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Abstract
In the present work we embrace a three scales asymptotic homogenization approach to investigate the effective behavior of
hierarchical linear elastic composites reinforced by cylindrical, uniaxially aligned fibers and possessing a periodic structure
at each hierarchical level of organization. We present our novel results assuming isotropy of the constituents and focusing on
the effective out-of-plane shear modulus, which is computed exploiting the solution of the arising anti-plane problems. The
latter are solved semi-analytically by means of complex variables and successfully benchmarked against the results obtained
by finite elements. Our findings can pave the way for multiscale modeling of complex hierarchical materials (such as bone
and tendons) at a negligible computational cost.

Keywords Asymptotic homogenization · Hierarchical modeling · Linear elasticity · Multiscale composites · Biomimetic
materials
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1 Introduction

Multiscale composites organized across two or more length
scales are often encountered in nature, as well as in artificial
materials designed to optimize specific properties (see, e.g.,
[10]). Relevant applications involving hierarchical systems
include, but are not limited to, rocks and fracture [11], biome-
chanics and nanomedicine [28], poroelasticity [21], and the
bone tissue [26].

Multiscale modeling via suitable homogenization tech-
niques is of crucial importance in the analysis of composite
materials. On one hand, it can be exploited to obtain infor-
mation concerning the coarser scale behavior of a system at
hand (where experimental measurements are often easier to
provide) on the basis of given microstructural properties of
the finer scales. On the other hand, it can provide a deeper
understanding on how tomodify themicrostructural arrange-
ment of the finer scales constituents to achieve the optimal
design of artificial constructs (e.g. biomimetic materials).

The most widely exploited techniques dealing with this
issue in termsofmechanical properties rely on either the aver-
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(a) (b) (c)

Fig. 1 Cross sections of the periodic composite: a whole material, b ε1-structural level. c ε2-structural level

age field techniques, such as Eshelby-based approaches or
representative volume elements formulations, as well as the
asymptotic homogenization technique, see, e.g., the review
[9] for a comparison.The former havebeenmuchmore exten-
sively applied to complex, hierarchical systems, although
also the computational potential and theoretical reliability of
the asymptotic homogenization technique has been recently
investigated (see, e.g., [4,19,20]). In particular, the reiterated
homogenization technique [1,3,12,30] has been considered
in the theoretical study of heterogeneous composites pre-
senting multiple length scales. From the application point of
view, an extensively discussed hierarchical hard tissue has
been bone and several hierarchical modeling via homoge-
nization and continuum micromechanics methods have been
used in the analysis of its mechanical properties [7,14,29].

In the present work we apply the three-scale asymp-
totic homogenization developed in [25] (which is therein
applied to hierarchical layered materials) to investigate the
effective behavior of fibrous hierarchical composites. The
linear elastic constitutive framework and the homogeniza-
tion steps developed in [25] are briefly illustrated in Sects. 2
and 3, respectively. We apply the latter to find the effective
out-of-plane shear of a hierarchical linear elastic reinforced
composite assuming a square-like arrangement of uniaxially
aligned cylindrical fibers at all hierarchical levels of orga-
nization. We solve the resulting anti-plane cell problems
(which are depicted in Sect. 4) for isotropic and piecewise
constant materials properties using results of our previous
works (see e.g. [5,6]). Our novel results (which match those
computed numerically via finite elements) are presented and
discussed in Sect. 5 in terms of the out-of-plane shear versus
the fibers’ volume fraction. We conclude the manuscript (cf.
Sect. 6) highlighting possible applications to realistic scenar-
ios of interest, such as hierarchical modeling of fibril bundles

and/or fusingmineral crystals as analyzed for example in [22]
in the context of aged bone modeling.

