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Abstract 
Network Function Virtualization is one of the most relevant enabling technologies for 5G: 
conceiving a vertical service as a set of virtual functions (a.k.a. VNFs) makes it possible to 
implement a service at the network edge in a fast and flexible manner, using computing, 
networking, and storage resources available therein. However, while deploying the VNFs 
composing a service, it is critical (i) to meet the key performance indices required by the 
vertical, and (ii) to use the available resources in the most efficient manner so as to both cope 
with possible resource shortage and minimize the overall deployment cost.  
To successfully address the above issues, several works have tackled the problem of VNF 
placement at the network edge and, more recently, the problem of VNF sharing, i.e., of reusing 
the same VNF for multiple concurrent services.   
In this chapter, we first introduce VNF placement in 5G cellular networks and review existing 
solutions to this aspect. Then we focus on the problem of how to efficiently reuse VNFs and 
how to adapt the resources assigned to the virtual machines where such VNFs run, so that 
that the vertical KPIs are still satisfied. Importantly, it has been shown that carefully prioritizing 
the traffic of the services sharing a set of VNFs can lead to a significant cost reduction while 
still meeting the services KPIs. Such priorities can be set through an efficient algorithm, which 
provides a solution within a constant factor from the optimum, in polynomial time. 
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Main text 
 
[A] Introduction 
 
Network function virtualization (NFV) has revolutionized the concept of service, conceiving it 
as a set of software, namely, virtual, interconnected functions, referred to as VNFs: the service 
data traffic then flows through the sequence of VNFs composing the service, and is processed 
by each them. In parallel, new generation cellular networks have become capable not only to 
efficiently transfer traffic but also to process and store data, thus they can effectively 
implement a large variety of services that may be requested by the so-called verticals, i.e., 
content providers, automotive, or e-health industries. Deploying services within the cellular 
network instead of the cloud can indeed bring significant advantages, among which, lower 



service latencies, local data processing (hence, lower bandwidth consumption due to data 
transfer through the network infrastructure), and lower energy consumption.  
Network providers and vertical industries have therefore built a new relation, regulated by 
Service Level Agreements (SLA), which define the level of quality of service that a network 
provider has to ensure in order to match the fee paid by a vertical. As a consequence, upon 
receiving a service request, a network provider has to put into place service deployment 
strategies that allow the fulfillment of the target key performance indicators (KPIs), e.g., 
throughput, delay, or reliability, while minimizing the cost, i.e., the amount of resources 
necessary to run the service. Below, we describe in more detail these two important issues 
and briefly discuss some relevant works that have dealt with them. 
Target KPI. To effectively address the target KPIs, network providers can resort to network 
slices (NGMN Alliance 2016), i.e., reserve a suitable amount of computing, network, and 
memory resources for a service, or a set of services with no isolation requirements and similar 
target KPIs. As an example, such safety services as forward collision warning or intersection 
collision avoidance (Malinverno et al. 2019) by the same automotive industry, can be 
implemented using virtual machines (VMs) in servers, along with network links for data 
transfer, that are sufficiently capable to match millisecond-order latencies. Creating a network 
slice thus implies that the network provider needs to identify the VMs where to place the VNFs 
composing the service, how much CPU and memory to assign to each of such VMs, and which 
links to use to transfer data traffic from one VNF to the next one, if they are located at different 
servers. This problem, often referred to as VNF placement, is typically formulated as a 
Generalized Assignment Problem (GAP) (Cohen et al. 2015), which minimizes the 
cost assignment of VNFs to VMs such subject to capacity and KPIs constraints. Optimization 
is indeed an especially popular approach, aiming at minimizing load imbalance (Hirwe and 
Kataoka 2016), network utilization (Kuo et al. 2016), or energy consumption (Pham et al. 
2017). Other works have built more complex cost functions, accounting for several network-
related aspects (Mechtri, Ghribi, and Zeghlache 2016), (Gu et al. 2016) and/or energy 
consumption (Marotta and Kassler 2016), (Khoury, Ayoubi, and Assi 2016). 
Optimization approaches usually result in a mixed-integer linear programming (MILP) 
formulation; since MILP problems are impractical to solve in real-world scenarios, the 
aforementioned works have envisioned finding near-optimal solutions through heuristic 
approaches. An alternative approach is represented by works tying VNF placement to more 
general problems, e.g., shortest path with limited resources (Martini et al. 2015), and set 
covering (Tomassilli et al. 2018). These works prove competitive ratio properties for the 
algorithms they propose, and such algorithms are also valid for problems other than VNF 
placement. The recent work (Bega et al. 2019) aims at simplifying the problem of VNF 
placement by foreseeing the evolution of the load to be served; specifically, the authors 
observe that the needed capacity is easier to foresee than the actual traffic demand, and 
employ deep neural networks to that end. 
 
