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Abstract

We perform a detailed analysis of black hole solutions in supergravity models. After
a general introduction on black holes in general relativity and supersymmetric theories,
we provide a detailed description of ungauged extended supergravities and their dualities.
Therefore, we analyze the general form of black hole configurations for these models, their
near-horizon behavior and characteristic of the solution. An explicit construction of a black
hole solution with its physical implications is given for the STU-model.

The second part of this review is dedicated to gauged supergravity theories. We describe
a step-by-step gauging procedure involving the embedding tensor formalism, to be used to
obtain a gauged model starting from an ungauged one. Finally, we analyze general black
hole solutions in gauged models, providing an explicit example for the N' =2, D = 4 case.
A brief review on special geometry is also provided, with explicit results and relations for
supersymmetric black hole solutions.
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1 Introduction

A long-standing problem in theoretical physics is the definition of a quantum theory of gravity,
due to the unique and particular features of this interaction. This kind of theory is called for
when studying phenomena in which the gravitational field is so intense as to affect the dynamics
of elementary particles: this can occur, for example, in the vicinity of a black hole or, presumably,
in the early stages of the evolution of the Universe.

In general, gravity becomes important at energy scales comparable to the Planck mass.
Superstring theory in ten dimensions and M-theory in eleven, seem to provide a promising the-
oretical framework where this unification could be achieved and a consistent quantum theory of
gravitation could be formulated. However, many shortcomings originate from their formulation.
In particular, our mathematical tools seem not to be adequate to describe superstring theory in
all its aspects, including non-perturbative ones. This makes difficult to obtain phenomenological
predictions from it.

A valuable approach to the study of superstring theory is provided by the formulation of a
supergravity theory. Supergravity (SUGRA) is primarily a field theory, therefore it has a well-
established mathematical framework. Moreover, a supergravity theory can describe a consistent
low-energy approximation to some fundamental quantum theory of gravity, like superstring (or
M-theory) in the chosen background. In this regard, SUGRA can provide a precise descriptions
of physical systems even in non-perturbative regimes, where a superstring formulation is not
known. Finally, supergravity encodes supersymmetry (SUSY), a spontaneously broken symme-
try relating bosons and fermions of the theory, that imposes an additional structure and makes
a quantum gravity theory more consistent and easier to analyze.

Einstein’s standard theory of gravity is based on the symmetry principle of invariance under
general coordinate transformations, seen as local space-time transformations generated by the
local translation generators P,, whose gauge boson is the graviton. In a supersymmetric theory
of gravity, this invariance is realized as a natural consequence of a more fundamental symme-
try principle, the invariance of the theory under space-time (local) dependent supersymmetry
transformations.

Minimal and extended models. Supersymmetric theories differ in the amount of super-
symmetry — namely in the number A of the supersymmetry generators Q — and in the field
content, which should correspond to multiplets of the super-Poincaré group Ggp. A number
N of supersymmetry generators defines an N-extended supersymmetry. The larger N, the
stronger the constraints on the interactions, the larger the maximum spin jyax of the fields in
the supermultiplets. In general, the least value of the maximum spin in the supermultiplets is
related to AV; in four-dimensional space-time we have jmayx > N /4.

The construction of extended theories [1] can be performed by coupling the supergravity
multiplet to a number n. of chiral (or Wess-Zumino) multiplets, each consisting of a chiral
fermion and two scalar fields, and a number n, of vector multiplets, each consisting of a vector
field and a chiral fermion. The vector multiplets define the gauge sector, the vector fields possibly
gauging a suitable local internal symmetry group, while the chiral multiplets define the matter
sector. The gauge sector consists of one vector field and one Majorana fermion. The matter
sector has one chiral fermion and two scalar fields (one scalar, one pseudo-scalar). This couple
of scalars {a, b} in each chiral multiplet enter the Lagrangian and the SUSY transformation laws
in the complex combination z = a + i b.

If one considers an extended theory describing the supergravity multiplet (g, ¥°) coupled



to a number of vector and matter multiplets, the consistent definition of a number A/ of mass-
less gravitino fields 1° (i = 1,...,A) on a curved space-time requires, for each of them, the
decoupling of the spin-1/2 longitudinal modes. This, in turn, follows from the invariance of the
theory under N-independent supersymmetry transformations. A consistent theory containing
N massless gravitinos is an A -extended supersymmetric theory of gravity.

1.1 Supergravity

Supergravity is an extension of Einstein’s general relativity that includes supersymmetry [2,
3]. General relativity demands extensions since it has many shortcomings. It is incompatible
with quantum mechanics and, from a mathematical point of view, pure quantum gravity is
not renormalizable and hence has little predictive power. If we include supersymmetry in a
theory of gravity the situation improves, as we can appreciate analysing the simplest example
of divergences: zero point energy of the vacuum, can be potentially cancelled by superpartners
of ordinary particles.

Since supergravity field theories are invariant under local supersymmetry, the underlying
superalgebra states that invariance under local supersymmetry implies the invariance under
spacetime diffeomorphisms (i.e. invariance under general coordinate transformation).

Ungauged SUGRA. Supersymmetry constrains the form of the Lagrangian, that is the
structure of its kinetic terms, mass terms, couplings and scalar potential. The larger the amount
N of supersymmetry, the more stringent these constraints. The theory is characterized by a
bosonic sector and a fermionic one. Once the former is given, the latter is completely fixed by
supersymmetry.

Let us consider the case of ungauged supergravities, namely models where vector fields of
the theory are not minimally coupled to other fields. The bosonic sector consists of the graviton
field g, nv vector fields Aﬁ (A=1, ..., ny), ngscalar fields ¢* (s =1, ..., ng). The possible
couplings are constrained by the request of gauge invariance and diffeomorphism invariance of
the theory, which allow for the following terms in the bosonic Lagrangian':

® the Einstein-Hilbert term,
1
Lo = _5 |6D|R7 (1)

describing the gravitational sector of the theory;

® the scalar term,
1
Lical = 5 len| Gsu () aﬂ¢s 0yd" 9" — len| V(9) , (2)
V(¢) being the scalar potential and G, (¢) the positive definite metric of a scalar manifold
'%scal 5

® the vector term,
1 1
Lt = 7 lenl 79" Fp, Tax(9) Fpy + i Fj, Rax(9) F,y (3)

where the first is a Maxwell term, and the latter is a topological term.

Lin the “mostly minus” convention



Let us discuss more in detail the previous expressions.

The scalar fields ¢° in the Lagrangian are described by a mon-linear o-model, that is they
are coordinates of a non-compact, Riemannian ng-dimensional differentiable manifold, the target
space Myca. If G is the isometry group of .#.,, a generic element of it will map the scalar
fields ¢® in new ones by the action of g € G as non-linear functions of the original ones:

¢ = gxd = ¢"(¢"), (4)

and the o-model action turns out to be invariant under this action of global isometries of the
manifold.

The two terms containing the vector field strengths are called wvector kinetic terms. A
general feature of supergravity theories is that the scalar fields are non-minimally coupled to
the vector fields, as they enter these terms through symmetric matrices Zas(¢) and Rax(o)
which contract the vector field strengths. The negative definite matrix Zax(¢) in the Maxwell
term generalizes the standard —1/¢2 factor in Yang-Mills theories, while the Rx(¢) matrix in
the topological term plays the role of the so-called #-angle.

There is a U(1)™ gauge invariance associated with the vector fields:
Ap = Ap 0.t (5)

and all the fields are neutral with respect to this symmetry group.

In an ungauged supergravity theory, a scalar potential is allowed only for N =1 (F-term
potential). In extended supergravities, a non-trivial scalar potential can be introduced with-
out explicitly breaking supersymmetry only through the gauging procedure, which implies the
introduction of a local symmetry group to be gauged by the vector fields of the theory.

Finally, the isometry group G would alter the vector field equations, due to the non-minimal
coupling between scalar and vector fields. It was proven by Gaillard and Zumino that the group
G can be promoted to a global symmetry group of the field equations and Bianchi identities (i.e.
on-shell global symmetry group), provided its non-linear action on the scalar fields is combined
with an electric-magnetic duality transformation on the vector field strengths and their magnetic
duals [4].

Bosonic Lagrangian. Summarizing, to fix the bosonic Lagrangian, one has to specify G;;(¢),
Zax(¢), Rax(¢) and the potential V(¢). Once the bosonic action is given, the fermionic cou-
plings of the Lagrangian are entirely fixed by supersymmetry, without any freedom left.

The bosonic data are not arbitrary, but constrained by supersymmetry, requiring the bosonic
Lagrangian

gBOS = gEH + o%scal + gvect (6)

to be completed by fermionic couplings to a Lagrangian invariant under local SUSY transfor-
mations.

Extended supergravities. In N > 1 supergravities, multiplets start becoming large enough
to accommodate both scalar and vector fields. As we increase A, the first instance of scalar
and vector fields connected by supersymmetry is in the A' = 2 vector multiplet. This feature
has profound implications on the mathematical structure of the models, since it poses strong
constraints on the (non-minimal) scalar-vector couplings in the Lagrangian, that is on the ma-



trices Zax(¢), Rax(¢). Given the scalar manifold ..., supersymmetry fixes these matrices
up to a choice of the symplectic frame. The latter is related to the geometric structure of the
scalar manifold and associates with each point ¢ on the manifold a symmetric symplectic matrix
M(P)an, and to each isometry transformation g € G on the same manifold a corresponding
constant symplectic matrix.

Global isometry transformations on the scalar fields induce, by supersymmetry, global trans-
formations on the vector fields. These act as electric-magnetic transformations on the vector
field strengths and their magnetic duals and define the on-shell global symmetries of the theory.

1.2 Black holes

As a theory of gravity, supergravity has black hole solutions [5]. Indeed, being invariant un-
der local super-Poincaré transformations, supergravity includes general relativity and describes
gravitation coupled to other fields in a supersymmetric framework.

A supergravity black hole can be seen as a solitonic solution, that is a time-independent,
non-singular, localized solution of the classical equations of motion of a field theory, with finite
energy density. It is associated to an additional particle-like (non-perturbative) quantum state
that completes the spectrum of a fundamental field theory. This quantum states originate from
regular solution of the classical field equation (Einstein equation of general relativity) with the
new ingredient of supersymmetry, which requires the presence of vector and scalar fields in
appropriate proportion.

Supergravity provides a macroscopic (large scale) description of the black hole solutions,
analogous to the macroscopic thermodynamic description of gases. In the case of black holes, the
microscopic description of the solution is provided by some higher dimensional superstring or M-
theory. Following this analogy, the laws of black holes thermodynamics should be explained, at
the fundamental level, by a superstring/M-theory just as the standard laws of thermodynamics
can be derived from a molecular description of a gas.

1.2.1 Black holes in General Relativity

In classical general relativity, the first exact solution to the Einstein equation in the vacuum
was found in 1916 by Schwarzschild. It describes space-time around a point-particle of mass M,
and it is the most general spherically-symmetric solution of Einstein equations in the vacuum.

A spherical symmetric solution describing a particle of mass M and charge @ was found in
1918 by Reissner and Nordstrom, with metric:

2ry | T2 2ry 2\
ds? = <1_ LaYi +’I“§) a2 — (1_ M +TQ> dr? — 72 (d92+sin2(9)d<p2), (7)
r r

r r2
where G G
Ty = C—;\IM; ré = 477124 Q*. (8)
This solution has two horizons at
T, = ry £ \/rE—1r2 if ry>rq, (9)

while it is singular (curvature singularity not hidden inside an horizon) if ry < rq.



In 1963 R. Kerr generalized Schwarzschild’s solution to describe a spinning particle, and
this solution was further generalized by E. Newman et al. in 1965 [6] to describe a charged
spinning particle (Kerr-Newman solution). This represents the most general asymptotically
flat, axisymmetric solution to Einstein’s theory of gravity coupled to an electromagnetic field,
or Einstein-Maxwell theory.

Black hole thermodynamics. It is possible to formulate a formal analogy between the
principles of thermodynamics and black hole properties (related to surface gravity, absorption
of a particle, horizon area) calculated from pure, classical general relativity analysis [7,8]. In
particular, the following general properties were found:

i) the surface gravity x is uniform over the horizon;

ii) the rest energy variation of a black hole due to the absorption of a spinning, charged
particle can be written?:

K

M =
0 871Gy

1
5AH+C—2(2H 0Ty + @Q , (10)
in terms of the horizon area A, angular momentum at the horizon 7, charge @, angular
velocity at the horizon €y, electric potential ®;

iii) the total area of the black hole horizons can not decrease: Ay > 0;

iv) the extremal solution (k = 0) can not be reached through a finite process.

If we identify x with the temperature and A;; with the entropy of the solution, we can recognize
an analogy between these properties and the zeroth, first, second and third laws of thermody-
namics. The fact that the analogy is not just formal — and that these are the actual laws of
thermodynamics applied to a black hole — was proven in 1974 by Hawking [10], whose quantum
analysis showed that black holes can emit black-body radiation at a temperature

Kh

T = 11
2 kgc’ (11)

where kg is the Boltzmann constant. Since general relativity tells us that the total area Ay of
a black hole horizon cannot decrease in our Universe, we can see the correspondence with the
classical second law of thermodynamics provided we identify the entropy of the solution with
[7,11]:

ks

S:Mg

Ay, (12)

where /; is the Planck length. This is the famous “area law” or Bekenstein-Hawking formula
for the entropy. One of the main successes of superstring theory has been indeed the derivation
of the Bekenstein-Hawking formula (12) from a microstate counting [12], as expected for a
microscopic quantum description of gravity.

2 in the presence of scalar fields coupled to the solution, which is typical of supergravity black holes, a further
term should be added, which depends on the scalar charges, defined in terms of the radial derivatives of the
scalar fields at spatial infinity [9]



1.2.2 Black holes in Supergravity

We have seen that a static, asymptotically flat, charged black hole configuration is described by
the Reissner-Nordstrom solution. If we want the solution not to be singular, its spatial singular-
ity must be hidden inside an event horizon, so that it does not pose problems of predictability
outside the black hole. To satisfy this requirement, its mass M, electric and magnetic charges
q and p, should obey a regularity bound that, in natural units, reads [13]:

P+ ¢
5

M?* > (13)
In general relativity there is a cosmic censor conjecture [5], according to which the above con-
dition is satisfied by all black hole solutions in nature, that is our Universe is clear of naked
singularities which would make it unpredictable. However, there is no definite proof of this
conjecture in classical theory.

Supersymmetry and black holes. Some things change in a supergravity theory, due to
the presence of supersymmetry [14]. As solutions to a supersymmetric theory, supergravity
black holes must belong to massive representations of the super-Poincaré algebra. In general,
supersymmetric field theories can have multiple Q# generators, where A =1, ..., N and where
N is the number of supersymmetries in the theory. In this case, one can write the SUSY algebra
as:

{Q4. Q§) = 20" PuTliy + 277 6 (14)

where we have considered also the action of the central charge operator Z4%. If computed on a
black hole background, the central charges of the algebra (14) have non-vanishing values which
depend on the electric and magnetic charges of the theory; they can in fact be considered as
topological quantities associated with the solution [15].
In an N-extended theory, the central charges are entries of an N x N antisymmetric matrix
ZAB
Z48 = 754, AB=1,....,.N. (15)

It can be easily shown that supersymmetry implies that the mass M of the solution must be
greater than the modulus of all the skew-eigenvalues z, of Z47:

N

MZ |Z[|, 8217...,?,

(16)
and these can be thought as the supergravity analogue of the so-called Bogomol’'nyi-Prasad-
Sommerfield condition (BPS bound) for solitonic solutions to gauge theories [16]. On the
Reissner-Nordstrom solution the above condition implies the regularity bound (13). We have
obtained that, at least for static solutions, supersymmetry acts as a cosmic censor: it naturally
provides a general principle which rules out the existence of naked singularities.

If the inequalities (16) are not saturated for any ¢, the solution is non-extremal and has
a non-vanishing Hawking temperature. By quantum mechanical effects it radiates (Hawking-
evaporation) until its mass equals the largest |z|max of the |z¢| eigenvalues and the temperature
drops to zero. The resulting solution is called extremal and preserves a fraction of the A
supersymmetries (at least 1/N).

Supersymmetric black holes are called BPS (i.e. saturating the BPS bound) and are solutions
to a set of first-order differential equations, the Killing spinor equations, which imply the second-



order field equations. BPS-solutions have played an important role in the study of superstring
non-perturbative dualities, since |z;| are duality-invariant quantities and are protected, to a
certain extent, from quantum corrections by supersymmetry.

Supergravity has more general solutions than the above Reissner-Nordstrom one, featuring
a non-trivial interplay between scalar and vector fields of the theory. These new solutions belong
to different topological sectors of the theory and, after evaporating, the described black holes
reach a lowest mass, zero-temperature (extremal) state in which M equals a new characteristic
quantity M’ > |z¢|. A remarkable feature of these extremal solutions is that, although they
do not preserve any supersymmetry and thus are non-BPS, they are still described by a set of
first-order differential equations which imply the second order field equations [13].

Attractor mechanism. In the case of extremal black hole configurations, i.e. solutions with
vanishing Bekenstein-Hawking temperature, either static or under-rotating (rotating with no
ergosphere), the entropy only depends on the quantized charges of the theory and not on the
values of scalar fields at infinity. This reflects a general property of these solutions known
as attractor mechanism [17-19], according to which the scalar “hair” of the black hole runs
into a fixed value on the horizon, independently of the boundary conditions at spatial infinity.
For static, spherically symmetric black holes, the fixed values of the scalars at the horizon are
determined in terms of the quantized electric and magnetic charges characterizing the solution,
as extrema of some suitable effective potential Viu(¢°, e, m), function of the scalars and of the
electric and magnetic charges of the theory [20-22].



2 Ungauged extended supergravities

2.1 Overview

Stationary black holes are time-independent solutions of Einstein theory of gravity which exhibit
a space-time singularity hidden by an event horizon. The fact that classical black hole solutions
satisfy the laws of thermodynamics (with a well-defined expression for the entropy, given by
the Bekenstein—Hawking formula) suggests that we can think of them as macroscopic ensembles
of microscopic states, pertaining to some fundamental quantum field theory of gravity. Super-
gravity, as a theory of gravity, admits black hole solutions. We shall now restrict to ungauged
supergravity models and study their stationary black hole solutions.

An ungauged supergravity is a supergravity model in which the vector fields are not min-
imally coupled to any other field in the theory. The vectors of the theory transform under
an abelian group and there are no charged fields. Moreover, the only admitted vacuum of
the theory is a supersymmetric Minkowski vacuum: black hole solutions are therefore (locally)
asymptotically flat.

We will focus on the study of the bosonic sector of the theory, the total structure being to
a large extent determined by supersymmetry. The bosonic sector consists of the graviton field,
n, vector fields and ng scalar fields. The possible couplings are constrained by the request of
supersymmetry and diffeomorphism invariance. The scalar fields are described by a non-linear
o-model, that is they are coordinates of a non-compact target space, a Riemannian differentiable
manifold. The o-model action turns out to be invariant under the action of global isometries of
the scalar manifold, i.e. the isometry group of the manifold is a global symmetry.

In extended (N > 1) supergravities, multiplets start becoming large enough as to accommo-
date both scalar and vector fields. This feature has important implications on the mathematical
structure of the models, since it poses strong constraints on the (non-minimal) scalar-vector
couplings in the Lagrangian. Given the scalar manifold, supersymmetry fixes the couplings, up
to a choice of the frame related to the geometric structure of the scalar manifold. Moreover,
with each point on the manifold a symmetric symplectic matrix is associated, and with each
isometry transformation on the same manifold is associated a corresponding constant symplectic
matrix. Finally, global isometry transformations on the scalar fields induce, by supersymmetry,
global transformations on the vector fields that act as electric-magnetic transformations on the
vector field strengths and their magnetic duals, defining the on-shell global symmetries of the
theory.

Bosonic Lagrangian Let us consider stationary solutions in an extended ungauged D = 4
supergravity theory. The bosonic sector consists in ng scalar fields ¢*(x), n, vector fields Aﬁ(x)
(A=1,...,ny), and the graviton g, (z). The physical configuration is described by the four-
dimensional Lagrangian®:

1 R 1 , 1 ,
— Ly = =5 + 5 Gu(®)0u070"0" +  Tan(e) By, F1 +

€n 2

1

8ep

Ras(p)ehr? F,fy sza
(17)

F;ﬁ/ = auA{/\ - &,Aﬁ > €p =4/ |Det(gm/)| . (18)

The scalar fields ¢° are described by a non-linear o-model, that is they are coordinates of

where

a non-compact, Riemannian ns-dimensional differentiable manifold .#.. (target space). The

3 we will use the “mostly minus” convention, with 87Gy =c=h=1 and epio3 = —e?123 =1.
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positive-definite metric on the manifold is Gs,(¢), and the o-model action is invariant under the
action of global (i.e. space-time independent) isometries of the scalar manifold. We will see that
the group G can be promoted to a global symmetry group of the field equations and Bianchi
identities, if its action on the scalar fields is combined with a suitable electric-magnetic duality
transformation on the vector field strengths and their magnetic duals.

2.2 Scalar manifolds of extended supergravities

In all AV > 2 models, supersymmetry constrains the scalar manifold to be homogeneous sym-
metric, while the N' = 2 models also allow for a class of manifolds that are only homogeneous
or even non-homogeneous. The scalar manifolds for N' = 2 supergravities have been studied in
[23-29).

