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Abstract. Let f (n) be the number of distinct exponents in the prime factorization of
the natural number n. We prove some results about the distribution of f (n). In particular,
for any positive integer k, we obtain that

#{n ≤ x : f (n) = k} ∼ Akx

and

#{n ≤ x : f (n) = ω(n) − k} ∼ Bx(log log x)k

k! log x
,

as x → +∞, where ω(n) is the number of prime factors of n and Ak , B > 0 are some
explicit constants. The latter asymptotic extends a result of Aktaş and Ram Murty (Proc.
Indian Acad. Sci. (Math. Sci.) 127(3) (2017) 423–430) about numbers having mutually
distinct exponents in their prime factorization.
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1. Introduction

Let n = pa1
1 · · · pass be the factorization of the natural number n > 1, where p1 <

· · · < ps are prime numbers and a1, . . . , as are positive integers. Several functions of
the exponents a1, . . . , as have been studied, including their product [17], their arithmetic
mean [2,4,5,7], and their maximum and minimum [11,13,15,18]. See also [3,8] for a
more general function.

Let f be the arithmetic function defined by f (1) := 0 and f (n) := #{a1, . . . , as} for
all natural numbers n > 1. In other words, f (n) is the number of distinct exponents in the
prime factorization of n. The first values of f (n) are listed in sequence A071625 of OEIS
[16].

Our first contribution is a quite precise result about the distribution of f (n).
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Theorem 1.1. There exists a sequence of positive real numbers (Ak)k≥1 such that, given
any arithmetic function φ satisfying |φ(k)| < ak for some fixed a > 1, we have that the
series

Mφ :=
∞∑

k = 1

Akφ(k) (1)

converges and

∑

n ≤ x

φ( f (n)) = Mφx + Oa,ε(x
1/2+ε),

for all x ≥ 1 and ε > 0.

From Theorem 1.1, it follows immediately that all the moments of f are finite and that
f has a limiting distribution. In particular, we highlight the following corollary.

COROLLARY 1.1

For each positive integer k, we have

#{n ≤ x : f (n) = k} = Akx + Oε(x
1/2+ε),

for all x ≥ 1 and ε > 0.

We also provide a formula for Ak . Before stating it, we need to introduce some notations.
Let ψ be the Dedekind function defined by

ψ(n) := n
∏

p | n

(
1 + 1

p

)

for each positive integer n, and let (ρk)k≥1 be the family of arithmetic functions supported
on squarefree numbers and satisfying

ρ1(n) =
{

1 if n = 1,

0 if n > 1,
ρk+1(n) =

⎧
⎨

⎩
0 if n = 1,

1
n−1

∑
d | n
d < n

ρk(d) if n > 1,

for all squarefree numbers n and positive integers k.

Theorem 1.2. We have

Ak = 6

π2

∞∑

n = 1

ρk(n)

ψ(n)

for each positive integer k.

Clearly, f (n) ≤ ω(n) for all positive integers n, where ω(n) denotes the number of
prime factors of n. Motivated by a question of Recamán Santos [14], Aktaş and Ram Murty
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[1] studied the natural numbers n such that all the exponents in their prime factorization
are distinct, that is, f (n) = ω(n). They called such numbers special numbers (sequence
A130091 of OEIS [16]) and they proved the following.

Theorem 1.3. The number of special numbers not exceeding x is

Bx

log x
+ O

(
x

(log x)2

)
,

for all x ≥ 2, where

B :=
∑

�

1

�

and the sum of over natural numbers � that are powerful and special.

Let g be the arithmetic function defined by g(n) := ω(n)− f (n) for all positive integers
n. Hence, by the previous observation, g is a nonnegative function and g(n) = 0 if and only
if n is a special number. We prove the following result about g, which extends Theorem 1.3
and it is somehow dual to Corollary 1.1.