Cost minimization. To minimize deployment costs, instead, one may exploit the fact that 
several services may have one or more VNFs in common, i.e., services may be composed of 
a same VNF sub-graph, corresponding to a child service (Rost et al. 2017). This implies that 
several services, as well as several slices, may contain common sub-slices (5G PPP 
Architecture Working Group 2017), (IETF 2017), and that such sub-slices can be shared 
instead of being replicated for each single service. For instance, the aforementioned safety 
services may share the same LTE eNB or 5G gNB when their service coverage overlap; 
similarly, they can share the same database where the vehicles’ information, like position, 
speed, or heading, can be stored before data are processed (Rost et al. 2017). Importantly, 
VNF sharing is a multi-faced problem, which requires that the network operator not only 
identifies which VNFs (sub-slices) can be shared and among which services, but also how the 
amount of CPU and memory assigned to the VMs implementing them should be set so as to 
still fulfil the target KPIs of all involved services. VNF sharing is a new aspect that has been 
scarcely addressed so far. In 2017, the brief contribution in (Yi, Wang, and Huang 2017) 



proposed a scheduling scheme for VNF-based networks where the same VNF instance may 
be used for multiple services. In the same year, (Soualah et al. 2017) mentioned VNF sharing 
as one of several viable strategies to improve the energy efficiency of networks. More recently, 
(Malandrino et al. 2019) has identified VNF sharing as a distinct problem from VNF placement, 
arising within datacenters (points of presence, PoPs) and thus calling for different decisions 
on (i) whether a given VNF instance should be shared, (ii) how much capacity it shall be 
assigned, and (iii) the priority to give to different services sharing the same VNF instance. 
In this chapter, we first summarize in Section B some important issues related to VNF 
placement and sharing. Then Section C presents the 5G-PPP 5G reference architecture, 
highlighting the role of the orchestrator, as well as possible multi-access edge computing 
(MEC)-based architectures, where, due to resource scarcity, effective service deployment is 
utmost important.  Section C also introduces the main quantities that need to be taken into 
account, the decision to be made in terms of resource scaling and service/traffic priority 
setting, and the objective one seeks to optimize. Section D describes the state-of-the-art 
solution strategy FlexShare (Malandrino et al. 2019), which, as mentioned, can make effective 
decisions in polynomial time, thus permitting a swift and efficient network and system 
management. Section F discusses some numerical results, obtained through FlexShare, 
considering real-world services and realistic network scenarios. Finally, we draw our 
conclusions and highlight possible directions for future work in Section G. 
 

[B] Related issues 
 
It is worth mentioning that both VNF placement and VNF sharing are related to the network 
(NGMN Alliance 2016) concept and are actually part of a network slice creation process. 
Indeed, network (NGMN Alliance 2016) is a network paradigm whereby the same physical 
infrastructure – including networking and computing equipment – is concurrently used by 
multiple services, each of which is guaranteed isolation from the others. Earlier works like 
(Zhang et al. 2017) and (Rost et al. 2017) focus on architectural aspects, including the entities 
in charge of making decisions on infrastructure usage. 

Specifically, (Zhang et al. 2017) identifies mobility management as one of the main challenges 
arising in (NGMN Alliance 2016)-based 5G networks, due to their multi-RAT (radio-access 
technology) nature. Indeed, 5G networks embed several different radio access technologies, 
from Wi-Fi to mmWave, with significantly different characteristics, e.g., availability and 
reliability. This poses two challenges when users move from a network to another: first, 
ensuring that the new network is consistent with the user’s quality-of-service (QoS) needs; 
second, ensuring that the end-to-end, service performance experienced by the user is not 
jeopardized under the new network. The latter becomes especially complex when slices have 
not only data transfer capabilities but also processing ones, e.g., VNFs deployed on edge 
servers: the edge servers may be too far away from the new RAT the user is connected to, 
and a VNF migration may be triggered. The result is that handover procedures in 5G are much 
more complex than their counterparts in 4G/LTE, and require deeper coordination among the 
involved actors. 

Focusing on the same multi-RAT scenario, (Rost et al. 2017) focuses on scheduling issues 
arising from the integration of different network technologies. Among the challenges to tackle, 
the authors identify the need to decide at which level RATs shall be shared, e.g., whether 
MAC-level decisions for different RATs shall be made jointly by centralized entities or locally 
at the individual RATs. Furthermore, the authors raise the issue of network (NGMN Alliance 
2016) request brokerage: since spectrum is a finite resource and overprovisioning is 
impossible, an admittance strategy for new slice requests must be defined. Upon denying a 
slice request, the authors envision that the network may reply with a counter-offer, suggesting 
to offer a different RAT that is more plentiful and offer comparable performance. 



