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chinery flows
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Highlights

• The field inversion approach is investigated for improving RANS models

in turbomachinery flows

• Working conditions characterised by transition and separation are con-

sidered

• Some approaches to improve the robustness of the method are proposed

• The predictive ability of the method is investigated for several working

conditions on different geometries
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Abstract

Turbulence modelling in turbomachinery flows remains a challenge, especially

when transition and separation phenomena occur. Recently, several research

efforts have been devoted to the improvement of closure models for Reynolds

Averaged Navier-Stokes (RANS) equations by means of machine learning ap-

proaches which make it possible to extract the knowledge hidden inside the

available high-fidelity data (from experiments or from scale-resolving simu-

lations). In this work the use of the field inversion approach is investigated

for the augmentation of the Spalart-Allmaras RANS model applied to the

flow in low pressure gas turbine cascades. As a first step, the field inversion

method is applied to the T106c cascade at two different values of Reynolds

number (80000-250000): an adjoint-based gradient method is employed in

order to minimise the prediction error on the wall isentropic Mach number

distribution. The data obtained by the correction field are then analysed

by means of an Artificial Neural Network (ANN) which makes it possible to
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generalise the correction by finding correlations which depend on physical

variables. A study on the definition of the input variables and on the archi-

tecture of the ANN is performed. Different kind of corrections are evaluated

and a particularly robust correction factor is obtained by limiting the range

of the correction in the spirit of intermittency models. Finally, the ANN is

introduced in an augmented version of the Spalart-Allmaras model which is

tested on the T106c cascade (for values of the Reynolds number not consid-

ered during the training) and for the T2 cascade. The prediction ability of

the method is investigated by comparing the numerical predictions with the

available experimental data not only in terms of wall isentropic Mach number

distribution (which was used as goal function during the field inversion) but

also in terms of mass averaged exit angle and kinetic losses.

Keywords: Field inversion, Machine learning, Turbulence modelling,

Turbomachinery

1. Introduction1

The recent trends in the simulation of the flow field inside aerospace2

propulsion systems are characterised by a growing interest towards high-3

fidelity simulations which have become feasible thanks to a significant in-4

crease in the available computational power. This paves the way to the5

possibility of understanding complex physical effects which characterise tur-6

bulence and combustion phenomena in modern engines. The ability to under-7

stand and control these effects can be exploited to increasing the performance8

and reduce the emissions of existing propulsion systems.9

However, scale-resolving simulations (like for example Direct Numerical Sim-10
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ulations (DNS) or Large Eddy Simulations (LES)) cannot be easily integrated11

in the design process of industrial components. This is due to two main rea-12

sons: computational cost and difficulty to manage the results. It is clear13

that in the first steps of a design process several configurations must be in-14

vestigated and the use of high-fidelity simulations in this phase would have a15

prohibitive cost. For this reason, less expensive approaches like RANS equa-16

tions will be probably used for several years. As far as the management of the17

results is concerned, LES and DNS usually generate a huge amount of data18

for each simulation: in order to extract the useful information required by the19

design process it would be necessary to perform a complex post-process step.20

For example, even the computation of the average field from unsteady DNS21

data is not trivial because it is not known a-priori the extension of the time22

window required to get statistically converged results: several examples of23

low frequency phenomena which make difficult to compute the average field24

can be found in the literature, even looking to simple test cases, and special25

strategies to estimate the statistical error should be used (1). A review of26

the current state of the art for high-fidelity simulations in turbomachinery27

was proposed by Sandberg and Michelassi (2).28

29

Recently, several research efforts have been devoted to the development30

of machine learning algorithms for all those applications in which a large31

amount of data must be processed. In particular, several recent works in the32

literature have been devoted to the use of machine learning techniques to33

analyse high-fidelity data from experiments or high-fidelity numerical simu-34

lations. The idea behind most of these recent works is to get the physical35
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insight hidden in the data and use it to develop or improve low order data-36

driven models. An example of this philosophy is represented by the work37

of Xie et al. (3) who proposed a filtered reduced order model with a data-38

driven closure. Dupuis et al.(4) proposed an approach in which traditional39

surrogate models and machine learning are combined to improve the predic-40

tion of the flow on airfoils which work in subsonic or transonic conditions.41

Margheri et al.(5) performed a study on the epistemic uncertainty of some42

popular RANS models and used a generalised Polynomial Chaos response43

surface to perform the calibration of the model coefficients in the spirit of44

data assimilation strategies. In (6) the Proper Orthogonal Decomposition45

approach is used in a discontinuous Galerkin (DG) finite element framework46

(7) together with a domain decomposition strategy (8) to learn empirical47

local bases which are used to reduce the simulation cost of the flow field in48

gas turbines.49

An alternative path was followed by Raissi and Karniadakis (9) who pro-50

posed an approach to identify the partial differential equations which govern51

a set of data: they applied the algorithm to an example in which they recov-52

ered the Navier-Stokes equations used to generate the database but the same53

approach could be used on experimental data to recover turbulence models.54

While the work of Raiss and Karniadakis (9) aims at discovering the full55

governing model, several works focus on the improvement of existing models.56

For example, Wang et al. (10) developed a machine learning strategy to pre-57

dict the discrepancy in RANS modelled Reynolds stresses starting from DNS58

data. Weatheritt et al.(11) proposed the use of Gene Expression Program-59

ming to identify new expressions for the stress-strain relationship. Promising60
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results were obtained with this technique on high pressure turbines (12).61

