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Controlling frontal photopolymerization with optical attenuation and mass diffusion

Matthew G. Hennessy, Alessandra Vitale, Omar K. Matar, and João T. Cabral*

Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
(Received 3 March 2015; revised manuscript received 17 April 2015; published 11 June 2015)

Frontal photopolymerization (FPP) is a versatile directional solidification process that can be used to
rapidly fabricate polymer network materials by selectively exposing a photosensitive monomer bath to light.
A characteristic feature of FPP is that the monomer-to-polymer conversion profiles take on the form of traveling
waves that propagate into the unpolymerized bulk from the illuminated surface. Practical implementations of FPP
require detailed knowledge about the conversion profile and speed of these traveling waves. The purpose of this
theoretical study is to (i) determine the conditions under which FPP occurs and (ii) explore how optical attenuation
and mass transport can be used to finely tune the conversion profile and propagation kinetics. Our findings quantify
the strong optical attenuation and slow mass transport relative to the rate of polymerization required for FPP.
The shape of the traveling wave is primarily controlled by the magnitude of the optical attenuation coefficients
of the neat and polymerized material. Unexpectedly, we find that mass diffusion can increase the net extent of
polymerization and accelerate the growth of the solid network. The theoretical predictions are found to be in
excellent agreement with experimental data acquired for representative systems.

DOI: 10.1103/PhysRevE.91.062402 PACS number(s): 68.08.−p, 82.35.−x, 81.30.Fb, 82.50.Hp

I. INTRODUCTION

Photopolymerization is a common solidification process
that is used to create cross-linked polymer networks by sub-
jecting a photosensitive monomer-rich bath to light, typically
ultraviolet (uv) radiation [Fig. 1(a)]. The high polymerization
rates that are achieved under intense radiation enable the
rapid fabrication of complex patterned structures controlled
through selective illumination of the bath, and development (or
selected removal) of the unpolymerized material. Furthermore,
it is possible to carry out photopolymerization at ambient
temperatures and in open atmospheres, making this process
particularly attractive from an industrial point of view [1–3].

The fundamental idea behind photopolymerization is that
the absorption of radiation by photoinitiators within the
monomer-rich bath initiates the necessary chemical reactions
leading to polymerization and, often, simultaneous cross-
linking. Light absorption causes the intensity of radiation
to decay within the material, away from the illuminated
surface [Fig. 1(b)]. Consequently, the monomer-to-polymer
conversion is also spatially nonuniform, exhibiting a gradient
orthogonal to the surface. Under certain experimental condi-
tions that will be discussed below, photopolymerization can be
confined to a localized region, a planar front, that propagates
into the unpolymerized bulk along the illuminated direction.
The corresponding conversion profile of the traveling wave,
normal to the surface, can be represented by an order parameter
φ measuring the local fraction of polymer [Fig. 1(c)]. The
polymerization front can be formally defined as the position
where the order parameter φ reaches a critical value of φc, a
characteristic of the polymer network. The front position and

*j.cabral@imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 3.0 License. Further distribution of
this work must maintain attribution to the author(s) and the published
article’s title, journal citation, and DOI.

its dependence on light exposure and material properties are
particularly relevant for practical applications, as these provide
a measure of the depth (or “height” following development)
of the growing polymer network [Fig. 1(d)]. The appearance
of a sharp wavefront separating polymer-rich (solid) and
monomer-rich (liquid) phases is thus characteristic of a frontal
photopolymerization (FPP) process [4–6]. The overall FPP
physical scenario is, however, common to various directional
solidification and degradation processes.

In FPP, the propagation of the wavefront is driven purely by
the continuous absorption of radiation, making it distinct from
thermal (TFP) and isothermal (IFP) frontal polymerization.
Wave propagation in TPF is sustained by the heat released
in exothermic chemical reactions and the Arrhenius-like
dependence of the reaction rates. IFP occurs as a result of the
Trommsdorff–Norrish effect, whereby polymerization leads
to a local increase in the liquid viscosity, which, in turn,
inhibits terminating reactions. TFP and IFP can be initiated
through a localized heat source or a polymer seed, respectively,
whereas FPP can begin as soon as the bath is illuminated with
a sufficient radiation dose. A comprehensive and accessible
review of these frontal polymerization processes is given by
Pojman [7].

In practice, FPP is employed in the fields of lithography
[4], rapid prototyping [8], coatings [9], dentistry [10], and
biomedicine [11], where it has been used to fabricate mi-
crocircuits [2], microfluidic devices [12], and more recently,
gradient polymer materials with tunable properties that vary
in the direction of wave propagation as well as in the
lateral plane orthogonal to it [13]. All of these examples
demonstrate the exciting possibility of utilizing FPP to rapidly
manufacture with light. Harnessing the full potential of FPP,
however, requires a quantitative understanding of the traveling-
wave conversion profiles and how they propagate throughout
the bulk. Elucidating the primary mechanisms underpinning
photopolymerization processes has been the focus of several
theoretical and experimental studies [5,6,14–18]. We have
postulated that FPP should occur under conditions of strong
optical attenuation and limited mass and thermal transport
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FIG. 1. (Color online) (a) Typical FPP process consisting of a
photosensitive monomer-rich bath selectively illuminated by col-
limated uv radiation. The conversion profile can be described by
an order parameter φ(z,t) representing the fraction of polymer at a
point z at time t . A solid network forms above a certain critical φc

indicated by a solid circle. (b) The intensity of the radiation I (z,t)
decays as its passes through the bath, giving rise to a solid polymer
network that grows from the illuminated surface into the bulk. (c) The
spatiotemporal evolution of φ(z,t) shows the emergence of a traveling
wave, a characteristic feature of FPP. The position of the wavefront,
zf (t), corresponds to the location of the solid-liquid interface,
formally defined by the position where φ reaches a prescribed value of
φc (shown as the horizontal plane), characteristic of the network. (d)
By tracking the temporal evolution of zf , the depth (or “thickness”)
of the solidified section is obtained at each point in time. The solid
network does not form instantly upon illumination, but only after an
induction time τind is exceeded, corresponding to the time required to
first reach φc.

[4,5,13]. However, to the best of our knowledge, there has been
no systematic investigation into how these factors influence the
appearance and/or the profile of traveling waves. The purpose
of this paper is, therefore, to conduct a theoretical study of
the photopolymerization process in order to (i) identify the
conditions under which FPP occurs, and (ii) explore how
optical attenuation and mass transport can alter the shape of the
traveling wave. FPP experiments on model systems of varying

attenuation and mass transfer are formulated and compared
against model predictions. Particular attention will be paid to
determining the key physical parameters that are responsible
for selecting the width of the interfacial profile separating
the polymer-rich (φ � 1) and monomer-rich (φ � 0) phases,
depicted in Fig. 1(c). The material properties of the cured solid,
e.g., the elastic modulus [13], can vary significantly over this
layer; thus, the ability to control its thickness will be directly
relevant to the fabrication of gradient polymer materials.