Theorem 1.4. For each nonnegative integer k, we have

#{n ≤ x : g(n) = k} = Bx(log log x)k

k! log x

(
1 + Ok

(
1

log log x

))
,

for all x ≥ 3.

Notation. We employ the Landau–Bachmann “Big Oh” notation O , as well as the associated
Vinogradov symbol �, with their usual meaning. Any dependence of the implied constants
is explicitly stated. We let ε denote an arbitrary small positive real number, not necessarily
the same at each occurrence. We reserve the letter p for prime numbers.

2. Preliminaries

Recall that a natural number n is called powerful if p | n implies p2 | n, for all primes p.
For all x ≥ 1, let P(x) be the set of powerful numbers not exceeding x .

Lemma 2.1. We have #P(x) � x1/2 for every x ≥ 1.

Proof. See [9]. �

Lemma 2.2. We have

∑

� ∈P
� > y

1

�
� 1

y1/2 ,
∑

� ∈P(y)

1

�1/2 � log y,

for all y ≥ 2.
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Proof. By Lemma 2.1 and by partial summation, we have

∑

� ∈P
� > y

1

�
= #P(t)

t

∣∣∣∣
+∞

t = y
+

∫ +∞

y

#P(t)

t2 dt �
∫ +∞

y

dt

t1+1/2 � 1

y1/2 .

The proof of the second claim is similar. �

We need the following upper bound for the number of prime factors of a natural number.

Lemma 2.3. We have

ω(n) � log n

log log n

for all integers n ≥ 3.

Proof. See, for example, [6, Proposition 7.10]. �

For every x ≥ 1 and every positive integer h, let Q(x; h) denote the number of squarefree
numbers not exceeding x and relatively prime with h.

Lemma 2.4. We have

Q(x; h) = 6

π2

h

ψ(h)
x + O(4ω(h)(x1/2 + 1))

for all x ≥ 1 and all positive integers h.

Proof. It follows easily from [10, Eq. 8]. �

For every x ≥ 1 and every positive integers s, h, let Qs(x; h) denote the number of
squarefree numbers not exceeding x , having exactly s prime factors, and relatively prime
with h.

Lemma 2.5. We have

Qs(x; h) = x(log log x)s−1

(s − 1)! log x

(
1 + Oδ,s

(
log log log(h + 15)

log log x

))

for all x ≥ 3, 0 < δ < 1, and for all integers 1 ≤ h ≤ xδ and s ≥ 1.

Proof. For s = 1, the claim follows from the Prime Number theorem, while for h = 1,
the claim is a classic result of Landau [12]. Hence, suppose s, h > 1. Also, we can assume
that x ≥ 31/(1−δ). If n ≤ x is a squarefree number having exactly s prime factors such
that (n, h) > 1, then n = pn′, where p is a prime number dividing h and n′ ≤ x/p is a
squarefree number having exactly s − 1 prime factor. Therefore,
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0 ≤ Qs(x; 1) − Qs(x; h) ≤
∑

p | h
Qs−1

(
x

p
, 1

)
�s

∑

p | h

x

p

(log log(x/p))s−2

log(x/p)

�δ

x(log log x)s−2

log x

∑

p | h

1

p
� x(log log x)s−1

log x

log log log(h + 15)

log log x
,

where we used the fact that p ≤ xδ and the upper bound

∑

p | h

1

p
≤

∑

p≤ω(h)

1

p
� log log(ω(h) + 2) � log log log(h + 15),

which in turn follows from Mertens’ second theorem [6, Theorem 4.5] and the simple
bound ω(h) � log h. Consequently,

Qs(x; h) = Qs(x; 1) + Oδ,s

(
x(log log x)s−1

log x

log log log(h + 15)

log log x

)

= x(log log x)s−1

(s − 1)! log x
+ Oδ,s

(
x(log log x)s−1

log x

log log log(h + 15)

log log x

)
,

as claimed. �

Finally, we need a lemma about certain sums of powers.