Duraisamy et al. (13; 14) proposed a strategy based on field inversion and62

machine learning which allows to improve the prediction ability of RANS63

models. This approach is exploited in the present work in order to improve64

RANS modelling for low pressure gas turbine cascades.65

Machine learning techniques have been investigated also on multiphase flows66

(15; 16), combustion (17; 18; 19) and engine modelling (20; 21). Finally, a67

comprehensive review of the machine learning techniques proposed for the68

improvement of turbulence modelling can be found in (22).69

The paper is organised as follows. In Section 2 the original RANS model is70

presented. In Section 3 the methods used for the discretisation of the equa-71

tions are described. In Section 4 the field inversion approach is described and72

it is then applied to the T106c gas turbine cascade in Section 5. The data73

obtained by the field inversion are analysed by means of machine learning74

techniques in Section 6 in order to generalise the obtained results. Finally,75

the improved RANS model is tested on the T106c and on the T2 cascades in76

Section 7.77

2. Physical model78

This work is devoted to the prediction of the compressible turbulent flow79

in 2D turbine cascades. The study starts from the Spalart-Allmaras (SA)80

model implemented for compressible equations, following the guidelines of81

(23). This model is widely used in the literature for fully turbulent flows.82

However, the model is not suitable for the prediction of transitional flows at83

low Reynolds numbers. The original model gives the possibility to impose84
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the transition location (by means of the trip term ft1 defined in (23)) but this85

choice is rarely followed in the literature because in general the location of86

transition in not known a-priori. Furthermore, when the transition trip term87

ft1 is used a second term ft2 for delaying natural transition (and making the88

trip term ft1 effective) is also activated. Further details on the effects of the89

term ft2 in the prediction of the flow around the T106c cascade can be found90

in (24).91

In the present work the SA model is used without the trip terms ft1 and92

ft2. With this choice the model is expected to work fine for high Reynolds93

numbers but to fail in predicting transition and separation at low values of94

Reynolds number. This model tends indeed to produce an excessive amount95

of turbulent eddy viscosity on this kind of flows (24). For this reason, it96

represents an optimal baseline for testing the field inversion approach and97

evaluating how much the original model can be improved.98

The mass-averaged RANS equations are reported in the following:99

∂ρ

∂t
+∇ · (ρu) = 0 (1)

∂

∂t
(ρu) +∇ · (ρuu) = −∇p+∇ · τ (2)

∂E

∂t
+∇ · (u(E + p)) = ∇ · (τ · u− q) (3)

∂ρν̂

∂t
+∇·(ρuν̂) = ρ(P−D)+

1

σ
∇·(ρ(ν+ν̂)∇ν̂)+

cb2
σ
ρ(∇ν̂)2− 1

σ
(ν+ν̂)∇ρ·∇ν̂

(4)
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where ρ, u, p, E, ν, ν̂, x and t are density, velocity, pressure, total100

energy per unit volume, molecular viscosity, modified eddy viscosity, spatial101

position and time, respectively. A fluid with constant specific heat ratio γ102

and constant viscosity is considered. The following equation for the energy103

is considered:104

E =
P

γ − 1
+

1

2
ρu · u (5)

where γ is the specific heat ratio.105

The viscous stress tensor τ includes both the molecular and eddy viscosity106

contributions and its components are given by:107

τij = 2ρ(ν + ν̂fv1)

(
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
− 1

3

∂uk
∂xk

δij

)
(6)

The production P and destruction D terms in Eq. 4 are computed as follows:108

P = cb1S̃ν̃ D = cw1fw

(
ν̃

d

)2

(7)

with the following definitions:109

fw = g

(
1 + c6

w3

g6 + c6
w3

)1/6

g = r + cw2(r6 − r) r = min

(
ν̃

S̃2κ2d2
, rlim

)
(8)

S̃ =

S + S̄ if S̄ >= −cv2S

S +
S(c2v2S+cv3S̄)

(cv3−2cv2)S−S̄ if S̄ < −cv2S

(9)

where S is the vorticity magnitude and S̄ is:110

S̄ =
ν̃

κ2d2
fv2 (10)

The functions fv1 and fv2 depend on the viscosity ratio χ = ν̃
ν
:111

fv1 =
χ3

χ3 + c3
v1

fv2 = 1− χ

1 + χfv1

(11)
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The constants σ, cb1, cb2, cv1, cw1 are defined in (23).112

Finally, the heat flux q is described by the Fourier’s law:113

q = −
(
cpµ

Pr
+
cpρν̂fv1

Prt

)
∇T (12)

where T , cp, Pr and Prt are the temperature, the constant pressure specific114

heat capacity, the Prandtl number and the turbulent Prandtl number. The115

test cases considered in this work refer to experiments performed with air116

and so the following values are assumed: γ = 1.4, Pr = 0.72 and Prt = 0.9.117

118

3. Implicit Discontinuous Galerkin discretization119

The discontinuous Galerkin (DG) scheme is used in this work for the120

spatial discretisation on the governing equations. This approach is charac-121

terised by a significant flexibility since it allows to easily manage high-order122

reconstructions on unstructured meshes. The main idea behind this kind of123

scheme consists in adopting an high-order polynomial reconstruction inside124

each element without any continuity constraint at the interface between dif-125

ferent elements. As a result, the scheme can be easily exploited in the frame-126

work of automatic adaptive approaches, in which both the size (h-adaptivity,127

(25; 26; 27; 28)), the order (p-adaptivity (29; 30; 31)) or both properties128

(hp-adaptivity, (32; 33; 34)) can be locally adapted following some error in-129

dicators.130

131

The computational domain Ω is discretised with a hybrid mesh which132

contains a structured boundary layer mesh close to the body surrounded133
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by an unstructured mesh. The grid is generated by means of Gmsh (35)134

with the Frontal-Delaunay for Quads algorithm. The management of the135

unstructured grid in the parallel MPI environment is performed through the136

DMPlex class (36) provided by the PETSc library (37).137

The numerical approximation of the l-th conservative variable ul(x, t) inside138

each element Ωe is described by a modal basis with size Ne = (k+1)(k+2)
2

with139

a reconstruction order k:140

ul(x, t) =
Ne∑
i=1

ũli(t)φi(x) 1 ≤ i ≤ Ne (13)

where ũli(t) ∈ RNe contains the degrees of freedom inside the element for141

the l-th conservative variable. The basis functions φi(x) are obtained by the142

modified Gram-Schmidt orthonormalisation applied to a set of monomials143

defined in the physical space, following the approach of Bassi et al. (38). In144

this work a third order accurate DG scheme is used (k = 2, Ne = 6).145

The spatial discretisation is completed by a projection of the governing equa-146