Other works, including (Samdanis et al. 2017) and (Vassilaras et al. 2017), tackle instead the 
problem of how those decisions should be made, including algorithmic and complexity 
challenges. Indeed, (Samdanis et al. 2017) identifies software-defined networking (SDN) and 
network function virtualization (NFV) as two of the main enabling technologies network (NGMN 
Alliance 2016), which itself one of the main innovations of 5G networks. The authors also point 
out the potential challenges due to the increased complexity of the network control plane, and 
identify two main ways to tackle such a complexity: on the one hand, using network slice 
templates to reduce the number of decisions to make; on the other, crafting efficient and 
effective decision-making algorithms. Relatedly, (Vassilaras et al. 2017) identifies two main 
decisions to be made concerning network (NGMN Alliance 2016), namely (i) which resources 
should be used to build the slice, and (ii) how to connect them. The authors map both decisions 
to solving a virtual network embedding (VNE) problem, whereby the physical infrastructure at 
the operator’s disposal is mapped to the virtualized slice to build. Such a problem is NP-hard, 
as proven via a reduction from the multi-way separator problem; indeed, even deciding the 
connection between resources is NP-hard, as proved via a reduction from the unsplittable 
multicommodity flow problem. 

The process of creating, updating, and deleting network slices is known as orchestration. The 
work (Li et al. 2018), supported by the European project 5G-TRANSFORMER, identifies 
service orchestration as one of the main tasks 5G networks have to perform. Orchestration 
decisions need to account for a variety of different factors, including service requirements, the 
available infrastructure, and inter-operator agreements concerning resource sharing (multi-
domain federation). To make all these decisions, the authors envision a three-layer 
architecture, whereby a vertical slicer (VS) translates business-related service goals into 
technical slice requirements, a service orchestrator (SO) selects the resources to use, possibly 
from different domains, and a mobile transport platform (MTP) manages the virtual and 
physical hardware. The entity in charge of most orchestration decisions is the SO, implements 
and extend the functionality standardized by ETSI in standard NFV-MAN 001 (“Management 
and Orchestration”). 

The authors of (Santos et al. 2017) consider multi-domain federation scenarios, and address 
the unique security challenges therein. A first one concern information: on the one hand, 
operators need to exchange information in order to make effective orchestration decisions; on 
the other, they do not want to disclose critical information on the (mis)configuration of their 
own infrastructure, and the global resources at their disposal. A second one is represented by 
isolation: while all services should be transparent to each other, some may require stronger 
isolation, e.g., by avoiding to share VNF instances with other services. Such stronger isolation 
increases security – in the example, a malformed or malicious input at one service cannot 
compromise the other –, but increase the resource consumption and therefore the cost. 

As discussed earlier, services can be decomposed into virtual network functions (VNFs), 
which can then be placed at different locations throughout the infrastructure. In many relevant 
scenarios, services can be described as sequences or chains of VNFs that incoming flows 
have to traverse; in this case, the problem of placing VNFs across the available hosts takes 
the name of VNF chaining. Works talking VNF chaining usually aim at optimizing a cost 
function, subject to constraints concerning the available resources and the target delays 
(Pham et al. 2017). (Liu et al. 2017) follows a similar approach but also accounts for the 
coexistence between already-deployed and newly-requested services, which may share some 
of their VNFs; the resulting optimization problem is solved via a column generation-based 
approximation. Other works aim at bringing into the picture additional real-world limitations, 
including memory access issues in multi-core servers, e.g., (Zheng et al. 2019). The authors 
formulate the problem as a non-linear, integer optimization problem; then, in view of its 
complexity, follow a heuristic approach whereby a performance drop index is defined, 
measured, and used to efficiently make near-optimal decisions. 



More recent works have accounted for additional metrics beyond sheer performance, the most 
relevant of which is reliability. As an example, (J. Zhang et al. 2019) pursues the goal of 
resilience to server failures, and tackles the problems of (i) how many additional VNF 
instances shall be created, (ii) where they shall be placed, and (iii) how many resources they 
should be assigned to. The resulting problem is NP-hard and is solved through a greedy, 
iterative algorithm. (Chemodanov, Calyam, and Esposito 2019) considers instead the physical 
location of servers (especially those at the network edge), and makes VNF placement 
decisions able to guarantee the geographical availability of services. Making such decisions 
requires to solve a multi- commodity-chain flow (MCCF) problem, which is tackled through a 
metapath composite variable approach, reaching near-optimal performance in the average 
case. 

Several recent works tie network (NGMN Alliance 2016) and resource allocation with other 
problems, hitherto considered separate or orthogonal to it. As an example, (Mandelli et al. 
2019) MAC-level scheduling, with the objective of ensuring that network slices are able to 
deliver the data they process to the users needing them. In a similar spirit, (Q. Zhang, Liu, and 
Zeng 2019) jointly addresses the problems of choosing (i) the best location within the network 
to process the data at, and (ii) the best radio technology to deliver the results to the users, in 
order to reduce interference and increase the throughput. 