Lemma 2.6. Let a0 be an integer. For all x1, . . . , xk > 1, we have

∑

a0 < a1 < ··· < ak

1

xa1
1 · · · xakk

= 1

(x1 · · · xk)a0

k∏

j = 1

1

x j · · · xk − 1
,

where the sum is over all integers a1, . . . , ak satisfying a0 < a1 < · · · < ak.

Proof. We proceed by induction on k. For k = 1, we have

∑

a0 < a1

1

xa1
1

= 1

xa0+1
1

∞∑

d = 0

1

xd1
= 1

xa0
1

1

x1 − 1
, (2)

as claimed. Suppose that the claim is true for k, we shall prove it for k + 1. We have

∑

a0 < ··· < ak+1

1

xa1
1 · · · xak+1

k+1

=
∑

a0 < ··· < ak

1

xa1
1 · · · xakk

∑

ak < ak+1

1

xak+1
k+1

=
∑

a0 < ··· < ak+1

1

xa1
1 · · · xak−1

k−1 (xkxk+1)ak

1

xk+1 − 1
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= 1

(x1 · · · xk+1)a0

k∏

j = 1

1

x j · · · xk+1 − 1

1

xk+1 − 1

= 1

(x1 · · · xk+1)a0

k+1∏

j = 1

1

x j · · · xk+1 − 1
,

where we used (2), with a0 and x1 replaced respectively by ak and xk+1, and the induction
hypothesis. �

3. Proof of Theorem 1.1

We begin by proving that for each positive integer k, there exists Ak > 0 such that

Nk(x) := #{n ≤ x : f (n) = k} = Akx + Oε(x
1/2+ε), (3)

for all x ≥ 1 and ε > 0. Clearly, every natural number n can be written in a unique way
as n = m�, where m is a squarefree number, � is a powerful number, and (m, �) = 1. If
m = 1, then n = � is powerful and, by Lemma 2.1, belongs to a set of cardinality O(x1/2).
If m > 1, then f (n) = k is equivalent to f (�) = k − 1. Also, for each �, there are exactly
Q(x/�; �) − 1 choices for m > 1. Therefore, we have

Nk(x) =
∑

� ∈P(x)
f (�) = k−1

(
Q

( x
�
; �

)
− 1

)
+ O(x1/2), (4)

for all x ≥ 1. For each positive integer � ≤ x , Lemma 2.3 gives 4ω(�) �ε xε. Consequently,
by Lemma 2.4, we obtain

Q
( x

�
; �

)
= 6

π2

x

ψ(�)
+ Oε

(
x1/2+ε

�1/2

)
, (5)

for all positive integers � ≤ x . By Lemma 2.2, we have

∑

� ∈P
� > x

1

ψ(�)
<

∑

� ∈P
� > x

1

�
� 1

x1/2 , (6)

for all x ≥ 1. In particular, the series

Ak := 6

π2

∑

� ∈P
f (�) = k−1

1

ψ(�)
(7)

converges. Also, again by Lemma 2.2, we have

∑

� ∈P(x)

1

�1/2 � log x �ε xε. (8)

At this point, putting together (4) and (5), and using (6) and (8), we obtain
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Nk(x) =
∑

� ∈P(x)
f (�) = k−1

(
6

π2

x

ψ(�)
+ Oε

(
x1/2+ε

�1/2

))
+ O(x1/2)

= Akx + O

⎛

⎜⎝
∑

� ∈P
� > x

x

ψ(�)

⎞

⎟⎠ + Oε

⎛

⎝
∑

� ∈P(x)

x1/2+ε

�1/2

⎞

⎠ + O(x1/2)

= Akx + Oε(x
1/2+ε),

as desired. Thus (3) is proved.
Now we shall show that

Ak ≤ 6

π2

1

(k − 1)! (9)

for all positive integers k. For k = 1, the claim is obvious since A1 = 6/π2. Hence, assume
k ≥ 2. If � is a powerful number such that f (�) = k − 1, then � = ma1