tion on the space of the approximation functions. The resulting weak formu-147

lation consists in a set of ordinary differential equations in time. The con-148

vective terms which appear in the numerical fluxes at the interface between149

the elements are evaluated by means of an approximate Riemann problem150

solver (following (39) and (40)). Diffusive terms are evaluated by means of151

a recovery-based approach (41).152

Time integration is here performed by means of the linearised implicit153

Euler method. Since steady problems are considered the use of a first order154

time integrator appears suitable since it does not influence the accuracy of the155

final steady solution and it has good dissipative properties which are useful to156

accelerate the numerical transients. The solution of the linear system which157
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is obtained at each time step is performed in parallel by means of the GMRES158

algorithm with the additive Schwarz preconditioner provided by the PETSc159

library (37). The GMRES algorithm is employed by setting the maximum160

number of iterations to 200, the dimension of the Krylov subspace to 100 and161

the absolute tolerance to 10−12. The CFL number which controls the time162

step size is automatically adjusted according to the evolution of the residuals163

following the pseudo-transient continuation strategy (42). In particular, the164

CFL number is allowed to vary between 102 and 104. During the first steps165

of the transient, a feedback filtering procedure (43) is applied to remove166

potential instabilities which can appear due to the large CFL number. This167

filtering procedure is deactivated when the residuals drop under a certain168

threshold and so it does not influence the steady solution.169

4. Field inversion and machine learning in a DG framework170

The field inversion approach proposed by (14) requires to define a goal171

function G which measures the distance between the experimental data and172

the predicted numerical results. The procedure requires the solution of an173

optimisation problem in which a field β(x) is found in order to minimise174

the goal function G. The field β(x) is then introduced in a correction term175

h(β(x)) which multiplies the production term in the SA transport equation:176

∂ρν̂

∂t
+∇·(ρuν̂) = ρ [h(β)P −D]+

1

σ
∇·(ρ(ν+ν̂)∇ν̂)+

cb2
σ
ρ(∇ν̂)2− 1

σ
(ν+ν̂)∇ρ·∇ν̂

(14)

In the original works of (14; 44) the correction was chosen as h(β) = β. In177

this work, different choices are investigated for the function h(β), as described178
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in the next section.179

As far as the goal function G is concerned, the following choice is made:180

G =

∫
w

(Ms −M exp
s )2dl + λ

∫
Ω

(β − 1)2dΩ (15)

The first term is a line integral performed on the wall of the blade and allows181

to evaluate the norm-2 error on the wall isentropic Mach number distribution182

Ms, which is defined as:183

Ms =

√
2

γ − 1
[(p0

i /pw)(γ−1)/γ − 1] (16)

where pw is the static pressure at wall and p0
i is the inlet total pressure.184

The second term is a surface integral on the computational domain Ω which185

acts as a Tikhonov regularisation (45): it penalises the goal function when186

the correction factor is far from 1. This is useful to avoid unnecessary correc-187

tions which could be introduced during the optimisation process but which188

are not required in the final optimal solution. The choice of the penalisation189

constant λ will be discussed in the next Section.190

191

In order to solve the optimisation problem, a simple gradient descent192

method is applied. The field β will be described in terms of the same basis193

functions used for the conservative variables. Starting from the original SA194

model (h(β(x)) = 1) the degrees of freedom related to the field β are updated195

with the gradient descent method:196

β̃ = β̃ − δdG
dβ̃

(17)

where δ is the step size that in this work is chosen constant for simplicity197

(δ = 0.1 ).198
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Since the dimension of the optimisation problem is related to the total num-199

ber of degrees of freedom per equation the computation of the gradient dG
dβ̃

200

by means of numerical differentiation would be prohibitive. For this reason,201

an adjoint-based gradient evaluation was implemented. The gradient of the202

goal function G which respect to the degrees of freedom of the field β(x) is203

computed as:204

dG

dβ̃
=
∂G

∂β̃
+ ψT

∂R

∂β̃
(18)

where R represents the residual of the governing equations. The first term205

contains only the contributions related to the penalisation integral which206

appears in the goal function. The adjoint variable Ψ is computed by the207

solution of the following linear system with the GMRES iterative solver:208 [
∂R

∂ũ

]T
Ψ = −

[
∂G

∂ũ

]T
(19)

in which the jacobian matrix
[
∂R
∂ũ

]
is already available from the implicit time209

integrator and the term
[
∂G
∂ũ

]
contains the derivatives of the goal function210

with respect to the fluid dynamics degrees of freedom. This last term was211

computed by means of automatic differentiation with the Tapenade tool (46).212

Summarising, the procedure works as follows. First of all, a steady solution213

with the original SA model is obtained. The solution is considered steady214

when the residuals of all the governing equations are lower than 10−6. Usu-215

ally, the SA equation is the one which converges with the lowest speed so216

when the condition is satisfied the residuals of the Eqs. 1-3 are orders of217

magnitudes lower (typically around 10−8-10−10). When the steady solution218

is reached, the gradient dG
dβ̃

is computed by the adjoint approach and the219

correction field is updated. This generates a transient which is solved in220
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time up to a new steady solution. Since the perturbation introduced by the221

correction update is small, the transient can be easily solved by marching in222

time with a very large CFL number. For example, in this work the constant223

value CFL=5000 is used for this part of the computation. The procedure is224

repeated until the goal function does not show any significant improvement.225

226

The correction field h(β(x)) obtained by the inversion process can be227

exploited for different purposes. On one hand, it gives insight for the devel-228

opment of new turbulence models since it shows where and how the original229

model fails. On the other hand, it is possible to directly generalise the cor-230

rection in order to obtain a new model which can be used for predictive231

simulations. For example, Duraisamy and Durbin (47) used the results of232

field inversion to define a transport equation for an intermittency factor,233

where the different terms of the transport equation are computed by means234

of machine learning techniques. Alternatively, it is possible to find a local235

closure which allows to define the correction field as a function of local phys-236

ical quantities (14; 44). This last approach is followed in the present work.237

In particular, the results of the inverse problem will be exploited to train238

an Artificial Neural Network (ANN) which can then be used to define an239

augmented version of the SA model.240

5. Field inversion on the T106c cascade241

The field inversion approach is here applied to the flow around the T106c242

gas turbine cascade. This profile is representative of high-lift low pressure243

gas turbines in modern turbofan engines. The cascade was experimentally244
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investigated at the VKI and some experimental results are available from245