2 The linear elastic problem

Let us denote by � ⊂ R
3 a periodic composite possessing

two hierarchical levels of organization (Fig. 1). The domain
� at the first structural level (referred to as ε1) is assumed
to be reinforced by uniaxially aligned fibers, that is � =
�

ε1
1 ∪ �

ε1
2 , where �

ε1
2 = ∪N

i=1i�
ε1
2 denotes the ensemble

of fibers and �
ε1
1 is the host medium at the ε1 level. The

interface between �
ε1
1 and �

ε1
2 is denoted by �ε1 . At the

second structural level (referred to as ε2), each fiber i�
ε1
2 is

supposed to be aswell reinforced by aligned fibers oriented in
the same direction of the composite fiber i�

ε1
2 . Then, i�

ε1
2 =

�
ε2
1 ∪ �

ε2
2 , where �

ε2
2 = ∪M

j=1 j�
ε2
2 represents the ensemble

of fibers and�
ε2
1 is the host medium at the ε2-structural level.

The interface between �
ε2
1 and �

ε2
2 is denoted by �ε2 . At

this stage, we assume that all constituents of the hierarchical
composite behave as linear elastic materials with constitutive
relationship for the stress tensor given by,

σ = C : ξ(u), with ξ(u) = ∇u + ∇uT

2
in �

where ξ(u) is the elastic strain tensor and u(x) is the
elastic displacement at x = (x1, x2, x3) with components
u1(x), u2(x) and u3(x), being the components of u(x) in an
orthonormal cartesian vector basis. The fourth rank tensor
C with components Ci jkl (i, j, k, l = 1, 2, 3) is the stiff-
ness tensor, which is assumed to be phase-wise smooth and
positive definite and satisfies the standard symmetries, i.e.,
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componentwise

Ci jkl = C jikl = Ci jlk = Ckli j , Ci jklωi jωkl ≥ �ωi jωi j ,

respectively, whereω is a second order symmetric tensor and
� > 0 is a constant. Then, ignoring inertia and volume forces,
the problem in � reads

(Pε)

⎧
⎪⎨

⎪⎩

∇ · [
Cε : ξ (uε)

] = 0 in �\(�ε1 ∪ �ε2)

uε = u∗ on ∂�d ,
[
Cε : ξ (uε)

] · n = S∗ on ∂�n,

(1)

where n is the outward unit vector normal to the surface ∂�

and u∗ and S∗ are the prescribed displacement and traction
on ∂� = ∂�d ∪ ∂�n (with ∂�d ∩ ∂�n = ∅), respectively.
Moreover, continuity conditions for displacements and trac-
tions are imposed on both �ε1 and �ε2 , i.e.

�uε� = 0,
�
Cε : ξ

(
uε

) · nj
� = 0 (j = η, ζ ), (2)

where nη = (nη
1, n

η
2, n

η
3) and nζ = (nζ

1, n
ζ
2, n

ζ
3) represent

the outward unit vectors to the surfaces �ε1 and �ε2 , respec-
tively. The operator �•� denotes the jump across the interface
between two constituents.

3 Three scales asymptotic homogenization

We consider three different scales, namely d1, d2 and L ,
which characterize the different structural sizes and we
assume that they are well-separated, i.e.

ε1 = d1
L

	 1 and ε2 = d2
d1

	 ε1. (3)

Using relation (3), two formally independent variables

η = x
ε1

and ζ = x
ε2

(4)

are introduced. Additionally, each field andmaterial property
is considered to be η and ζ periodic [15]. As a consequence
of the performed spatial scale decoupling (4) and using the
chain rule, it holds that

∇ → ∇x + ε−1
1 ∇η + ε−1

2 ∇ζ , (5)

where ∇j indicates that the derivative is performed with
respect to j = x, η, ζ . We now assume that the elastic dis-
placement uε can be represented as a power series in terms
of the small parameters ε1 and ε2, namely

uε(x, η, ζ ) = ũ0(x, η, ζ ) + ∑∞
i=1 ũ

i (x, η, ζ )εi2, (6)

where ũ(0) is defined as

ũ0(x, η, ζ ) = u0(x, η, ζ ) +
∞∑

i=1

ui (x, η, ζ )εi1. (7)

Since the quantities involved vary on the η and ζ scales, the
following cell average operators are defined

〈•〉η = 1

|Y |
∫

Y
• dη and 〈•〉ζ = 1

|Z |
∫

Z
• dζ ,

where |Y | and |Z | represent the periodic cell volumes. Here
and subsequently (unless necessary), the variable depen-
dence is dropped out for convenience.