Previous theoretical studies of photopolymerization have
led to the development of a broad range of mathematical
models for this process. At one end of the spectrum are
accurate physicochemical models accounting for each of the
reaction steps (minimally photoinitiation, propagation, and
termination) [19–22], nonuniform distributions of polymer
chain length [23,24], generation and diffusion of thermal
energy [15], mass transport [25], and intricate optical ef-
fects [26,27]. Such models, however, often suffer from an
excessive number of parameters, some of which cannot be
measured experimentally, and thus they offer limited insight
and practical use. At the other end are reduced, coarse-grained,
or minimal models that are largely phenomenological in
nature, but which capture the spatiotemporal evolution of
key quantities (e.g., patterned depth and light transmission)
[4,6,14]. Minimal models are generally based on physically
observable quantities and benefit from greater simplicity, thus
making them amenable to mathematical analysis and FPP
fabrication. For these reasons, we choose to extend the minimal
model proposed by Cabral et al.[4], which has been shown to
agree exceptionally well with experimental data for thiol-ene
systems with low φc [5,13].

The outline of this paper is as follows. In Sec. II, we revisit
our previous minimal FPP model [4] to gain direct insight into
the mechanisms that control the shape of the traveling wave
profile. We then incorporate mass diffusion into this model
in Sec. III. Our theoretical results are compared with new
and previously reported experiments in Sec. IV. We discuss
our findings in a practical context and conclude the paper in
Sec. V.

II. NEW INSIGHTS FROM A “MINIMAL” FPP MODEL

We begin our investigation by revisiting a one-dimensional
(1D) mean-field model of photopolymerization that was
introduced by Cabral et al.[4]. This model consists of two
coupled nonlinear partial differential equations for (i) an
order parameter φ = φ(z,t) measuring the local extent of
polymerization, and (ii) the intensity of radiation throughout
the mixture I = I (z,t), at a depth z in the mixture at time t . The
order parameter is referred to as the conversion fraction, and it
satisfies 0 � φ � 1, with φ = 0 and 1 denoting regions of the
mixture that have undergone no or complete polymerization
(or cross-linking), respectively. In this regard, φ can be loosely
interpreted as the polymerized fraction occupying the mixture,
with (1 − φ) corresponding to the fraction of unpolymerized
monomer-rich liquid. Solidification occurs when φ reaches a
certain critical φc, and whose value depends on the reactive
mixture functionality and architecture of the network and is
thus system-specific.
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The model follows the experimental configuration depicted
in Fig. 1(a); the monomer-rich bath is covered with a
transparent substrate and illuminated from above. The bath is
assumed to be of thickness H so that the downward-pointing
vertical coordinate z is bounded between 0 � z � H , with
z = 0 and z = H denoting the top and bottom of the mixture,
respectively. In this section, we shall assume that H → ∞,
which is common for multilevel lithographic patterning [4].
The intensity of incoming radiation at the top surface of
the photosensitive material is denoted as I0, and, therefore,
I (0,t) = I0 at all times.

In our original model, photopolymerization was taken to be
isothermal, and mass transport was not considered; the latter
will be introduced into the model in Sec. III. The reaction rate
is assumed to be proportional to an effective rate coefficient
K with units of m2 J−1, the fraction of available sites (1 − φ),
and the intensity of radiation, I . The conversion fraction φ,
therefore, satisfies

∂φ

∂t
= K(1 − φ)I. (1a)

As the radiation passes through the mixture, it is absorbed
by the constituent chemical components; indeed, it is this ab-
sorption that leads to photoinitiation and then polymerization.
Due to this absorption, the intensity of radiation decays as
the distance from the illuminated surface increases. This is
modeled through a generalized Beer-Lambert law given by

∂I

∂z
= −μ̄(φ)I, (1b)

where μ̄ is the optical attenuation coefficient of the mixture.
The monomer-rich and polymer-rich phases are generally
expected to have different absorption coefficients given by
μ0 and μ∞, respectively; therefore, the absorption coefficient
of the mixture is based on a phase average of the two:

μ̄(φ) = μ0(1 − φ) + μ∞φ, (1c)

which varies with z and t during the process. The model is
closed by imposing an initial condition for the conversion
fraction and a boundary condition for the intensity. Trivially,
we take the initial mixture to be unpolymerized, and the
intensity of radiation at the surface, I0, to be fixed. Therefore,
we impose the conditions

φ(z,t = 0) = 0, ∀ z, (1d)

I (z = 0,t) = I0, ∀ t. (1e)

The solutions of this model have been previously examined,
and it has been noted that the conversion fraction φ takes
the form of a traveling wave after a sufficiently large time
interval has passed [5]. An example of such a wave is shown in
Fig. 1(c); regions far ahead of and behind the wave correspond
to unpolymerized liquid (φ = 0) and fully polymerized solid
(φ = 1), respectively. Warren et al.[6] have shown that the
profile of this traveling wave can be obtained by solving the
equation

∂φ̂

∂ẑ
= −(1 − φ̂)[(μ0 − μ∞)φ̂ − μ∞ log(1 − φ̂)], (2)

where ẑ = z − zf (t) measures distances relative to the front
of the wave zf (t), and φ̂(ẑ) = φ(z,t). Carets are used to
denote quantities in the coordinate frame of the moving front.
The far-field boundary condition given by φ̂(ẑ → ∞) → 0 is
automatically satisfied by solutions to this equation; therefore,
an additional boundary condition is required to uniquely
determine the solution. The need to impose an extra boundary
condition is related to the various possible definitions for the
wavefront zf (t). In physical terms, this wavefront corresponds
unambiguously to the solid-liquid interface, which is obtained
following pattern development (i.e., selective dissolution of
the liquid phase). One possibility is thus to define the interface
by a critical value of the conversion fraction, φc, which
can be interpreted as a gelation or percolation point. This
φc can effectively be obtained experimentally and is an
intrinsic property of the network-forming system [4,5,13]. In
this case, the additional boundary condition reads φ̂(0) = φc.
Alternatively, the position of the interface can be defined as
the inflection point of φ̂, in which case the additional condition
is given by φ̂′′(0) = 0, where the prime denotes differentiation
with respect to ẑ. Mathematically, these formulations are
equivalent and they simply reflect different choices for the
origin.