1 · · ·mak−1
k−1 for some

integers m1, . . . ,mk−1 ≥ 2 and 2 ≤ a1 < · · · < ak−1. Consequently,

π2

6
Ak =

∑

� ∈P
f (�) = k−1

1

ψ(�)
<

∑

� ∈P
f (�) = k−1

1

�
<

k−1∏

j = 1

∞∑

m = 2

∞∑

a = j+1

1

ma

=
k−1∏

j = 1

∞∑

m = 2

1

m j (m − 1)
≤

k−1∏

j = 1

1

j
= 1

(k − 1)! ,

where we used the facts that
∞∑

m = 2

1

m(m − 1)
=

∞∑

m = 2

(
1

m − 1
− 1

m

)
= 1

and

∞∑

m = 2

1

m j (m − 1)
<

1

2 j
+ 1

3 j · 2
+

∞∑

n = 3

1

n j+1

<
1

2 j
+ 1

3 j · 2
+

∫ +∞

2

dt

t j+1 = 1

2 j
+ 1

3 j · 2
+ 1

j2 j
<

1

j
,

for all integers j ≥ 2. Thus (9) is proved.
Now let φ be an arithmetic function satisfying |φ(k)| < ak for all positive integers k,

where a > 1 is some constant. From (9) it follows that series (1) converges. Define

y := 2a + 
C log x/ log log(x + 2)�,
where C > 0 is some absolute constant. Since f (n) ≤ ω(n) for all positive integers n, by
Lemma 2.3, we can choose C sufficiently large so that f (n) ≤ y for all natural numbers
n ≤ x . Moreover, from (9) and y ≥ 2a, we get that

∑

k > y

Akφ(k) �
∑

k > y

ak

(k − 1)! <
ay+1

y!
∞∑

j = 0

(
a

y

) j

�a
ay

y! �a
1

x1/2 (10)
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and

ay y �a,ε xε, (11)

for all x ≥ 1. Therefore, putting together (3), (10) and (11), we have

∑

n ≤ x

φ( f (n)) =
∑

k ≤ y

Nk(x)φ(k) =
∑

k ≤ y

(Akφ(k)x + Oε(φ(k)x1/2+ε))

= Mφx + O

⎛

⎝
∑

k > y

Akφ(k)x

⎞

⎠ + Oε(a
y yx1/2+ε)

= Mφx + Oa,ε(x
1/2+ε),

for all x ≥ 1 and ε > 0. The proof is complete.

4. Proof of Theorem 1.2

Recall that Ak is defined by (7). For k = 1, the claim is obvious, since f (�) = 0 if and
only if � = 1. Hence, assume k ≥ 2. If � is a powerful number such that f (�) = k − 1,
then � can be written in a unique way as � = ma1

1 · · ·mak−1
k−1 , where 1 < a1 < · · · < ak−1

are integers and m1, . . . ,mk−1 > 1 are pairwise coprime squarefree numbers. Therefore,
from (7) and Lemma 2.6, we obtain

π2

6
Ak =

∑

m1,...,mk−1

∑

1 < a1 < ··· < ak−1

1

ψ(ma1
1 · · ·mak−1

k−1 )

=
∑

m1,...,mk−1

m1 · · ·mk−1

ψ(m1 · · ·mk−1)

∑

1 < a1 < ··· < ak−1

1

ma1
1 · · ·mak−1

k−1

=
∑

m1,...,mk−1

1

ψ(m1 · · ·mk−1)

k−1∏

j = 1

1

m j · · ·mk−1 − 1
,

where, here and in the rest of the proof, in summation subscripts m1, . . . ,mk−1 are meant
to be pairwise coprime, squarefree and greater than 1. At this point, it is enough to prove
that

∑

n =m1···mk−1

k−1∏

j = 1

1

m j · · ·mk−1 − 1
= ρk(n)

for all squarefree numbers n > 1. We proceed by induction on k. For k = 2, the claim is
true since