A manifold .# is said homogeneous if any couple of points is connected by an isometry,
that is, the isometry group G has a transitive action on .#. This means that any point p can
be reached from the origin of the manifold O through a (not necessarily unique) element of the
isometry group G. Let us denote by H the isotropy group of the origin O, i.e. Hx O = O.
If we denote by gH = {gh € G, h € H} the left coset of H in G, there is a one-to-one
correspondence between the points of the homogeneous manifold .# and left cosets gH:

pes — gHCG. (19)

The set of all left cosets of H in G is denoted by G/H, and there is a bijection (or diffeomorphism)
between .# and G/H so that one can make the identification:

M ~ G/H , (20)

where ~ stands for diffeomorphic. The set G/H is called a coset manifold, thus homogeneous
spaces can be described using correspondent coset manifolds. Since .# is a metric manifold
and G its isometry group, .# and G/H are isometric: all geometric quantities of .Z like its
connection, curvature or geodesics, can be computed on G/H.

A generic element g of G is defined by a number of continuous parameters given by dim(G).
Through right multiplication by an element of H, we may fix a number dim(H) of these
parameters, so that each left-coset depends on a minimum number of parameters given by
dim(G) — dim(H); this number turns out to be the dimension of manifold .Z:

dim(#) = dim(G) —dim(H). (21)

Let ¢* denote the dim(.#) parameters obtained upon fixing the right-action of H. The corre-
sponding representative of each coset space is denoted by L(¢®) € G, and each point of .# can
be described in terms of a coset representative L(¢®):

pes# — L¢°) € goH C G. (22)

The parametrization is provided once this fixing is performed, namely when a specific represen-
tative L(¢®) of each coset g, H is taken to represent the corresponding point p of ..

Let ¢ € G be an isometry of the manifold, p a point of coordinates ¢ = ¢* and p’ = g*p
the transformed of p through g, of coordinates ¢’ = gx ¢ = ¢'*(¢"). Now, since both L(g * ¢)
and g L(¢) represent the same point p’, they must belong to the same left-coset so that we

11



have:

gL(¢) = Lig o) h(¢,9), (23)

where the element h(¢, g) of H is called compensator and in general depends on g and on the
point p of coordinates ¢.

In general, G may not be a semisimple Lie group. Homogeneous manifolds occurring in
supergravity theories are non-compact, simply-connected spaces. Let g and $ denote the Lie
algebras of the groups G and H, respectively. The Lie algebra of G' can be splitted as

g=9HDR, (24)
and, being $) a Lie algebra, we must have:

9, 9] € H. (25)
Now, one can always define the subset K so that:

9,8 C R. (26)

The above adjoint action of $ on K defines a representation of H. The previously introduced
space & can be viewed as the tangent space to G/H at the origin. In general, however, one has:

R, 8 C RS9, (27)
and it can be proven that, if it is possible to define a K so that
(R, 8] C 9; (28)

the homogeneous space is also symmetric [30]. A symmetric space is defined in general as a
space invariant under parallel translations (curvature covariantly constant). Symmetric, simply-
connected spaces are also homogeneous.

Cartan decomposition. For non-compact, simply-connected symmetric spaces with nega-
tive curvature there exists a transitive semisimple, non-compact isometry group G, with H as
mazximal compact subgroup. In any given matrix representation of G, one can choose a basis in
which $) is represented by anti-hermitian matrices and & by hermitian ones:

He$H = H' =-H, Kef = K =K. (29)

This basis is called the Cartan basis. Properties (26) and (28) directly follow from commutation
rules. In the corresponding basis T4 = {Hy, K} of generators of g, condition (28) reads:

[Ks, Ky] = Csu"Hg . (30)
If {K,} denote a basis of & of hermitian matrices we can write the coset representative L(¢) as:
L(¢%) = exp(¢” K) (31)

and the parametrization is called Cartan parametrization. It is defined in terms of the coor-
dinates ¢*, that transform linearly under H, namely in the representation % defined by the

12



adjoint action of H on the space K.

Solvable decomposition. We already said that, in general, N' = 2 supergravity admits
non-homogeneous, homogeneous and homogeneous-symmetric scalar manifolds, while the scalar
manifolds of A/ > 2 supergravities are only of homogeneous-symmetric type. All homogeneous
scalar manifolds (symmetric or not) are of normal type, that is they admit a transitive solvable
Lie group of isometries whose action on .# is free. A solvable Lie group Gg,v can be locally
described as the Lie group generated by the solvable Lie algebra »:

Gsolv = exp(é) . (32)

A Lie algebra » is solvable if D*s = 0, for some k > 0. The derivative D of a Lie algebra g is
defined as
Dg = [g.g], D"g = [D""'g, D" 'g]. (33)

and, in a suitable basis of a given representation, all the elements of the solvable Lie group or
algebra are described by upper (or lower) triangular matrices.

Since there is a transitive solvable group Gy, of isometries with a free action on .#, we
can choose a coset representative L(¢,) fixing a suitable right-action of H, so that

{Ls(¢p)} = Gyolv 3 p e %, (34)

and this means that the manifold .# is isometric to a solvable Lie group,
% ~ Gsolv 3 (35)

once fixed, on the tangent space at the origin of Gy, the metric of the tangent space at the
corresponding point of .#. This procedure defines a parametrization ¢ = ¢° called solvable
parametrization of .Z. In all parameterizations, the origin O is defined as the point in which
the coset representative equals the identity element of G and thus the H-invariance of O is
manifest, L(O) = 1.

Both the solvable and the Cartan parameterizations (for symmetric cosets) are global pa-
rameterizations of the scalar manifold. For symmetric manifolds, the solvable Lie group Ggoly is
defined by the fwasawa decomposition of the non-compact semisimple group Ggemi wWith respect
to H, according to which there is a unique decomposition of a generic element g of Ggemi as the
product of an element s of Gy and an element h of H:

Vg € Gsemi = g=5h with s € Georv, h€ H , (36)

and this defines a unique coset representative Ly for each point of the manifold .Z .

The solvable parametrization is very useful when the D = 4 dimensional supergravity comes
from a Kaluza-Klein reduction (on some internal compact manifold) of an higher dimensional
theory: the solvable coordinates can in fact be directly used to describe the dimensionally
reduced fields, the parametrization making manifest the shift symmetries of the metric?. In
the following sections we will restrict ourselves to symmetric cosets, of which we can give a
description either in terms of Cartan or solvable coordinates.

4 the drawback of this description is that 3 does not define the carrier of a representation of H as & does: now
the above eq. (26) does not hold for 3, i.e. [, 3] Z 3
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Vielbein and connection. Let L(¢) be a coset representative corresponding to a generic
parametrization. We can construct the left-invariant one form on G/H:

Q = L'dL, (37)

with value in the Lie algebra g. The above one-form can be expanded in the Cartan basis
{Ta} = {Hy, Ks}:

Q¢p) = 0%(¢)Ta = L(9)"'dL(¢) = V) K, + " () H = p() +w(¢),  (38)
where the above quantities can be written
Q¢) = Qs(9)do”,  VH(¢) =Vi(d)dd®, p(¢) =VH) Ky, w(9)=w(¢)H,.

We use the underlined indices (s, u, ... ) as rigid indices that label the basis components { K}
of the tangent space to the group manifold defining a representation %, of H, while we denote
the remaining non-underlined indices (s, u, ...) as curved indices labeling the coordinates ¢*,
that is the scalar fields. We emphasize that the scalar fields carry rigid indices only in the
Cartan parametrization.

The exterior derivative of the left-invariant one form Q gives
dQ) = dL7'NdL=dL™'LL 'AdL = —L "dLAL'dL = -QAQ, (39)
the above relation being the Maurer-Cartan equations for the group G:
dY+ QN0 = 0. (40)

Now we want to evaluate how the previously defined quantities transform under the action of
G. For any g € G, using eq. (23), we can write L(g* ¢) = g L(¢) h™ !, so that:

Qgx¢) = hL(@) g d(gL(@)h™") = hL(¢)” (dL(¢)) h™' +hdh™". (41)
From (38) we find:

Qg ¢)

plgxo) + wlgxg) = VHgx¢)Ks + w'(9x¢)H, =
h(VE($) K)h™' + h(w" (o) H)h™ ' +hdh™ = (42)
= hop(o)h '+ hw(@)h ™t +hdh™".

Since hdh™! is the left-invariant 1-form on §, it has value in this algebra. Projecting the above
equation over & and §), we find:

plgx¢) = ho(@)h™", (43.0)
w(gxp) = hw(p)h ' +hdh™t. (43.ii)

In analogy with the standard description of curved space-time, we see that here V2 plays the
role of the vielbein 1-form, and w is identified with the H-connection.
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For symmetric spaces, from (40) it follows that w and g satisfy the conditions

N
S
|

= dpt+whpt+pAw =0, (44.9)
Rw) = dw+whw =pAp, (44.11)

where we have defined the H-covariant derivative Zp of p and the $-valued curvature R(w) of
the manifold, that can be written in components as:

1
R(w) = §Rsud¢s/\d¢“ = Rs = —[ps, pu] € 9. (45)

Metric on .#. Now we want to construct a G-invariant metric on the scalar manifold .#
in terms of V<. In analogy with the definition of a (local) Lorentz invariant metric 74, on the
tangent space of a curved space-time, here we want to define on the tangent space to .# an
H-invariant (positive definite) metric £g,. With reference to a matrix representation of G, we
define k4, as the restriction of the Cartan-Killing metric of g to :

sy =k Tr (Ks Ky) (46)
where k is a representation-dependent normalization constant. The metric on . is defined as:

Gsu(®) = Vs*(@) Vi (@) ksu & d32(¢’) = Gou(¢) dp® do" =k Tr (@((15)2) ) (47)

where p = g d¢®. The G-invariance of this metric immediately follows from equation (43.i) and
the o-model Lagrangian density can be written in the form

€ s € s QU
Lical = 5 Gou($) 00" 06" = T2k Tr[p,(9) pu(@)] 90" 06" , (48)
and, just as the metric ds?, is manifestly invariant under global G and local H-transformations
acting on L as in (23).

Killing vectors. Let us denote by ¢, the infinitesimal generators of G, defining a basis of its
Lie algebra g and satisfying the corresponding commutation relations

[tou tﬁ] = fozﬁ’y tw ) (49)
fap? being the structure constants of g. Under an infinitesimal G-transformation generated by
€ to (with €* < 1)

g~ 1+ety, (50)
the scalars transform as

" — " + €k (9) (51)

ks (¢) being the Killing vector associated with t, satisfying the algebraic relations (note the
minus sign):
ko kgl = —fap™ Ky - (52)
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2.2.1 Equations of motion

Consider an extended ungauged supergravity theory with homogeneous symmetric scalar man-
ifold described in terms of the bosonic Lagrangian (17). Let us define the dual field strengths

0.7,
Grpw = —€0 Epwpe aT(:) = Ras F2, — Tz *F, (53)
po
where the * operation means:
e
“Fh, = EDEW,M Fhee (54)

The bosonic part of the equations of motion for the scalar fields can be derived from the La-
grangian (17) and reads® [30]

M s 1 s v * LY
D, (0"¢*) = 1 G (Ff, 0uTas F¥M + Fj, 0y Ras “F>M) | (55)
while the vector Maxwell equations have the form

V. ("FM) =0, V. (gM) =0, (56)

where V, is the covariant derivative containing the Levi-Civita connection on space-time, while
D can be defined through

Du(0v¢°) = Vu(0,9°) + 15, 0,0" 0uo" . (57)

and also contains the Levi-Civita connection T' on .#. Using the definition (53) for the dual
field strengths and the property **F* = —FA we obtain for *FA and *G, the expressions

A = (Ifl)AE (Rsn FH*QE) ) (58)
“Gr = (RIT'R+I),, F¥ - (RIY),"Gs,

linear functions of F* and G, (we have omitted space-time indices).

FM

The field strengths can be arranged in a single 2 n,-dimensional vector F = of two-forms:

A
FY = (giﬂ”) , (59)
g

in terms of which eq.s (58) are easily rewritten in the compact form
F =-CM(¢")F, (60)
where the matrix C is defined as

0 1 On, 1n,
C =CcMN = <]1 @) = <]1 0 ), (61)

5 here and in the following we ignore fermion-terms
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and where M(¢) reads:

(62)

M(¢) = M(P)un = ((RI_1R+I)AZ —(RI—l)AF> 7

_(I—l R)EE (I—I)EF

resulting in a symmetric, negative-definite matrix, function of the scalar fields.
Now, in matrix notation, the Maxwell equations can then be recast in the following equiv-
alent forms:

V. (F") = 0 & V(CM@F™) =0 < dF =0, (63)

where the symplectic matrix indices M, N, ... have been suppressed.

The field equations depending on the vector field strengths can be rewritten in terms of the
matrix M(¢) and of its derivatives. The scalar field equations (55) can be rewritten as:

Do (06) = 5 6™ (Fu)” 0.M() B (64

Gravity. The Einstein equations have the form:

1
Ry = 5 9w R = 7, + 1,V (65)

in terms of the energy-momentum tensors TW(S) for the scalar fields and TW(V) for the vector
fields. The latter can be rewritten in the general form

1
T;w(s) - gsu((b) 8,u¢sau¢u - 5 Guv GSU(¢) ap¢sap¢u )

1
TW(V) = (Fﬂp)T TF, - 1 Guv (FPU)T TFP?,

(66)

and the vector fields energy-momentum tensors can be expressed in terms of M(¢) and F as
1
T;,W(V) = 5 (FHP)TM(¢) Fup . (67)

Now, since in (65) we have

R = Gsu(0)0,0° 079", (68)

the Einstein equation can be finally recast in the form:
. w1
Ry = Gsu(9) 09" 000" + 5 (Fpup)” M(9) F,7. (69)

Summarizing, the bosonic equations derived in the above discussion can be written, omitting
fermion terms, as:

Scalar eqs : D, (96°) — égsu (F)T 0 M(0) F* | (70.)

1
Einstein eqs : Ry = Gsu(9) 0,0° 0,0" + 3 (Fup)t M(p)F,*, (70.ii)
Maxwelleqs : dF = 0 = V,(CM(¢)F*") = 0. (70.iii)
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The isometry group G is a global symmetry only of the scalar kinetic term, since, in general, it
alters the action for the vector fields as a consequence of the scalar field-dependence (encoded
in the matrices Z(¢) and R(¢)). On the other hand, the Maxwell equations V,(*FM#”) = 0 in
(56) are invariant with respect to a generic linear transformation on F, while the definition of
Ga and the equations (60), (58) are not.

2.3 On-shell duality

In extended supergravity models, the global invariance of the scalar kinetic term (expressed
through G) can be extended to a global symmetry of the full set of equations of motion and
Bianchi identities, though not in general of the whole action [4]. This is possible because, in
extended supergravities, supersymmetry connects scalar and vector fields and, as a consequence
of this, transformations on the scalars imply transformations on the vector field strengths F*
and their duals Ga

Symplectic structure. On the scalar manifold .# it is possible to define a symplectic ge-
ometric structure®, associating with each point ¢ on the manifold the symmetric symplectic
2n, x 2n, matrix M(¢) € Sp(2n.,R) satisfying therefore

MeSp@2n,,R) : MICM = mcMT = C, (71)

where the symplectic invariant matrix C is defined in (61). This also tells us that the symmetric
matrix M(¢) N satisfies the property

M(P)p CPEM(@) iy =Cun = M(¢) ' =—-CM(s)C. (72)

Once given the symplectic structure of the manifold through the matrix M, we associate each
isometry g € G on the manifold with a constant symplectic 2 n, x 2n, matrix %, [g] = %, [g]™ 5
such that:

M(g* ¢) = %v[g]_TM(QS) %v[g}_l : (73)

The correspondence between g € G and %, [g] defines a symplectic representation of the group
G, i.e. an embedding %, of the group G inside Sp(2n,, R):

g€ G « g €Sp(2n,,R) = G s Sp(2ny,R), (74)

together with the general properties defining a representation and a symplectic matrix, that is

RElgr - g2 = Rvlg1] %vlg] (75.1)

Rolg) C R |g)" = Rulg)" C A9 = C. (75.ii)

The field strengths and their magnetic duals transform under the duality action (86) of G in a
2 n-dimensional symplectic representation. We denote by %+ = Z; T the representation dual
to %y, acting on covariant symplectic vectors, so that, for any g € G one has:

Rolg) = (Blgln™) = BJg)™" = —~C%[g]C 76)
— '@V*[Q]MN = CMP%V[Q]PQCNQa

0 at least on the manifold spanned by the scalar fields sitting in the same supermultiplet as the vector ones
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having %, the properties of a symplectic representation. The above conditions (73) and (75.ii)
are verified in extended supergravity models as a consequence of supersymmetry: in these the-
ories, SUSY is large enough as to connect certain scalars to vector fields, so that symmetry
transformations on the former imply transformations on the latter (more precisely transforma-
tions on the vector field strengths and their duals).

The existence of a symplectic representation %, of G, together with the properties of the
matrix M(¢), suggest that the definition of M(¢) itself is built-in in the mathematical structure
of the scalar manifold. The matrices Z(¢) and R(¢) entering the action can be then defined in
terms of M(¢) by (62), and the only freedom left lies in the choice of the basis of the symplectic
representation (symplectic frame), which amounts to a change in the definition of M(¢) by a
constant symplectic transformation Fj:

M(§) B M(¢) = (Bs)T M(9) Es. (77)

The action is affected by the above transformation, and in particular we find a change in the
coupling of the scalar fields to the vectors. At the ungauged level, this only amounts to a
(non-perturbative) redefinition of the vector field strengths and their duals, with no physical
implication [30]. If we are dealing with a gauged theory, where vectors are minimally coupled
to the other fields, the symplectic frame becomes physically relevant and may lead to different
vacuum-structures defined by the scalar potential, as we are going to discuss in Sect. 5.

The existence of a symplectic structure on the scalar manifold is a general feature of all
extended supergravites, including those AN/ = 2 models in which the scalar manifold is not
homogeneous (i.e. the isometry group does not act transitively on the manifold itself)”. If the
scalar manifold is homogeneous, one can study at any point the coset representative L(¢) € G
in the symplectic, 2 n,-dimensional representation %.:

R
—

L(¢) #.[L(¢)] € Sp(2ny, R) . (78)

In general, the representation %, [H| of the isotropy group H may not be orthogonal, %, [H] ¢
SO(2ny). In this case, one can always change the basis of the representation by means of a
matrix A

A = AV € Sp(2ny, R)/U(n), (79)

where underlined indices label the new basis. Now, in the transformed representation, we have
that Z,[H] = A ' %,[H] A C SO(2n,) and therefore Z ,[h] is orthogonal.

For any point ¢ on the scalar manifold, let us define the hybrid coset-representative matriz
L(¢) = L(¢)M y as:
L(¢) = Z LA = L)'y = ZJ[L)"N AN, (80)

and introduce also the matrix

L)Y = Cyp CY2 L(¢)Pq . (81)

Note that, since the indices of L refer to two different symplectic bases, L itself is not a matrix

“in the A/ = 2 case, only the scalar fields belonging to the vector multiplets are non-minimally coupled to the
vector fields, namely enter the matrices Z(¢), R(¢), and they span a special Kdhler manifold; on this manifold,
a flat symplectic bundle is defined: it fixes the scalar dependence of the matrices Z(¢), R(¢), and the matrix
M(¢) defined in (62) satisfies the properties (72) and (73)
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representation of the coset representative L. Using now (23), the property of %, of being a
representation and the definition (80) we find:

Vge G Agll(¢) = Ligx¢) Z,[h], (82)

where h = h(¢, g) is the compensating transformation. The above equation (82) clarifies the
hybrid index structure of L, being the coset representative acted on to the left by group G and
to the right by group H, respectively (in our notations, underlined symplectic indices M, N, ...
are acted on by H while non-underlined ones by G). The matrix M(¢) is then expressed in
terms of the coset representative as:

M@ un = Cup L) L L(#)%L Cay = M($) = CL(¢)L(®)" C, (83)

where summation over the index L is understood.
The above definition of the matrix M(¢) is H-invariant and thus only depends on the point
¢, transforming according to (73):

VgeG 1 M(gx¢) = CL(gx¢) Ligxd)" C = Z.Jg]"" M(¢) Zg]",  (84)

where we have used eq. (82), the symplectic property of %,[g] and orthogonality property of

On shell invariance. We can now study the simultaneous action of G on the scalar fields
and on the field strength vector FM :

uv

s i) s
geG: { ¢ g* 9 (85)

g
Fi, — B =% nF),

and we can easily verify that it is a symmetry of the field equations (we ignore fermion terms).
The Maxwell equations are in fact clearly invariant under (85) if FA and G, were independent,
since the latter are invariant with respect to any linear transformation on F. However, one
must show that the definition of G in (53) is invariant under the above transformation or,
equivalently, that the form *F = —CMT of eq. (60) in the transformed fields holds as well;
this can be proven using the inverted (85), (73) and symplectic properties of %[g]. At the
same time, the invariance of the scalar and Einstein equations is manifest if we look at their
expressions (64) and (69), and follows from the invariance of the quantity (F,.,)T M(¢)F,. [30].
Moreover, the duality invariance of the space-time metric and of the scalar action under (85)

implies the same property for the Einstein tensor and for the scalar energy-momentum tensor
T,,.