The wavefront position zf (t) can be obtained by first
noticing that (1a) can be solved analytically at the point z = 0
using I (0,t) = I0 to give φ(0,t) = 1 − exp(−KI0t). After
fixing the origin and obtaining the unique solution of (2), the
front propagation kinetics can be found via the condition

φ̂[−zf (t)] = φ(0,t) = 1 − exp(−KI0t). (3)

We note here that the functional form of zf will depend on the
precise condition defining the solid-liquid interface.

Using this model, it is possible to determine the experi-
mental conditions that control the width of the diffuse solid-
liquid interface. This is practically important as development
truncates the front profile yielding a sharp planar interface,
albeit with a gradient network structure within the solid phase.
There is some flexibility in defining this interfacial width, and
we adopt the convention that the interface is located at the
inflection point of φ, corresponding to φ̂′′(0) = 0. The width
of the interface, w, is defined as the inverse of the derivative
at this point, i.e.,

w ≡ 1

|φ̂′(0)| . (4)

As shown in Fig. 2, this definition is exact when φ̂(0) = 1/2
and when the conversion profile is symmetric about the
inflection point. In general, however, the conversion profiles
are not symmetric; therefore, the expression in (4) only
provides an estimate of the width rather than its true value.
The conditions under which this estimate is accurate will be
specified below. Although we have previously reported [6] this
form for the interfacial width, we now examine its implications
in detail.

From (2), it follows that the conversion profile φ̂ can only
be changed through the optical attenuation coefficients, μ0

and μ∞; therefore, it is these two parameters that influence
w and hence control the sharpness of the solidification front
profile. To evaluate this dependence, we first consider two
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FIG. 2. (Color online) Schematic diagram showing the width,
w, of the diffuse interfacial layer separating polymer-rich and
monomer-rich phases. If the conversion profile φ̂ is symmetric about
its inflection point located at ẑi and satisfies φ̂(ẑi) ≡ φ̂i = 1/2,
then simple trigonometry yields w = 1/|φ̂′(ẑi)|. For asymmetric
conversion profiles, this expression for w becomes approximate with
an accuracy depending on the degree of asymmetry.

types of photopolymerization for which the model has simple
closed-form solutions. In the case of photoinvariant FPP, the
optical attenuation of the mixture effectively remains constant
over time; that is, the optical properties of the solid and liquid
phases are equal: μ0 = μ∞ = μ̄. Equations (2) and (3) are
readily solved to yield

φ̂(ẑ) = 1 − exp(−e−μ̄ẑ),

zf (t) = μ̄−1 log(KI0t),

w = e1μ̄−1.

(5)

Since the front position zf must be positive, we obtain
t > (KI0)−1. The factor τind ≡ (KI0)−1 corresponds thus to
an induction time, reflecting the finite light exposure time
required to first reach the solidification condition, since an
interface does not instantaneously form when the system is
irradiated. Had a different criterion for the position of the
interface been used, the corresponding induction time would
change slightly. For instance, if the interface was defined by a
critical value of the conversion profile, φc, then the induction
time would become

tind = τind log

(
1

1 − φc

)
. (6)

By setting φc equal to the value of φ̂ at the inflection point,
φ̂(0) ≡ φ̂i = 1 − e−1, the original induction time can be recov-
ered, i.e., tind = τind, thus demonstrating the interchangeability
of these two definitions of the interface. Experimentally, we
find that an empirical φc is required to track the measured
front kinetics of a range of neat [4] and nanofilled [5] thiol-ene
systems.

An alternative photopolymerization situation to consider
is strong photobleaching, which is expected upon activation
of the photoinitiator [3], eventually resulting in a solid phase
that is much less absorbing than the starting liquid: μ∞ � μ0.
By making the approximation μ∞/μ0 → 0, we find that the

solution and the width are given by

φ̂(ẑ) = 1

1 + exp(μ0ẑ)
,

zf (t) = μ−1
0 [KI0t + log(1 − e−KI0t )],

w = 4μ−1
0 .

(7)

In this case, the induction time is given by τind log 2, with
τind defined as before. By dimensional considerations, we can
conclude that the induction time will always be the product
of a dimensionless numerical factor and τind, regardless of the
relative sizes of the attenuation coefficients.

For other combinations of the attenuation coefficients, the
solution for the conversion fraction can only be written in terms
of nonelementary functions, as discussed by Warren et al.[6].
Despite this fact, an analytical estimate for the width of the
interface can remarkably still be obtained if the condition in (4)
is used. The value of φ̂ at its inflection point can be determined
by differentiating (2) with respect to ẑ, substituting (2) into this
expression, and solving the equation to find

φ̂i = 1 − 1

2

W[2(μr − 1)eμr−2]

μr − 1
, (8)

where W is the Lambert W function and μr = μ0/μ∞. The
width of the interface is then given by

w = 4(μr − 1)μ−1
∞

W[2(μr − 1)eμr−2]{W[2(μr − 1)eμr−2] + 2} . (9)

This expression can be used to estimate the interfacial width
in the limit of strong photodarkening, which occurs when the
solid absorbs much more radiation than the liquid, μ0 � μ∞.
In this case, we find that

w � 6.18μ−1
∞ . (10)

A contour plot of the function w in (4) can be used to examine
how the width varies with both of the attenuation coefficients,
which is shown in Fig. 3(a). It can be seen that the width of
the interface is substantially decreased in strongly absorbing
media, and increases without bound as both attenuation coeffi-
cients decrease to zero. The latter corresponds to the situation
in which the intensity of radiation remains approximately
constant throughout the material, leading to nearly uniform
polymerization rather than a traveling polymerization wave
propagating from the illuminated surface.

To assess how well the expression in (9) characterises the
interfacial width, we examine the value of the conversion
fraction at the interface using (8) as well as the conversion
profiles themselves in the three main photopolymerization
cases described above. The dependence of φ̂i on the ratio
of attenuation coefficients, μr , is shown in Fig. 3(b). The
curve decreases monotonically from its value of φ̂i � 0.8 when
μr = 0 and it asymptotes to a value of 1/2 as μr → ∞. The
large deviation of φ̂i from the ideal value of 1/2 that occurs
for μr � 1 is indicative that w may be a poor predictor of
the interfacial width in this regime. Indeed, a visual inspection
of the conversion profile in the case of strong photodarkening
(μr � 0), which is plotted in Fig. 4(a), shows that the width
of the interfacial layer is much larger than the prediction of
6.18μ−1

∞ given in (10). In this case, the error in w is due
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FIG. 3. (Color online) (a) The functional dependence of the
width of the diffuse solid-liquid interface on the attenuation coef-
ficients in the solid and liquid phases, μ∞ and μ0, respectively. Here
w is computed from (9), and it will have units of mm. The white
line denotes the curve μ∞ = μ0. In the region below this line, the
conversion profiles are expected to be relatively symmetric about
the interface. (b) The dependence of the conversion fraction at its
inflection point as a function of the ratio of attenuation coefficients
μr . This curve has been computed from (8) and it can be used to
assess the symmetry of the conversion profile and the accuracy of
the width estimate; see text for details. The regions to the left and
right of the dashed line at μr = 1 correspond to photodarkening and
photobleaching photopolymerization, respectively.