the literature (48; 49; 50). In particular, the wall isentropic Mach number246

distribution, the mass averaged kinetic losses and exit angle in the wake are247

available for several values of the Reynolds number. The flow field is studied248

for an inlet angle α = 32.7o, an isentropic exit Mach number M2s = 0.65249

and different values of the exit isentropic Reynolds number 8 · 104 ≤ Re2s ≤250

2.5 · 105. The Reynolds number Re2s is defined by using the blade chord and251

the isentropic exit velocity and density. The dynamic viscosity is assumed252

constant. The turbulence intensity during the experiments was very low253

(0.9%): for this reason all the RANS simulations are performed by setting a254

very small value of inlet eddy viscosity (ν̃/ν = 0.1).255

Houmorziadis (51) showed that the Reynolds number in low pressure gas256

turgines of turbofan engines is the range between 105 − 4 · 105 where the257

smaller values are observed in cruise conditions and the higher values are258

obtained at take-off. The high-lift profiles can show large laminar separations259

at low values of Reynolds number. When the Reynolds number is increased260

the separation transforms from an open separation to a closed separation in261

which there is a separation bubble followed by reattached flow. The evolution262

from one configuration to the other takes place in a small range of Reynolds263

number and so the flow is quite sensitive to the working condition.264

The presence of separation can be easily noticed in the experimental studies265

on these flows by checking the wall isentropic Mach number distribution: the266

separation is usually related to the presence of a plateau in the distribution.267

Singh et al.(44) showed that the wall pressure distribution (which is directly268

related to the isentropic Mach number distribution) can be effectively used269
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in the field inversion approach for improving the prediction of separated270

flows. They indeed showed that the field inversion based on the wall pressure271

distribution can significantly improve the prediction of the Reynolds stresses272

in the separation region (44). For these reasons, the field inversion algorithm273

used in this work will use the error on the wall isentropic Mach number274

distribution as goal function.275

First of all, a convergence study is performed on the T106c cascade with the276

original SA model at the highest Reynolds number (Re2s = 2.5 · 105). Three277

different meshes and two reconstruction orders (1 ≤ k ≤ 2) are evaluated.278

The convergence level is assessed by checking the mass averaged value of the279

kinetic losses in a control section located 0.465cx behind the trailing edge.280

The kinetic losses are defined in the following way:281

ζ = 1− 1− (pe/p
0
e)

(γ−1)/γ

1− (pe/p0
i )

(γ−1)/γ
(20)

where pe, p
0
e and p0

i are the static pressure in the control section, the total282

pressure in the control section and the inlet total pressure, respectively. The283

results of the convergence analysis are reported in Table 1 which shows the284

number of elements nele, the number of degrees of freedom per equation285

nDOF and the predicted averaged losses. It is useful to remember that in the286

asymptotic range mesh refinement gives a fixed convergence order (depending287

on k) while order refinement gives exponential convergence.288

We emphasise that the losses in the wake represent a better goal function for289

the convergence assessment with respect to the wall isentropic Mach number290

distribution because the original SA model over-predicts significantly the291

turbulence eddy viscosity and so it gives a wall isentropic Mach number292

distribution which is very similar to what would be obtained by an inviscid293
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Euler simulation, regardless of the mesh resolution. In contrast, the wake294

losses are influenced by the mesh resolution in the boundary layer and in the295

wake region.296

The mesh C reported in Tab.1 will be used for all the following simulations297

with a third order accurate DG scheme (k = 2). The mesh contains 40436298

elements and so the total number of degrees of freedom per equation is equal299

to 242616. The dimensionless wall cell size is y+ < 1 on the entire surface.300

nele nDOF ζ

Mesh A, k=1 11480 34440 2.39E-002

Mesh B, k=1 21195 63585 2.27E-002

Mesh C, k=1 40436 121308 2.24E-002

Mesh A, k=2 11480 68880 2.25E-002

Mesh B, k=2 21195 127170 2.24E-002

Mesh C, k=2 40436 242616 2.24E-002

Table 1: Mass averaged kinetic losses: convergence with grid size and reconstruction order

As reported in Equation 14, the field inversion approach requires to alter301

the production term by the presence of the correction factor h(β). In this302

work, different expressions for h(β) are investigated. The most straightfor-303

ward approach, which was used by Singh et al. (44) for the study of wind304

turbine airfoils, consists in setting :305

h(β) = β β ∈ R (21)

In this way the correction factor is free to assume both positive and negative306

values and so the correction term is very general. However, this generality307
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comes with a price: since h(β) is not limited it can lead to unstable numerical308

results during the transients which must be solved in predictive simulations.309

An alternative approach, experimented in this work, consists in setting310

h(β) = β2 β ∈ R (22)

In this way the correction term is not allowed to assume negative values.311

This means that the generality of the approach is reduced but the robust-312

ness of the simulation is increased because the correction term cannot change313

the nature of the production term (it can, in the limit, set the production314

to zero but it cannot transform the production term into a destruction term).315

316

A third approach, which showed the most robust results in this work,317

is reported in the following. The idea behind this approach is to mimic318

the behaviour of intermittency models in which the production term of the319

RANS model is reduced by a factor defined in the range [0, 1] in order to320

reproduce transition phenomena. Following this approach, the correction321

term is defined as a smooth ramp function of β:322

h(β) =


0 if β ≤ 0

3β2 − 2β3 if 0 < β < 1

1 if β ≥ 1

(23)

