetto di Ricerca GNAMPA-INdAM 2015 “Fenomeni critici nella
meccanica dei materiali: un approccio variazionale” (INdAM-GNAMPA Project 2015
“Critical phenomena in the mechanics of materials: a variational approach”).

REFERENCES

[1] M. BAIA, J. MATIAS, AND P. M. SANTOS: A relaxation result in the framework of structured defor-
mations in a bounded variation setting. Proc. Royal Society Edinburgh, 142A (2012), 239-271.

[2] M. BAIA, J. MATIAS AND P. M. SANTOS: A survey on structured deformations. Sao Paulo J. Math.
Sci., 5 (2011), 185-201.

[3] R. CHOKSI, G. DEL PIERO, I. FONSECA, AND D. R. OWEN: Structured deformations as energy
minimizers in models of fracture and hysteresis. Math. Mech. Solids., 4 (1999), 321-356.

[4] R. CHOKSI AND I. FONSECA: Bulk and interfacial energy densities for structured deformations of
continua. Arch. Rational Mech. Anal., 138 (1997), 37-103.

[5] N. CIBLAK AND H. LIPKIN: Orthonormal Isotropic Vector Bases. Proceedings of DETC’98, September
13-16, Atlanta, Georgia.

[6] G. DEL PIERO AND D. R. OWEN: Integral-gradient formulae for structured deformations. Arch. Ra-
tional Mech. Anal., 131 (1995), 121-138.

[7] G. DEL PIERO AND D. R. OWEN: Structured deformations of continua Arch. Rational Mech. Anal.,
124 (1993), 99-155.

[8] L. DESERI AND D. R. OWEN: Toward a field theory for elastic bodies undergoing disarrangements. J.
Elast., 70 (2003), 197-236.

[9] E. KRÖNER: Kontinuumstheorie der Versetzungen und Eigenspannungen. Springer, Berlin (1958).
[10] J. MATIAS: Differential inclusions in SBV0(Ω) and applications to the calculus of variations. J.

Convex Analysis 14 (2007) No. 3, 465-477.
[11] J. MATIAS AND P. M. SANTOS: A dimension-reduction result in the context of structured deformations,

Appl. Math. Optim., 69 (2014), 459-485.
[12] J. F. NYE: Some geometrical relations in dislocated crystals. Acta Metall., 1 (1953), 153-162.
[13] D. R. OWEN AND R. PARONI: Optimal flux densities for linear mappings and the multiscale geometry

of structured deformations. Arch. Rational Mech. Anal., 218 (2015), 1633-1652.
[14] D. R. OWEN AND R. PARONI: Second-order structured deformations. Arch. Rational Mech. Anal., 155

(2000), 215-235.
[15] M. SILHAVY: On the approximation theorem for structured deformations from BV (Ω) . Math. Mech.

Complex Syst., 3 (2015), 83-100.
[16] M. SILHAVY: Relaxed disarrangements densities for structured deformations. Preprint, Institute of

Mathematics CAS, IM-2016-53.



FORMULAS FOR RELAXED DISARRANGEMENT DENSITIES 21

FACULDADE DE CIÊNCIAS DA UNIVERSIDADE DE LISBOA, DEPARTAMENTO DE MATEMÁTICA AND
CMAF, CAMPO GRANDE, EDIFÍCIO C6, PISO 1, 1749-016 LISBOA, PORTUGAL

E-mail address, A. C. Barroso: acbarroso@ciencias.ulisboa.pt

DEPARTAMENTO DE MATEMÁTICA, INSTITUTO SUPERIOR TÉCNICO, AV. ROVISCO PAIS, 1, 1049-001
LISBOA, PORTUGAL

E-mail address, J. Matias: jose.c.matias@tecnico.ulisboa.pt

SISSA – INTERNATIONAL SCHOOL FOR ADVANCED STUDIES, VIA BONOMEA, 265, 34136 TRIESTE,
ITALY

E-mail address, M. Morandotti ( ): marco.morandotti@sissa.it

DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNIVERSITY, 5000 FORBES AVE.,
PITTSBURGH, PA 15213 USA

E-mail address, D. R. Owen: do04@andrew.cmu.edu