3.1 Homogenization technique

The homogenization technique, as depicted in [25], is
sketched below. First, we substitute expansion (6) into (1)
and (2), and then, use the chain rule and equate in powers
of ε2 “freezing” the small parameter ε1. This allows to find
the effective elastic properties at the ε2-structural level and
use the results as the inputs for the problems arising at the
ε1-structural level when equating in powers of ε1. Finally,
the effective coefficients of the problem are obtained. The
procedure is detailed as follows:

Step 1 Substituting expansion (6) into (1); using result (5)
and considering terms in powers of ε2.

(i) To O(ε02)

∂
∂ζ j

(
Cε
i jklξ

ζ
kl(ũ

0)
)

= 0 in Z \ �ζ , (8)

�
ũ0i

� = 0 on �ζ , (9)

�
Cε
i jklξ

ζ
kl(ũ

0)nζ
j

�
= 0 on �ζ , (10)

with

ξ hkl(g) = 1

2

(
∂gk
∂hl

+ ∂gl
∂hk

)

,

where g is a vector. Since the right hand side of Eq. (8)
is zero, the solvability condition is satisfied [2]. Then,

ũ0 = ũ0(x, η) ⇔
{
u0 = u0(x, η),

ui = ui (x, η),

i.e. the homogeneity of (8) togetherwith (9)–(10), leads
to a periodic ζ -constant solution.
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(ii) To O(ε2) and using the fact that ξζ
kl(ũ

0) = 0,

∂

∂ζ j

(
Cε
i jklξ

ζ
kl(ũ

1)
)

= − ∂

∂ζ j

(

Cε
i jkl

(

ξ xkl(ũ
0) + ε−1

1 ξ
η
kl(ũ

0)

))

in Z \ �ζ .

(11)

By the ζ -periodicity of Cε and the solvability condi-
tion, Eq. (11) has a ζ -periodic solution which is unique
up to an additive constant. In particular, since the prob-
lem is linear and ũ0 does not depend on ζ , ũ1 can be
written as

ũ1i (x, η, ζ ) = χ̃ikl(x, η, ζ )Ũ 0
kl(x, η), (12)

where

Ũ 0
kl = ξ xkl

(
ũ0(x, η)

)
+ ε−1

1 ξ
η
kl

(
ũ0(x, η)

)
.

The third rank tensor χ̃ is η- and ζ -periodic, and satis-
fies the local problem

∂
∂ζ j

(
Cε
i jkl + Cε

i j pqξ
ζ
pqkl(χ̃)

)
= 0 in Z \ �ζ , (13)

�χ̃ikl� = 0 on �ζ , (14)

�(
Cε
i jkl + Cε

i j pqξ
ζ
pqkl(χ̃)

)
nζ
j

�
= 0 on �ζ , (15)

with

ξ hpqkl(G) = 1

2

(
∂Gpkl

∂hq
+ ∂Gqkl

∂h p

)

,

where G is a third rank tensor. Equations (13)–(15)
constitute the ε2-cell problem. The condition 〈χ̃〉ζ = 0
is imposed in order to guarantee uniqueness.

(iii) To O(ε22), applying the average operator 〈•〉ζ and
taking into account the ζ periodicity of the involved
functions,

(
∂

∂x j
+ ε−1

1
∂

∂η j

)

Čε
i jklŨ

0
kl = 0 in �

ε1
1 , (16)

where

Čε
i jkl =

〈
Cε
i jkl + Cε

i j pqξ
ζ
pqkl(χ̃)

〉

ζ
(17)

is the effective stiffness tensor at the ε1-structural level.
Note that the derivative in (16) depends on the small
parameter ε1 and Čε = Čε(x, η).

Step 2 Using (7) in (16) and equating in powers of ε1.

(i) To O(ε01), we have

∂
∂η j

(
Čε
i jklξ

η
kl(u

0)
)

= 0 in Y \ �η, (18)

�
u0i

� = 0 on �η, (19)

�
Čε
i jklξ

η
kl(u

0)nη
j

�
= 0 on �η. (20)

Again the solvability condition is applied to (18)–(20),
to obtain

u0 = u0(x).

(ii) To O(ε1), using the fact that ξ
η
kl(u

0) = 0 and applying
the ζ average operator,

∂
∂η j

(
Čε
i jklξ

η
kl(u

1)
)

= − ∂
∂η j

(
Čε
i jklξ

x
kl(u

0)
)

.