This last approach is the least general between the three alternatives exam-323

ined in this work but it is the most robust. This is due to the fact that,324

in the end, the correction factor h will be expressed by means of an ANN.325

When the SA model augmented by the ANN correction term will be used for326
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actual predictions, the ANN will be asked to compute the correction factor327

for input values which could be outside of the range explored in the train-328

ing database. This is very likely to happen during the numerical transient329

which must be solved before getting the steady solution. However, ANNs330

are known for their poor extrapolation accuracy and so the use of a more331

general expression (like for example the one defined by Equation 21) would332

allow the presence of unlimited values of the correction factor. In contrast,333

when the correction factor is limited in the range 0 ≤ h ≤ 1 the model can334

behave, in the limit, as the original SA model (when h→ 1) or as the laminar335

Navier-Stokes equations (when h→ 0).336

337

In order to understand whether the limitation introduced by Equation338

23 affects the ability of the field inversion to match the experimental data,339

the different definitions of h(β) are tested on the T106c cascade. In partic-340

ular, the gradient based optimisation process is carried out for the T106c at341

Re2s = 8 · 104 and Re2s = 2.5 · 105. The plot in Figure 1 shows the history342

of the goal function during the optimisation process. The results shows that343

after approximately 50 steps of the gradient descent algorithm a minimum344

is reached. This optimisation is carried out by starting from the original SA345

model with h = 1 in all the domain and using the unlimited correction factor346

defined by Eq. 21 with λ = 0.347

The optimal field obtained from this first step is then used as initial field for348

a second optimisation in which the correction factor is limited according to349

Eq. 23. It is useful to emphasise that, in order to apply the correction factor350

defined by Eq. 23, it is not possible to start with a uniform field with β = 1.351
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This is due to the fact that the derivative of the smooth ramp function is352

null for β = 1 and so it would not be possible to update the solution since353

the gradient of the goal function would remain to zero according to Eq. 18354

(∂R
∂β̃

= ∂R
∂g

∂g

∂β̃
, with ∂g

∂β̃
= 0 for β = 1).355

In order to compare the two approaches, the wall isentropic Mach number356

distribution is reported in Figure 2 for the original SA model and the op-357

timised solutions related to Eq. 21 and 23. The results for the correction358

factor defined by Eq.22 are not reported in the plot since they overlap the359

other results related to 21 and 23. The Figure shows also the available exper-360

imental data which are used to drive the optimisation process. The optimal361

solutions show a good match with the experimental data and a significant362

improvement with respect to the baseline model. This test confirms that363

the limited correction factor defined by Eq. 23 is able to provide an optimal364

solution which is comparable to the results provided by the unlimited correc-365

tion factor. This is due to the fact that the original SA model overestimates366

significantly the turbulence production in this kind of flows and so the use of367

a correction factor limited between 0 and 1 is sufficient to correct the model.368

In this sense, the correction factor proposed in this work acts exactly as a369

intermittency correction in the framework of laminar-to-turbulence transi-370

tion. After this analysis, the limited correction factor defined by Eq. 23 was371

chosen for all the following simulations.372

The plots in Figure 3 show the Mach field for the original SA model and373

optimal model at Re2s = 8 ·104 and Re2s = 2.5 ·105. The optimal solution at374

Re2s = 8 ·104 is characterised by a large open separation which is completely375

missed by the original SA model. The optimal solution at Re2s = 2.5 · 105
376
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shows a small separation bubble followed by reattachment. Again, this sep-377

aration is missed by the original SA model.378

Finally, the correction field at Re2s = 8 · 104 and Re2s = 2.5 · 105 for the case379

defined by Eq. 23 is reported in Figures 4 and 5 for λ = 0 and λ = 10−3, re-380

spectively. An analysis of the pictures shows clearly that the adjoint approach381

obtained an optimal solution in which the production term is deactivated in382

the boundary layer for the first portion of the suction side: the algorithm383

has recovered a laminar separation just by using the knowledge on the ex-384

perimental wall isentropic Mach number distribution. As far as the influence385

of λ is concerned, a study with λ = 0, 10−2, 10−3, 10−4 is performed. These386

values are chosen by running a preliminary simulation with λ = 0 and then387

evaluating the order of magnitude of the two integrals which appear in the388

goal function defined by Eq. 15. For all these values, the optimal wall isen-389

tropic Mach number distribution does not show significant variations. The390

weak influence of the parameter λ can be seen in Figures 4 and 5 where the391

higher value of λ tends to avoid unnecessary corrections at the end of the392

separation region.393

394

6. Machine learning on the T106c cascade395

The field inversion algorithm described in the previous section is able to396

provide a correction field which alters the original SA model in order to match397

very well the experimental results for two different working conditions. In398

this section this result will be generalised in order to express the correction399

factor as a function of some physical features. In particular, several choices400
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Figure 1: Adjoint-based optimization history for T106c at Re2s = 8 · 104 with β ∈ R
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Figure 2: Comparison between original SA model, optimized model and experimental

results in terms of Mis distribution for the T106c at Re2s = 8 ·104(a) and Re2s = 2.5 ·105

(b)
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(a)

(c)

(b)

(d)

Figure 3: Mach field for T106c with the original SA model (a,c) and with optimised model

(b,d) at Re2s = 8 · 104 (a,b) Re2s = 2.5 · 105 (c,d)
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(a) (b)

Figure 4: Correction field h(x) for T106c at Re2s = 8 · 104 (a) and Re2s = 2.5 · 105 (b)

with λ = 0

(a) (b)

Figure 5: Correction field h(x) for T106c at Re2s = 8 · 104 (a) and Re2s = 2.5 · 105 (b)

with λ = 10−3
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related to the inputs and the architecture of the ANN used to express the401

correction factor will be investigated.402

6.1. Choice of the inputs403

The choice of the input variables of the ANN is not a trivial task. In404

particular, it is necessary to avoid input variables which would introduce405

a dependency on the particular frame of reference which is used to study406

the problem (i.e. Galilean invariance must be satisfied). Furthermore, there407

should not be strong correlations between the different input variables and408

they should be chosen as adimensional quantities in order to get general re-409

sults.410

A natural choice is to identify some adimensional groups which appear in411

the source term of the original RANS model and use them as input for the412

ANN. This choice was for example carried out by Singh et al. (44).413

A similar approach is used in this work but particular attention is here de-414

voted to the robustness and the prediction ability of the model. The following415

five input variables are used: χ, log(τ/τref + ε), f ′d, log(P/(D + ε) + ε) and416

log(|∇ν̃|d/(ν + ν̃) + ε). The plots in Figure 6 show the distribution for all417

the inputs variables in the optimised solution at Re2s = 8 · 104.418

419

The first input, χ, simply represents the turbulent intensity. The quantity420

τ/τref is obtained by normalising the module of the stress tensor with respect421