Summarizing, we found that the bosonic equations derived in the previous subsection are
written in a manifestly G-invariant formulation: in extended supergravity models the global
symmetry group G of the scalar action can be promoted to a global invariance of, at least, the
field equations and the Bianchi identities [4], provided its (non-linear) action on the scalar fields
is associated with a linear transformation on the vector field strengths F;L\V and their magnetic
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duals Ga

¢ — gxo° (non-linear) ,

geqG : FA FA AA, pAz Fe (86)
— A9 - = g x g li .
<9A> [9] <QA> <C'g nx DyaZ Gs (linear)

The action of G on the field strengths and magnetic duals is defined by the symplectic embedding
Z,, and can be seen as a generalized electric-magnetic duality transformation promoting the
isometry group of the scalar manifold to a global symmetry of the field equations and Bianchi
identities. It is a generalization of the U(1)-duality invariance of the standard Maxwell theory,
that schematically reads:

Fuw u(1) Fl,\ _ cos(f)  sin(6) F,
<*Fw/> T <*F;/w> B (— sin(f) COS(Q)) (*le> ‘ (87)

For this reason G is denoted as the duality group of the classical theory. If electric and magnetic
sources are present, the symplectic action of G is extended to the charges themselves (as in the
Maxwell theory). We emphasize that, as shown in (86), G determines general non-perturbative
g-transformations under which

A 8 FrA Aty P B,
(9] / _ 9 nt + by Egz , (88)
Ga ‘N Cyaxs F + Dga® Gx
and these are not a symmetry of the action but only of the field equations and Bianchi identities

(on-shell symmetry). The duality group is important because it is believed to encode the known
string/M-theory dualities [31].

Lagrangian. From the definition (83) of M in terms of the coset representative, it follows
that, for symmetric scalar manifolds, the scalar Lagrangian (48) can be written in the equivalent
form:

Ll = %D Gou($)0,0° D" = % ETr (M 9M M1 0" M) | (89)

where k depends on the representation %, of G.

The transformation properties under G of the matrices Zax(¢) and Rax(¢), encoding non-
minimal couplings in Zect, can be inferred from (73) and are conveniently described by defining
the complex symmetric matrix

Nax = Rax +iZpy . (90)

Under the action of a generic element g € GG, the matrix 9 transforms as:
-1
Ng+d) = (Cy+ D)) (4y+B,N0)) (1)
where Ay, By, Cy, D, are the n, x n, blocks of the matrix Z,[g] defined in (86).

Electric and magnetic charges. Ungauged supergravities only contain neutral fields w.r.t.
the U(1)™ gauge-symmetry of the vector fields. These models, however, feature solitonic so-
lutions, namely configurations of neutral fields which carry U(1)"™ electric-magnetic charges.
These solutions are typically black holes in four dimensions or black branes in higher.
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On a charged dyonic solution, we can define the electric and magnetic charges as®:

1 1
— = — ydzt Adx
47 s2 A 8w SQQAM o .

€A
) ) (92)
mt = —/ A = — FA dzh A dx”
47 S2 8 S2 B

where S? is a spatial two-sphere. They define a symplectic vector I'M:

A 1
R () 7/ FM
<6A> AT Jg2 (93)

These are the quantized charges, namely they satisfy the Dirac-Schwinger-Zwanziger quantiza-
tion condition for dyonic particles [32-34]:

1
M7 CT™ = mot ern —mit ean = 5 hens (nez). (94)

It must be noticed that, going at the quantum level, the dyonic charges belong to a symplectic
lattice: this breaks the duality group G to a suitable discrete subgroup Gq(Z) which leaves this
lattice invariant (see also next Subsect.s 2.3.1, 2.3.3).

Finally, let us note that, due to the non-minimal couplings of the scalar fields to the vectors
in the Lagrangian (17), the electric and magnetic fields that one would actually measure at
spatial infinity on a solution are not given directly by the field strengths F* and G, and thus
the measured electric and magnetic charges are not the quantized charges (e, m). In fact, their
values also depend on the scalar fields at infinity and are expressed in terms of composite fields,
depending on the scalar fields as well as on the field-strengths [30].

2.3.1 Symplectic frames

The duality action %[g] of G depends on which elements, in the basis of the 2n, represen-
tation, are chosen to be the n, electric vector fields appearing in the Lagrangian and which
their magnetic duals: this is equivalent to choosing the symplectic frame which determines the
embedding of the group G inside Sp(2n,,R). Different choices of the symplectic frame may
yield inequivalent Lagrangians (i.e. not related by local field redefinitions), with different global
symmetries. Indeed, the global symmetry group of the Lagrangian® is defined as the subgroup
Go) C G, whose duality action is linear on the electric field strengths

Al 0
€ Gy : Ry = , 95

where the symplectic condition fixes D = A7, so that one has

geGy : FA — F'AN =AM FY

(96)
Grn — G\ =Cas F¥ + D)\*Gx .

8 we are using the rationalized Heaviside-Lorentz (HL) units in which g9 = 1, that fixes the choice of elec-

tric/magnetic charge units
9 here we only consider local transformations on the fields
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As the reader can verify using eq. (91), under the above transformation the matrices Z, R
transform as follows:

Ias — DA"Ds®Tna ;s Ras — DA™ Ds® Rua + Can D™, (97)

and the consequent variation of the Lagrangian reads

5$BOS = éCAH DEHE#DPJ F;fprzEy ) (98)
which is a total derivative since Carr Dx!! is constant. These transformations are called Peccei-
Quinn transformations and follow from shifts in certain axionic scalar fields. These transforma-
tions are symmetries of the classical action, while invariance of the perturbative path-integral
requires the variation (98), integrated over space-time, to be proportional through an integer
to 2mh. This constrains the symmetries to close to a discrete subgroup G(Z) of G whose du-
ality action is implemented by integer-valued matrices %,[g]. Such restriction of G to G(Z) in
the quantum theory was discussed earlier as a consequence of the Dirac-Schwinger-Zwanziger
quantization condition for dyonic particles (94).

From (96) we see that, while the vector field strengths F;\V and their duals Ga,, trans-
form together under G in the 2 n,-dimensional symplectic representation %,[g|, the vector field

strengths alone transform linearly under the action of G in a smaller representation n,, defined
by the A-block in (95).

Different symplectic frames of the same ungauged model may originate from different com-
pactifications. In N > 3 theories, scalar fields always enter the same multiplets of the vector
fields. Supersymmetry then implies their non-minimal coupling to the vectors and also that
the scalar manifold is endowed with a symplectic structure, associating with each isometry a
constant symplectic matrix. In N = 2 theories, scalar fields may sit in vector multiplets or
hypermultiplets. The former span a special Kdhler manifold, the latter a quaternionic Kdhler
one, so that the scalar manifold is always factorized in the product

N: 2 'ﬂscal = %K X %QK . (99)

The scalar fields in the hypermultiplets are not connected to the vector fields through super-
symmetry and consequently they do not enter the matrices Z(¢) and R(¢). As a consequence of
this the isometries of the quaternionic-Kéahler manifolds spanned by these scalars are associated
with trivial duality transformations

g € isom. of My = Ajg =1, (100)

while only .#y features a flat symplectic structure which defines the embedding of its isometry
group inside Sp(2ny,R) and the couplings of the vector multiplet-scalars to the vector fields
through the matrix M(¢)'°.

The transformation properties of the bosonic fields under group G can be rewritten in the

10 we remark that such structure on a special Kahler manifold exists even if the manifold is not homogeneous;

this means that one can still define the symplectic matrix L(¢) and, in terms of the components Zxx(¢) and
Ras(¢), also the matrix M(¢) as in (83), although LL(¢$) has no longer the interpretation of a coset representative
for non-homogeneous manifolds
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infinitesimal form:
oL = A*t, L,
{ * (101)

M _ M N
OF, = =AY (ta)n™ Fy ,

in terms of the infinitesimal generators t,, of G, defining a basis of its Lie algebra g and satisfying
the corresponding commutation relations

[tas ts] = fap™ ty (102)

fap? being the structure constants of g. The matrices (to )y define the infinitesimal duality
action of G and are symplectic generators

(ta)MN(CNp = (ta)PN(CNM M,N,...=1,...,2n,, (103)

that is equivalently stated as the property of the tensor to ;rn = (to)nm? Cpy of being symmetric
in M N:
(ta)Mn = (ta)Nnr - (104)

2.3.2 Fermion fields

We have seen that the vector fields and the scalar fields transform under the action of the group
G, isometry group of the scalar manifold. This group has a global (symplectic) action on the
vector of electric and magnetic field strengths, while it acts on the scalar fields as an isometry
group.

We know that fermion fields transform covariantly with respect to the group of local Lorentz
transformations (isotropy group of space-time). In the same way, they have a well defined
transformation property only with respect to the isotropy group H of the scalar manifold. In
all extended supergravity models, this group has the form [35]:

H = Hg X Hpatt ) (105)

where Hy is the the R-symmetry group (automorphism of the supersymmetry algebra), while
Hate is a compact Lie group acting on the matter multiplets. Aside from the gravitino, the other
fermion fields consist in dilatinos x;;x which are spin-1/2 fields belonging to the gravitational
supermultiplet for N' > 3, and spin-1/2 fields A (where A is a vector field label) called gauginos,
belonging to the vector multiplets, i.e. supermultiplets in which the highest spin field has spin
1. In the A/ = 2 we also have spin-1/2 fields »“ in the hypermultiplets called hyperinos.

The coupling of the bosons to the fermionic fields is also fixed by the geometry of the scalar
manifold #g,;. In particular, in the models with an homogeneous scalar manifold, this coupling
is fixed by the coset representative L(¢).

Let us recall that (23) states that the matrix L(¢) is acted to the left by G and to the right
by the compensator element in H:

G ~ L(¢) ~ H. (106)

The matrix IL(¢) therefore can “intermediate” between objects transforming directly under G
and other objects transforming only under H, namely between bosons and fermions. This means
that it is possible to construct G-invariant quantities, coupling in a suitable way bosonic fields
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b (and their derivatives) to the fermionic fields f through L(¢), considering the contraction
(0b) -L(¢)-f = d(¢, Ob)-f. (107)

This scalar-dependent matrix determines the coupling of bosons and fermions in the Lagrangian
and in the equations of motion. The fermions, in other words, couple to composite objects —
that we denoted d(¢, Ob) — obtained by “dressing” the derivatives of bosonic fields by scalar
fields through the matrix L(¢). Then, these objects transform only through the corresponding
compensating transformations h(¢, g) € H, as the scalars and vectors transform under G, see
(23). This tell us that the trasformations of all fermion fields is obtained by means of h(¢, g),
namely we can define the action of G over all the fields of the theory as:

¢ o gxe
geG: FM L FM = R[gM N FY, (108)
f <L = h(¢, g)+f

Now one can construct a manifestly H-invariant Lagrangian using the fermion fields and the
composite fields d(¢, db). Moreover, H-covariance of the standard supersymmetry transforma-
tions

5.b = &f, 5.f = €ob, (109)

implies that the supersymmetry variations for the fermion fields can be written as:
0. = d(¢, Ob) €. (110)

The fields transforming in representations of Hy are therefore either the fermions or the com-
posite fields d(¢, Ob), but not the scalar fields ¢° and the vector fields Aﬁ directly, since the
latter are always real fields. The composite objects d(¢, db) can be imagined as the actual
bosonic fields that can be measured, at spatial infinity, on a solution.

2.3.3 Dualization of dualities

We briefly mentioned in previous paragraphs the concept of string-duality, namely the idea that
different superstring theories on various backgrounds can be thought of as different realizations
of a unique fundamental quantum theory, the correspondences among them being called duali-
ties. These dualities are conjectured to be encoded into the global symmetries of the resulting
(ungauged) supergravity [31].

A wide class of ungauged extended supergravities feature, at the classical level, a continuous
group of global symmetries acting as a generalized electric-magnetic duality. At the quantum
level, Dirac-Zwanziger quantization condition (94) on the charges causes the breaking of this
global symmetry group to some suitable discrete subgroup. The latter discrete subgroup is
conjectured to describe the above string-dualities.

In four-dimensional ungauged supergravity, an important feature of the theory is that anti-
symmetric tensor fields and scalar fields are related by Poincaré duality. The amount of global
symmetry of the theory depends on the number of antisymmetric tensor fields which have been
dualized into scalars. It is maximal when all antisymmetric tensors are dualized into scalar
fields. The latter phenomenon is called dualization of dualities [36].
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3 Black hole configurations

We shall now restrict our discussion to static black hole solutions, with spherical symmetry and
asymptotically flat.

3.1 General properties of the solution
The general ansatz for the black hole metric has the form:
ds> = f(r)?dt* — f(r)"2dr® — h(r)? (d6? + sin*(0) dp?) , (111)

where f(r), h(r) are functions of the radial variable to be determined by the equations of motion.
Moreover we also set, for fermion and scalar fields,

fermions =0, ¢ = ¢°(r) . (112)

Equations of motion. If we consider dyonic solution, with quantized electric and magnetic
charges T™ = (m™, e,), one can verify that the following expression for FM

AN detadz 1
M = (ng> %M = 5 CM(@)TM dt Adr+ T sin(6) do A dy . (113)
Apv

satisfies the Maxwell equations (70.iii).

The scalar field equations (70.i) can be recast using (113). The right hand side is rewritten
as:

(F;W)T 85./\/1 Fev — 9 (F”)T aSM ]Ftr gttgrr 49 (F&p)T 85/\/1 Few gt%’gs(?‘P —

2 2
zfﬁFTMCTasMCMFJrﬁFT&MF: (114)
4 8
= EFT GSMF :_ﬁaSVBH)

where we have introduced the black hole effective potential Vgy
1
Vau(6,T) = =3 T"M($)0 >0, (115)
The scalar field equation now reads:

, = I
(f2 h2 (bls)/ +Fbu'u (b/u (blv — ﬁ gsu auVBlla (116)

where the prime stands for the derivative with respect to the radial variable f'(r) = < while

r?

Os,u, v, ... indicates ﬁ .

It is useful to introduce a new radial variable 7 = 7(r) defined by the condition:

dr 1
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Using the notation f(7) =

J; , equation (116) becomes:
-

és + 1:‘Suv ¢u¢v = f2 Gsu auVBH . (118)

The above equation — where the radial variable 7 has the role of time — describes the motion of
a particle, subject to a potential Vi, in the manifold g

Let us consider now the Einstein equations (69). Using (111) and (113), the equations can
be rewritten:

1

R, = Gsu ¢IS d)lu - W Vi

s | in(0) o

sin
Ry = ﬁVB”’ Ryg = ﬁvﬁlu Ry, = TVBH’ )
from which we get
1 1 1
R'y = Iz Ry = X Ven = 2 Rgg = —R%. (120)

Comparing the above results with the expressions for the Ricci tensor that one gets doing an
explicit calculation from the metric form (111), we find the relations:
(ffp2)y 1
R, = -RY = =g (L= (f2hH))
= (f2r})"=2.

(121)

This condition, which is implied on the ansatz by the Einstein equation, is solved in general by
setting:

R A ]

r, =19 *Ec

(122)

ex 9

where we have introduced the integration constant c.,, called extremality parameter, which is
assumed to have a positive square, ¢2 > 0. If this is not the case, i.e. ¢ < 0, the two roots
r, are imaginary. As we shall see, 7, can be identified with an inner and outer horizon of the
black hole, and thus, if ¢2_ < 0, the solution has no horizon to hide its singularity and turns out

to be not regular.

The above equation (117), defines the affine parameter 7:

a1 1
dr — f2h2  (r—rp)?2—c2

=  r—7rg = —Ce coth(c,T), (123)
from which we get the explicit expression

1 rT—ry
= 1 . 124
T 2c.. 8 (rr_) (124)

The coordinate 7 turns out to be non-positive and runs from —oco when r = r; (outer horizon
of the black hole) to 7 = 0 at radial infinity r = +o0.

11 a geodesic motion corresponds to Vs = const.
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The above eq. (124) can be also rewritten

dr 1 _ sinh?(c,,7) . (125)
dr (r—mp)? — 2, 2

Making use of (122), we can simplify the notation and write the functions f(r), h(r) in terms
of a single function U(r) as:

f(r)? = U0,

2 (126)
W2 = 20U (fp _ ) = —2U(M Cox )
(r) e (r—ry)ir—r_) e 7Sinh2(ccx7)
The metric (111) now reads:
ds* = eVdt* —e Y (dr* + (r —ry)(r —r2)dQ?) | (127)

where dQ? = df? + sin?(0) dp? . We can also express it in terms of the new radial variable 7 as
[20]:

4 2
ds? = ¢V dt? — 2 ( e d92> , (128)
sinh®(c.,7) sinh®(c.,7)

where U = U(7). Using then the property

frn? = S U, (129)
f
from (120) we also find
U = V. (130)

Finally, the Ricci tensor in the new radial coordinate has non-vanishing entries

1
ht

.. . .. R 1 .
U, R.. = 22 —2U%+ U, Rog = P = U. (131)

Ry = =
tt ox sin?(0) 2 ]2

From the first of eq.s (119) and using the above (131), we find also [20]

. 1 ..
U2+§gsu " — 2V Vi = 2, (132)

ex

where we have used the previous result (130).

Summarizing, we have found that the most general ansatz for the static solution depends
on ng + 1 independent functions of the radial variable 7, that we denoted as U(7) and ¢°(7).
The latter are subject to the equations:

U = " Vi, (133.1)
és _,'_fsuv ¢u¢v — €2U gsu auvaH , (133.ii)
) 1 .

U? + 5 Gsu PPt — eV Vin = sz . (133.iii)

Effective action. The presence of the scalar fields in non-minimal coupling to the vectors
(typical of supergravity black holes) determines their participation in the solution, together

28



with the form of the effective potential Viu(¢, e, m). On the other hand, the scalar fields which
do not couple to any electric-magnetic charges, do not affect the effective potential and thus do
not exhibit a radial evolution.

The above equations (133.i), (133.ii) can be derived from a suitable effective action of the
form:

S = [ Lar = | (U2+;gsu<¢> 8 9 + e Vi (9, rM)) dr. (134)

This action describes a Lagrangian system in which the radial coordinate 7 plays the role of the
standard time variable. The corresponding Hamiltonian ¢ exhibits the property:

dt

i 0 = H = const , (135)

that is, in analogy with the standard Hamiltonian formalism, it is “conserved” with respect
to the dependence on the radial variable 7 (and not on time ¢). The Hamiltonian constraint,
expressed in terms of the functions U(7), ¢*(7), is nothing but eq. (133.iii):

ex

H = U + % gsu(¢) (bs ¢u —e?V VBH(¢a F) =c2 (136)

where, in this case, the integration constant c¢2 plays the role of the energy.

Physical properties of the solution. Our solution has a globally-defined time-like Killing
vector of the form £#9,, = 9, . The ADM-mass is given by the Komar integral [5] over the sphere
S2, at radial infinity (i.e. 7 = 0):

2

MADM = m
N

/ en Egppy VHE df dp (137)
52,

and, on our general solution, it can be proven the relation

62

My = — lim U, 138
ADM GN v ( )
using the explicit expression of the covariant derivative built from the previous metric expres-
sions.

The boundary conditions on the scalar fields at radial infinity (7 = 0) defining our solution
are written as:

Gy , ‘ . .
= @ Moy @° (0) = (b(é) ; o° (0) = qj)g , (139)

U@ =0; U0
while the boundary conditions on the vector fields have already been fixed by the values of the
electric and magnetic charges (e, m). Moreover, one can note that the first condition U(0) =0
is nothing but the requirement of asymptotic flatness of the metric.

We can write the Hamilton constraint (136) at radial infinity (restoring the constants'?) in
terms of the above boundary data:

G2 1 o 8TG
T—0: cii\] MEDM + 5 qu(%) ¢8 (153 - TN VBH(¢07 F) = Cc2x . (140)

12 all terms in the constraint equation (136) have the dimension of a squared length; since the scalar potential has

dimension of a squared charge in HL-units, when restoring the constants we need the replacement Vpy — 87"4GN Vau
C
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Regularity of the solution requires the existence of the two horizons, corresponding to r_, that
in turn requires ¢2 > 0 and a related condition on the boundary data, according to (140). The
two horizons may coincide (ry = r_) when the extremality parameter goes to zero (c., = 0).

No scalar hair. The radial derivatives @5 of the scalar fields of a solution are called scalar
charges. In the black hole solutions present in the known literature, these quantities evaluated at
infinity are not independent (boundary) data, but can be written in terms of the other quantities
at infinity, namely the ADM-mass, the electric and magnetic charges and the values ¢§. The
dependence occurs since, in this class of solutions, the radial evolution (ba of the scalar fields is
only due to their non-minimal coupling to the electric-magnetic charges. This means that their
values are forced by the vector fields and do not exhibit independent dynamics.