By theη-periodicity of Čε and the solvability condition,
the above equation has a η-periodic solution which is
unique up to an additive constant. In particular, since
the problem is linear and u0 does not depend on η,

u1i (x, η) = χikl(x, η)ξ xkl(u
0(x)), (21)

where the third rank tensor χ is η-periodic and solution
of

∂
∂η j

(
Čε
i jkl + Čε

i j pqξ
η
pqkl(χ)

)
= 0 in Y \ �η, (22)

�χikl� = 0 on �η, (23)

�(
Čε
i jkl + Čε

i j pqξ
η
pqkl(χ)

)
nη
j

�
= 0 on �η. (24)

Equations (22)–(24) represent the ε1-cell problem. The
condition 〈χ〉η = 0 is imposed for guarantee unique-
ness.

(iii) To O(ε21), applying the average operator 〈•〉η and tak-
ing into account the η periodicity of the functions
involved. The homogenized problem becomes

(Ph)

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂x j

(
Ĉi jklξ

x
kl(u

0)
)

= 0 in �,

u0i = u∗
i on ∂�d ,

Ĉi jklξ
x
kl(u

0)n j = S∗
i on ∂�n,
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where

Ĉi jkl =
〈
Čε
i jkl + Čε

i j pqξ
η
pqkl(χ)

〉

η
(25)

is the effective stiffness tensor.

4 Out-of-plane shear mechanical response

Since we are considering uniaxially aligned fibers, the three-
dimensional cell problems can be equivalently formulated as
two-dimensional problems over the cross-section of the cell.
That is, by symmetry the auxiliary third rank tensors χ̃ and χ

do not depend on ζ3 and η3, respectively. Therefore, we can
refer to the spatial coordinates vectors as η = (η1, η2), ζ =
(ζ1, ζ2) (keeping the samenotation for the sake of simplicity),
and the third components of the normal vectors nζ and nη

reduce to zero, see also the appendix reported in [19].
We assume that Cε is piecewise constant, such that, the

parametric dependence of the ε2-cell problem on the vari-
ables η and x is lost and χ̃ depends only on ζ . As a
consequence, Čε is also piecewise constant (as it is aver-
aged on ζ ), and therefore χ is depending only on η, so that
finally also Ĉ is piecewise constant.

Applying the above mentioned dimensional reduction,
and the fact that Cε and Čε are piecewise constants, the dif-
ferential problems (13)–(15), (22)–(24) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

Cγ,ζ

i j pq
∂2χ̃pkl
∂ζ j ∂ζq

= 0 in Z̃γ ,

�χ̃ikl� = 0 on �̃ζ ,�(
Cζ
i jkl + Cζ

i j pq
∂χ̃pkl
∂ζq

)
nζ
j

�
= 0 on �̃ζ ,

(26)

and

⎧
⎪⎪⎨

⎪⎪⎩

Cγ,η

i j pq
∂2χpkl
∂η j ∂ηq

= 0 in Ỹγ ,

�χikl� = 0 on �̃η,�(
Cη
i jkl + Cη

i j pq
∂χpkl
∂ηq

)
nη
j

�
= 0 on �̃η,

(27)

respectively, with j, q = 1, 2 and i, k, l, p = 1, 2, 3. In (26)
and (27), Ỹγ and Z̃γ (γ = 1, 2), denote the two-dimensional
unit cells at the ε1- and ε2-structural levels, respectively, with
restrictions to the matrix (γ = 1) and fiber (γ = 2). The
interface curves between the constituents Ỹ1, Ỹ2 and Z̃1, Z̃2

are denoted by �̃η and �̃ζ , respectively. Moreover, Cγ,η

i jkl and

Cγ,ζ

i jkl are the stiffness tensors of the constituent γ at the ε1-
and ε2-structural levels, respectively. In particular, the stiff-
ness tensor of the composite fiber at the ε1 structural level is
C2,η
i jkl = Či jkl .
We further assume that the constituents at the ε2 level

are isotropic, therefore the fiber phase at the ε1-structural

level can be at most monoclinic (i.e. 13 independent elas-
tic coefficients), see, e.g. [15,16]. In our case, it is however
tetragonal symmetric (6 independent elastic coefficients), as
we are dealing with square-symmetric arrangement of cylin-
drical fibers (the cell’s cross section corresponds to a square
embedding a circle, see also [15,27]). In particular, the fol-
lowing relationships hold for both structural levels:

Cζ
1313 = Cζ

2323, Cη
1313 = Cη

2323, (28)

and, as both Cε and Čε are in particular orthotropic

Cζ
1323 = Cζ

2313 = 0, Cη
1323 = Cη

2313 = 0. (29)

Here we focus on the shear mechanical response related
to the third (out-of-plane) component of the elastic dis-
placement. For a generic monoclinic material, the relevant
constitutive relations are [15]

σ13 = 2C1313ξ13 + 2C1323ξ23, (30)

σ23 = 2C2313ξ13 + 2C2323ξ23, (31)

where σ13 and σ23 are the out-of-plane shear stresses and
ξ13 and ξ23 are the shear strains. In our case, the resulting
effective stiffness Ĉ is still expected to be at most monoclinic
(as the individual phases are tetragonal and the fibers are
uniaxially aligned also on the ε1-structural level).

We then aim at obtaining the effective elastic coefficients
related to relationships (30) and (31), to characterize the out-
of-plane shear mechanical response. This can be done by
performing a standard decomposition of the problems (26)
and (27) into in-plane and antiplane problems. Exploiting
(28) and (29), and fixing i, p = 3 in (26) and (27), the result-
ing nontrivial anti-plane cell problems can be expressed in
terms of the doubly periodic functions χ̃

γ
33α = χ̃

γ
α (ζ ) for

ζ ∈ Z̃γ and χ
γ
33α = χ

γ
α (η) for η ∈ Ỹγ as follows [15,27]

(Lζ
α)

⎧
⎪⎪⎨

⎪⎪⎩

�ζ (χ̃
γ
α ) = 0 in Z̃γ ,

�χ̃α� = 0 on �̃ζ ,�
Cζ
1313

∂χ̃α

∂ζ j
nζ
j

�
= −

�
Cζ
1313n

ζ
α

�
on �̃ζ ,

(32)

and

(Lη
α)

⎧
⎪⎪⎨

⎪⎪⎩

�η(χ
γ
α ) = 0 in Ỹγ ,

�χα� = 0 on �̃η,�
Cη
1313

∂χα

∂η j
nη
j

�
= −�Cη

1313n
η
α� on �̃η,

(33)

withα = 1, 2.Once solved the cell problem (32), the relevant
effective coefficients at the ε1 structural level are computed
by

123



A. Ramírez-Torres et al.

Čα3α3 =
〈

Cζ
α3α3 + Cζ

α3α3
∂χ̃α

∂ζα

〉

ζ

, (34)

Č1323 =
〈

Cζ
2323

∂χ̃1

∂ζ2

〉

ζ

, (35)

Č2313 =
〈

Cζ
1313

∂χ̃2

∂ζ1

〉

ζ

. (36)

Solving (33), the effective coefficients are given by

Ĉα3α3 =
〈

Čα3α3 + Čα3α3
∂χα

∂ηα

〉

η

, (37)

Ĉ1323 =
〈

Č2323
∂χ1

∂η2

〉

η

, (38)

Ĉ2313 =
〈

Č1313
∂χ2

∂η1

〉

η

. (39)

Since we assume square-symmetry also on the ε1 struc-
tural level, the resulting effective stiffness tensor is actually
expected to exhibit tetragonal symmetry, so that in particular

Ĉ1313 = Ĉ2323; Ĉ1323 = Ĉ2313 = 0, (40)

as also shown by the results that follow. The effective shear
mechanical response is then completely characterized by the
effective out-of-plane shear modulus Ĉ1313.