to the derivative of φ at the inflection point overestimating
the gradual decay of the conversion profile. The asymmetry
of the profile about this point is a contributing factor as
well. The estimates of the width given by (5) and (7) for
the respective cases of photoinvariance (μr = 1) and strong
photobleaching (μr 	 1) are, however, in much better agree-
ment with the widths that are seen directly from the conversion
profiles, both of which are plotted in Fig. 4(b). In these two
cases, φi is much closer to 1/2 and the conversion profiles
exhibit a higher degree of symmetry about the inflection point.
As a result, the value of φ′(0) gives a better representation
of the spatial variation of the conversion fraction near the
interface. Thus, we can conclude that our expression for the
interfacial width w given by (9) yields accurate quantitative
estimates when μr � 1 (viz. below the white line in Fig. 3)
due to the symmetry of the conversion profile. In the region
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FIG. 4. Characteristic traveling-wave conversion profiles in the
case of strong photodarkening (a), strong photobleaching (b), and
photoinvariant [(a) and (b)] photopolymerization. The variable on the
horizontal axes is a dimensionless measure of the distance from the
solid-liquid interface defined by the inflection point of φ̂.

above this line, the asymmetry of the conversion profile leads
to w underestimating the width of the diffuse layer.

III. THE ROLE OF ISOTHERMAL MASS DIFFUSION
IN FPP

We next introduce a model that incorporates diffusive
mass transport under isothermal conditions. We suppose that
the conversion fraction φ evolves according to a nonlinear
reaction-diffusion equation given in dimensional terms as

∂φ

∂t
= ∂

∂z

(
D(φ)

∂φ

∂z

)
+ KI0(1 − φ)e−μ̄z, (11)

where D is a diffusivity satisfying D(0) = D0. We have
assumed that the mean absorption coefficient μ̄ is independent
of φ and, hence, we consider only photoinvariant FPP, which
facilitates an analytical study of this model. As shown previ-
ously, a photoinvariant model for FPP can, in fact, accurately
capture experimental data, at least for sufficiently short times
for a range of systems [4,5,13]. The analysis that follows does
not depend crucially on this simplifying assumption; therefore,
the results are expected to carry over to the general case, unless
stated otherwise.

The dependence of the diffusivity on the conversion
fraction reflects the fact that the mobility of the species
and, in particular, of the polymer chains will depend on
their molecular weight. To estimate a functional form for
the diffusivity, we recall the reptation prediction for the self-
diffusion of entangled polymers in a melt D ∼ M−2

w [28,29],
and larger exponents of up to 2.5 observed in concentrated
solutions and gels, where Mw is the polymer molecular weight
[30]. For the purposes of this “minimally extended” model,
it will suffice to consider only the inverse proportionality
between D and Mw rather than attempting to specify a precise
exponent, which is unlikely to be suitable for the hetero-
geneous systems encountered during photopolymerization.
Photopolymerization occurs via chain-growth polymerization,
which generates polymer chains of various lengths. Relating
the molecular weight of the polymer chains that occupy a given
control volume to the local conversion fraction φ is nontrivial
because this variable provides little information about this
quantity. Therefore, the molecular weight is assumed to be a
monotonically increasing function of the conversion fraction
of the form Mw/M0 = (1 − φ/φ∗)−b, where b > 0 and M0

is the molecular weight of a monomer unit. The vertical
asymptote at φ = φ∗ � 1 corresponds to diffusion effectively
ceasing as a critical conversion is reached. By combining
the expressions for D and Mw, we can propose an empirical
functional form for the diffusivity:

D(φ) =
{

D0(1 − φ/φ∗)a, φ < φ∗,

0, φ > φ∗,
(12)

where a > 0. Given the complexity of the distribution in length
of polymer chains, we take the exponent a to be an empirical
descriptor of the diffuse nature of the front due to mass transfer.
Examples of this function are shown in Fig. 5(a). If 0 < a < 1,
the decay of the diffusivity with increasing φ is gradual at
first, but rapidly steepens as φ∗ is approached. The behavior
of the diffusivity reverses when a > 1; in this case, the initial
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the form D(φ)/D0 = (1 − φ/φ∗)a . Here, D0 denotes the monomer
self-diffusion coefficient; φ∗ represents the possibility of a critical
density of cross-links at which the network becomes impenetrable to
small molecules, causing diffusion to cease; and a is an empirically
determined exponent. (b) Corrections to the nondiffusive conversion
profile (shown as the dashed line in Fig. 4) in the limit of slow mass
diffusion. For a given exponent a, the observed conversion profile
is a superposition of the nondiffusive profile and the corresponding
curve for φ1. Therefore, φ1 indicates how the conversion profile will
broaden with time. The legend applies to both panels.

decrease is sharp and the final decay to zero is gradual. To
simplify our analysis of this model, we will assume that φ∗ =
1. We avoid a formal relationship between φ∗ and φc at this
stage, since the latter criterion corresponds to the formation
of a weak gel, which has finite solvent permeability (and is
experimentally observed to swell upon prolonged immersion)

In this model, the crossover from isolated chains of polymer
diffusing within a bath of monomer to small monomers
diffusing into a cross-linked polymer network is captured only
by the decrease in the diffusivity with the conversion fraction.
Despite its simplicity, the benefit of our model assumption
is that analytical progress can be made and used to provide
first insights into how mass transport can influence the frontal
nature of photopolymerization.

The model is closed by prescribing boundary and initial
conditions for the conversion fraction. In this case, we assume
the spatial domain is unbounded and given by z � 0. No-
flux boundary conditions are imposed at the transparent,
illuminated surface, and in the far field; as before, the initial
mixture is assumed to be unpolymerized. Thus, we have the
following conditions:

∂φ

∂z
= 0, z = 0, (13a)

∂φ

∂z
→ 0, z → ∞, (13b)

φ = 0, t = 0. (13c)

A. Scaling

The governing equations are now recast into dimensionless
form by choosing suitable scales for the variables in the
model. This has the advantage of reducing the number of
free parameters in the system, and it aids in identifying the

key parameter and time regimes. The time variable t is written
in terms of the photoinvariant induction time for an interface
defined according to the inflection point, τind = (KI0)−1. In
addition, the spatial coordinate z is written in terms of the
approximate width of the interfacial layer μ̄−1. Thus, we set
t = τindt

′, z = μ̄−1z′, and we write D = D0D
′, where primes

denote dimensionless quantities. The nondimensional model
can be written as (after dropping the primes)

∂φ

∂t
= δ

∂

∂z

(
D(φ)

∂φ

∂z

)
+ (1 − φ)e−z, (14a)

with a diffusivity given by

D(φ) = (1 − φ)a, (14b)

and the following boundary and initial conditions:

∂φ

∂z
= 0, z = 0, (14c)

∂φ

∂z
→ 0, z → ∞, (14d)

φ = 0, t = 0. (14e)

The key parameter that controls the dynamics of the model,
δ, corresponds to the ratio of the reactive and diffusive time
scales:

δ = μ̄2D0

KI0
. (15)

Thus, δ 	 1 and δ � 1 describe the physical situations in
which mass diffusion is much faster and much slower than the
effective rate of polymerization, respectively.