Even if there is no general proof of this characteristic, this reported behavior seems to
indicate that the most general static black hole solution can be completely determined by its
ADM-mass, electric-magnetic charges, and, for non-static stationary solutions, angular mo-
mentum'®. So, there seems to be a generalization to supergravity black holes of the general
relativity “no-hair” theorem for ordinary black holes [37]. The theorem states that the most
general axisymmetric, asymptotically flat, black hole solution in the Einstein-Maxwell theory is
the Kerr-Newman solution [38—41]: the latter is totally defined by its mass, electric-magnetic
charges and angular momentum. The power of the statement lies in the fact that any system,
containing charged matter, that collapses into a black hole, loses any other physical property
(hair): for example, multipole moments, baryon or lepton numbers, are physical features that
disappear with the collapse.

We said above that a proof of an analogous theorem for scalars coupled to supergravity black
holes is still missing. However, if one considers extended supergravity models with homogeneous-
symmetric scalar manifold, the use of an effective three dimensional description of the solution
— in which a larger global symmetry group connecting D = 4 stationary solutions is manifest —
gives some argument in support of the hypothesis of an analogous behavior [42].

Finally, the fact that on a black hole solution the radial evolution of the scalar fields is
completely determined by their boundary values ¢ (for fixed ADM-mass and electric-magnetic
charges) suggests that, for the scalar fields, an effective description can be given in terms of a
system of first-order differential equations.

3.2 Near-horizon behavior

The two zeros of the metric (127) are located at r, = r¢ £ c.,. These are coordinate singularities
representing an inner and outer horizons, as in Reissner-Nordstrom solution (7).

Consider the 2-sphere S?, and require that it has a finite, positive area Ay = 47 r2 when
r — ry = r4. The area Ay can be evaluated as:

2

Ay = lim / V9600 9pp d0dp = lim 47re_2U%. (141)
T——00 Jg, T——00 sinh*(c.,.7)

The above request of a finite and positive area implies, for the warp factor eV, the near-horizon

13 here we are just considering the physical quantities related to the radial derivatives of the fields at infinity;
the boundary values of the scalar fields do not have a physical meaning in an ungauged supergravity
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behaviour

Ay sinh®(c,,7) r2
—2U H ex H
= : ~ — = . 142
P e ¢ 4w c2 (r—ry)(r—r_) (142)
Now, for r — r , the metric (128) becomes:
— _ 2
d82 — (T 7’+)§7' T_) dt2 o "'y d’f’2 o 7,3 dQQ , (143)
7 =)

that is the near-horizon geometry of a non-extremal Reissner-Nordstrém (7) solution. This
justifies the identification of r, with the outer and inner horizons of the black hole solution, and
the condition ¢2 > 0 as the regularity condition for the existence of these horizons.

ex —

From the behavior of the solution in the near-horizon limit, we can deduce the thermody-
namic quantities like the temperature and the entropy. To this end, we use the general formula

for the surface gravity [5]:
4

K2 o= — % VHE V6, (144)

Then, making use of the explicit expression for the covariant derivatives and killing vectors and
taking into account (142), we rewrite it in the following form (restoring the constants):

02 Cex

ko= : (145)

2
T

Now, the temperature is given by the equation (11) in terms of the surface gravity as:

he ¢
T = ex 146
2mky 127 (146)
while the entropy reads
kg e Ay
S = 147
4Gy h (147)
This tells us that we can identify the extremality parameter with the quantity:
G
Cow = 2—8T, (148)

ct

and it is zero if and only if the temperature is zero, namely when the solution is extremal.
This is the case of the Reissner-Nordstrom extremal solution in which the two horizons coincide

(rp =r2).

Extremal solutions and the attractor mechanism. In addition to the regularity condition

c¢2 > 0, we also require the scalar fields to have a regular behavior at the horizon. For this

ex —

purpose, we define the proper distance p from the horizon by the equation
dp? = e 2V ar? (149)

and require that the scalar fields, rewritten as functions of p, run to finite values in the near
horizon region, located at p = py:

lim ¢°(p) o |¢2] < oo (150)

P—Pu
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Consider now extremal solutions, defined by the property c,, = 0. If we send ¢, — 0, from egs.
(123)—(124) we get:

Cox — 0 : T=—=, (151)
where we have redefined (r —rg) ~> r.

With the above redefinition, the horizon is located at » = ry = 0, or, correspondingly, at
T — —o00, and the near-horizon behavior of the warp function U(7) of an extremal solution is
given by (142):

sinh? .
T — —00 : e 2V ~ Cclirgo r2 S\ C(zce 7) = rir?, (152)

that also implies, in the extremal near-horizon limit 7 — —o0o

T— —00 : eV~ —7ry, U~ ——, U~ — . (153)
T T

The proper distance p is then defined by the condition (149):

d
T — —00 : dp = e Ydr = lim eV¢2——— 2T =
Cex—0 7 sinh*(c.,.7) (154)
_pdr dr
= € ; ~ —Tg—,
from which we get

Cox =0, T— —00 : p = —rylog(—7), (155)

and, with respect to the proper distance, the horizon is located at py = —o0.

The regularity request for the scalars (150) is now rewritten at the horizon

lim ¢°(p) = o7, 9% < o0, (156)

p——00

and this implies the vanishing of the derivatives of the scalar fields with respect to p in this

limit:
. d
pEI_nOO dT)Zﬁb(P) = 0. (157)
Explicitly, for £ =1 and ¢ = 2, one has:
lim 7¢° = lim r°¢° = 0. (158)

The scalar field equations (133.ii) near the horizon have the form:
.- : : 1
T — —00 : 720° + 1% (T¢")(7¢Y) = ) G** 0y Vi - (159)
H

where we have used (153). Now, taking the horizon limit of the previous expression and using
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(158), the left hand side vanishes and we get

¢lirg OuVin = 0sViu(oi,e,m) = 0. (160)

This means that, going from radial infinity to the horizon of an extremal static black hole,
the scalar fields of the solution flow toward fixed values ¢3 , which define an extremum of the
potential.

In general Vi; may not depend on all the scalars, that is it can have the so-called flat
directions. These correspond to scalar fields which are not effectively coupled to the black hole
solution. So, the above (160) will only fix scalars along the non-flat directions as functions of

the electric and magnetic charges only

¢; = ¢ile,m), (161)

and, as a consequence, the potential Vi at the extremum ¢ will only depend on the electric
and magnetic charges:

Vou ™ = Viu(dw,e;m) = Vau™ (e, m). (162)

Using (153), the equation (133.i) evaluated in the near horizon region gives

1 .. 1
T — —00 : — =U = Vv, = 53 Vi ()

T i (163)
= VBH(eX) = 7'2

H-*

This means that the area of the horizon can be expressed through the value of VBH(EX)(e, m) as:
Ay = 47 V™ (e,m) = Aule,m), (164)

in terms of the electric and magnetic charges only'*.

The near horizon metric can be easily computed from the previous form (143) and reads:

2 —2
ds? = <T) 2 — <T) dr? — r2d0? . (165)

Tu Tu

This metric describes a Bertotti- Robinson solution, that is an AdSy x S? space, whose geometry
only depends on the area Ay of the horizon which, in turn, only depends on the quantized
charges of the solution (as relation (164) states) and not on the boundary values ¢q of the scalar
fields. This condition goes under the name of attractor mechanism [17]: the scalars non-trivially
coupled to the black hole (non-flat directions of the potential) flow from their values at radial
infinity ¢g towards fixed values at the horizon ¢.. The latter are solution to (160) and only
depend on the quantized charges as stated in (161).

We can notice that the extremal black holes interpolate between two vacua of the ungauged
N-extended supergravity, the My Minkowski space-time and AdS, x S%:

My at radial infinity «—  AdSy x S§? at the horizon (166)

4 restoring the constants we would write: Ay = 47w 87;# Vigr (6%) (e,m)
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similarly to solitonic solutions in ordinary field theory, interpolating between different vacua. In
this sense, extremal black hole are viewed as solitons of the ungauged supergravity theories.

If we consider extremal dyonic black holes, for a given set of charges I'M = (e,m) it is
always possible to find boundary conditions on the scalar fields for which the scalars themselves
are constant in the whole space. In fact, it suffices to take:

¢*(r=0) = ¢, (167)

and, being also
asVBII(¢i7 evm) =0, (168)

the scalar field equations are solved by ¢°(7) = ¢2 . These solutions, i.e. extremal solutions with
constant scalar fields, are called double extremal.

Non-extremal case. If we repeat the above analysis for the non-extremal case, we find for
the proper distance p in the near-horizon region:

sinh(c.,.7) ﬁ

T — —00 : dp:e_Udrw — Iy p dr
2 g (169)
- ——dr ~ 2c, e dr,
sinh(c.,.7)
from which we get this time
Cx 70, T— —00 : p(t) = 2e7 . (170)

Now the horizon is located at py = 0, thus the regularity condition on the scalar fields no longer
implies the vanishing (157) of the derivatives of the scalar fields ¢* with respect to p:
dl

1- s — S S 1 = . 171
o) = of. l<oo = HEeg() - 0 am)

Moreover, equation (133.ii) no longer implies that ¢¢ is an extremum for the black hole potential.

3.3 Black holes and duality

We have seen in Subsect. 2.3 that the on-shell global symmetries of an extended supergravity
theory are encoded — at the classical level — in the isometry group G of the scalar manifold. The
non-linear action of this duality group on the scalar fields ¢° is combined with a simultaneous
linear symplectic action on the field strengths F* and their duals G5. This duality action of G
is defined by a symplectic representation %, of G.

We have also studied how fermion fields transform under the compensating transformation
h(g, ¢) € H in (108). Under this action, static black hole solutions, defined by (111), are
mapped into solutions of the same kind.

Let us see more in detail this duality transformation. A transformation given by g € G
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maps a black hole solution into a new solution as:

U(r) U'(r) = U(r)
CJem s ) em = gre
geaq - o (172)
Mypm Mypm

the ADM-mass remaining the same being a property of the metric of the solution, and hence
not affected by duality transformations which leave the metric unaltered.

The above properties tell us that, for given charges I' and ADM-mass, the solution = =
{U(7), ¢*(7)} is uniquely defined by the boundary condition ¢§ for the scalar fields, while
= ={U'(r) = U(r), ¢'*()} is the unique solution with charges I defined by the boundary
condition ¢ = g * ¢p.

Using eq.s (73) and (172), we see that the effective potential

Viul6, T) =~ TTM)T, (173)

function of the scalar fields and quantized charges, turns out to be invariant under the simulta-
neous action (172):

1
Van(¢, ) == Viu(gx¢, ZgIT) = —§FT<%’$<%’JTM(¢)<%’51<%’VF =

= VBII(¢7 F) .

(174)

This implies that Vi is G-invariant. From this property of invariance, it follows that the
effective action (134) and the extremality constraint (136) are both manifestly duality-invariant
expressions. A remarkable consequence of this, is that black holes in extended supergravities
can be classified in orbits with respect to the duality action (172) of the global symmetry group
G.

If now we denote by ¢3(T') = ¢2 (e, m) the extremum of the potential Vi (¢, T):

aSVBH (¢*(F)a F) = 07 (175)
from (174) we find

OVau(gs, I) = 0 & OVau(g* o, Zy[g]T) = 0, (176)

that is, the point g * ¢, extremizes the potential V(¢', %, [g]T). However, such extremum was
denoted by ¢« (Zy[g]T), so we can write:

gx¢.(I) = ¢5(Z[g]T) . (177)
If we consider extremal solutions, the above property (177), together with (174), implies:

Vi ®(0) = Vi (62(T), T) = Vi (9% 6u(T), AlgIT) = Vi (6-(A[g]T) . Alg]T) =

= Vou™ (%, [g]T) .
(178)
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In other words, in the extremal case, the scalar potential at the extremum — which defines the
horizon area Ay and thus the entropy of the solution — is a G-invariant function of the quantized
charges only. This implies that the entropy of the extremal solution is a G-invariant function of
the charges I'M.

Quartic invariant. In all the extended supergravity models with homogeneous-symmetric
scalar manifold'®, the representation %, of G' (under which the electric and magnetic charges
transform) has a single invariant quantity

I4(F) = I4(e,m), (179)

function of the electric-magnetic charge vector I'. This is called the quartic invariant and has
degree four in the charges [43, 44].

If we denote by Z,[T4] = (T4)n” the matrices representing the generators T4 of G in
the chosen symplectic duality representation %, the quartic invariant of these models has the

general form:
ny(2ny + 1)

L) =~ GG

(T un (T po T TN TP T | (180)

where the symplectic indices can raised and lowered using CM" and C,;y, while the index A
is raised by the inverse of 1, = (TA)u™ (Tg)nM .

The potential at the extremum can be written in terms of I4(e,m) as
VBH(ex) = |I4| ) (181)

while the horizon area A reads

Agex) — Arn (87TGN ‘140 ’ (182)

e
and, therefore, the entropy of the extremal solution has the form

st = fn g <8FGN \I4|) . (183)

2 4
02 c

In most theories, the orbits of the magnetic charges I'™ of a black hole solution can be classified,
with respect to the action of G, according to:

Orbit I (BPS) : I, >0,
Orbit IT (non-BPS) : I, >0, (184)
Orbit III (non-BPS) : I, <0,

while orbits of T'™ charges with vanishing quartic invariant (I; = 0) define the so-called small
black holes. It was shown that orbits I, IT and III define all possible orbits of regular black hole
configurations in extended supergravity models [45].

15 except the N’ = 2 ones with G = U(1,n) and the N’ = 3 supergravity
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4 Constructing black hole solutions

The study of stationary black holes solutions in supergravity is a field of research of great interest
because of its theoretical and phenomenological implications. The latter, in particular, can
have a profound impact on our comprehension of particle physics, cosmology and mathematical
formulation of fundamental field theories (like superstring or M-theory).

Extremal black hole solutions [13,17,21] feature an universal near-horizon behavior due to
the attractor phenomenon [18,19,46] that we introduced in Subsect. 3.2. Non-extremal, station-
ary solutions exhibit a less constrained form of the metric [47-49], the known examples typically
obtained through the so-called solution-generating techniques [50,51]. The idea underlying this
approach is that stationary solutions to D = 4 supergravity are also solutions to an Euclidean
theory in three dimensions, formally obtained by compactifying the D = 4 correspondent model
along time-direction [42] and dualizing the vectors of the theory into scalars. The resulting
D = 3 theory is a sigma-model coupled to gravity and features a global G(3) symmetry group
larger than the original G4y group of the D = 4 model. The obtained extra symmetries can
be used to generate new (hidden) four-dimensional solutions from known ones. These symme-
tries include, for instance, Harrison transformations, which can generate electric and magnetic
charges acting on a neutral solution (like the Schwarzschild or Kerr black hole). The physical
properties of stationary black holes in four dimensions can be then classified in orbits w.r.t. the
action of the three-dimensional global symmetry group G s).

Extremal solutions of supergravity black holes can be obtained as limits of the previous
non-extremal ones, where the extremality parameter, related to the Hawking temperature of
the black hole solution, is sent to zero [52-54]. Another non-trivial example of extremal limit
(which we shall refer to as the Rasheed-Larsen limit) was defined in [53], and allowed to find the
first instance of extremal under-rotating (no ergosphere) solutions from a given non-extremal
one in the D = 4 theory obtained, through Kaluza—Klein reduction, from pure gravity in
five dimensions [54]. The Rasheed-Larsen limit was generalized in [55,56] to a non extremal
stationary black hole in the so-called 7° model, obtaining the non-BPS under-rotating solution
through a singular Harrison transformation applied on a non-extremal Kerr black hole.

In this Section, we will focus on generic symmetric, extended supergravity models, in order
to obtain the form of the most general, single center extremal solution, modulo the action of the
global symmetry group G(3). Non-extremal rotating, asymptotically-flat black hole solutions
can be obtained by acting with a suitable Harrison transformations on the non-extremal neutral
Kerr solution.

Representatives of the G(3y-orbits of regular, extremal solutions in supergravity theories,
can be obtained as limits of a single non-extremal rotating solution of the so-called STU-model
(see App. A). A broad class of symmetric, extended supergravities share the STU-model as
a common universal truncation, and comprise all the extended D = 4 models whose scalar
manifold is symmetric of the form G4)/H 4y, where the four dimensional isometry group G4,
is a non-degenerate group of type-E7 [57]'°. These models include the maximal N' = 8 and
half-maximal AN/ = 4 supergravity, as well as N' = 2 models with rank-3 symmetric special
Kéhler manifold. At least as far as the single-center solutions are concerned, the G/3)-orbits of
regular black holes in all these models have a representative in the STU-truncation.

16in the N' = 2 case, the condition is referred to the special Kahler manifold spanned by the scalar fields in
the vector multiplets
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4.1 Solution-generating technique

Let us consider stationary solutions in an extended, ungauged D = 4 supergravity, whose bosonic
sector consists in ng scalar fields ¢*(x), n, vector fields Ay () (A =1, ..., ny), and the graviton
guv(x). The solution is described by the four-dimensional Lagrangian (17) introduced in Sect.
2, that reads'” :

1 R 1 1 1
;°2ﬂ(4) =-5 t igsu(cﬁ)amsa%“ + ZIAE(fi’)Fli\yFZMV iy RA2(¢)€”VMF£,F§7,
D D

(185)

The four-dimensional scalar fields ¢® parameterize an homogeneous, symmetric scalar manifold
of the form:

(186)

where G 4) is the semisimple isometry group and Hy) its maximal compact subgroup. As we
have seen in Sect. 2.3, the group G4 also defines the global on-shell symmetry of the theory,
through its combined action on the scalars and on vector field strengths and their magnetic
duals, as an electric-magnetic duality group.

The D = 4 stationary, axisymmetric metric can be cast in the general form
B 3
ds? = eV (dt +w,dp)? — e 2V gz(j) dz* da’ ; (187)

where 4, j = 1, 2, 3 label the spatial coordinates 2* = (r, 6, ¢) and U, W, 91(?) are functions

of the coordinates (r, §). The metric (187) has two Killing vectors, £ = 9; and ¢ = 0,,.

Dimensional reduction. The previous stationary metric solution can be formally reduced
to three dimensions, compactifying along the time direction and dualizing the vectors of the
theory to scalar fields [42]. The result gives an effective description of the theory in an euclidean
D = 3 model, where gravity is coupled to n = 2 + ng + 2n, scalar fields ®(r, ), see App. B.

After the 3D Hodge-dualization, the propagating degrees of freedom are reduced to the
following scalar fields:

o ng four-dimensional scalars ¢°;
o the warp function U;

o 2mn, scalars ZM = {ZA Z,} from the dimensional reduction of the four-dimensional
vectors fields;

o the scalar a from the dualization of the Kaluza-Klein vector w, .

The relations between the scalars a, ZM and the four dimensional fields can be written

Ay = Ab(dt+w) + Al Ay = Alda’
M F(/}L) M —2U ~MN 3 72 P
F*Y = g() = dZ /\(dt—i—w) + e C M(4)Np dz" (188)
DA

da = —e*V *3dw — 2T CdZz

17 in the “mostly minus” convention and 87Gy =c=h=1
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with

1,[{0Z4
F(/z\;) = dA (4) Gun = 3 <6Fé))> ) (189)

is the Hodge operation in four dimensions, *3 stands for the Hodge operation in

*

and where
the D = 3 Euclidean space and My is the symmetric, symplectic matrix characterizing the

symplectic structure over the manifold . ) The symplectic vector FM transforms, under the

scal *
duality action of G4, in a symplectic representation % .
The final resulting effective D = 3 Lagrangian .#(3) describes a sigma-model coupled to

gravity and reads [55]:

1 R®) 1. .
—_ . - = e 81' a gt b —
O (3) 5 + 5 Gab(2) 0;27 0"z
R® ) 1 , 1 )
=~ + @QUOU + 5600 00" + ;e 02T My 9'Z + (190)
1 . )
+ 5 e (Qia+ 2T CO;Z) (0a+ 2T CO'Z)),

where ¢ = Det(gg’)) and C is the symplectic-invariant, antisymmetric matrix defined in
(61).

4.1.1 Three-dimensional description

The D = 3 scalar fields obtained from the dimensional reduction span an homogeneous, sym-
metric, pseudo-Riemannian scalar manifold //lgcal of the form

M = T2 (191)
H 3)
containing //lscal as a submanifold
%5(0421)1 - %scgazl ’ (192)

and where the isometry group G (s) is a semisimple, non-compact Lie group defining the global
symmetry of the model, while H (*3) is a non-compact real form of H3), the semisimple maximal
compact subgroup of G'3.

The three-dimensional scalar fields ®! define a local solvable parametrization of the coset,
where the coset representative is chosen to be:

L(®') = exp(—aT.) exp(vV2ZM Ty) exp(¢”T;) exp(2U Hy) , (193)

where Ty = {Hy, T., Ts, T} are the solvable generators. The generators Ty, transform under
the adjoint action of G4y C G(3) in the symplectic duality representation % of the electric-

magnetic charges, so we can use the notation Ty, = (TqA, Toa )

The Lie algebra of H(*g) is denoted by f); and is a subalgebra of g3z, the Lie algebra of
the 1sometry group G(3y. In the above procedure we have considered a matrix representatlon
in which 533 and its orthogonal complement fig are defined by a pseudo-Cartan involution C
This involutive automorphism, acting on the algebra g3 of G (3), leaves invariant algebra 533
generating H(*g) . The action ofé on a general matrix A is

((A) = — nAly, (194)
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where 7 is a suitable H (*3)—invariant metric.