5 Results and discussion

The theory of analytical functions in [13] can be applied to
solve the cell problems (32) and (33), where doubly periodic
harmonic functions need to be found (See “Appendix A”). In
order to compute the effective properties at both structural
levels, it is necessary to truncate the systems (46) and (47)
into appropriate orders. Then,

Č1313 − iČ2313 = C1,ζ
1313

(
1 − 2π ¯̃a1

)
, (41)

Č1323 − iČ2323 = −C1,ζ
1313

(
1 + 2π ¯̃a1

)
i, (42)

Ĉ1313 − iĈ2313 = C1,η
1313 (1 − 2π ā1) , (43)

Ĉ1323 − iĈ2323 = −C1,η
1313 (1 + 2π ā1) i, (44)

where ā1 ( ¯̃a1) denotes the conjugate of the complex coeffi-
cient a1 (ã1) and “i” is the imaginary unit.

Using formulas (41)–(44) the effective coefficients at both
structural levels can be found. For the sake of exemplify-
ing, we choose the following material properties C1,ζ

1313 = 1,

C2,ζ
1313 = 10 and C1,η

1313 = 5, and made a parametric study
by varying the volume fraction of the fiber at both structural
levels. Particularly, the effective coefficients are computed

for the same fiber volume fraction at each structural level,
i.e. φ = φζ = φη. Then, we proceed in the following way:

1. Given the properties C1,ζ
1313 and C

2,ζ
1313 and for a fixed vol-

ume fraction of Z̃2, denoted by φζ , the cell problem at the
ε2-structural level (32) is solved. To find the coefficient
ãl , the infinite linear system (46) is truncated at a certain
order K̃ and solved. The matrix Wζ

k is written in terms
of φζ .

2. To compute the effective coefficients Č1313, Č1323, Č2313

and Č2323 of the composite fiber �
ε1
2 , the solution ãl of

the linear system is substituted in (41) and (42).
3. Now, the cell problem at the ε1-structural level (33) is

solved. In particular, we only need to fix C1,η
1313 since

C2,η
1313 = Č1313 was found in the previous step. At this

point the volume fraction of the fiber Ỹ2 must be fixed.
One way to proceed is to make φη = φζ .

4. Finally, to find al , and consequently the effective coeffi-
cients Ĉ1313, Ĉ1323, Ĉ2313 and Ĉ2323, the infinite linear
system (47) is truncated at a certain order K and solved.
In this case, the matrix Wη

k is equal to Wζ
k , which is

already computed.

Figure 2 presents the values obtained for the effective
coefficients Č1313 (left) and Ĉ1313 (right) as a function of
the fiber volume fraction. Specifically, the truncation order
of the systems was fixed to K̃ = K = 3, thus, decreasing
the computational cost. As a consequence of constituent’s
isotropic behavior, we obtain Č1313 = Č2323, Ĉ1313 = Ĉ2323

and Č2313 = Č1323 = Ĉ2313 = Ĉ1323 = 0. A com-
parison between the results by the three scales asymptotic
homogenization method and the finite element method using
FreeFEM++ is also shown in Fig. 2. Specifically, we approx-
imate the involved functions by piecewise linear continuous
finite elements. As observed, the curves overlap even when
the truncation orders of the infinite linear systems are very
small. Interestingly, for the particular set of parameters fixed,
the effective behavior of Ĉ1313 (in the context of elasticity
Ĉ1313 is the effective shearmodulus μ̂) behaves as a quadratic
curve in function of the fiber volume fraction. This behavior
is a consequence of the fact that at the ε2-structural level the
fibers are stiffer than the hostmedium, and at the ε1-structural
level the matrix becomes the stiffer constituent. In several
works similar patterns have been observed. For instance, the
enhancement of the effective out-of-plane Young modulus
was obtained in [24] for a periodic bilaminate, and in [31],
for a particular type of composite material.

6 Concluding remarks

In the present work, the effective behavior of hierarchical lin-
ear elastic composites at different length scales was studied.
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Fig. 2 Effective out-of-plane shear moduli Č1313 (formula (41)) (left) and Ĉ1313 (formula (43)) (right) plotted against the fiber volume fraction.
Comparisons with FEM are also shown

The approach permits the study of problems where several
length scales are present (the two-scale asymptotic homog-
enization only deals with two different length scales). The
novelty of this work relies in the solution, for the first time,
of the effective elastic shear stiffness considering a nested
arrangement of cylindrical and uniaxially aligned fibers. The
corresponding cell problems are solved analytically using
complex variables and the results are compared with a finite
element approach. Since analytical formulas are found for
computing the effective coefficients the computational cost
is very low.