B. Limit of slow mass diffusion

We first focus on the case in which mass diffusion is
slow compared to the polymerization reaction, corresponding
to δ � 1. We find that two distinct time regimes must be
considered.

The first of these corresponds to O(1) times. Near the
illuminated upper surface, a diffusive boundary layer of width
O(δ1/2) rapidly develops. However, this is not found to
significantly influence the behavior of the solution, so we do
not discuss it further. Away from the upper surface, i.e., for
z 	 δ1/2, the diffusive term can be neglected from (14a) and
one finds that the conversion fraction settles into the traveling-
wave profile described by (5), which, in nondimensional form,
can be written as

φ(z,t) ≡ φ̂0(ẑ) = 1 − exp(−e−ẑ), (16)

where ẑ = z − log t .
The second time regime is entered when t = O(δ−1).

Diffusion becomes important over these long time scales, and
it leads to a slow broadening of the interfacial layer. The
dynamics in this regime can be studied by first making the
change of variable given by τ = δt and ẑ = z − log t .
The governing equation for the conversion fraction becomes

∂φ̂

∂τ
− 1

τ

∂φ̂

∂ẑ
= ∂

∂ẑ

(
D(φ̂)

∂φ̂

∂ẑ

)
+ (

1 − φ̂
)e−ẑ

τ
. (17)
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Naively taking τ → 0 provides an initial condition for this
equation, φ̂(ẑ,τ → 0) = φ̂0(ẑ); thus, the solution in the second
time regime is a continuation of the solution in the first time
regime. We look for a solution that is valid for small times,
τ � 1, by writing

φ̂(ẑ) = φ̂0(ẑ) + τ φ̂1(ẑ) + O(τ 2). (18)

It can be shown that φ̂1 satisfies a linear differential equation
given by

dφ̂1

dẑ
− (1 + e−ẑ)φ̂1 = − d

dẑ

(
D(φ̂0)

dφ̂0

dẑ

)
, (19)

with φ̂1 → 0 as ẑ → ∞. The solution can be written as

φ̂1(ẑ) = exp(ẑ − e−ẑ)

×
∫ ∞

ẑ

exp(−s + e−s)
d

ds

(
D(φ̂0)

dφ̂0

ds

)
ds.

(20)

Using the diffusivity given in (14b), a closed-form expression
for φ̂1 can be obtained for any power a; in particular,

φ̂1(ẑ) = a2(1 + a) + (2 + a)[aeẑ + e2ẑ − exp(2ẑ + ae−ẑ)]

a3 exp[(1 + a)e−ẑ + ẑ]
.

(21)

In the limit of constant diffusivity, a → 0, this expression
reduces to

φ̂1(ẑ) = 1
6 (3eẑ − 2) exp(−2ẑ − e−ẑ). (22)

By plotting φ̂1 as a function of ẑ for different values of
a, we can examine how the conversion fraction is expected
to deviate from the nondiffusive conversion profile given
by (16) and, in particular, how the interfacial layer begins
to broaden. Such curves are shown in Fig. 5(b). We first
notice that φ̂1(ẑ = 0) �= 0, corresponding to a shift in the
inflection point and the location of the interface. Secondly, we
see that these functions are not symmetric about ẑ = 0. The
ramification of this is that the interfacial layer does not broaden
in a symmetric manner, but rather there is more spreading
ahead of the front than behind it. A possible mechanism for
asymmetric broadening is the variation of the diffusivity across
the interfacial layer; however, the asymmetry is still present
when the diffusivity is constant, corresponding to a = 0,
implying it must originate from elsewhere. Indeed, we find
that the asymmetry is inherited from that in the nondiffusive
profile; the nonconstant diffusivity across the interface merely
magnifies this.

The influence of slow mass diffusion on the position and
width of the interfacial layer over intermediate times satisfying
t � δ−1 can be determined by analyzing the approximate
solution for the conversion fraction given in (18). It can be
shown that these two quantities are given by

zf (t) � log t − δt[e1φ̂′′
1 (0)], t � δ−1 (23)

and

w(t) � e1[1 + δt e1φ̂′
1(0)], t � δ−1, (24)

respectively. Thus, mass diffusion leads to a small linear
drift in the position of the interface, which itself is caused

by the asymmetric broadening of the interfacial layer. If
the broadening was symmetric in the sense that φ̂′′

1 (0) = 0,
corresponding to the case in which the inflection points of φ̂0

and φ̂1 coincide with each other, then mass diffusion would be a
higher-order effect and the original expression for the position
of the interface in the limit of no mass transport, zf (t) = log t ,
would be recovered. The approximation for w given in (24)
indicates that mass diffusion leads to a linear broadening of
the interfacial layer over intermediate times.

To explore the dynamics that occur over larger times, the
boundary-value problem (14) is solved numerically for specific
values of δ and a. Changes in a and δ only affect the qualitative
structure of the solutions, so we shall only report the results
that are obtained for one set of parameter values. The results
from a simulation with δ = 10−2 and a = 2 are shown in
Fig. 6. Panel (a) displays the evolution of the conversion
fraction in a frame that travels with the interface. A significant
broadening of the interfacial layer occurs, particularly ahead
of the front where the (oligomeric and monomeric) species
are highly mobile. The mobility decreases sharply behind the
front due to the nonconstant diffusivity, effectively freezing the
morphology of the profile in this region. Also shown in this
panel is the two-term approximation of the conversion profile
for intermediate times given by (18), which is in excellent
agreement with the full numerical solution. Figures 6(b) and
6(c) show how the position of the interface and the width of the