to a reference stress. The reference stress is here defined as τref = ρ(ν+ν̃)2/d2
422

which makes this input a local quantity. In contrast, Singh et al. (44)423

used a non local normalisation in which the stress tensor is normalised with424

respect to the wall stress τw. However, such non-local terms are avoided425
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in this work since the presence of non-local terms reduces significantly the426

scalability of the discretisation in a parallel environment. Furthermore, the427

physical meaning of using τw for the normalisation is clear for the mesh points428

in the boundary layer but is not so clear for other regions, like for example429

the wake. Finally, a logarithmic scaling of the quantity τ/τref was observed430

to significantly improve the fitting of the database. The additive constant431

ε = 10−5 is introduced to prevent the algorithm of the logarithm to become432

null.433

The term f ′d is introduced in this work as a modification of the term fd used434

by Singh et al. (44) and originally proposed by (52) in the framework of435

Detached Eddy Simulations. The terms are defined as:436

fd = 1− tanh((8rd)
3) f ′d = 1− tanh((rd)

0.5) (24)

where the quantity rd is an adimensional group obtained by combining wall437

distance, turbulence and molecular viscosity and velocity gradient:438

rd =
ν + ν̃

d2κ2
√

∂ui
∂xj

∂ui
∂xj

(25)

where κ = 0.41 is the von Karman constant.439

The plot in Figure 6 explains why in this work the term f ′d is used instead of440

fd: both terms are limited between 0 and 1 but f ′d allows to better describes441

the flow features close to wall while fd tends to compress the information442

and does not allow to distinguish the different structures. This qualitative443

analysis was confirmed by quantitative analysis which shows that an ANN444

with f ′d was able to better fit the database with respect to an equivalent ANN445

with fd as input.446

447
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The term log(P/(D + ε) + ε) represents a convenient scaling of the ratio448

between the production P and destruction D terms of the SA model. In the449

work of Singh et al. (44) the ratio P/D is directly used while in this work a450

logarithmic scaling is used: this is due to the fact that the values assumed451

by this ratio are distributed in a wide range which covers several orders of452

magnitude and some numerical experiments confirmed that the fitting sig-453

nificantly improves with this scaling. Furthermore, both the numerator and454

the denominator of this quantity can go to zero in the presence of uniform455

fields or where the turbulence viscosity is zero and so the constant ε = 10−5 is456

introduced. Some numerical tests showed that the use of logarithmic scaling457

improves significantly the fitting of the database with the ANN.458

Finally, the adimensional gradient of the modified turbulent viscosity log(|∇ν̃|d/(ν+459

ν̃)+ε) is considered. This quantity was not used in (44) and does not appear460

in the production and destruction terms. However, it appears in the cross461

production term (the last term of Eq. 4) and allows to identify regions with462

strong variations in the eddy viscosity. It is normalised with respect to the463

wall distance and the sum of kinematic and eddy viscosity: this means that464

this quantity remains well conditioned even when the eddy viscosity tends465

to zero since the kinematic viscosity prevents the denominator to become466

zero. Even for this variable the logarithmic scaling was found to be useful to467

improve the fitting.468

469

6.2. Choice of the ANN architecture470

After choosing the input features, it is necessary to define the architec-471

ture of the ANN. In this work, feedforward ANNs are considered. As far as472
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 6: Input features for the neural network: fd (a), f ′d (b), χ (c), log(τ/τref + ε) (d),

log(P/(D + ε) + ε) (e), log(|∇ν̃|d/(ν + ν̃) + ε) (f)
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the activation functions are concerned, a common choice consists in using473

sigmoid functions for the hidden layers and linear functions for the output474

layer. However, since the chosen correction factor h is limited in the range475

[0, 1] a sigmoid activation function is adopted also for the output layer: in476

this way the output of the ANN will be automatically limited in the range477

[0, 1] .478

479

Particular care should be taken in choosing the number of hidden layers480

nHL and the number of neurons per layer nN = 10. In particular it is481

necessary to find a compromise between the complexity of the network (which482

allows to capture the correlations hidden in the database) and its ability to483

perform predictions outside of the database. When the complexity of the484

network is increased its ability to reproduce the training database is enhanced485

because it has more degrees of freedom which can be adjusted to fit the data.486

However, if too many degrees of freedom are introduced then the network487

will behave poorly during predictions: this is due to the fact that when too488

many degrees of freedom are used then the output of the network will show489

strong oscillations for the points in the parameter space which do not exactly490

match a training point.491

In order to find a suitable network by using a general criteria the following492

approach is used. First of all, different architectures are considered (1 ≤493

nHL ≤ 2 5 ≤ nN ≤ 40) and the ability of the networks to fit the database is494

investigated. Each network is trained in Matlab by means of the Levenberg-495

Marquadt algorithm with a goal function based on the mean squared error.496

The training is performed by dividing randomly the database in 3 subsets:497
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one for training (70% of the data), one for validation (15% of the data) and498

one for test (15% of the data). The training set is actually used for the499

computation of the mean square error and for driving the training process.500

The validation set is used during the training to verify that the ANN is still501

able to give good predictions for points which do not belong to the training502

set: when the validation error tends to increase the training is arrested,503

even if the training error is still decreasing, in order to limit the problem504

of overfitting. Finally, the test set is used to monitor the behaviour of the505

ANN on an external set of data which do not influence the training process506

(neither in the mean squared error computation nor in the validation checks507

for the overfitting). An example of training history is reported in Figure 7a508

in which it can be clearly seen that when the training is stopped the training509

error was still decreasing but the validation error just started to grow. In510

Figure 8 it is possible to see the regression plots for the different data sets:511

in each plot the abscissa represents the reference value in the database while512

the ordinate represents the approximated value computed by the network.513

Another approach for avoiding overfitting was also investigated: Bayesan514

regularisation (53). In Bayesan regularisation the mean square error goal515

function is augmented by a term which penalises large values of the weights.516

However, some experiments on the problems considered in this work showed517

that the splitting of the database in training, validation and test sets allows518