1

n − 1
= ρ1(1)

n − 1
= 1

n − 1

∑

d | n
d < n

ρ1(d) = ρ2(n),

for all squarefree numbers n > 1. Assuming that the claim is true for k, we shall prove it
for k + 1. We have
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∑

n =m1···mk

k∏

j = 1

1

m j · · ·mk − 1
= 1

n − 1

∑

m1 | n

∑

n/m1 =m2···mk

k∏

j = 2

1

m j · · ·mk − 1

= 1

n − 1

∑

m1 | n
ρk(n/m1)

= 1

n − 1

∑

d | n
d < n

ρk(d) = ρk+1(n),

for all squarefree numbers n > 1, as desired. The proof is complete.

5. Proof of Theorem 1.4

We have to count the number of positive integers n ≤ x such that g(n) = k. As in the
proof of Theorem 1.1, every n can be written in a unique way as n = m�, where m is
a squarefree number, � is a powerful number, and (m, �) = 1. If m = 1, then n = � is
powerful and by Lemma 2.1, belongs to a set of cardinality O(x1/2). If m > 1, then

ω(m) = ω(n) − ω(�) = g(n) + f (n) − f (�) − g(�) = k + 1 − g(�).

In particular, 1 ≤ ω(m) ≤ k+1. Assume x sufficiently large, and put y := (log x)2. Then,
by Lemma 2.2, the number of n ≤ x such that � > y is at most

∑

� ∈P
� > y

x

�
� x

y1/2 = x

log x
.

Therefore,

Mk(x) := #{n ≤ x : g(n) = k} =
k+1∑

s = 1

∑

� ∈P(y)
g(�) = k+1−s

Qs

( x
�
; �

)
+ O

(
x

log x

)
.

(12)

For each nonnegative integer r , put

Br :=
∑

� ∈P
g(�) = r

1

�
.

Note that, in light of Lemma 2.2, the series defining Br converges and, more precisely,

∑

� ∈P(y)
g(�) = r

1

�
= Br + O

(
1

y1/2

)
= Br + O

(
1

log x

)
. (13)

Clearly, we can assume x sufficiently large so that x/y ≥ 3 and y ≤ xδ/(1+δ), for some
fixed 0 < δ < 1. Hence, applying Lemma 2.5, we obtain

Qs

( x
�
; �

)
= x(log log(x/�))s−1

�(s − 1)! log(x/�)

(
1 + Ok

(
log log log(� + 15)

log log(x/�)

))



   27 Page 10 of 11 Proc. Indian Acad. Sci. (Math. Sci.)          (2020) 130:27 

= x(log log x)s−1

�(s − 1)! log x

(
1 + Ok

(
log �

log x

)) (
1 + Ok

(
log log log(� + 15)

log log x

))

= x(log log x)s−1

�(s − 1)! log x

(
1 + Ok

(
log(� + 1)

log log x

))
,

for all positive integers s ≤ k + 1 and � ≤ y. Consequently,

∑

� ∈P(y)
g(�) = k+1−s

Qs

( x
�
; �

)

= x(log log x)s−1

(s − 1)! log x

∑

� ∈P(y)
g(�) = k+1−s

1

�

(
1 + Ok

(
log(� + 1)

log log x

))

= x(log log x)s−1

(s − 1)! log x

(
Bk+1−s + O

(
1

log x

)
+ Ok

(
1

log log x

))

= x(log log x)s−1

(s − 1)! log x

(
Bk+1−s + Ok

(
1

log log x

))
, (14)

where we used (13) and the fact that the series
∑

� ∈P

log(� + 1)

�

converges. Thus, putting together (12) and (14), and noting that B0 = B, we obtain

Mk(x) = Bx(log log x)k

k! log x

(
1 + Ok

(
1

log log x

))
,

as desired. The proof is complete.
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