ẑ = z − zf (t)
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FIG. 6. (Color online) FPP kinetics under isothermal conditions
when mass diffusion is slow relative to the polymerization reaction,
as characterized by δ � 1. Snapshots of the conversion profile at
(nondimensional) times 80, 240, 400, 560, and 720 (a). Due to mass
transport, the interfacial profile broadens with time. The symbols
denote an asymptotic solution given by (16), (18), and (21). Evolution
of the location (b) and width (c) of the interface. The highlighted
regions in light blue correspond to an initial time regime whereby the
interfacial layer has yet to develop fully; thus, neither the inflection
point nor the associated width are physically meaningful here. The
dash-dotted line in panel (b) is the approximation of the interface
position in the limit of no mass transport, zf (t) = log t . The dashed
lines in panels (b) and (c) are approximations given by (23) and (24)
that account for mass transport. Parameter values are δ = 10−2 and
a = 2.
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interfacial layer evolve in time, respectively. For small times
given by t < 1, corresponding to the light-blue regions of
these two panels, the inflection point lies within the diffusive
boundary layer near the transparent upper surface, and the
conversion profile has yet to fully develop an interfacial layer.
Therefore, neither the inflection point nor the corresponding
width are physically meaningful for t < 1, so we do not
consider this time interval further. For larger times given by
t > 1, Fig. 6(b) shows how the position of the interface slowly
deviates from the logarithmic behavior observed when mass
transport is negligible (shown as the dash-dotted line). The
approximation of the interface position (23), shown as the
dashed line, is in good agreement with the numerical solution
for the times in which it is valid, t � δ−1. Figure 6(c) shows
that for O(1) times, the width of the diffuse interface remains
approximately constant and equal to the value of e1 predicted
from the model without mass transport. For longer times
satisfying t � δ−1, the width increases linearly in accordance
with the approximation given by (24), which is indicated by
the dashed line in this panel. This linear growth slows down
when t > δ−1, indicating a transition into a time regime with
diffusion-dominated dynamics. In such a regime, the width
is expected to scale like w ∼ t1/2. Further analysis of the
numerically computed width in Fig. 6(c) reveals that the t1/2

behavior is indeed approached for sufficiently long times. By
comparing the widths predicted by w to those seen visually
from the conversion fractions, we find that on very long
time scales, w underestimates the widths due to asymmetric
broadening of the conversion profiles and their slow decay to
zero from the inflection point.

C. Limit of moderate and fast diffusion

When mass diffusion occurs on a time scale that is similar
to or faster than that of the photopolymerization reaction,
i.e., when δ = O(1) or larger, a significant broadening of
the conversion profile occurs even before the surface of the
mixture is fully converted, corresponding to complete network
formation. Such behavior can be seen in Fig. 7, which shows
the results of two simulations of (14) when δ = 1 and for two
values of the exponent a that appears in (14b). The strong
broadening due to rapid mass transport essentially destroys
the frontal nature of FPP.

D. Mean extent of polymerization

To further characterize how mass diffusion influences the
dynamics of FPP, it is instructive to examine the evolution of
the mean conversion fraction. This is defined as

〈φ〉δ(t) = 1

H

∫ H

0
φ(z,t ; δ) dz, (25)

where the spatial domain has been truncated at z = H in
order to obtain meaningful results. This quantity estimates,
on average, the mean extent of polymerization throughout the
mixture. In the limit of slow diffusion, δ → 0, the solution for
φ is given by (16), and, therefore, this integral can be evaluated
to give

〈φ〉0(t) = 1 − 1

H
[E1(te−H ) − E1(t)], (26)
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FIG. 7. (Color online) Conversion profiles at various times when
mass transport occurs on a similar time scale to the polymerization
reaction. The two panels distinguish results obtained using different
exponents in the diffusivity (14b). We take a = 2/3 (a) and a = 2 (b),
corresponding to diffusivities with qualitatively different behaviors;
see Fig. 5. In both panels, δ = 1. The profiles are shown at
(nondimensional) times t = 1,5,10,20, and 100. They indicate that
significant broadening occurs in this regime, destroying the frontal
nature of FPP. Moreover, variations in the exponent a only result in
small changes to the conversion profiles.

where E1 is an exponential integral defined as

E1(ξ ) =
∫ ∞

1

e−ξs

s
ds. (27)

In the limit of fast mass diffusion, δ → ∞, the conversion pro-
files are spatially uniform, φ(z,t) = φ(t); thus, a differential
equation for the mean conversion fraction can be obtained by
integrating (14a) with respect to z and applying the no-flux
boundary conditions in (14c) and (14d). Upon solving this
equation using the initial condition 〈φ〉∞(0) = 0, we find that

〈φ〉∞(t) = 1 − exp[−H−1t(1 − e−H )]. (28)

The fact that 〈φ〉0 �= 〈φ〉∞ for each value of t > 0 suggests
that mass diffusion not only affects the spatial distribution of
polymers, but also the overall extent of monomer conversion
at any given time. This result is surprising, as it suggests
that mass diffusion can effectively increase conversion, for a
fixed photon dose. Intuitively, this can be rationalized in terms
of a positive feedback imposed on the governing equation
for φ [cf. (1a) for simplicity] due to diffusion flattening the
conversion profile and locally reducing the value φ, thus
increasing (1 − φ) and the rate of reaction. Figure 8 illustrates
both of these points in greater detail. In particular, panel (a)
shows, for a fixed time t , how larger values of δ, corresponding
to faster diffusion, lead to a redistribution of the polymer-rich
phase across the domain. Panel (b) shows the evolution of the
mean conversion fraction for different values of δ. From this
panel, it can be seen that faster mass diffusion is responsible
for increasing the net amount of polymer that is produced
in a given amount of time. This is a consequence of diffusion
replenishing the monomer near the transparent substrate where
the intensity of radiation is the highest, both of which are
factors that allow for an acceleration of the local conversion
into polymer.

Interestingly, these results differ from those of Terrones and
Pearlstein [25], who show that in a perfectly photobleaching
system, the mean conversion fraction is independent of the
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FIG. 8. (Color online) (a) Increasing the nondimensional diffu-
sivity δ, corresponding to faster mass diffusion, redistributes the
polymer in such a way that, for a fixed (nondimensional) time
t = 10, it is spread further across the spatial domain. The dashed
line denotes a critical conversion fraction, φc = 0.05, that can
be used as an alternative definition of the solid-liquid interface.
(b) Diffusion leads to a replenishment of the monomer near the
transparent substrate located at z = 0, and this, in turn, increases
the net production of polymer, which can be measured through the
mean conversion fraction 〈φ〉δ , defined in (25). (c) Front propagation
kinetics, defined using the criteria φ(Zf (t),t) = φc = 0.05, shows
that FPP is accelerated due to mass diffusion. The nondimensional
induction times are given approximately by t ′

ind � log[1/(1 − φc)].
The corresponding profiles at t = 10 are shown in panel (a). In panels
(a) and (c), the values of δ are 0, 0.1, 0.5, and 1, whereas in panels (b)
they are 0, 0.1, 1, 10, and δ → ∞. In all cases, a = 2 with H = 10.

nondimensional diffusivity δ. In this case, the increase in the
rate of polymerization that occurs due to the replenishment of
the monomer near the transparent surface is exactly offset by
the decrease in radiation intensity throughout the mixture due
to this buildup of strongly absorbing molecules. We emphasize
that such behavior is specific to systems that exhibit perfect
photobleaching, and it would also be observed in our model if
it considered this type of photopolymerization.