(Jošilo and Dán 2019) addresses a hybrid scenario, where individual devices can choose 
between performing their computation tasks themselves or leveraging the resources available 
at the network edge. The authors model the resulting interaction between devices and network 
operators a Stackelberg game, and propose several decentralized algorithms converging to 
the equilibrium. (Liu and Han 2019) addresses cross-domain (also known as federation) 
scenarios, whereby different mobile operators decide to pool their resources in order to 
provide their services with a lower cost. In this context, the authors propose a distributed 
decision-making algorithm based (i) decomposing the original problem into subproblems via 
the alternating direction method of multipliers (ADMM) method, and (ii) solving the individual 
subproblems via learning-assisted optimization (LAO). 

[C] System model and decisions to make 
 
Several NFV-architecture for 5G networks have been proposed; examples include the one 
envisioned by the EU 5GPPP (and further interpreted by the EU 5G-PPP 5G-TRANSFORMER 
project), those proposed by the NGMN alliance and the IETF, and those considered in the 
works addressing VNF placement such as (Cao et al. 2016), (Cohen et al. 2015), (Agarwal et 
al. 2018), (Einziger, Goldstein, and Sa’ar 2019). These architectures foresee that all decisions 
on VNF placement and resource allocation are made by a centralized entity, namely the NFV 
Orchestrator (NFVO) (see the ETSI Management and Orchestration (MANO) framework 
(ETSI 2014), (IETF 2017). Thus, it is the NFVO that makes fine-grained decisions on the 
allocation and usage of individual hosts and links. 
With reference to VNF placement in real-world implementations, it is important to underline 
that ETSI (ETSI 2016) specifies four hierarchical levels, namely, 

• individual host; 
• zone, defined a s a set of hosts with similar features; 
• zone group, defined as a set of zones; 
• point of presence (PoP), e.g., a datacenter. 

Real-world 5G networks, also demonstrated through testbeds (Antevski et al. 2018), (Sayadi 
et al. 2016), (De la Oliva et al. 2018), consider that the NFVO makes VNF placement decisions 
at the PoP level, while different entities are in charge of placement and sharing decisions 
within each PoP (such entities are referred to using different names depending on the 
standardization body or association, e.g., ETF (IETF 2017), NGMN alliance (NGMN Alliance 
2017), or 5G-PPP (5G PPP Architecture Working Group 2017).  



In the following, we focus on the architecture foreseen by ETSI and reported in the 5GPPP 
document entitled “View on 5G Architecture” (2019). With reference to such proposal, the 
pictorial representation of the architecture in Fig.1 underlines the relationship of Software 
Defined Networking (SDN) and MANO controllers and their relation with the network, storage, 
and computing resources, abstracted through the Virtual Infrastructure Manager (VIM). The 
VIM summarizes the details of such deployed units as containers and virtual machines (VMs). 
Importantly, the VIM also abstracts the edge computing or multi-access edge computing 
(MEC) resources. The SDN controller’s task is to correctly configure the network, while the 
MANO’s task is to control storage and computing resources, both acting on behalf of the 
NFVO.  Slice management can be part of the NFVO’s tasks, or another entity can be included 
with this specific purpose. Finally, the service management block should interact with tenants, 
and the same or similar entities with vertical industries requiring a service to be deployed.   
In this scenario, it is worth emphasizing how MEC resources can be managed and allocated. 
We again refer to the ETSI specifications (ETSI 2018). Possible scenarios all foresee one or 
more edge PoPs, each hosting a server and leveraging radio access functionalities. Such 
servers can be directly connected to points of access of the Radio Access Network (RAN), or 
to entities such as the Evolved Packet Core (EPC) in LTE, i.e., dealing with IP packets. 
Importantly, the ETSI NFV MANO considers applications at the mobile edge as regular VNFs. 
It follows that the MEC computing, storage, and network resources have to be orchestrated 
as well as the deployment of VNFs composing services that require to be in the MEC must be 
carefully instantiated so as to meet the service KPIs (e.g., ultra-low latency) and maximize the 
resource efficiency utilization. The latter is indeed particularly critical at the MEC, due to the 
limited available resources therein.  
 