Future developments of this work will concern the anal-
ysis of the in-plane problems [16,27] to fully characterize
the effective mechanical response of hierarchical three-
scale materials. Moreover, the extension of the present
model to interface debonding conditions (see, e.g. [23]), as
well as geometric heterogeneities (for example generalizing
the non-macroscopically uniform homogenization approach
developed in [8,17,18]) will provide more general and realis-
tic results applicable to real-world hierarchical composites.
The current method represents a first step towards computa-
tionally feasiblemultiscalemodelingof complexhierarchical
materials. For example, this approach could be exploited to
modelmusculoskeletal mineralized tissues (such as bone and
tendons) which are organized across several spatial scales. In
this context, the three scales would represent the arragement
on the basic constituents (i.e. collagen and mineral crystals),
the resulting mineralized collagen fibril, and finally their
packing into the mineralized collagen fibril bundle. Since
the model is developed for fiber-reinforced composites, it
can then serve as an approximation for both fibers embedded
in a matrix, and for fusing inclusions of reinforcing mate-
rial, such as for example the hydroxyapatite mineral crystals
which are found in the aged bone tissue (see, e.g. [22]).
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Appendix A: Analytic solution of the cell
problems

The doubly periodic harmonic functions are sought in terms
of the following expansions of harmonic functions [13]:

χ̃
γ

k = Re
{
ϕ̃γ (z)

}
and χ

γ

k = Re
{
ϕγ (z)

}
, (45)

where

ϕ̃1 = ∑∞ o
l=1 (ãl z−l − ∑∞ o

m=1 m�ml ãmzl), ϕ̃2 = ∑∞ o
l=1 c̃l zl ,

ϕ1 = ∑∞ o
l=1 (al z−l − ∑∞ o

m=1 m�mlamzl), ϕ2 = ∑∞ o
l=1 cl zl ,

with ãl , al , c̃l and cl being complex coefficients to be deter-
mined,�11 = (−1)k+1π and�ml = Sm+l(m+ l−1)!/m!l!.
The reticulate sums are defined by Sm = ∑

w∈L∗ w−m

(m > 3, m odd) for w = rw1 + sw2 with r , s ∈ Z and
L∗ represents the lattice excluding w = 0. The superscript
“o” indicates that the sum is carried out only over odd indices.

After substituting (45) in the local problems (32) and (33)
and some algebraic manipulations. The following systems of
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equations are obtained in order to find the complex coeffi-
cients ãm and am ,

(
Ã1

Ã2

)

=
[(

I 0
0 I

)

+ (−1)k+1ϒζ

(

kW
ζ
1 −kW

ζ
2

−kW
ζ
2 −kW

ζ
1

)]−1

Vζ
k ,

(46)
(
A1

A2

)

=
[(

I 0
0 I

)

+ (−1)k+1ϒη

(
kW

η
1 −kW

η
2−kW

η
2 −kW

η
1

)]−1

Vη
k ,

(47)

where I is the infinite identity matrix, 0 is the infinite
zero matrix, Ã1 = (1ã1, 1ã3, . . .), Ã2 = (2ã1, 2ã3, . . .),
ãl = 1ãl + 2ãl I (I 2 = −1), A1 = (1a1, 1a3, . . .), A2 =
(2a1, 2a3, . . .), al = 1al + 2al i, kWj = kW

j
1 + kW

j
2i

(j = ζ , η) with

kWj =
{

(−1)k+1πR2
j for m + l = 2,

∑∞ o
m=1

√
ml�ml R

m+l
j for m + l > 2,

where Rζ and Rη represent the fiber radius of Z̃2 and Ỹ2,

respectively. Besides, Vζ
k = (

(−1)k+1ϒζ Rζ , 0, . . .
)
, Vη

k =(
(−1)k+1ϒηRη, 0, . . .

)
and

ϒζ = C1,ζ
1313 − C2,ζ

1313

C1,ζ
1313 + C2,ζ

1313

and ϒη = C1,η
1313 − C2,η

1313

C1,η
1313 + C2,η

1313

.
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