to achieve a better compromise between fitting and robustness with respect519

to the Bayesan regularisation.520

A sequence of regression plots (on the full database) for the ANN 2 × 5,521

2 × 10, 2 × 20 and 2 × 40 are reported in Figure 9: as the complexity of522
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Figure 7: Training history (a) and architecture (b) for 2x20 ANN

the network is increased its ability to reproduce the database is enhanced as523

can be cleary seen by the fact that the points tend to assume a distribution524

centered along the bisector of the quadrant.525

In Table 2 the regression coefficient R for different ANN architectures are526

reported.527

nN = 5 nN = 10 nN = 20 nN = 40

nHL = 1 0.799 0.831 0.865 0.897

nHL = 2 0.822 0.890 0.918 0.953

Table 2: Regression coefficient R for several architectures of the ANN

According to the previous analysis it would seem that the larger is the528

network the better is the result. This is true for the fitting of the points529

in the database. However, it is fundamental to investigate the behaviour of530

the network for points which do not coincide exactly with the points in the531

database. In order to do this it is possible to run some CFD simulations at532
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Figure 8: Training, validation and test error for 2x20 ANN

Re2s = 8·104 and Re2s = 2.5·105 with the correction term h estimated by the533

different ANNs. Apparently, this seems a useless check since the database534

used for the training is built from the optimal solution at these Reynolds535

number and so one could aspect that the ANN should reproduce perfectly536

these working conditions. However, it is important to keep in mind that537

the regression coefficient R is always less than 1: this means that, even if538

the CFD simulation is initialised with the optimal solution obtained by the539

adjoint approach, the correction field reproduced by the ANN will not co-540

incide exactly which the optimal one. As a consequence, the CFD solution541

will evolve towards a new steady solution. This introduces a perturbation in542

the input features given to the ANN: if the ANN is robust the new steady543

solution will be close to the optimal one. However, if the ANN is poorly544

31



0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Figure 9: Regression plots for different ANN architectures: 2x5 (a), 2x10 (b), 2x20 (c),

2x40 (d)
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Figure 10: Comparison of different ANN architectures in terms of wall isentropic Mach

number distribution on the T106c at Re2s = 8 · 104(a) and Re2s = 2.5 · 105(b):

conditioned because an excessive number of neurons has been chosen then545

the network will give a significantly different response.546

This behaviour was verified by checking the wall isentropic Mach number547

distribution reported in Figure 10 for the ANNs with 2 × 5, 2 × 10, 2 × 20548

and 2 × 40 neurons. It can be seen that the 2 × 5 network performs poorly549

because of its inability to reproduce the database. The networks with 2× 10550

and 2 × 20 neurons performs significantly better and gives solutions which551

are very close to the optimal ones. The largest network with 2× 40 neurons552

starts to show some problems at Re2s = 2.5 · 105 in which it is not able to553

reproduce the small separation bubble.554

According to this analysis, all the predictive simulations reported in the fol-555

lowing will be performed by using the 2× 20 ANN.556

557
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7. Predictions558

In the previous Section the procedure for choosing the architecture of559

the ANN is reported. Now, the chosen network is use to perform predictive560

simulation for working conditions and geometries which were not included561

in the database. As a first step all the simulations are performed by setting562

h(x) = 1, i.e. with the original SA model. Then the obtained steady solution563

is used to initialise a simulation in which the correction term is computed564

with the ANN. This approach speed ups the convergence since the ANN is565

not employed during the strong initial transient at the beginning of the sim-566

ulation.567

568

Furthermore, the numerical experiments showed that the robustness of569

the method during predictive simulations can be improved by limiting the570

input variables to the range used for the training. This is important because571

the ANN has been trained only on a few steady solutions and so during572

the transients which can appear in predictive simulations the input features573

could assume values which were not observed in the training database. In574

particular, if h(Y ) represents the ANN approximation of the correction fac-575

tor and Y is the vector of the five input variables, the modified expression576

h(L(Y ))is used during predictive simulations, where the limiting function L577

is defined as:578

L(Yi) =


Yi if Y min

i ≤ Yi ≤ Y max
i

Y max
i if Yi > Y max

i

Y min
i if Yi < Y min

i

(26)

Here Y min
i and Y max

i represent the minimum and maximum values of the i-th579
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input feature observed in the training database.580

7.1. T106c cascade at different Reynolds number581

As a first test, the ANN aumented SA model is used to predict the flow582

field on the T106c at Re2s = 1.2 · 105, 1.6 · 105 and 2.1 · 105. In this range583

of Reynolds number a strong variation is observed in the solution due to the584

transition from open to closed separation. The results related to the wall585

isentropic Mach number distribution are reported in Figure 11 in which they586

are compared with the available experimental results and the original SA587

model. The ANN augmented SA model performs significantly better than588

the original model and the predictions are quite close to the experiment. Only589

the solution obtained at Re2s = 1.2 · 105 seems to overpredict the separation.590

The results reported in Figure 11 refer to the Mis distribution used in the591

goal function which drove the field inversion and so it is natural to expect592

an improvement with respect to the original model. However, the prediction593

ability of the model was also investigated in terms of mass averaged kinetic594

losses ζ and exit angle β2 in the wake, quantities which were not included in595

the goal function used for the optimisation.596

The average is performed in a control section located 0.465cx behind the597

trailing edge, where cx is the axial chord, in the same location used for the598

experimental measurements. The results of these tests are reported in Figure599

12. As far as the losses are concerned, both the original SA model and the600

ANN augmented SA model perform well for high Reynolds values. However,601

for low Reynolds numbers the original SA model misses completely the sepa-602

ration and so it underpredicts significantly the losses. The ANN augmented603

SA model shows the correct trend and is quite close to the experimental re-604
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Figure 11: Wall isentropic Mach number distribution: predictions at Re2s = 1.2 · 105 (a),