Physical quantities. Stationary axisymmetric black hole solutions can be described by n
functions ®7(r, §) that come from the solutions of the sigma model equations. They are char-
acterized by an “initial point” ®; = ®f at radial infinity [58]

®g = lim ®l(r, 0), (195)
and an “initial velocity” Q, at radial infinity, in the tangent space T, [.# (3)]. This matrix Q is
the Noether charge matriz, belonging to the Lie algebra gz of G (3.

Since the action of G(3)/H(*3) on ® is transitive, we can always fix ® to coincide with the
origin of the manifold O (defined by the vanishing values of all the scalars) and then classify the
orbits of the solutions under the action of G(3) (maximal sets of solutions connected through
the action of G(3)) in terms of the orbits of the velocity vector Q € To[.# ()] under the action
of H (*3):

G =
f trans. on @ :  orbits of G(3) 2029, orbits of Hy . (196)
(3)

We can now introduce the hermitian, H(*g)—invariant matrix M s) which, in a chosen matrix
representation, reads:
M@ = M (@) = LyLl = M, . (197)

The three-dimensional Noether currents associated with a stationary solution ®(z?) can be
written in terms of M3, as:

A 1 B
Ji = 50 O M) OrMs) - (198)
In terms of the above currents, the gs-valued Noether-charge matrix Q reads:

1 . 1 )
0 — of = = /\/eﬁf”) Jrdody (199)

47 So

the index of J; being raised using ¢ .

If we restrict to axisymmetric solutions, we find an angular Killing vector 1 = 0, , and all
the fields will only depend on the spatial variables (r, #). The global rotation of the solution
can be described by means of the gs-valued matrix Q, [55,56, 59|, derived from the standard
Komar-integral definition of 7 in D = 4, having the form [5]:

3 [ - ; ; 3 [ A
= —— T dat J o= = (3)
Qy g /S2 Y Jj) dxt A\ dx & /S2 950 Jodfdy . (200)

The ADM-mass, NUT-charge, scalar charges ¥, electric and magnetic charges '™ = (p*, qa)
and angular momentum 7, of the solution can be obtained as components of Q and Q,:

Moy =k T (H{Q),  Nur=-kTr(T1Q), T, =kT(1]0Q),
(201)
MY = V2 ECMY T (Th Q). e =k Te (T Q) .

Since G(3) is the global symmetry group of the effective three-dimensional model, a generic
element g € G maps a solution ®(r, #) into an other solution ®'(r, #) according to the matrix
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equation:
Vge G+ M (1) -5 M) (27) =g M) (') ¢ . (202)

From the definitions (199), (200) and from (202), one finds that Q and Q, transform under the
adjoint action of G(3) as:

VgeGu @ QL o=@ Nhag, 9y L Q=g (203)

The angular momentum of the transformed solution can be easily obtained from egs. (201),
without computing the corresponding transformed Komar integral from (202). The presence of
a non-vanishing Qy is a characteristic of the G(3)-orbits of rotating solutions, and this tells us
that is not possible to generate rotation on a static D = 4 solution using G 3)-transformations.

Since it is always possible to map point at radial infinity (®}) into the origin O of the
manifold by means of a G 3)/H ;3)—transformation, the group G (3) is broken to the isotropy
group H, (*3) and, as a consequence of this, the two matrices Q, Q, always lie in the coset space
Ry
Harrison transformations. The so-called Harrison transformations are H (*3) transformations

generated by the non-compact generators Jy; of Sﬁ;:
1 i
Jur = §(TM+TM) . (204)

The space J) = Span (Jar) is the carrier of a representation'® % with respect to the adjoint
action of the maximal compact subgroup H EB) of H (*3). This group has the general form

Hgy = U(l)g x Hyy (205)

where U(1)g belongs to the Ehlers group SL(2,R) .
We can also define the subspace K() of the coset space ﬁ; spanning the negative-signature
directions of the metric; this space defines the support of a representation % of H E3), just as

we did with J). The compact generators Ky; of ﬁ; can be written, in the chosen matrix
representation, as

Ky = = (T —T})) . (206)

1
2

4.2 The Kerr Family

In the seminal paper [42], it was proven that the most general non-extremal (or extremal over-
rotating) stationary, axisymmetric single center black hole solution to the model can be obtained
from the non-extremal (or extremal) Kerr solution through the action of G/3), more precisely
through an Harrison transformation. This can be considered as an equivalent version of the “no-
hair theorem” for this class of theories. In fact, the scalar charges of a generic stationary solution
are functions of the Harrison parameters, mass and angular momentum of the original Kerr
solution: since the Harrison parameters are in one-to-one correspondence with electric/magnetic

18 the symplectic duality representation %s of G(4) and the corresponding representation of H(C3> are both
related to the electric and magnetic charges
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charges, the most general solution is uniquely defined by M,pw, Jy, I', the scalar charges being
dependent on these.

The matrices Q and Q,, for the Kerr solution are characterized by two parameters, a mass
m and an angular-momentum parameter «. Since they are diagonalizable, their G'3)-orbits are
uniquely characterized by their eigenvalues. In the pure Kerr solution, @ and Q, belong to the
same G'(3)-orbit, modulo multiplication by a. We find:

Qy =ah'Qh; he U, (207)

where U(1) stands for the compact Ehlers transformation group. This will no longer be the
case in the extremal limit.

The matrix Q belongs to the Schwarzschild orbit [55,56,60], characterized by the matrix

equation'?

Pt

=9, 5%(@% =m?, (208)

where Q is in the fundamental representation” of G(3). From the above equation (207), we find
that

y Tr(Qy%)
Q' = ?Qy, o’ = , 209
" 7" Qy (D) (209)
and the following equations holds:
Q,°Q = o’ ¢ Q; Q*Qy = ¢ Qy. (210)

Equations (208), (209) and (210), together with the trace expression for the parameters m and
a, are G(3)-invariant and thus hold for any representative of the Kerr G s)-orbit.

We can define the extremality parameter c., in terms of the following G (3)-invariant quantity
[55, 56]:
2 2 k

2 _ —
Cw = M —0° = 3

Tr(Qy%)
Tr(Q?) — . 211
The Hawking temperature of the black hole can be now written in terms of the extremality
parameter as:

c c

T = ——— = = 212
21 a |wyl 28’ (212)

where S stands for the Bekenstein-Hawking entropy of the solution, that, in turn, can be ex-
pressed in terms of the horizon area A, as

ks c® Ay Ay
GNh 4 4 e |wH| ’ ( )
while wy is defined as
wy = lim wy ; L =1+ Cox - (214)
r—T4

Using the above expression, one can rewrite the regularity bound c2, > 0 for the Kerr solution

19 the constant ¢2, in the case of the Kerr-Newmann-NUT black hole with e/m charges T' = (¢, p) and NUT-
2 2
charge Nyur, reads: ¢° = & Tr(Q?) = m? + N2, — &4
20 this is true if G(3) # Eg(g), Eg(—24); if G(3) is a real form of EY the fundamental and the adjoint represen-
tation coincide, and the matrix equation becomes quintic in Q [60]
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in a G-invariant form:

Tr(Q%) > (%) (215)

2
>
m- > o = < T(Q?)

[\)
N |

which thus holds for any representative of the Kerr-orbit.

4.2.1 Angular momentum and duality

Now we want to study the properties of the angular momentum [, with respect to the four-
dimensional duality symmetry group G'4). To this purpose, we relax the previous assumption to
fix the transitive action of G'3y/H, ;3) on the solution choosing the scalars at infinity to correspond
to the origin O .

In general, for a rotating black hole, the angular momentum depends on the boundary values
#§ of the scalars and on the electric-magnetic charges I'; equation (201) shows how to express
the angular momentum in terms of the matrix Q..

Suppose now we transform the solution by means of an element g € G4 into another one

with boundary values ¢}*® and charges T"M:

Vg € G(4) : (216)

™ 9, M

{¢ai> 0

Using definitions (201), it is possible to show that 7y is not affected by the action of g € G4).
In fact, the matrix Q/, associated with the new solution is related to Qy by eq. (203), so that
for the corresponding angular momentum one has:

VgeGuy :+  Tu(d5, 1) - Tu(6p, ) . (217)

with

‘-711) ( (/)sv FI)

ETe(THQ)) = ke (T) (51 Qugl) =

218

where we have used the property that G4 commutes with the Ehlers group SL(2,R)g inside
G(3), so that its elements commute with the s[(2,R)g generators {Ho, T, T}, We conclude
that Jy is a G (4)-invariant function of the scalars at radial infinity and electric-magnetic charges.
This is what one would expect for the angular momentum of a solution: being a quantity related
to spatial rotation, [J, should not be affected by a D = 4 duality transformation.

The above derivation does not hold for a generic global symmetry transformation in G'3).
In fact, in the under-rotating limit 7, is independent of ¢{ and thus is expressed in terms of the
G (g)-invariant of the electric-magnetic charges alone, namely in terms of the quartic invariant
function I4(e,m) [56]. We find a similar behaviour for the horizon area (i.e. the entropy) by
virtue of the attractor mechanism: from this, we conclude that there seems to be some kind of
“attractor phenomenon” at work also for the angular momentum.

Finally, let us notice that the simple proof (218) of invariance under G4 also applies to
the ADM-mass and the NUT-charge, both given in (201).
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4.2.2 Extremal Limits

The regularity bound c2, > 0 is saturated for the extremal solutions, which are thus characterized
by a vanishing Hawking temperature (212). This bound can be saturated in essentially two ways:

o both sides of (215), stay different from zero, so that the extremality condition becomes a
constraint on the two non-vanishing G-invariants: the resulting solution is called extremal
over-rotating and retains, in this limit, the presence of an ergosphere; the matrices @ and
Q. are still diagonalizable;

o both sides of (215) vanish separately and the resulting solution can either be extremal
under-rotating [53, 54, 61-63] or extremal-static and has no ergosphere in both cases; both
Q and Q, become nilpotent, belonging to different G-orbits (in particualr H * orbits on
To(Mscar) ~ ﬁ;) [55, 56].

The second limit has been considered, for example, in Heterotic theory [51,64] or Kaluza-Klein
supergravity [53, 61].

Singular Harrison transformations. A geometric procedure for connecting the non-
extremal Kerr-orbits to extremal static or under-rotating cases can be performed in a frame-
independent way making use of singular Harrison transformations [55,56]. The latter effect an
Inonii-Wigner contraction on the matrices Q@ and Q,, resulting in the transformed nilpotent
matrices Q(©) and ngo) associated with extremal static or under-rotating black hole configura-
tions.

Harrison transformations [42] are H:S)—transformations that are not present among the
global symmetries of the D = 4 theory and have the distinctive property of switching on elec-
tric or magnetic charges when acting on neutral solutions (like the Kerr or Schwarzshild ones).
Their generators Jy = (Ja, J4) € 55; are in one-to-one correspondence with the electric and
magnetic charges I'™ = (p*, ¢y) and are non-compact generators, that is they are represented,
in a suitable basis, by hermitian matrices.

c

The space Span (Js) is the coset space of the symmetric manifold H (*3) /H (03), where H 3)
is the maximal compact subgroup of H, (*3). It is the carrier of a representation of H (Cg), the same

in which the charges I'™ transform with respect to the group H (63) itself, that has the structure
of eq. (205).

Maximal abelian subalgebra. Let us consider the space Span (Jas). The mazimal abelian
subalgebra (MASA) of this space is a subspace whose generators JV) = {.J,} are defined by the
normal form of the electric and magnetic charges, i.e. the minimal subset of charges into which
the charges of the most general solution can be rotated by means of H (03), its dimension p being

therefore the rank of the Hzy/H (Cg) coset. In the maximal supergravity, for example, one has

N=8": p = rank(SOU*((gl)G)> =4, (219)

and the same result is found for the half-maximal theory, where

o - S0(6,2) x SO(2,6 +n) \
N=d4: p = rank (so<2)2 % S0(6) ><SO(6+n)> =4 (220)

If one considers the N' = 2 symmetric models with rank-3 scalar special Kahler manifold in
D =4, one gets p = rank(H(g)/H(C3)) = 4, since, for this class of theories, one has p = rank+1.
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The simplest representative of the latter class of models is the STU model, which is a consistent
truncation of all the others, being a truncation of the maximal and half-maximal theories. This
means that its space Span (J (v )) is contained in the spaces of Harrison generators of all the
above mentioned symmetric models.

As a consequence of the previous discussion, we can now restrict ourselves to the simplest
STU model since the G'(3)-orbits of non-extremal and extremal regular solutions to the broad
class of the above symmetric models mentioned have a representative in the common STU-
truncation?!.

The higher-dimensional origin of the four-dimensional theory is encoded in the chosen sym-
plectic frame. The latter determines the set of charges constituting the normal form, that can
be geometrically characterized. Let us express the Harrison generators in the form:

Iu = 5 (Tu +(Tu)') = %(EWHEW)T) : (221)

[N

where s are the 2n, roots of g3, such that vy, [Hy] = 1/2. Now, the p generators .J; are defined
by a maximal set {7¢} of mutually orthogonal roots among the v, roots:

1
Ve c Ve, OC Opyey Je =5 (B, + (E4,)T) . (222)

4.2.3 Symplectic frames and normal forms

For all the symmetric models mentioned above, the normal form of the electric and magnetic
charges with respect to the group H (Cg) is contained in the STU truncation. For this reason, it
is useful to study the relevant STU symplectic frames .

STU model. The so-called STU model is a N = 2 supergravity model coupled to three vector
multiplets, whose three complex scalars {S,T,U} span a special Kéhler manifold of the form

Gy SL(2,R)3
M) = T - 205 223
scal H(4) SO(2)3 ( )
Upon time-like reduction to D = 3, the scalar manifold is enlarged to
2 _ e _ SO(4,4) (224)

el T Hg o SO(2,2) x SO(2,2)

If the STU model originates from Kaluza—Klein reduction from D = 5 dimensions, the resulting
symplectic frame corresponds to a particular ordering of the roots vy (M =1,...,8):

Ty = CunTV = (qa, )  «—  {vu} . (225)

Each root 7js can be represented by its component vector ¥ in a Cartan subalgebra of so(4,4).
The first component of this vector is the grading vy [Ho] with respect to the O(1,1) generator
Hj in the Ehlers group SL(2,R) g, while the other entries are the components yar[Hq,]/2 with

21if one considers the restricted number of A/ = 2 symmetric models for which the rank of ‘///s(ja)l is less than
3, the subsequent discussion has a straightforward generalization
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respect to the Cartan generators H,, of G (4):

(226)

’VM _ (’YM[HO]v ’YM[QHCH]’ 'YM[;—IOQ]7 WM[fa3]> 7

and we find for the STU model

(7} = 1 1 1 1 11 1 1 1 11 1 1 1 11
P)/a - 2) 27 23 2 ) 2’ 27 27 2 ) 2’ 27 27 2 ) 27 27 272 )

(227.1)
1111 1 111 11 11 111 1
_’a = a‘a‘a’a | a9’ a8’ a’ao | a9’ a9’ oo | a9’ a9’ o’ o ) 227.ii
{ara} {(2222) (2 222> (22 22) (222 2)} (227.1)
where a = 1,...,4. We see that there are two maximal sets of p = 4 mutually orthogonal roots,
corresponding to two different normal forms of the charge vector. In particular we have in the
first case
{ryé} = {rylﬁ Y6, V75 78} ;
. ) (228)
1_‘M - (Oa P1, P2, P3, 4o, 07 07 O) = {QO7 pl} ) (’L = 17 27 3) 5
while in the other case
{'YK/} = {72; Y3y V4, ’75} )
(229)

FM (pOa Oa 07 07 07 q1, 42, (13) = {pov QZ} ) (Z = 13 23 3) .

If we embed the STU model in toroidally compactified Heterotic theory [51], one of the SL(2, R)
factors in G(4) has a non-perturbative (i.e. not block-diagonal) duality action in the % =
(2, 2, 2), while the remaining two factors have a block diagonal symplectic representation. The

corresponding symplectic frame is characterized by the following order of the roots vyas:>

o — {71,778, 74, 95, 72,77, 78} - (230)

The two normal forms of the charge vector, being identified by the same sets of roots {7}
and {vp}, now correspond to two electric and two magnetic charges, {p', p'3, ¢}, ¢;} and
", 0", b, a5}

Finally, one can consider the frame in which the generators of G4 can be chosen to be
represented by symplectic matrices which are either block diagonal or completely block-off-
diagonal (i.e. having entries only in the off-diagonal blocks). This is the frame originating
from direct truncation of the N' = 8 theory in which the SL(8,R) subgroup of E(7) has a
block-diagonal embedding in Sp(56,R). It corresponds to the following order of the roots vus:

/]\I/[ e {75372773374771;76777778} . (231)

The two normal forms of the charge vector now correspond to either all electric or all magnetic
charges: {p”*} and {q}}.

22 this ordering is related to the property that, in this frame, the Cartan generator of the non-perturbative
SL(2,R) degenerate over the electric (and thus over the magnetic) charges
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In all these cases, the MASAs of Span (Jas) are always defined by the same sets of generators

{Jf}ﬁ.:l,sﬂ,s ) {Jz'}@/:2,3,4,5 . (232)

4.2.4 From Kerr to extremal solutions

Now we summarize the procedure to connect the Kerr orbit to orbits of extremal under-rotating
and static solutions. First, we transform the Kerr solution by means of an Harrison transfor-
mation generated by the chosen MASA J) of Span (J/):

exp (X, 1og(8e) Je)  {ao, p'} - case

N
H € exp (J( )) : H = exp (3, log(6e) Jg/) (", 4} - case | (233)
where ¢ = {1, 6, 7, 8} and ¢ ={2, 3, 4, 5}.
The matrices Q, Qy transform according to eq. (203):
o L o=—mNHounut, (234)
Q, 5 9, =HN g, H. (235)
Next we perform the rescalings:
Be — m By, a — m, (£=1,6,7,8), (236)
or, in the other case,
Ber — m° By a — mQ, (' =2,3,4,5), (237)

where gy, o0p» = +1. Then, we send m to zero.

The above limits correspond to an Inénii-Wigner contraction of Q" and Qé), which become
nilpotent matrices Q(©), Qg)) with a different degree of nilpotency. This means they belong to
different H E;)-orbits: Q) with nilpotency degree three, while Qg)) either vanishes or has degree
two. This explains why, in the m — 0 limit, the ratio on the right hand side of eq. (215) goes
to zero, since the numerator Tr(Q,?) vanishes faster than the denominator Tr(Q?2).

Physical quantities in the extremal limit. The charge vector I'j; of the resulting solution,
in the two cases, has 4 non-vanishing charges corresponding to the chosen normal form, i.e.
{qo, p'} or {p°, ¢;}. Depending on the choice of the gradings (o, or o), the charge vector
can belong to any of the G(4-orbits of regular solutions, characterized in terms of the extremal
G (4)-quartic invariant I of the representation % as follows®* [45] :

BPS: I,>0 Zs-symmetry on the p’ and the ¢; ,
non-BPS;: I, >0 no Zs-symmetry , (238)
non-BPS,: I, <0.

23 see Appendix A.2 for the explicit form of I4(e,m) in the STU model
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For those choices of the gradings yielding I, > 0, we find both the BPS and a non-BPS solution
and the resulting angular momentum is zero (Q;O) = 0) and thus the black hole solution is an
extremal-static. Only in the cases for which Iy < 0 we find a rotating black hole, which is the
known extremal under-rotating solution of [53, 54,61-63] :

L>0: QP=0 - 7™ =0 (BPSand non-BPS),
(239)
L<0: QY#0 — J™#0  (non-BPS).

We find, in general, that the extremal solutions obtained in this way have an angular momentum
given by

ex Q
gy = 5 -9 VILl. (240)

where Iy = e|l4|(e = £1). In Subsect. 4.2.1 we proved the invariance of Jy under G'4)-
transformations for a generic solution. Now, the formula (240) makes the invariance manifest,
since both Iy(e,m) and Q = ._71fe”/m2 are G(4)-invariants, being the latter related to the
original Kerr solution.

Actually, one cannot see the dependence of the various quantities on the scalar fields ®,
and, in particular, on the four-dimensional ones at radial infinity, since these were fixed to zero.
However, having proven that [J, is a G(4)-invariant function of ¢ and I' and also that it is
already an invariant function of the electric-magnetic charges alone, we conclude that for the
extremal under-rotating solutions jliex) only depends on the extremal charges

N (A ) I (241)

The entropy of the solution, related to the horizon area and expressed in formula (213), has the
following form in the extremal limit:

2
S = 7 lim ajwy| = 7 Im mQ|wy| = W\/|I4—4<J1£CX)) =
m—0 m—0

ey (1-Sa-a).

The above expression, obtained by using (240), makes it manifest that S (%) " as well as the whole
x)

(242)

near horizon geometry, is G'(4)-invariant as Jf is. In the rotating extremal case (¢ = —1) we

further need to impose 2 < 1 in order for the solution to be well-behaved.

Attractor mechanism. We observe that, before the above extremal m — 0 limit is per-
formed, the expression of S is not manifestly G 4-invariant. This can be explained by the
fact that we had generally made a G4 “gauge” choice, corresponding to fixing at the origin
of the moduli space the four dimensional scalar fields at infinity. This has broken the manifest
G (g)-invariance to H ).