Turning our attention back to the problem of VNF placement and sharing, given the above 
architecture and upon receiving a new service request, the NFVO should make decisions 
about: 

• whether any of the VNFs composing the newly requested service shall be provided 
through existing instances of such VNFs; 

• if existing instances can be re-used, how to set the priorities for the traffic flows 
belonging to the services sharing the same VNF instance; 

• else, which VM to exploit to deploy the VNF instance; 
• how to scale up or scale down the computing resources assigned to the VMs within 

the PoP. 
Below, we will focus on a single PoP and consider that the VNFs composing a service should 
be instantiated or be co-located within the PoP. This implies that network latencies due to 
traffic flows transiting from one VNF to another can be neglected, thanks to the high-speed 
switching that is possible between VMs within the same datacenter (Xia et al. 2017)). As a 
consequence, the only contribution that is relevant to the latency KPI is the data processing 
time within the VNFs composing the service. 
 
[C.1] Relevant quantities for VNF placement and sharing 
 
Without loss of generality, we consider that VNFs instances are deployed within VMs and that 
each VM can host exactly one VNF instance; also, VNF are assumed not to require isolation. 
As considered in many recent works (Cohen et al. 2015), (Agarwal et al. 2018), (Bhamare et 
al. 2017), each VNF instance running within a VM is represented as an M/M/1 queue with 
FIFO queueing and preemption. For simplicity, we focus on adapting computing capabilities 
of VMs and neglect instead memory and storage. In order to reflect real-world conditions, we 
account for the fact that the computing resources assigned to a VNF instance can be varied 
(i.e., scaled up/down). For instance, a VNF requiring 1 computational unit and running on a 
VM with capability equal to 1 unit, it takes 1 time unit to process the traffic associated to the 
service that includes that VNF. Using instead that VM for a VNF requiring 2 computational 
units leads to a processing time of 2 time units. Importantly, the requirement values do not 



depend on the service that includes that VNF, but only on the VNF itself. Crucially, varying the 
amount of computing resources per VM influences the processing time at flows at the VNF 
hosted by that VM. As in real-world implementation, the amount of computational resources 
used by a VM cannot exceed a given maximum value. 
 
As mentioned, services may be composed of a number of VNF; in the following we consider 
as target KPI the maximum average delay of a service, although the model and discussion 
can be extended to other KPIs as well.  
 
 
[C.2] Objective and constraints 
 
Deployment cost is one of the main concerns for the mobile network providers as well as for 
the vertical industries. Such a cost typically consists of two components: the cost for a VM 
instantiation, which is a fixed contribution, and a variable cost, which depends on the 
computing resources consumed by the VM hosting a given VNF instance (a proportional 
dependency is commonly assumed).  
The main constraints instead to account for when making placement and scaling decisions 
are: 

• at most one instance of at most one VNF can run at each VM; 
• VMs cannot be scaled beyond their maximum capability; 
• all traffic of all services must be served; 
• per-service processing time targets must be honored. 

The last constraint is especially important to honor and complex to formulate: indeed, the 
service time experienced by flows of a given service at a VNF depend upon (i) the 
computational capability available to the VNF; (ii) the arrival rate of flows (of any service) to 
the VNF; (iii) the priority of the service, relative to other services sharing the same VNF. 
Due to the many factors to account for, as well as the sheer number of available options, 
making optimal decisions about VM scaling and VNF placement is exceedingly complex, and 
impractical in most real-world scenarios. To this end, in Sec. C below we present a simpler, 
efficient and effective solution strategy called FlexShare, able to perform near-optimal 
decisions in a short – namely, polynomial – time. 
 
[D] The FlexShare algorithm 
 
The problem formulated above is too complex to be directly solved with off-the-shelf solvers 
like CPLEX or Gurobi. Therefore, (Malandrino et al. 2019) proposes an efficient and effective 
solution methodology named FlexShare, whose high-level approach is summarized in Fig. 2. 
FlexShare considers service requests one by one, and previously-made priority decisions – 
though not placement ones – can be adjusted as new services are deployed. 
The first step of FlexShare is described in Sec. C.1, and deals with placement decisions, i.e., 
which VNF deploy at which VM. To this end, FlexShare builds a bipartite graph, whose nodes 
correspond to VNFs to deploy and VMs the latter can be deployed to. Edges of the bipartite 
graph connect (VNF, VM) pairs such that the newly-requested service can use the VNF 
instance deployed at the VM. The weights of edges correspond to the cost of providing the 
VNF with that VM, including the proportional component (which is influenced by the service 
traffic) and the fixed component (which is not incurred if the VM is already active, that is, if the 
VNF instance can be shared). 
Given the bipartite graph, step 2 leverages the Hungarian algorithm, (Kuhn 1955) to obtain 
the minimum-weight (hence, cheapest) assignment to VNFs to VM. Such an assignment is 
solely based on the weights on the bipartite graph and, critically, is not guaranteed to be 
feasible. 
In step 3, the decisions made in step 2 are used as constraints of a convex (hence, simple to 
solve efficiently) optimization problem, detailed in Sec. D.2. The purpose of the problem is to 