Re2s = 1.6 · 105 (b) and Re2s = 2.1 · 105 (c)
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sults at Re2s = 8 · 104 (for which the optimisation was performed). The plot605

shows also the results obtained by Benyahia et al. (54) with the SST-γ-Reθ606

model based on the correlations proposed by (55), by Pacciani et al.(56) with607

the k − ω model coupled with a transport equation for the laminar kinetic608

energy and by Babajee (50) with the SST-γ-Reθ model (57; 58). The bound-609

ary condition for the turbulent kinetic energy equation which appears in the610

SST model is clearly defined by the experimental inlet turbulence intensity611

(0.9%). However, the SST model requires also an inlet boundary condition612

for the ω equation which is usually prescribed by defining an inlet turbulence613

Reynolds number (ReT ). Babajee performed a study on the choice of the in-614

let value for ReT : in particular he found the optimal value of ReT which fits615

the experimental turbulence decay in the wind tunnel without the cascade.616

However, when this value is imposed at the inlet, the SST-γ-Reθ model is617

not able to predict accurately the separation. For this reason he performed618

a parametric study changing ReT in order to match at best the experimen-619

tal results on the T106c. For this reason, the plot shows two set of results620

related to the SST-γ-Reθ model: the results with the boundary condition621

which is coherent with the physical decay of turbulence in the wind tunnel622

(ReT = TD) and the results with an alternative value which gives better623

predictions (ReT = 0.01).624

As far as the average exit angle is concerned, the ANN augmented SA model625

shows a better behaviour than the original SA model at low Reynolds num-626

bers while the two models give similar results at higher Reynolds numbers.627

It is interesting to note that the asymptotic value of the exit angle for high628

values of Reynolds number presents an offset between experimental and nu-629
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Figure 12: Average losses and exit angle for T106c cascade: comparison between original

SA model, SA-ANN model and experimental results

merical results. However, this offset was observed also by other results in the630

literature as shown by the SST-γ-Reθ results from (50).631

632

7.2. T2 cascade633

The prediction ability of the ANN augmented SA model is investigated634

also on another geometry, the T2 cascade. The simulations are carried out635

with a third order accurate DG scheme on a mesh with 59453 elements, cor-636

responding to 356718 degrees of freedom per equation. The mesh resolution637

at wall and in the wake region is the same used for the T106c, since both638

cascades are investigated at similar values of Reynolds number. The T2639

airfoil was designed at the VKI for the same velocity triangles of the T106640

(inlet angle α = 32.7o) but it is characterised by a larger pitch-to-chord ratio641

(1.05) and an increased diffusion rate along the rear suction side (50). Also642

the Zweifel number is larger (Ψ = 1.46) with respect to the T106 (Ψ = 1.24).643

The isentropic exit Mach number is set to M2s = 0.65.644
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In Figure 13 and 14 the Mach number field at Re2s = 1.2 · 105 and 2.1 · 105 is645

reported for the original SA model and for the ANN augmented SA model.646

The plots show clearly the presence of a open separation at Re2s = 1.2 · 105
647

and a closed separation at Re2s = 2.1 · 105.648

Finally, in Figure 15 the predicted wall isentropic Mach number distribution649

is reported as a function of the curvilinear coordinate s along the blade sur-650

face, normalised with respect to the curvilinear length of the blade (s0). The651

ANN augmented SA model shows significant improvements with respect to652

the baseline SA model and gives good results also with respect to the SST-653

γ-Reθ results from (50).654

Finally, the models are evaluated in terms of mass averaged exit kinetic losses655

and angle, as reported in Figure 16. As observed for the T106c, even in this656

case the ANN augmented SA model outperforms the original SA model at657

low Reynolds numbers. It is interesting to note that the numerical results658

obtained in the present work presents an offset in β2 with respect to the ex-659

perimental results, offset which is not observed in the results obtained from660

the SST-γ-Reθ model. This could be a limitation of the SA model which661

is inherited by the augmented model: future work will be devoted to apply662

the field inversion approach to other RANS models to verify whether this663

limitation persists.664

8. Conclusions665

The potential of the field inversion approach was investigated for the aug-666

mentation of a RANS model used in the simulation of turbomachinery flows.667

In particular the approach was applied to the original SA model and the668
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(a) (b)

Figure 13: Mach field for the T2 cascade at Re2s = 1.2 · 105 with the original SA model

(a) and with the ANN-SA model (b)

(a) (b)

Figure 14: Mach field for the T2 cascade at Re2s = 2.1 · 105 with the original SA model

(a) and with the ANN-SA model (b)
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Figure 15: Mis distribution for T2 cascade at Re2s = 1.2 · 105(a) and Re2s = 2.1 · 105(b):

comparison between original SA model, SA-ANN model and experimental results
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Figure 16: Average losses and exit angle for T2 cascade: comparison between original SA

model, SA-ANN model and experimental results
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attention is focused on transitional flows with separation in low pressure gas669

turbines. Since the original model is not suited for this kind of flows, the670

field inversion approach is used to develop a local correction of the produc-671

tion term which acts like an intermittency correction for transitional flows.672

The correction factor is then expressed by means of an ANN as a function673

of some physical quantities in order to generalise the model. An investiga-674

tion has been carried out on the definition of the input features which are675

improved with respect to the original definitions suggested in the literature.676

A convergence study is carried out to choose the architecture of the ANN in677

order to underline the problem of overfitting. The ability of the ANN aug-678

mented SA model to compute low Reynolds number flow fields in low pressure679

gas turbine cascades is investigated by performing actual predictions at dif-680

ferent Reynolds numbers and on a different geometry with respect to the one681

used for the field inversion. Furthermore, a new expression of the correction682

term is proposed in order to limit its value in a finite range: this, together683

with the introduction of a limiting on input features, significantly improves684

the robustness of the approach during transients and in predictions.685

The results seem promising and are substantially better than the results pro-686

vided by the original model. They also appears satisfactory if compared to687

the results obtained by a significantly more complex four equation model688

(SST-γ-Reθ). In particular, even if the goal function used for the field inver-689

sion is based only on the wall isentropic Mach number, the ANN augmented690

model shows improvements also in terms of average losses and exit angle in691

the wake.692

Future work will be devoted to the application of the field inversion approach693
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to other RANS models. Furthermore, possible alternatives to the use of an694

ANN will be investigated for achieving a better fitting of the database with695

a good level of robustness in predictions.696
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