In the extremal under-rotating and static cases, the attractor mechanism is at work [9,
17,18,65-67]. As a consequence of this, the near-horizon geometry becomes independent of the
values of the scalar fields at radial infinity (fixed to the origin) and only depends on the extremal
quantized charges I'(¢%),

In the non-extremal case, ¢2 > 0, the above discussion do not apply and the near horizon
geometry, as well as the entropy, depends on the values of the four dimensional scalar fields at
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infinity ¢j. We can then argue that S = S(e, m, ¢§) is still invariant under G'4), provided we
transform both T'™ and ¢ simultaneously, just as it was proven for the angular momentum
in (218). In other words, within our choice of scalar boundary conditions, S is expressed in
terms of H4-invariants and, in the extremal limit, such expression should reduce to the only
scalar-independent H 4)-invariant, namely to the above (242).
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5 Gauged supergravities

We mentioned in Sect. 1 how superstring/M-theory can be a promising candidate for a funda-
mental quantum theory of gravity. Since these theories are defined in dimensions D > 4 and
since we live in a four dimensional universe, a fundamental requirement for any predictable
model is the presence of a mechanism of dimensional reduction from ten or eleven dimensions
to four. The simplest mechanism of this type is ordinary Kaluza-Klein compactification of
string/M-theory on solutions with geometry of the form

(1,3)

M, " x 4, (243)

where Mil'g) is the maximally symmetric four dimensional space-time with Lorentzian signature
and .Z is a compact internal manifold. We have also stated that the low-energy dynamics of
superstring/M-theory, compactified on a Ricci-flat manifold .#, can be well described by a four

dimensional (ungauged) supergravity theory, which involves the massless modes on M;l’g)

From a phenomenological point of view, extended supergravity models on four dimensional
Minkowski vacua, obtained through ordinary Kaluza-Klein reduction on a Ricci-flat manifold,
are not consistent with experimental observations. These models typically contain a certain
number of massless scalar fields — which are associated with the geometry of the internal manifold
M — whose vacuum expectation values (vevs) define a continuum of degenerate vacua. In
fact, there is no scalar potential that encodes any scalars dynamics, so we can not avoid the
degeneracy. This turns into an intrinsic lack of predictiveness for the model, in addition to a
field-content of the theory which comprises massless scalar fields that are not observed in our
universe. Another feature of these models is the absence of a local internal gauge-symmetry,
that is the vector fields are not minimally coupled to any other field in the theory. This means
that no matter field is charged under a gauge group, hence the name ungauged supergravity.

Realistic quantum field theory models in four dimensions need the presence of a non trivial
scalar potential, which could solve the problem of the moduli degeneracy and, on the other
hand, select a consistent vacuum state for our universe.

Scalar potential. We have seen in Sect. 2 the structure of ungauged supergravity theories.
In the latter class of models, the presence of a scalar potential in the bosonic Lagrangian (2)
is allowed only for the minimal A/ = 1 case and is called F-term potential. A realistic and
phenomenologically interesting framework requires the presence of a non-trivial scalar potential
encoding scalar dynamics, which could lift the moduli-degeneracy and define a suitable vacuum
state for our universe featuring desirable physical properties (for instance, mass terms for the
scalars and the presence of some effective cosmological constant). Moreover, a scalar potential is
an essential ingredient for having spontaneous supersymmetry breaking scenarios in supergravity
theories, depending on the choice of the internal gauge symmetry [68, 69].

In extended supergravities, the only known mechanism to introduce a non-trivial scalar
potential without explicitly breaking supersymmetry is the so-called gauging procedure [30, 70—
77]. The latter consists in promoting a suitable global symmetry (sub)group to a local symmetry
to be gauged by the vector fields of the theory. It could be possible that the gauge group is
non-abelian and part of the scalars may be charged under the gauge group; this is achieved
introducing proper covariant derivatives in (2) and replacing (3) by the corresponding Yang-
Mills terms. Theories in which the scalar potential is generically non-vanishing, are referred to
as gauged supergravities. In a gauged theory, vectors are minimally coupled to the other fields
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and the symplectic frame becomes physically relevant, leading to different vacuum-structures
defined by the scalar potential.

In the gauged theory, the Lagrangian is modified with additional terms: besides the minimal
couplings of the gauge fields to the charged ones, some extra contributions come from the
requirement of supersymmetry of the action. This determines the presence of additional terms
in the supersymmetry transformation rules of the gravitino and fermion fields, together with
the introduction of gravitino and fermion mass contributions, as well as the scalar potential in
the Lagrangian.

Ungauged vs. gauged models. We have already mentioned the fact that supergravity can
be seen as a consistent and well established low-energy approximation of some fundamental
superstring theory, since massless sectors of superstring models can be described by ungauged
supergravities. Global symmetries of the lower dimensional effective supergravity play a relevant
role in understanding non—perturbative aspects of superstring: behind the concept of string
duality, there is the idea that superstring models (or M-theories) are just different realizations
of a fundamental quantum theory, the correspondences among them called dualities. After
standard dimensional reduction to D = 4 Minkowski space-time, these dualities are conjectured
to be encoded in the global symmetries of the resulting ungauged supergravity [31]. This means
that it could be possible to obtain information about string dualities and non-perturbative string
behaviour by studying ungauged SUGRA models.

Gauged supergravity models satisfy the requirement of gauge and supersymmetry invari-
ance, and can be derived from ungauged models (having same field content and amount of
SUSY) through the previously mentioned gauging procedure. The latter can be seen as a de-
formation of an ungauged theory and consists in promoting some suitable subgroup Gg of the
global symmetry group G of the Lagrangian to local symmetry. This can be achieved by intro-
ducing minimal couplings for the vector fields, mass deformation terms and the scalar potential
itself. The coupling of the (formerly abelian) vector fields to the new local gauge group provides
matter fields that are charged under the new local gauge symmetry.

The gauging procedure, however, will in general break the global symmetry group of the
ungauged theory: the latter, acting as a generalized electric-magnetic duality, is broken by the
introduced minimal couplings, which only involve the electric vector fields. As a consequence
of this, in a gauged supergravity we loose track of the string/M-theory dualities, which were
described by global symmetries of the original ungauged theory. The drawback can be avoided
using the embedding tensor formulation of the gauging procedure [30,71,74,77-80] in which
all deformations involved by the gauging is encoded in a single object (the embedding tensor)
which is itself covariant with respect to the global symmetries of the ungauged model. This
allows to formally restore symmetries at the level of the gauged field equations and Bianchi
identities, provided the embedding tensor is transformed together with the other fields: the
global symmetries of the ungauged theory now act as equivalences between gauged models. Since
the embedding tensor encodes all background quantities in the compactification describing the
fluxes and the structure of the internal manifold, the action of the global symmetry group on it
allows to systematically study the effect of dualities on flux compactifications.

When originating from superstring/M-theory compactifications, gauged SUGRAs give the
possibility to investigate the perturbative low-energy dynamics of the system, since they describe
the full non-linear dynamics of the low-lying modes. In general, there is a correspondence
between vacua of the microscopic fundamental theory>*and vacua of the low-energy supergravity.

24 if already formulated, since there are several gauged SUGRAs whose superstring/M-theory origin is unknown
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5.1 Gauging of a theory

Given the Lagrangian symmetry group Gg (see Subsect. 2.3.1), the gauging procedure consists
in promoting a suitable global symmetry subgroup Gz C G to a local symmetry gauged by
the vector fields of the theory, implying the preliminary condition

dim(Gy) < ny . (244)

As already pointed out in Sect. 2, different symplectic frames correspond to ungauged La-
grangians with different global symmetry groups Ge; and thus to different choices for the possible
gauge groups.

To become a viable gauge group, the global symmetry subgroup Gz must admit a subset
{AA} of the vector fields*® which transform under the co-adjoint representation of the duality
action of Gg. These fields will become the gauge vectors associated with the generators X3
of the subgroup G itself. We denote as electric frame the symplectic frame defined by our
ungauged Lagrangian (labeled by hatted indices).

Once the gauge group is chosen within G, its action on the various fields is fixed, being
defined by the action of Gg as a global symmetry group of the ungauged theory (i.e. duality action
on the vector field strengths, non-linear action on the scalars and indirect action through H-
compensators on the fermionic fields). The fields of the theory are thus automatically associated
with representations of Gg.

5.1.1 Gauge algebra. Curvature. Covariant derivatives

After the initial choice of Gz in G, one has to pursue the construction of the non-abelian
gauge theory. First of all, we have to introduce the gauge-connections, gauge-curvatures (i.e.
non-abelian field strengths) and covariant derivatives. We will also need to introduce an extra
topological term needed for the gauging of the Peccei-Quinn transformations (98). This will
give us the gauged Lagrangian fg(ZLg with manifest local Gg-invariance. Consistency of the
construction will imply constraints on the possible choices of Gg inside G. The minimal couplings
will however break supersymmetry: the second part of the gauging procedure will consist in
further deforming the constructed gg(ZLg in order to restore the original supersymmetry of the
ungauged theory, preserving, at the same time, local Gg-invariance.

Gauge algebra. Let us introduce the gauge connection:
Qp = Qg dat; Qg = gAY X, (245)
where g is the coupling constant. The gauge-algebra relations can be written
(X3 X5) = fas" X (246)

characterized by the structure constants f[\if. The above closure condition results in a con-
straint on Xj; the structure constants are fixed in terms of the action of the gauge generators
on the vector fields, as global symmetry generators of the original ungauged theory.

Since Gg € Ggl, its electric-magnetic duality-action as a global symmetry group has the form
(95). This action of the infinitesimal generators X on the vector field strengths and their duals

25 hatted-indices are those pertaining to the symplectic frame in which the Lagrangian is defined
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is then represented by a symplectic matrix of the form
Nt XAy 0
(X3) 'y = ( A A) - (247)

Note that we do not identify the generator X3 with the symplectic matrix defining its electric-
magnetic duality action®®.

If we consider the variation 6FM of the field strengths under an infinitesimal duality trans-
formation (whose action is described by (247)), the imposed symplectic condition on the matrix
X, and the prescription that Af} transforms in the co-adjoint representation of the gauge group
(n, = coadj(Gg)), we obtained that the structure constants of the gauge group in (246) can be
identified with the diagonal blocks of the symplectic matrices Xj:

frsh = —Xps™ (248)
so that the closure condition reads

(X3 X5] = —Xas" Xp (249)

and results in a quadratic constraint on the tensor (X A)M 5- The identification (248) also
implies A
A
X(fi) =0. (250)
The closure condition (249) can be thus interpreted as an invariance of the gauge generators X5
under the action of Gg itself:

6iXg = [Xi Xg] + X3 Xp = 0. (251)

Gauge curvature and covariant derivatives. Once defined the gauge connection (245),
we can also write its transformation properties under a local Gg-transformation g(x) € Gg:

Qe — Q’g: gQggflergg*1 :gA'AXA. (252)

Under an infinitesimal transformation of the form g(z) =1+g¢g CA(JJ) X3, eq. (252) implies for
the gauge vectors the transformation property:
SAY = Dy = 0, + g AL Xep M (T (253)

where we have introduced the Gg-covariant derivative DMCA of the gauge parameter.

We then define the gauge curvature®”

i 1 1
F = F X, = 3 v dat A dat Xy = g(ng—Qg/\Qg), (254)

26 we emphasize also that, as pointed out in Subsect. 2.3.1, there are isometries in A/ = 2 models which do not
have duality action, namely for which the matrix in (247) is null (see eq. (100))
2There we use the following convention for the definition of the components of a form:

=L p1 Hy
W(p) = pT Wu1--p dzh1r A ... dxtr
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which, in components, reads:
Fh = 9,40 —9,AN + g xp M AT AT (255)
The gauge curvature transforms covariantly under a transformation g(x) € Gg:
F — Fl=gFgt, (256)
and satisfies the Bianchi identity:
DF=dF —QANF+FANQ=0 = DFN=dF’ 49X AAPAFN=0, (257

where we have denoted by DF A the Gg-covariant derivative acting on F A In the ungauged
Lagrangian we will have to replace the abelian field strengths by the new Gg-covariant ones:

0, AN — 9,48 9, Ab 9, AN pgx M Al AT (258)

In order to obtain local invariance of the Lagrangian under Gg, we replace standard derivatives
by covariant ones:

8, — D, =08,-gAbx;, (259)
the covariant derivatives satisfying the relation
D*=—gF=-gF'X; = [D.DJ]=-gF\X;. (260)

The covariant derivatives of the scalar fields ¢° are written using the Killing vectors kj associated
with the action (isometry) of the gauge generator Xj:

9,0° — Dud® = 0,0 — g A KL(9) (261)

The replacements (259), (261) amount to the introduction of minimal couplings for the vector
fields.

For homogeneous scalar manifolds, the left-invariant 1-form € (37) is redefined (pulled-back
on space-time) in terms of a gauged one, obtained by covariantizing the derivative on the coset
representative:

Q=L70L — Q=L7'DL = L7 (9, —gARX;)L = pu+ .  (262)
where the space-time dependence of the coset representative is defined by the scalar fields ¢*(z).

Vielbein and fermions. The gauged vielbein and connection are related to the ungauged
ones as follows:

~ A ~ A
Ou=ou—9A, P4 ; w, = w, — g A, wy (263)
the matrices g3, w; being the projections onto £ and §), respectively, of LleAL:

pa= LIXGL 5 wy= LTIXGL (264)

For non-homogeneous scalar manifolds we cannot use the construction (262) (based on L), but
we can still define the gauged vielbein @, and H-connection wj, in terms of the Killing vectors.
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Consider now a local Gg-transformation g(z) whose effect on the scalars is described by eq.
(23). Since D is G-covariant and using (262) we find:

W(g%8) = h ()b~ + = {;,,(g* ) bt et (265)

where h = h(¢,g). By deriving (262) we find the gauged Maurer-Cartan equations:
A+ 0N = gL 7L, (266)

where we have used (260). Projecting the above equation onto & and $ we find the gauged
version of egs. (44.1), (44.ii):

b+pAw = —gFhos (267.1)

N

26 = dp+
R(w) = dw+

>

A
A

N

v =-pAp—gF uwy . (267.ii)

that are manifestly Gg-invariant. The gauged $-valued curvature 2-form can be written in terms
of the curvature components (45) of the manifold as:

. 1 -
R(@) = 5 Ra 20" N 99" — g F* wy . (268)

The fermion fields of the theory transform under (compensating) transformation in H (see
(108)). In the gauged formulation, this is taken into account by using the gauged H-connection w
in the fermion H-covariant derivatives, promoting the latter to Gg-covariant ones and minimally
coupling the fermions to the gauge fields. The gauge-covariant derivatives on a fermion field &
are then defined as

D, = Vub+w, *§. (269)

V. being the covariant derivative containing the Levi-Civita connection on space-time and
the x symbol denoting the action of the $)-valued connection on &, in the corresponding H-
representation.

Summarizing, local invariance of the action under Gg requires replacing everywhere the
abelian field strengths by the non abelian ones, eq. (258), and the ungauged vielbein g, and
H-connection w,, by the gauged ones:

Ou — Ous Wy — Wy . (270)

5.1.2 The gauged Lagrangian

Now we want to discuss how to obtain a new Lagrangian, compatible with the new local sym-
metry, as a deformation of the Lagrangian of the ungauged theory. The first steps consist in
covariantizing all derivatives, according to the above discussions, and replacing the abelian field
strengths by the full covariant ones. Then, further deformations of the Lagrangian are required
in order to restore supersymmetry and preserve gauge invariance.

Topological terms. If the symplectic duality action (247) of X; has a non-vanishing off-
diagonal block X3y, that is if the gauge transformations include Peccei-Quinn shifts, then an
infinitesimal (local) gauge transformation ¢*(x) X 4 would produce a variation of the Lagrangian
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of the form (98):
§Lnos = L M) X;pp e FE RS (271)
BOS — 8 Al'S puv= po *
Being CA(:E) a local parameter, the above term is no longer a total derivative and thus the
transformation is not a symmetry of the action. In [81] it was proven that the variation (271)
can be cancelled by adding to the Lagrangian a topological term

1 A% r 3 &AL
Lop = 3 g X i s, Aﬁ AE <8PA£ + 3 gXAﬁF A? AE) , (272)

provided the following condition holds:
X([\fi) =0. (273)

The condition (273), together with the closure constraint (249), is part of a set of constraints
on the gauge algebra which is implied by supersymmetry. Indeed, even if the Lagrangian .,iﬂg(;)lg
constructed so far is locally Gg-invariant, the presence of minimal couplings explicitly breaks

both supersymmetry and the duality global symmetry G.

Yukawa terms, fermion shift matrices. We obtained a certain number of steps in order
to construct a Lagrangian ,Zgglg which is locally Gg-invariant starting from the ungauged one.
However, the obtained .Zg(zzlg is no longer invariant under supersymmetry, due to the extra
contributions that arise from variation of the vector fields in the covariant derivatives.

Consider, for instance, the supersymmetry variation of the (gauged) Rarita-Schwinger term
in the Lagrangian

s = iep 1;;? ’YlwpDuwAp + he., (274)

where D, is the gauged covariant derivative defined in eq. (269). Under supersymmetry variation
of 1, one finds
0y = Dpe + ..., (275)

€ being the local supersymmetry parameter and the ellipses referring to terms containing the
vector field strengths. The variation of %5 produces a term

0%s = ... + 2iep 1;;‘ VP DyDyea + hee. = —igep ﬁﬁ ’y‘“’pFl{Xp (wi€)a + h.c., (276)

where we have used the property (260) of the gauge covariant derivative. Similarly, we can
consider the supersymmetry variation of the spin-1/2 fields:

SN = ipitatea + ..., (277)
obtaining, in the variation of the corresponding kinetic Lagrangian, O(g)-terms of the form:

0L = o+ igen MY Fih ol ea + hec. (278)

v

To cancel the above O(g)-terms from supersymmetry variations of .Z, ., and to construct a

gaug’
gauged Lagrangian Z,.. preserving the original supersymmetries, one can apply the general

Noether method*® which consists in adding new terms to ,,ngfZLg and to the supersymmetry

transformation laws, iteratively in the gauge coupling constant. In our case, the procedure

28 see [82] for a general review
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converges by adding terms of order one and two in g, so that Zyaus can be written as

Lriang = Long + DL g + DL (279)
The additional O(g)-terms are of Yukawa type and have the general form:
e ALy = 9 (20U Sap + iN AP aNA + MA M) + he ., (280)

characterized by the scalar-dependent matrices S 45 and N/4 called fermion shift matrices, and
a matrix M!” that can be rewritten in terms of the previous mixed mass tensor N/4.
Finally, the O(g?)-terms will consist of a scalar potential:
_ 2
€p 1Aggaug = _92 V(o) , (281)
as we shall see below.

Fermion SUSY transformations. Now we have to modify the fermionic transformations,
adding order—g terms to the supersymmetry transformation rules of the gravitino v, 4 and of
the other fermions

561/),uA = Dyea + igSAB'yﬂeB + ..,

282
SeAr = gNiteq + (282)

These terms depend on the same fermion shift-matrices Ssp, N;4 entering the mass terms.
These matrices are composite fields belonging to some appropriate representations %s, %y of
the H group, such that (280) is H-invariant.

Scalar potential. As we stated above, in order to cancel the O(g?)-contributions resulting
from the variations (282) in (280), we need to add an O(g?)-scalar potential V(¢). The latter
is totally determined by supersymmetry as a bilinear in the shift matrices by the condition

St V(g) = ¢* (NN —128%Spc) , (283)

where we have defined NI, = (NIA)* and S48 = (Sap)". The above condition is called
potential Ward identity [83,84] and defines the scalar potential as a non-linear function of the
scalar fields.

We must emphasize that not for all choices of the gauge group it is possible to restore
supersymmetry following the above prescriptions. There are further constraints on the Lie
algebra of Gg (SUSY constraints) which need to be satisfied. The latter are linear and quadratic
in the gauge generators and we shall discuss them below in a convenient formalism.

5.1.3 G-covariant formulation. Embedding tensor formalism

We have seen that the gauging procedure corresponds to promoting some suitable subgroup
Gg C G to a local symmetry. This subgroup is defined selecting a subset of generators within
the global symmetry algebra g of G. All the information about the gauge algebra can be encoded
in a Gg-covariant object 6: in terms of the latter, the gauge generators can be expressed as linear
combinations of the global symmetry generators ¢, of the subgroup Ge, C G

X[\ = 9[\0 to 3 9]\6 € n, X AdJ(Gel) s (284)
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with A=1, ..., n, and with o =1,..., dim(Gy).

The G-invariance of the original ungauged Lagrangian . is restored at the level of the
gauged Lagrangian .Zy.., provided 67 is transformed under G as well. However, the full
global symmetry group G of the field equations and Bianchi identities is still broken, since the
parameters 037 can be viewed as a number ne = dim(G)) of electric charges, whose presence
manifestly break electric-magnetic duality invariance. This means we are working in a specific

symplectic frame, defined by the ungauged Lagrangian we started from?’.