(i) setting the priorities of each service within every VNF, (ii) set the capabilities of each VM, 
and, crucially, (iii) verify if the placement decisions made in step 2 are feasible. If the 
optimization succeeds, then FlexShare terminates successfully. 
If step 3 fails, i.e., the problem solved therein is infeasible, then FlexShare moves to step 4 
and tries to prune the bipartite graph. Indeed, an infeasible problem in step 3 can be due to 
too much sharing in step 2, i.e., too many VNF-to-VM edges in step 1. To correct this, 
FlexShare removes one of the edges from the bipartite graph, and restarts from step 2. This 
implies that placement decisions will foresee less VNF sharing and thus have a higher cost, 
but also a higher likelihood to result in a feasible problem in step 3. 
 
[D.1] Placement decisions 
 
On the left-hand side of the bipartite graph created in step 1 of FlexShare, we find the VNFs 
to place; on the right-hand one, the VMs they can be placed at. Edges are drawn between 
(VM, VNF) pairs such that the VNF can be provided by the VM. This happens in two cases: 

• the VM is currently unused, therefore, a new instance of the VNF can be deployed 
therein; 

• the VM already hosts an instance of the VNF, and such an instance can be shared 
between already-deployed services and the newly-requested one. 

The weight of the edge represents the cost of providing the VNF through a given VM; if the 
VM is currently inactive, the edge weight also includes the fixed activation cost. 
Importantly, edges are not drawn if the VM cannot be scaled up to a capacity sufficient to 
serve the newly-requested service while keeping stability. This, however, does not imply that 
service time requirements are met; indeed, such a condition is checked in step 3 as discussed 
in Sec. D.2. 
Once the bipartite graph is ready, the Hungarian algorithm (Kuhn 1955) is employed to find a 
minimum-cost matching between VNFs and VMs. Specifically, the Hungarian algorithms 
selects a set of edges such that (i) each VNF is connected (hence, is deployed) in exactly one 
VM, and (ii) the total weight of the selected edges is as low as possible. Importantly, the 
Hungarian algorithm has polynomial (namely, cubic) complexity in the size of the graph. The 
edges selected by the Hungarian algorithm correspond to placement decisions, including: 

• activation of currently-inactive VMs, if need be; 
• sharing of already-deployed VNF instances, if warranted. 

These decisions are fed to the optimization problem in step 3, as described in Sec. D.2 next. 
 
[D.2] Priority, scaling, and pruning 
 
Step 3 of FlexShare takes as an input the deployment decisions made by the Hungarian 
algorithm in step 2, and then solves a convex optimization problem where: 

• the objective is to minimize the total cost; 
• the constraints concern VM capability and per-service, end-to-end target delays; 
• the decision variables are the capability to assign to each VM and the priorities to give 

to each service sharing every VM. 
Importantly, all decision variables are real, hence, the problem can be solved in polynomial 
(cubic) time through commercial solvers (Boyd and Vandenberghe 2004); indeed, embedded 
convex optimization is routinely used in real-time applications. If the optimization succeeds, 
i.e., if the problem is feasible, then FlexShare terminates and the placement decisions made 
in step 2, along with the scaling and priority decisions made in step 3, can be applied. 
If the optimization fails, then FlexShare proceeds to step 4, i.e., pruning the bipartite graph. 
The intuition behind the pruning procedure is that one cause for infeasibility is too aggressive 
sharing of VNF instances. To fix that, one edge of the bipartite graph is removed; to select 
such an edge, FlexShare resorts to the irreducible infeasible set (IIS) (Chinneck 2007). The 
IIS contains all constraints that, if removed, would render the problem feasible; intuitively, it 



provides an explanation as to why the optimization failed. Among constraints in the IIS, step 
4 of FlexShare identifies the one that: 

• concerns VM capability; 
• involves a VNF used by the newly-deployed service; 
• involves the VM closest to its maximum capability, 

The intuition behind the latter item is that VMs close to their maximum capability are more 
likely to introduce long delays, hence, lead to infeasible problem instances. By removing the 
corresponding edge from the bipartite graph, we ensure that such a placement decision is not 
made in subsequent iterations of FlexShare. 
Note that it is possible to prove that the IIS contains at least one VM-capability constraint, 
hence, it is always possible to perform the procedure in step 4. 
 
[E] Reference scenarios and benchmark strategies 
 
We evaluate the performance of FlexShare using two reference scenarios, namely, a 
synthetic, small-scale scenario allowing us to perform a comparison against the optimum, 
and a large-scale scenario including real-world services. 
 