E. An alternative definition of the interface

In the absence of mass diffusion, it is possible to define the
position of the interface in several equivalent ways, for instance
using the inflection point of the conversion profile or a critical
value of the conversion fraction. However, in the presence of
mass diffusion, the lack of a time-invariant traveling-wave
conversion profile means that different dynamics can be
observed depending on the choice of interface definition.

In FPP fabrication, the front position is naturally defined by
the selective dissolution of the liquid phase, yielding a sharp
solid boundary [4,5,13]. Effectively, in terms of our model, this
corresponds to defining a (system-dependent) critical value of
the conversion fraction φc, rather than the inflection point.
This criterion has the advantage of being unambiguous, and it
is found to be robust to a variety of selective solvents [4]: any
material below the measured φc is washed off.

Vitale et al.[13] have recently succeeding in separately
measuring full conversion profiles and front kinetics based
on φc, obtaining remarkably good agreement between those
independent measurements. From a fabrication point of view, it
is thus preferable to compute front kinetics using this empirical
φc criterion, instead of the profile’s inflection point. To explore
how the dynamics change upon using φc to define the interface,
we introduce the variable Zf for the new front position, defined
implicitly through the relation φ(Zf (t),t) = φc. Figure 8(c)
shows the characteristic evolution of Zf for values of δ

satisfying 0 � δ � 1 when φc = 0.05. The corresponding final
conversion profiles are shown along with φc in Fig. 8(a).
According to this description of the interface, mass diffusion
serves to accelerate the motion of the front by essentially
pushing regions of φc further into the unpolymerized mixture.
This is in stark contrast to when the interface was defined
in terms of the inflection point, where a slowing of the
front was observed; see, for example, Fig. 6. However, if a
larger value of φc was used, particularly one that satisfies
φc > 0.47, then a similar deceleration would be observed
due to diffusion pushing these regions of φc in the upbeam
direction, that is, toward the transparent substrate. From this we
can conclude that particular care must be taken when choosing
a suitable definition for the interface when mass transport is
non-negligible.

For the moderate values of δ used in Fig. 8(c), the induction
times are given approximately by the nondimensionalized
version of (6), namely t ′ind ≡ tind/τind � log[1/(1 − φc)]. For
larger values of δ, this approximation breaks down and there
is a marked increase in the induction time t ′ind, although the
broadening of the interfacial layer is so severe in this regime
that FPP does not occur.

IV. MODEL VALIDATION WITH FPP EXPERIMENTS:
OPTICAL ATTENUATION AND MASS DIFFUSION

EFFECTS

We have performed photopolymerization experiments to
evaluate how the optical attenuation coefficients and mass
transport affect the profile shape and the sharpness of the
polymerization front. Our experimental configuration mimics
that shown in Fig. 1(a); a monomer-rich bath is placed on
a thermally cured PDMS substrate and covered with a glass
surface. Collimated light from a monochromatic (365 nm) uv
source is passed through a photomask placed on top of the
glass surface to selectively illuminate a well-defined region of
the bath, away from the lateral container boundaries. A 100
W mercury flood lamp (Spectroline SB-100P) was used as the
light source. The intensity of radiation entering the bath was
measured with a UVItec RS-365 digital radiometer. Following
light exposure, the specimen was developed by selective
dissolution, with ethanol and acetone, and cross-sectioned in
order to quantify the conversion profile along the z direction
(or depth).

A Bruker Tensor 27 spectrometer and a Hyperion micro-
scope were employed to compute polymerization conversion
of the samples by Fourier transform infrared spectroscopy
(FTIR), enabling direct monitoring of the spatiotemporal evo-
lution of the conversion fraction φ during FPP. In particular, the
conversion profile was monitored by analyzing the variation
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FIG. 9. (Color online) (a) Fourier transform infrared (FTIR)
spectroscopy is employed to directly measure the conversion profiles
φ at selected times. The polymerized specimens are developed and
fractured into thin slices along the vertical z direction. The spectra
of these samples are then measured along the z direction using FTIR
microscopy. For additional details, see Vitale et al. [13]. (b)–(d)
Experimental (symbols) and theoretical (lines) conversion profiles
obtained from monomer-rich baths with different optical attenuation
coefficients but limited mass transport (b), and similar absorption
coefficients but different degrees of mass transport (c). All data can
be collapsed onto a master curve (d) by an appropriate rescaling of
the spatial variable and by subtracting off the diffusive contribution to
the profile. Blue stars, red circles, and black diamonds correspond to
bath formulations that are based on photoresist NOA81, NOA81 with
absorbing dye, and NOA81 with an additional low-molecular-weight
acrylic monomer, respectively; see text for further details.

of the thiol reactive functionality absorption band; for further
details, see Vitale et al. [13]. A schematic of this process is
shown in Fig. 9(a).

In all experiments reported, the monomer-rich bath is a
commercial Norland NOA81 thiol-ene photoresist or custom-
made formulations based on NOA81. The base photoresist
NOA81 has been shown to exhibit frontal kinetics compatible
with photoinvariant FPP at relatively early times. Further,
this system behaves regularly over a wide temperature range,
exhibiting limited mass transport [4,5], negligible shrinkage
upon polymerization, and small temperature rises during
experiments [13]. These last two points suggest that the density
of the mixture remains approximately constant during the
solidification process, thus inhibiting the onset of buoyancy-
driven convection. This mode of convective transport can have
important consequences for frontal processes: the flow of the

denser phase away from the polymerization front may broaden
the interfacial layer or lead to the formation of fingers via a
Taylor instability, which, in turn, will drive the breakup of the
planar front [31,32].

We first examine how varying the optical attenuation
coefficient of the base NOA81 resist leads to changes in the
characteristics of the polymerization front. Toward that end,
we have formulated a second resist by incorporating a light-
absorbing dye (Cresol Red, Sigma-Aldrich, 0.5 wt. %) to the
original, thereby increasing the optical attention coefficient,
μ̄, from 2.92 to 3.81 mm−1, a rise of about 30%. The two
corresponding conversion fractions are plotted as functions of
the (dimensional) vertical coordinate z and shown as symbols
in Fig. 9(b). A visual inspection of the experimental data
shows that the width of the interfacial layer decreases in the
formulation with the larger absorption coefficient. The data
can be well fitted to the solution of the photoinvariant FPP
model without mass transport given in (5) by taking KI0t

as the single fitting parameter. We note that the attenuation
coefficients are independently measured, prior to exposure,
via a simple transmission reading of specimens of known
thickness and via the Beer-Lambert law. Further, both t and
I0 are experimentally known so that the constant K is thus
the only undetermined parameter that must be fit to the data.
The fitted solutions are shown as the smooth curves, and the
agreement with the experimental data is excellent.