It is useful to give a description of the gauge algebra and its consistency constraints which
does not depend on the original symplectic frame, namely which is manifestly G-covariant.
This is done by encoding all information on the initial symplectic frame in a symplectic matrix
E = (EpY) and writing the gauge generators in terms of new generators as

Xy = (Xa, XY, (285)

which are at least twice as many as the Xj:

<X(;A> = E <§ﬁ) . (286)

This description is therefore redundant and this is the price to pay in order to have a manifestly
symplectic covariant formalism. We can then rewrite the gauge connection in a symplectic
fashion:

ANXG = ANEA X+ ANE XN = AN X, + A XD =AM X, (287)

where we have introduced the vector fields AI’} and the corresponding dual ones Ay ,, that can
be regarded as components of a symplectic vector

A = (A), Apxy) (288)

These are clearly not independent, since they are all expressed in terms of the only electric
vector fields A* of our theory (those entering the vector kinetic terms):

AL =EMAL . Ay, =E; AL (289)

Embedding tensor. The components of the symplectic vector Xj; are generators in the
isometry algebra g and thus can be expanded in a basis t,, of generators of G:

XM = @1\/[ata7 azl,,dlm(G) (290)

[e%

The coefficients of this expansion ©);* represent an extension of the definition of 6 to a G-

covariant tensor:
0r° — Ou™ = (017, 0,0%); On® € R+ x Adj(Q) , (291)

where %, acts on covariant symplectic vectors, being the representation dual to the symplectic
representation %, of the group G. The © tensor describes the explicit embedding of the gauge

29 it is possible to define a procedure which is completely freed from the choice of the symplectic frame, see for
instance [30, 77]
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group Gg into the global symmetry group G and combines the full set of deformation parameters
of the original ungauged Lagrangian. The advantage of this description is that it allows to
recast all the consistency conditions on the choice of the gauge group into G-covariant (and thus
independent of the symplectic frame) constraints on ©.

Notice that, just as the redundant set of vectors Aﬂ/f , also the components of © ;% are not
independent since, by eq. (286),

0, =E;Mey*,  0=FE"Me,~, (292)

so that
dim(Gg) = rank(f) = rank(©) . (293)

The above relations (292) imply for © ;¢ the following symplectic-covariant condition:
0,07 e Pt =0 — CMN oy *on® =0 . (294)

On the other hand, one can show that if ©;,% satisfies the above conditions, there exists a
symplectic matrix E which can rotate it to an electric frame, namely such that eqs. (292) are
satisfied for some 6;*. The above equations (294) define the so-called locality constraint on the
embedding tensor ©,;“ and they clearly imply:

dim(Gg) = rank(®) < n,, (295)

which is the preliminary consistency condition (244).
The electric-magnetic duality action of Xy, in the generic symplectic frame defined by the
matrix E, is described by the tensor:

XMNP = @Ma taNP = EilM]MEilNNXMNPEPP. (296)

For each value of the index M, the tensor X, ' should generate symplectic transformations,
and this implies that:
Xune = Xun® Cop = Xupn - (297)

The remaining linear constraints (250), (273) on the gauge algebra can be recast in terms of
Xun?' in the following symplectic-covariant form:

Xmnpy = 0 = 2 XD = XxpA® (298)

Notice that the second of equations (298) implies that in the electric frame, in which xA = 0, also
the upper-right block of the infinitesimal gauge generators Z[Xj] vanishes, being Xf[‘ﬁ =0,
so that the gauge transformations are indeed in Gg.

Finally, the closure constraints (249) can be written, in the generic frame, in the following
form:

(Xar, Xn] = —Xunt' Xp = OnOnN’fop” +On tanTOpY = 0. (299)

The above condition can be rephrased, in a G-covariant fashion, as the condition that the
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embedding tensor O, is invariant under the action of the gauge group it defines:
opMON® = 0. (300)

Summarizing we have found that consistency of the gauging requires the following set of linear
and quadratic algebraic, G-covariant constraints to be satisfied by the embedding tensor:

Linear constraint : Xnpy = 0, (301)
Quadratic constraints : CMN oy eN® =0, (302)
[Xur, Xn] = —Xunt Xp . (303)

The linear constraint (301) amount to a projection of the embedding tensor on a specific G-
representation %, in the decomposition of the product %, x Adj(G) with respect to G

Ao x Adj(G) S B, + ... (304)
and thus can be formally written as:
P,-0 = 0, (305)

where P, denotes the projection on the representation Z,. For this reason (301) is also named
representation constraint.

The first quadratic constraint (302) guarantees that a symplectic matrix E exists which
rotates the embedding tensor © ;¢ to an electric frame in which the magnetic components eha
vanish. The second one (303) is the condition that the gauge algebra close within the global
symmetry one g and implies that © is a singlet with respect to Gg. Let us stress, however, that
constraint (299) is in general stronger than simple closure: in particular we find the non-trivial
relation

Xoum©Xp =0 (306)

upon symmetrization in (MN) of the above (306) — upon which the Lh.s. trivially vanishes, but
the r.h.s. does not — which clearly goes beyond closure condition.

In a general theory, the three constraints (301), (302) and (303) should be imposed indepen-
dently. In theories where all scalar fields enter the same supermultiplets as the vector ones (as
it is the case of N' > 2 or N =2 with no hypermultiplets), the locality constraint (302) follows

30

from the other two®”. In particular, the locality constraint (302) is independent of the others

in theories featuring scalar isometries with no duality action, namely in which the symplectic

duality representation %, of the isometry algebra g is not faithful®!.

As we have seen above, in the second part of the gauging procedure one has to restore
supersymmetry after minimal couplings have been introduced and the Gg-invariant Lagrangian
.Zg(szlg has been constructed. However, the supersymmetric completion of Dﬁfés;g requires no more
constraints on Gg (i.e. on ©) than the linear (301) and quadratic ones (302), (303) discussed

above.

30in maximal supergravity, however, the closure constraint (303) follows from (301) and (302) and thus, once
the linear constraint is imposed, the two quadratic ones are equivalent

31 this is the case of the quaternionic isometries in A/ = 2 theories, see eq. (100)
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5.1.4 Vacua and Dualities

A vacuum of a supergravity theory preserving Lorentz invariance is a maximally symmetric
solution, that is, it can exhibit Minkowski, de Sitter or anti-de Sitter space-time geometry,
depending on the value of the cosmological constant A:

A=0 Minkowski ,
A>0 de Sitter, (307)
A <O anti-de Sitter .

Due to the maximal space-time symmetry, only scalar fields are allowed to have a non-vanishing
(uniform) v.e.v. ¢ :

(¢°(2)) = ¢ = ¢o . (308)

while the vector and fermion fields vanish on the solution. This v.e.v. defines a point in the
moduli space which is an extremum of the scalar potential V(¢):

ov

=0. 309
9¢° o) ( )

The value V(¢g) of the scalar potential on the vacuum gives the effective cosmological constant
for the underlying space-time geometry:

A = Vi) . (310)
The Riemann tensor has the form
A
R,uupa = _g (gup 9Gvo — Guo gup) 5 (311)
and the Ricci tensor reads
R, = —Agu . (312)

The scalar potential is expressed, for extended models, by condition (283) and, being expressed
as an H-invariant combination of composite fields (the fermion shifts), it is invariant under the
simultaneous action of G on © and ¢°:

Vg € G : Vigxo, gx0) = V(p, 9). (313)
This means that, if V(¢, ©) has an extremum in ¢q:

0
o¢*

V(g,©)| =0, (314)

b0

at the same time V (¢, g« ©) has an extremum at g x ¢p with the same properties,

3]
Vge G : V(g g8%x0)

3 =0, (315)

gxPo

i.e. same value of the potential at the extremum and its derivatives.
If the scalar manifold of a given gauged model is homogeneous, we can map any point ¢g to
the origin O, where all scalars vanish, by the inverse of the coset representative L(¢o)~! € G.
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We can then map a generic vacuum ¢q of a given theory (defined by an embedding tensor ©)
to the origin in a theory defined by ©" = L(¢g)~! x©. Now, if we are looking for vacua with
given properties, all quantities defining the gauged theory — fermion shifts and mass matrices —
can be computed at the origin,

N(O, ©), S(0,8), M(0, 0), (316)

the properties of the vacuum being translated in conditions on ©. In this way, we can search
for the vacua by scanning through all possible gaugings [85-87].

Supersymmetric vacua. A vacuum of the theory ¢ is said to be supersymmetric if it pre-
serve an amount of supersymmetry. In this case there should exist a local supersymmetry
parameter €4 (z) along which the supersymmetry variation of the fermions vanish, when eval-
uated on the solution. This follows from the fact that, along the direction of the preserved
supersymmetry, the action on the vacuum gives €@ |0) = 0, and thus

sf(z) = (0] [€Q, £(2)]]0) = 0, (317)

where f(x) is a generic fermionic field and f(z) the corresponding field operator and where the
r.h.s. of the above equation depends on the v.e.v. ¢9 = ¢§ of the scalars and geometry of the
vacuum solution®?. The above conditions can be written as

Sua = Dyea+igSapvue” = 0, (318.1)
SAr = gN/tey =0, (318.ii)

where the tensors Sy and N4 are evaluated at ¢q. These are the Killing spinor equations for
the vacuum: if the latter admit A/ distinct solutions (Killing spinors), the background preserves
N’ < N of the original N supersymmetries of the theory.

If one combines the imposed integrability condition on (318.i), i.e.
0 = V04, (319)

with the previous Killing spinor equation and the Riemann tensor form (311), it is easily demon-
strated that supersymmetric vacua can only be Minkowski (A = 0) or anti-de Sitter (A < 0).
The latter, in particular, are maximally symmetric solutions with negative cosmological constant
that are very interesting from a theoretical point of view in the light of the AdS/CFT hologra-
phy conjecture [88]. The construction of supersymmetric solutions of supergravity theories has
been studied in [89-92].

5.2 Black holes in gauged supergravity

As already pointed out, the construction of black hole solutions in gauged supergravity theory is
essential for phenomenologically realistic cosmological models, supporting the presence of some
effective cosmological constant as well as non-trivial scalar potential and scalar mass terms.
From a theoretical point of view, the study of gauged black hole solution has been strongly
motivated by the so-called AdS/CFT duality [88], that relates d 4+ 1 dimensional gravity the-
ories in Anti de Sitter (AdS) spacetime to conformal field theories (CFT) in d dimensions. In

32 analogous conditions on SUSY variations of the bosonic fields are trivially satisfied, since the latter are

expressed in terms of the fermions which vanish on the background
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particular, the conjecture states that stable AdS solutions describe conformal critical points of
a suitable gauge theory defined on the boundary of the space: it is a successful realization of the
holographic principle [93], asserting that the description of the bulk AdS spacetime is encoded
on its boundary on which the CFT lives.

In general relativity, the study of exact (neutral) static black hole solutions with scalar hair
was a powerful tool for clarifying different aspects of no-hair theorems [94], the role of scalar
charges for black hole thermodynamics [95,96], and issues related to their stability [97, 98].

After the discovery of one-parameter family of SO(8) maximal four-dimensional supergravity
theories [99], many progresses have been made made towards the understanding of the vacuum
structure and dual field theories [87,100-105]. Together with the original SO(8) model [70],
other gauged supergravities have been extended by using dyonic embedding tensor [86, 106, 107],
featuring a richer vacuum structure and scalar field dynamics than their original counterparts.
Several procedures have then been developed for obtaining exact regular hairy black hole solu-
tions for a general scalar potential [107-113] and supersymmetric black hole solutions [114-116].

5.2.1 Example: N =2, D =4 gauged SUGRA black hole

Let us consider an extended N = 2 supergravity theory in four dimensions, coupled to n.
vector multiplets and no hypermultiplets, in the presence of Fayet-Iliopoulos (FI) terms. The

model describes n, + 1 vector fields Af}, (A=0,...,n,) and ng = n, complex scalar fields 2
(i=1,...,ng).
The bosonic gauged Lagrangian now reads
izm __k + gi7 0,2 0" E + 1IAE(Z Z)FA FEr 4 L Ras(z,2) P’ FA FE _V(z,%)
ep O 2 IR 4 e 8ep ' ue = po T
(320)

where the n, + 1 vector field strengths are defined as usual:
A A A
Fo, = 0,4, —0,A, .

The ng complex scalars 2% span a special Kihler manifold .y and the scalar potential V(z, 2)
originates from electric-magnetic FI terms. The presence of V(z,Z) amounts to gauging a
U(1)-symmetry of the corresponding ungauged model (with no FI terms) and implies minimal
couplings of the vector fields to the fermions only.

Special geometry. A special Kihler manifold s is the class of target spaces spanned by
the complex scalar fields in the vector multiplets of an A" = 2 four-dimensional supergravity.

The geometry of .4y can be described in terms of an holomorphic section QM (2%) of the
characteristic bundle defined over it, which is the product of a symplectic-bundle and a holo-
morphic line-bundle. The components of QM (2?) are written as

M xh
oM — : A=0,...,ny, (321)
Fa

while the Kdhler potential and the Kdhler metric have the following general form
K(z,z) = —log [ Q" CQ] = —log[i (/'FAS’FA - XA9?A)] ,

(322)
9i7 = 31351C .
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A change in the coordinate patch on the scalar manifold amounts to transforming Q*(z%) by a
corresponding constant Sp (Q(nVJrl), R) matrix, besides multiplying it by a holomorphic function
ef(?). The former transformation leaves invariant the Kihler potential, as it is clear from the
manifestly symplectic-invariant expression (322), while the latter implies a corresponding Kdhler

transformation on the potential:
K(z,2) — K(z,2) — f(2) = f(2) . (323)

The choice of QM (z?) also fixes the symplectic frame (i.e. the basis of the symplectic fiber space)
and, consequently, the non-minimal couplings of the scalars to the vector field strengths in the
Lagrangian. In the special coordinate frame, the lower components F, of the section can be
expressed as the gradient, with respect to the upper entries X, of a characteristic prepotential
function F(XM):

o= (324)
where the function F(X™) is required to be homogeneous of degree two. The upper components
XA (%) are defined modulo multiplication times a holomorphic function and, in this frame, can
be used as projective coordinates to describe the manifold: in a local patch in which X9 # 0,

we can identify the scalar fields with the ratios 2* = &' /x0.

In general a field ®(z, z) on the Kéhler manifold is a section of a U(1)-bundle of weight p if
it transforms under a Kéahler transformation (323) as

®(z,2) — e?Me(z, 7)), (325)

and we can define a corresponding U(1)-covariant derivative on the bundle as
D'V = (ai + gaiic) o,
(326)
D

7 =

EUU)]‘I) _ (ai _ gaﬂc) P .

Now we introduce a covariantly holomorphic vector VM

A
VM — o5 OM = <AL4A> , (327)

which is section of the U(1)-line bundle with weight p = 1, satisfying the property:

D, VY = (65— &K) M =0, (328)

N |

and we also have

1 A
D;VM = (0, + 9K ) VM = fi) = uM (329)

2 hia
D;, D; being the above U(1)-covariant derivatives (omitting the superscript). Under a Kéhler
transformation defined by a holomorphic function f(z), the section transforms by a correspond-

ing U(1)-transformation:
yM gt mlfIpM (330)
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From its definition and eq. (322), we find that VM satisfies the condition
vicy = i. (331)

In particular, the definition of this kind of manifold requires the section VM to satisfy the
properties

Dilly = i Cigp g™ Uy,
DiU; = gV,
Vicu; = o0,
ur'cu; = —igiy,

(332)

where C;jy, is a characteristic covariantly holomorphic tensor with weight p = 2 which enters the
expression of the Riemann tensor and defines the Pauli terms in the Lagrangian involving the
gauginos. The following identity is satisfied:

1

L _ 1 —
g uMuy = -5 MMN 3 CMN _yMpN (333)
where, using property (72), we have
MMN — _CMP Mpo CON | (334)

with Mpg defined in eq. (62).
FI-terms and scalar potential. In N = 2 theories, the scalar manifold has the general form
(99)

%scal = %SK X %QK ) (335)
the special Kihler submanifold .4 parametrized by the complex scalar fields z* in the vector

multiplets, and the quaternionic Kéhler one .#q by the real scalars in the hypermultiplets. The
holonomy group H of the scalar manifold splits according to (105)

H = Hy X Hya (336)

with Hr = U(2) and Hpyatt acting on the fields in the vector and hypermultiplets. At the same
time, H can be expressed by the product of the holonomy groups of #s and .#y« respectively:

H o= B g (337)
with
H* = UQ1) x HX, , H = SU(2) x HX,, . (338)

In the absence of hypermultiplets (that is the case under consideration) the SU(2) part of the
R-symmetry group Hy becomes a global symmetry of the theory which can still be gauged,
the gauging of this symmetry described by a (constant) embedding tensor ©p;%: the latter
quantities are known as Fayet-Iliopoulos terms.

If we decide to gauge a U(1) inside SU(2), we can take O, to have only one non-vanishing
component, 0y, = ©,,%=! and choose the remaining gauge algebra to be abelian with X\, = 0.
In this case, the resulting theory is deformed with the introduction of abelian electric-magnetic
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FI terms defined by the above constant symplectic vector 8;, which encodes all the gauge
parameters>>.

The scalar potential V'(z, Z) reads:
,, _ _ 1 _
Vo= (¢7UMuy —3vMVN) Oy 0y = —50m MMN Gy — 4 VM YNNG 0N (339)

having used property (333). It is easily verified that the above potential can be expressed in
terms of a complex superpotential
W = VMe,, . (340)

section of the U(1)-bundle with p = 1, as follows:

V = ¢g"D;W DWW —3|W|?. (341)
We can also define a real superpotential W = |W| in terms of which the potential reads:

V = 4470, W O; W — 3W? . (342)

The introduced 6 terms transform in a symplectic representation %, of the isometry group
Gk of Mg on contravariant vectors. These FI terms are analogous to the electric and magnetic
charges, but while the latter can be considered as solitonic charges of the solution, the former
are background quantities actually entering the Lagrangian. Moreover, even though they couple
the fermion fields to the vectors, the FI terms do not define vector-scalar minimal couplings.

Equations of motion and isometries. The matrix M,y can be used to write the couplings
of the scalar fields to the vectors, in the equations of motion, in a formally symplectic covariant
form: once written the symplectic vector of electric field strengths and magnetic duals

FA
M _ v
F, = ( H > , (343)

the equations of motion for the vector fields are expressed in the compact form
dFM =0, TM = —CMP Mpn(z,2)FN . (344)
The scalar field equations can be written in the following form:
. . . 1 . -
Vu(0"2") + T 0,27 0425 — 39" Fi, 0:Mun(z,2) FY™ 4+ g7 0,V = 0, (345)

where V,, is the covariant derivative, only containing the space-time Christoffel symbol and fé- &
is the connection on the Kéhler manifold.

Finally, the Einstein equations read:
in =7 [y A mN p
Ry = 202" 02 gi7 + §Fup Mun(z,2) FP — gV, (346)

depending on the Kéahler metric as well as on the spacetime metric .

33 even if we introduce both electric and magnetic gaugings to maintain duality covariance, the duality group
will always allow us to reduce to the case with only electric gaugings turned on (see 5.1.3); this implies a

correspondent rotation of the symplectic sections and the choice of a symplectic basis
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As pointed out earlier, the bundle structure defined on the scalar manifold allows to associate
with a generic isometry transformation of the latter, a Kéhler transformation and a constant
symplectic transformation, belonging to the structure groups, acting on the symplectic section
VM and its derivatives. From the explicit form of the bosonic field equations and of the scalar
potential, it is apparent that an isometry transformation of the scalar manifold is formally an
on-shell symmetry of the theory, provided the corresponding symplectic transformation is made
to act on the electric field strengths and their magnetic duals as well as on the FI terms:

VM(Z/,Z/) _ eiIm(f) (Sfl)NM VN(Z,E) ,
Zi — z’i(zj) : 91\/[ — 93\4 = SMN 9]\[ 5 (347)
IFM N F/M — (S—l)NM ]FN )

where S € Sp(2(nv + 1),R). This formal invariance, however, involving a non-trivial trans-
formation of the parameters (encoded in the FI terms) should be regarded as an equivalence
between different theories.

Effective action. Let us consider static dyonic black hole configurations and assume a radial
dependence for the scalar fields, z¢ = z%(r). The most general metric ansatz, with spherical or
hyperbolic symmetry, has the form

ds? = UM g2 _ =200 (dr2 ) dzi) : (348)

where d¥2 = d¥? + f2(9) dp? is the metric on the 2D-surfaces 3,; = {S?, H?}, the sphere and
the Lobachevskian plane, of constant scalar curvature R =2k and

sin(¥)

) k=1;
sinh(¥) , k=—1.

fo(®) = — sin(y/RY) = { (349)

N

The above general metric ansatz differs from (111) because of the warp factor ¥(r).

Now we can apply the formalism discussed in Sect. 3, with appropriate adjustments to
describe the new configuration.

The Maxwell equations are now satisfied using the following expression for FM
FA
FM = o | = AU CME Mpy TN dt Adr +TM f,.(0) d) Adp = dAM . (350)
A

The electric and magnetic charges are defined as

1
EA = VO](EK / gA7 (351)
mh = 1 / FA
= vol(Z,) ’
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where vol(X,) = /f,{(ﬁ) dy N dp. They can be arranged in the symplectic vector

M _ m* _ 1 M
M <6A> - = /ENIF . (352)

As we have seen in Subsect. 3.1, we can obtain the equations of motion coming from the bosonic
gauged Lagrangian (320), with the metric ansatz (348), from a one-dimensional effective action
that, apart from total derivative terms, has the form

g — /drgcﬁ _ /dr [ (07— 0 g2 ) Vi (353)
where the prime stands for derivative w.r.t. r and where we can define an effective potential
Ve = =00V — 2070V 4 s (354)

in terms of the scalar potential V' and the (charge-dependent) black hole potential Viy. The
latter can be written in the symplectically covariant form (115)

1
Vi = — 3 rfmr, (355)

in terms of the magnetic and electric charges and scalar-dependent matrix M.