[E.1] Synthetic scenario 
 
In order to understand how FlexShare operates and to compare its performance to alternative 
approaches, we first leverage a simple, synthetic scenario. The scenario includes three 
services and five VNFs, with a many-to-many relationship among them. Services have 
different request rates and target delays, as reported in Tab. 1. The available infrastructure is 
composed of 10 VMs, with capability varying between 5 and 10 units; all VMs have an 
activation cost of 8 units and a proportional cost of 0.5 units. 
Thanks to its small size, in the synthetic scenario it is possible to compare the performance of 
FlexShare against the optimum; specifically, optimal decisions are found through brute-force. 
 
[E.2] Real-world scenario 
 
The FlexShare performance is also studied in a real-world, large-scale scenario, including five 
services belonging to the domains of smart city and smart factory. The VNFs composing each 
service, as well as the traffic each of them has to process, are based on (Casetti et al. 2018), 
(Taleb, Ksentini, and Kobbane 2014) and (Taleb, Afolabi, and Bagaa 2019), as reported in 
Tab. 2. The reference topology is the Luxembourg City center (Codeca, Frank, and Engel 
2015). 
Three services, namely, Intersection Collision Avoidance (ICA), vehicular see-through (CT), 
and entertainment (CDN) concern vehicles and their drivers/passengers. In ICA, the 
cooperative awareness messages (CAMs) broadcasted by vehicles are processed by a 
collision detector in order to check whether some vehicles are set on a collision course and, if 
so, alert them. All vehicles within 50 m of an intersection send a CAM message every 100 ms. 
In the CT service, vehicles can display on their on-board screen a video feed coming from 
preceding vehicles (e.g., a truck blocking the view), so that their driver can be aware of 
impeding obstacles and/or hazards. Messages are sent every 200 ms by any vehicle within 
100 m of an intersection. 
The CDN service is used by 10% of all vehicles on the topology, randomly chosen with uniform 
probability; such vehicles consume a 25-fps video. 
For the smart-city domain, an Internet-of-Things (IoT) service is considered, including a total 
of 200 sensors deployed throughout the topology; as per the 3GPP standard (Taleb, Ksentini, 
and Kobbane 2014), each sensor transmits 10 packets per second. 
Finally, smart-factory applications are represented by a smart-robot service, controlling 50 
robots in real time (which requires one packet per millisecond per robot); furthermore, 10% of 
all robots also need to transmit a 25-fps video feed. 



As for the operator infrastructure, we assume it contains a total of 10 VMs, whose capability 
can be scaled up to 1000 units, and whose fixed and proportional cost are (respectively) 1000 
units and 1 unit. 
 
[E.3] Benchmark strategies 
 
The performance evaluation includes several priority assignment strategies, with different 
levels of flexibility. 
The lowest-flexibility option is represented by service-level priorities (service in plots), 
whereby priority levels are associated to whole services (the lower the delay target, the higher 
the priority); all requests of a given service have the same priority. 
An intermediate option is represented by VNF-level priorities, where different services can 
have different priority levels at different VNFs (but all requests of the same service in the same 
VNF have the same priority). Priority levels can be decided through FlexShare (VNF/FS in 
plots) or through brute-force (VNF/brute). 
Finally, at the highest level of flexibility, there are per-request priorities, assigned via FlexShare 
(req./FS in plots). 
All solutions are implemented in Python, and a Xeon E5-2640 server with 16 GByte of RAM 
is used to run all tests. 
 
[F] Numerical results 
 
We begin from the synthetic scenario described in Sec. E.1. Fig. 3(left) shows the cost 
sustained by the MNO as the traffic changes; such costs become, consistently with our 
intuition, higher as the traffic grows. It is more interesting to remark that, for a given quantity 
of traffic, more flexibility always means smaller costs. 
In Fig. 3(center), we turn our attention to sharing, and display the number of services using, 
on average, a given VNF instance. Again, more flexibility results in more sharing; intuitively, 
operators are able to more fully utilize their VNF instances, hence, need to deploy fewer of 
them. 
Accordingly, Fig. 3(right) shows that the used VM capability, as well as the maximum capability 
to which used VMs could be scaled to, decrease with more flexible priority assignments. This 
is consistent with Fig. 3(center): how higher flexibility is associated with more sharing, hence 
a better usage of the deployed VMs, hence the need to deploy fewer VMs. 
Moving to the realistic scenario – where, due to its size, comparison with the optimum is 
impossible –, it is possible to observe the same trends. Fig. 4(left) highlights how more 
flexibility consistently results in smaller costs. Also notice how, when n becomes very high, 
the costs associated with all strategy overlap; this is because, in very high traffic conditions, 
no VNF can be shared for any priority assignment. 
Consistently with Fig. 3(center), Fig. 4(center) confirms that more flexibility results in more 
sharing. Furthermore, the intermediate approach of per-VNF priorities tends to perform better 
than it does in Fig. 3(center), which suggests that such an approach can be a viable option in 
those cases where per-request priorities are too complex to implement. 
Moving to VM capabilities, Fig. 4(right) shows a very significant difference between used and 
potential VM capabilities; in other words, VMs are used less efficiently than in the synthetic 
scenario, for all priority assignments. This may seem surprising; however, recall that, as seen 
in Tab. 2, the real-world scenario has fewer common VNFs between services, hence, it 
presents fewer sharing opportunities in the first place. 
We now ask a different question, namely, how efficient FlexShare is, that is, how long it takes 
to make its decisions. As summarized in Tab. 3, FlexShare takes at most a few minutes to 
run, even for the complex, real-world scenario summarized in Tab. 2. Consistently with our 
intuitive expectations, FlexShare takes longer to run in the realistic scenario; the main reason 
is that such a scenario has more alternatives to explore and compare. 
It is also interesting to observe how, in general, more traffic tends to correspond to longer run 
times, but such a trend is by no means monotonic. The explanation for this effect lies in Fig. 