According to the analysis of Sec. II, the experimental
data should collapse onto a master curve given by φ̂ = 1 −
exp(−e−ẑ) once it is written in terms of the nondimensional
traveling-wave coordinate ẑ = μ̄[z − zf (t)], where zf is the
dimensional location of the inflection point given in (5).
Figure 9(d) shows that this is indeed the case, and all data
fit tightly on this master profile. Thus, the two conversion
profiles shown in panel (b) of this figure are essentially just
stretched versions of the same master curve, with the stretch,
and hence the width of the interfacial layer, being controlled
by the magnitude of the optical attenuation coefficient.

To explore how mass transport affects the polymerization
front, we carry out experiments using a modified NOA81
formulation that has an additional monomer of low molecular
weight, namely hexanediol diacrylate (Sigma-Aldrich, 10
wt. %). While this modification increases the overall mobility
of the components in the mixture, it also leads to a decrease
in the absorption coefficient from 2.92 to 2.64 mm−1. To
account for variations in the conversion profiles due to
different absorption coefficients and, therefore, to isolate the
broadening of the interfacial layer due to mass diffusion, the
experimental data have been plotted in Fig. 9(c) as a function
of a nondimensionalized coordinate μ̄z. Evidently, when the
diffusivity is increased, there is a significant broadening of the
conversion profile, mainly ahead of the polymerization front,
which agrees qualitatively with our theoretical predictions.

We note that by adding an acrylic monomer, polymerization
proceeds by two simultaneous mechanisms: free-radical chain
growth of the acrylates, both within the matrix and with
the acrylate monomer itself, in addition to the thiol-ene
step growth. The results presented in Fig. 9 concern only
the conversion of the thiol functionality. Further, we have
measured the front propagation rate of the neat and doped
systems, and we concluded that these remain identical when
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the change in optical attenuation coefficient is accounted for.
We can therefore conclude that the change in profile shapes
due to the addition of the low-molecular-weight monomer is
caused by an increase in the diffusion coefficient.

To make a quantitative comparison between theory and
experiment, we first notice that the close resemblance of the
two conversion profiles suggests that diffusion occurs on a
slower time scale than the photopolymerisation reaction, cor-
responding to the regime where the nondimensional number
δ, defined in (15), is small. We therefore attempt to fit the
approximate solution given by (16), (18), and (21) to the
experimental data associated with the modified formulation
(shown as the black diamonds), using δ, the nondimensional
time t ′, and a as fitting parameters. In terms of physical
quantities, fitting t ′ and δ provides values for the effective
rate constant K and the diffusivity D0, respectively. We find
that δ � 0.10 and t ′ � 8.8 so that δ � 1 and δt ′ < 1, which
are requirements for this approximate solution to be valid. In
addition, we find that a � 0.67. As shown in Fig. 9(c), the
match between the fitted solution and the experimental data
is exceptional, thus indicating that the extended model with
mass transport is able to accurately capture the evolution of
the interfacial layer and the conversion profile. Finally, we
note that the experimental data associated with the modified
formulation can further be collapsed onto the master curve
shown in Fig. 9(d). This is achieved by first subtracting off
the diffusive contribution to the profile given in dimensional
terms as μ̄2D0t φ̂1, with φ̂1 given by (21), and then writing
the profile in terms of the nondimensional traveling-wave
coordinate μ̄[z − zf (t)], with zf given by the expression in
(5). In general, such a subtraction can be performed provided
that the dimensionless quantity μ̄2D0t � 1. After carrying
out this procedure, we see from Fig. 9(d) that the experimental
data collapse remarkably well onto the master profile, thus
highlighting the underlying FPP dynamics occurring in the
presence of significant mass transport.

V. DISCUSSION AND CONCLUSION

In this paper, two mathematical models of photopolymer-
ization, each considering different physical effects, have been
studied. Particular attention has been paid to determining when
photopolymerization can be considered “frontal” in nature,
and, when this is the case, understanding the relationship
between the physical parameters of the system and the width
of the interfacial layer separating solid-rich from liquid-rich
phases. The results from this study indicate that photopoly-
merization will be frontal provided that mass transport is
sufficiently slow, as measured relative to the rate of the
photopolymerization reaction, and the optical attenuation is
strong. In general, the optical attenuation coefficients play a

primary role in selecting the width of the interfacial layer, with
the width decreasing as these coefficients increase. We also
find that mass diffusion, which can be effectively controlled by
the mass of the photoresist monomers, or through the addition
of low-molecular-weight monomers, can enhance the overall
rate of photopolymerization and accelerate the propagation of
FPP waves.

From a practical standpoint, a simple way to tailor the
conversion profiles that are achieved via FPP is by varying the
optical attenuation coefficients. As demonstrated by Cabral
and Douglas [5], these coefficients can be modulated by the
addition of nanoparticles to the initial liquid monomer bath. In
fact, it was shown that the mean optical attenuation coefficient
could be increased by as much as one order of magnitude
while still maintaining qualitatively similar FPP dynamics.
Although the conversion profiles were not measured [5], the
minimal model of Sec. II gives the prediction that the width
of the interfacial layer would decrease by a factor of 10, a
notable sharpening indeed. However, two main issues may
be important when using this approach to modify conversion
profiles. First, embedding nanoparticles could significantly
alter the thermal properties of the mixture, leading to enhanced
heat generation and conduction. If thermal conduction cannot
compensate for increased heat generation, large temperature
rises could initiate mass-transport phenomena that would in
turn broaden the front. Second, in the absence of thermal
effects, there is a limit on how thin the interfacial region
can be made through adjustments in the optical attenuation
coefficient before mass diffusion becomes relevant. The
analysis of Sec. III indicates that the relevance of mass
diffusion is determined through the nondimensional parameter
δ = μ̄2D0/(KI0), which is proportional to the square of
the attenuation coefficient. Thus, mass diffusion effectively
becomes much stronger as the mean attenuation coefficient
increases, possibly counterbalancing the sharpening of the
front that would otherwise occur.

The excellent comparisons between theory and experiment
demonstrate that simple models of photopolymerization can
accurately capture the behavior of physically relevant observ-
able quantities. Moreover, the predictive power of such models,
in combination with the novel insights that are obtained from
studying them, can be used to tailor photopolymerization ex-
periments, thus enabling the fabrication of innovative network
solids with desirable, modulated physical characteristics.
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