Once given the effective action, one can make use of the Hamilton-Jacobi formalism and
derive a system of first-order equations (flow equations) for the warp factors U(r), ¥(r) and
scalar fields z%(r), 7(r).

Supersymmetric black hole solutions. When interested in analysing supersymmetric con-
figurations, one has to impose the vanishing of the SUSY transformations, in addition to solving
the equations of motion.

The relevant supersymmetry variations can be written as:

§tua = Dyea + i T, 7 cape” + iSapyue” , (356.1)
. . 1 .. - .
N =i, et = g7 [ Tas B et ep + WP ep (356.ii)

with 4#* = 4#~* and where we have considered properties (332). The covariant derivatives are

written as 1 ; ;
Dyea = Oyea+ Zw,fb%beA + 3 (UQ)AB Afy O er + 3 Queaq, (357)
with .
i _ .
Q=5 (2K 8,2" — 0K 9,2") (358)
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and, in the chosen parametrization, we also have

1 *
P = 5(F,wj: F.),

1 - i i
A > A > Y A M
Tw = L*Ian Fy, = 5 L (M=) s Flv = —5 (M Foy = L%Ga) = 5V Cun B
_ _ i _
T, = LIy F.7 = 5VM Cun F,)Y,
i i
Tipw = DiTy = [ Ias Fpy = =5 (his B, = £ Gaw) = 5 U Cun By,
i i

Sap = 5 (02) € epc O VY = 3 (0*) € eBc W,
WiAB _ (Uz)cB C4 0., gijzj{é\/[7
having used properties

Me F2 =Gy, LA My = My . (359)

The kinetic matrix (90) 91 =R +¢Z can be expressed as [4]

Im [0p0rF] Im [0s0aF] LY LA

May = Ox0sF +2i 360
AS A5/ + 21 T [OadpF] LA LT ’ (360)

. 0 0 . . .
with dp = JXn 0x = 7% We note that, in the special coordinate frame, the whole
N = 2 Lagrangian can be written in terms of the holomorphic prepotential function F(X') and

its derivatives®?.

Just as we did for electric-magnetic charges in (352), we define the central and matter
charges as

¥ #/ T = VWM CyunTVN = Lhey — Mpag",
VO](EK) Sk
(361)
1
= | T = D.¥ = ey — Bt
2= ey /z T e i

These are composite quantities that can be thought of as the physical charges measured on
a solution at radial infinity. The black hole potential (355) can be schematically rewritten in
terms of the central charges as [13, 20]

Van = |DQF| — |D@p|2 . (362)

From an explicit computation of the supersymmetry variations (356), we find the following

34 we also emphasize that there are symplectic frames in which a prepotential F(X) does not exist
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relations for the warp factors

U =" Rele™Z]+e ¥ Im[e W],

, (363)
U = 2¢ Y Im [e_w‘ W] ,
and for the scalars
= e Ve g Dy (VY Z —iW) (364)
the above covariant derivative acting on objects with weight p = —1, and having introduced two
projectors relating the spinor components as
Wea = ie®ey pel,
4 (365)
ylea = e oapel .
The Killing spinors must satisfy the relations
€4 = xa  3(v—ifars) ’
(366)
EA — ie_ia EAB ,70 €B ,
where we have
8TXA =0 ’
_ (367)
B = 0,+2e¢ Y Re [e_w‘ W] ,
and the following expression for the phase a holds:
ora = —B. (368)
From the SUSY variations we obtain the property
Im[e %] = —e*""?VRe[e W], (369)
and using also ansatz (350) for FM | we find for the Afy components:
A0y = 2eY Re[e W] |
AM = 0,
(370)
A =0,
M v
A = ——— cos (VKY) ,
together with the relation
™oy = k. (371)

Because of the conditions we imposed in (365) for the spinors, the construction will give us a
i—BPS solution.
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6 Conclusions

This work aims to give a self-consistent review of black hole properties and configurations in
supergravity models.

First, special attention was posed on ungauged extended supergravity theories and their
dualities, analysing the general form of black hole solutions for these models and providing an
explicit construction in the relevant STU-model case. Then, we studied in detail the gaug-
ing procedure involving the embedding tensor formalism, to be used to obtain gauged models
starting from ungauged ones. The gauged formulation was then applied to describe four di-
mensional black holes in N’ = 2 gauged theories, analysing also the relations to be satisfied by
supersymmetric configurations.

Clearly, due to the vastness of the topic, some choices had to be made on what issues should
be dealt with in more detail.
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A Coset Geometry

A.1 Sigma-Model in D =3
The three-dimensional sigma-model scalar fields ®! = {U, a, ¢*, ZM} span an homogeneous-
symmetric, pseudo-Riemannian scalar manifold of the form

G
M8, = TG (A1)

scal T *
H,)

The isometry group G/ of the target space is the global symmetry group of the (190) Lagrangian
23y, and H :3) is a suitable non-compact semisimple maximal subgroup of it.

We shall use for the scalar manifold the solvable Lie algebra parametrization, identifying
the scalar fields ® with parameters of a suitable solvable Lie algebra [117]. Indeed, the three-
dimensional scalars ® define a local solvable parametrization, i.e. the corresponding physical
patch % is isometric to a solvable Lie group generated by a solvable Lie algebra 3:

M > U = e (A.2)

scal

The solvable Lie algebra  is defined by the Iwasawa decomposition of the Lie algebra g3 of G 3,
with respect to its maximal compact subalgebra 3 .

The solvable parametrization {®!} can be expressed through the exponential map
L ((b]) = exp(—aT,) exp (\/§ zM TM) exp(¢® Ts) exp(2UHy) , (A.3)
where the solvable generators Ty = {Hy, T,, Ts, Tas} satisfy the commutation relations

(Ho Tul =3 Tars  [Ho T = [T T =05 [Ho, T =T, "

[Tar, Tn) =Cun T3 [To, Tagl = (TN T s [T, Tu) = —(Tow)® T

where (T)™ ) represents the symplectic representation % (T,) on contravariant symplectic
vectors dZM.

In all A = 2 models with just vector multiplets, one has n, = ng/2 + 1, and thus the
dimension of the scalar manifold in D = 3 turns out to be 4n, :

N=2 = n=2+1 = dim (#5)) = 4n, . (A.5)

where the manifold %8(3)

-1 is a pseudo-quaternionic Kéhler space.

Decompositions. The coset geometry is defined by the involutive pseudo-Cartan automor-
phism ¢ on the algebra g3z of G(3) which leaves the algebra 53; generating H (*3) invariant:

*

(($3) = 9y - (A.6)

All the formulas related to the group G (3) and its generators, are referred to a matrix represen-
tation of G(3) and, in particular, we shall use the fundamental one.
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The involution (, in the chosen representation, acts on a general matrix X as:
((X) = —n X", (A7)

being 7 an H(*3)—invariant metric (n = nf, n? =1).

The pseudo-Cartan ¢-involution induces a (pseudo)-Cartan decomposition of g3 of the form

gs = 9, @R, , (A.8)
where we have
¢ : C(ﬁs) =93, C(ﬁg) =83, (A-9)
and where the following relations hold:
(93, 93] C 93, (93, R3] C Ry, [Rs, R3] C 95 . (A.10)

We see that H(*g) has a linear adjoint action in the space ﬁ;, which is thus the carrier of an
H (*3) -representation.

A general feature of N/ = 2 symmetric models is that the isotropy group H (*3) has the form

and its adjoint action on ﬁ; realizes the representation (2, %s).

The decomposition (A.8) has to be contrasted with the ordinary Cartan decomposition of

g3
gz = N3 D Ky, (A.12)

where the algebra g3 is decomposed into its maximal compact subalgebra £)3, generating H s,
and its orthogonal non-compact complement Ks. This decomposition is effected through the
Cartan involution 7, of which $)3 and K3 represent the eigenspaces with eigenvalues +1 and —1
respectively. In the matrix representation in which we shall work, the action of 7 on a matrix
X can be implemented as:

(X) = -XT. (A.13)

We shall also use the H :3)—invariant symetric matrix (197)
Mg (@) = L(®") pL(@)". (A.14)
Next we construct the left-invariant one-form and the vielbein ¥4 = ;% do':
LAl = VAT, = ptw; A =1,..., dim (///;;31) : (A.15)

where p = ¥4 K4 and w are the vielbein and connection matrices, and where {KK 4} is a basis
of ﬁ; defined as :
1
Ka =3 (TA +n Th 77) ; (A.16)
T4 =Ty, being the solvable generators defined above.

Following the prescription of [117], the normalization of the H (*3)—invariant metric on the
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tangent space of G(g)/HE;) is chosen to be

gas = k Tr[KaKg], (A.17)
where )
p— — A-l
Y= ) (A.18)

is a representation-dependent constant.

The metric of the D = 3 sigma-model has the usual form:

ds*> = kTr(p?) = gape™o® =
2 [T 2U T (A.19)
= 2dU* + Gsy do° dop" + 5 e wite U dZ M(4)(¢>S) dz
with
w=da+Z2"CdZ. (A.20)

A.2 The STU model

The most general scalar manifold of an N' = 2 model is described by the product of a special
Kahler manifold #sy, spanned by the complex scalars z® in the vector multiplets, times a
quaternionic Kahler manifold M4« spanned by the scalar fields ¢* in the hypermultiplets:

Mca) = Mac X Moy - (A.21)
The symplectic structure is defined only over the first factor, since only the scalars z* enter the

matrices Zay, Rax-

The STU model is an A/ = 2 supergravity coupled to three vector multiplets (ng = 6, n, = 4)
and where the D = 4 scalar manifold is

G SL(2,R)\*
4 _ @ _ )
%scal - H(4) - < SO(2) ) (A22)

is a complex special Kéhler manifold, spanned by three complex scalar fields z* = {S, T, U}.
The D = 4 scalar metric for the STU model reads

dz*dz®

3
GaaE — e EddE . (A2)

=1

3
d8?4) stu = Gsu d¢sd¢u = 294 dz¢dz® = -2 Z

We also consider the real parametrization ¢* = {¢;, ¢;}, that is related to the complex one z;
by:
¢ =A{ei, pi} =  z=e¢—ie”. (A.24)

The Kahler potential has the simple form:
e*’c — Ke¥1te2tes ’ (A25)

and, in the chosen symplectic frame (i.e. the special coordinate frame originating from Kaluza

1)

Klein reduction from D = 5), the special geometry of ///S( -1 is characterized by an holomorphic

C
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prepotential:
F(z) = 212923 . (A.26)

The holomorphic 2 (2) section of the symplectic bundle reads:
OM(2) = {1, 21, 20, 23, —21 2223, 2223, 2123, 2122} , (A.27)
while the covariantly holomorphic section is given by
VM(z,2) = e? QM(2). (A.28)

Once defined the covariant derivative D;

oK

'DzV = 81V+ 2

v, (A.29)

it is possible to write the central and matter charges of a black hole solution, with quantized
charges T™ = (p?, qp), in terms of VM and of its covariant derivative as:

% = VICr=

_ 5 3 2 1 0
=e2(—qo— Q121 — Qe +P 2122 — Q323+ D 2123+ P 2223 —D 212223),

# = e'DVTCT =

_ .k 1 = 3, 5 2, 3 0 5
= —e? (QO+Q222+Q323—1? Z2z3+qu1Z1 =P zZ —p 3z +p 222321) )

% = €2iDZ‘VT(CF=

.k 2 = 3 = 1, = 0 =

= —1e2 (QO+Q1Z1+Q3Z3*Z? 2123+ Q222 —P 2122 —p 23z +p 212322) )
% = egiDZ-VT(CF:

_ .k 3 = 2 = 1, = 0 -

= —ie? (Q+qza+qa—p azntein—pas—p aistpani) .

The explicit form of the quartic invariant for the STU model is:

Lip,q) = —@0°) a5 —2q (20" P> + 0" as0® + 0" 0" 1 + " P’ @2) — (')* 41— (A.30)
) .
~PPe-ra) +2a@Petae (0 -20"¢)) .
Upon timelike reduction to D = 3, the scalar manifold has the form
® _ Go _ 8O(4,4) (A.31)
scal = ¥ SO(2,2) x SO(2,2) '

(3)

The generators of g3 = s0(4,4) can be written in terms of Cartan generators H, and shift
generators Fi, in the fundamental representation, with the usual normalization convention:

[Ha, E:ta] =+2F1,; [Eom Efa] =H, s (A32)

where

E_, = El = ET. (A.33)



The positive roots of the algebra gs split into:
- the root Sy of the Ehlers subalgebra sl(2,R)g, commuting with the algebra gy of G4
(94 C 93);
- the roots a; of g4 (i =1,2,3);
- the roots vy (M =1,...,8).

The special coordinate parametrization of ///S(C?l corresponds to a solvable parametrization of
the manifold in which the real coordinates ¢* = {¢;, ¢;} are parameters of a solvable Lie algebra

generated by
T, = {Ea,, Ha,/2}. (A.34)

The coset representative L4y is an element of the corresponding solvable group [118, 119], defined
by the following exponentialization prescription:

Liy(¢°) = exp(¢°Ty) = ] e e# (A.35)

The solvable (or Borel) by subalgebra of gz has the form:
bg = Span (T4) , Ty={Ho, 1., Ts, T} (A.36)

is used to define the parametrization of ///g(f(zl in terms of the D = 3 scalars ®!, through the
coset representative (A.3). This subalgebra can be defined through the identifications

Hpg, .

Hy = =*;  T.=Es: Tu=5E,. (A.37)

- M

The symplectic representation of {75}, in the duality representation %5 = (2,2,2) of G(4), is
defined through their adjoint action on T}y;:

[Ty, Tn] = —(T)ar™ Ty (A.38)

In order to reproduce the form of the (7)™ in the chosen special coordinate frame (A.27),
the generators Ty corresponding to the roots vy, have to be ordered according to (227). In this
basis, the symplectic representation of L4y defined in (A.35) allows to define the matrix M 4):

8
Mayun == (L) " (La)y " (A.39)

P=1

We give, for the sake of completeness, the matrix form of ¢* T in the symplectic representation

R

3
H,, A B
O T = Y € Ba gt = <® _AT>, (A.40)
=1

76



with

FHE+g  -a B B
4 = 0 -S4 +2+5 0 0 ’
0 0 g2y 9 0
0 0 0 L4 L2 s
S (A.41)
0 O 0 0
B — 0 0 —€3 —€9
0 —E€3 0 —€1
0 —€9 —€1 0

The pseudo-Cartan involution ¢ determines the decomposition of gs into ﬁ; and ﬁ;, and is
defined by the matrix n = (—1)2Ho.

7



B Dimensional Reduction

The bosonic Lagrangian (17) can be rewritten as:

1 R 1, 1 , 1 oo
Ly = = g+ 30" T} +  Tas(0) FL F 4 Ras(@) e ) Fl, L (B)
D D

having introduced the currents

J, = %M—lauM. (B.2)

The above Lagrangian describes a field theory over a 4D space-time manifold ¥4 with coordinates

)1 with coordinates ¢°®

4

x# and metric g, (). The scalar fields have values in a target space %S(fa

and metric G, (¢). The solutions of the scalar equations are maps from ¥y to ).
In particular, we considered in Section 4 the case where ///S(C?I is a non-compact homogeneous

Riemannian symmetric space of the form:
(B.3)

G'(4) being the isometry group and H(4) its maximal compact subgroup.

Following the prescription of [42], we shall consider only stationary (or stationary-
axisymmetric) field configurations. For the latter, it is possible to reformulate the four-
dimensional theory in terms of a 3D euclidean description, in analogy with the dimensional
reduction technique for Kaluza-Klein theories.

B.1 Reduction from 4 to 3 dimensions

For a field configuration allowing a Killing vector field £, we can choose a gauge such that the
Lie derivative of the vector potentials Af} vanishes and choose adapted coordinates such that
the isometry is just a translation (e.g. £ = J¢). The fields of the theory will then depend only on
the remaining three coordinates xz; (i = 1,2,3) parameterizing the orbit space X3 of the action
of £. In these coordinates, £ has the form { = (T, T w;) and the metric g,, can be decomposed

gﬂl/ - Twl 7T71gl(j)+rwle ) .

(3)
ij
similar way, we decompose the vector fields as:

as:

only requiring T # 0.  The scaled metric g,;” is referred to the reduced 3D space ¥3. In a

Ay = (Ag, Afwi+ AY) = (2% 2hwi+ AY) (B.5)

into pieces parallel and perpendicular to £.

The Lagrangian (B.1) can be now rewritten (apart from surface terms) as:

Lo ROl G g, J;) L7 (¢) 9,27 ' 2™ L oo +
e[()g) - 2 29 iy Jj 27 A () 472 ()
T? ij T A A Tij ij =% B
+ g wiiw’ + o Iax(9) (Fj + wig2®) (F77 +w"2%) + (B.6)
1 g
* WRAE(@ gk (F/J\ +wi ZY) o 2%,
€p
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(3) and with

where R(®) is the scalar curvature for the three-dimensional metric 9i;

wij = iOJj — iji 5 FZ'[; = @A;\ — 8JAZA . (B?)

If the original field configuration was a solution of the four-dimensional field equations, then
the set {gg’)7 T, w;, Ajo\, AZA, ¢*°} is a solution of the three dimensional field equations derived
from .# and viceversa. The field equations for the 3D vector fields A and w; are (omitting
symplectic indices)

&

Vi (Tz(¢) (F7 +w"Z) + € R(¢) sijkakz> =0,
(B.8)

T2 g g 1 g
v, (2 W + Y I(¢) 2T (F7 + w 2) + — R(¢) e'* 2T akz> 0,

NE)

D

and can be considered as Bianchi identities for the dual potentials Z, and for the so-called twist
potential a.

Instead of using the definitions of Fi/]‘- and w;;, we can treat them as independent fields and
add Lagrange multipliers to the Lagrangian (ensuring that they are curls)

~ -1 1 ..
7 = f—‘ri&'”k ZA&»F;)C—%ZE”’“ (ZAZA —a) &wjk. (B.9)

The resulting field equations for w;; and Fl/]\ are

. 1 .1
w = Fgl]kWWk’
. (B.10)
FM 4w Zh =~ e I (9) (Ren(e) 0k 2" — 0k 2x)
ey’ T
with
w; = —0ia— (B*0i2Zy — 20 0,;2") . (B.11)

Inserting these expressions back into ', we obtain the Lagrangian of the three-dimensional
reduced theory

1 R® ! (B)ii¢ 7. T 1 i 1 M i
@"%3) = 2 - 59 < 1y j> - m (61T6T+wzwj) - ﬁ(‘“)zZ M(4)MN8 ZN
R(3) L a 9i,b
= T - 5 ab(Z) 822 8 zZ

(B.12)

where M4y n is the negative-definite matrix introduced in (62) and where the “twist” vector
w; can be rewritten in an explicit G4 invariant form as

w; = —0ia— ZM Cyn 02V . (B.13)

We have obtained a non-linear o-model with a target space ///S(fa)l parameterized by & =

{¢, T, Z, a}, coupled to (three-dimensional) gravity.

3)

For a space-like Killing vector (T < 0) the metric on ,///S( ~| is positive definite, while for a

C
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time-like Killing vector (T > 0, stationary solutions) the metric is indefinite with 2n, negative
terms due to the fields Z originating from the n, vector fields in the four-dimensional theory.

Invariance group and target space. The set of all the transformations leaving invariant
the metric (on the target space M)

scal

) and the field equations (from Lagrangian (B.12)) form
a non-compact Lie group G3). The target space can be either a Riemannian symmetric space
(T > 0 case)

® _ Go

S : >0 B.14
scal H(g) ( ) ( )

where H sy is the maximal compact subgroup of G(3), or a pseudo-Riemannian symmetric space
(T < 0 stationary case) of the form

(T <0) (B.15)
where H (*3) is a non-compact real form of Hs.

B.2 Stationary solutions with pseudo-Riemannian symmetric space

If we consider the stationary case, we find a pseudo-Riemannian symmetric target space //{S(fa?l =
G(g)/H(*?)). It is possible to introduce the hermitian, H(*3)—invariant matrix M sy which, in a
chosen matrix representation, reads:

M@ = M@)(®) = LyLt = M, , (B.16)

defined from the coset representative L(¢), and where 7 is a suitable H (*3)—invariant metric (see
App. A).

The reduced Lagrangian (B.12) can be rewritten

1 R®) 1 .~ ..
= — 0 27 iy =
6(3) "%3) - 92 92 <J'L’ J > -
D (B.17)
R®) £ o B B
= o = 3907 Tt (M@ 0iMe M "9 M)

% being a constant depending on the considered representation and on the specific o-model, and
J; = ji(g) being the currents

A 1 -

Ji =5 MGy diM ) - (B.18)

The field equations for for the above Lagrangian can be written in the compact form
3 S
RY = (Ji, J;)

(B.19)

ViJ, = 0,

where not all the conserved currents J and not all the field equations V.J = 0 are independent.
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