2. Indeed, the runtime of FlexShare is associated with the number of times the cycle in Fig. 2 
is repeated, and such a cycle is repeated every time a deployment is found to be infeasible. 
How often this happens does not depend upon the traffic per se, but rather upon how close 
VMs operate to their maximum capacity. 
Finally, it is important to stress that all runtimes can be substantially reduced if need be, by 
replacing the current Python implementation of FlexShare, which leverages the venerable but 
old optimization routines of the scipy library, with more optimized code leveraging more 
modern, state-of-the-art solvers like CPLEX and Gurobi. 
 
[G] Conclusion   
 
The problem of VNF placement and sharing in NFV-based networks is one of the main issues 
to overcome in 5G-and-beyond network systems. The support of the services target KPIs, 
along with the efficiency of resource utilization, are main concerns of both network providers 
and vertical industries wishing to make their services available to mobile users.  
In this work, we first introduced the most widely-accepted system architecture and highlighted 
the main challenges that it poses, along with some solutions that have been proposed to 
address them. Among the most relevant existing approaches, the FlewShare scheme 
promises to make swift decisions on resource allocation and sharing among different services, 
achieving a performance close to the optimum.  
Such an approach however considered a single point of presence, and neglected the network 
latency due to traffic transfer from one point of presence to another. Interesting directions for 
future research thus include the definition of strategies for making the same VNF instances 
be re-used by several services even when such instances are not deployed within the same 
datacenter. Furthermore, different target KPIs can be considered, beside the maximum 
average latency. To tackle this last point and introduce stricter delay guarantees,  new 
modeling strategies are needed. Finally, the envisioned algorithmic solutions should be fully 
implemented in real-world networks to actually verify their ability to cope with practical issues 
and requirements. 
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Figure captions 
Fig. 1: ETSI architecture as reported in (5G PPP Architecture Working Group 2017). 
Fig. 2: The FlexShare strategy. Step 1 builds a bipartite graph showing which VMs could 
run each VNF. Step 2 runs the Hungarian algorithm on such a graph to obtain the 
placement decisions. Step 3 solves a convex optimization problem to make scaling and 
priority assignment decisions. If such a problem is infeasible, the bipartite graph is 
pruned (step 4) and the procedure restarts from step 2. 
Fig. 3: Synthetic scenario: total cost (left); average number of services sharing a VNF 
instance (center); used and maximum VM capability (right). Per-VNF and per-flow 
priorities are assigned via FlexShare; per-service priorities are assigned by giving 
higher priorities to lower-delay services. 
Fig. 4: Realistic scenario: total cost (left); average number of services sharing a VNF 
instance (center); used and maximum VM capability (right). Per-VNF and per-flow 



priorities are assigned via FlexShare; per-service priorities are assigned by giving 
higher priorities to lower-delay services. 
 
Tables 
 
Service Arrival rate [flows/ms] Max. delay [ms] 
s1 2 10 
s2 1.5 7.5 
s3 1 5 

Tab. 1: Services in the synthetic scenario 
 
VNF Flow arrival rate 

Intersection Collision Avoidance (ICA) 
eNB 117.69 
EPC PGW 117.69 
EPC SGW 117.69 
EPC HSS 11.77 
EPC MME 11.77 
Car information management (CIM) 117.69 
Collision detector 117.69 
Car manufacturer database 117.69 
Alarm generator 11.77 

See through (CT) 
eNB 179.82 
EPC PGW 179.82 
EPC SGW 179.82 
EPC HSS 17.98 
EPC MME 17.98 
Car information management (CIM) 179.82 
CT server 179.82 
CT database 17.98 

Sensing (IoT) 
eNB 50 
EPC PGW 50 
EPC SGW 50 
EPC HSS 5 
EPC MME 5 
IoT authentication 20 
IoT application server 20 

Smart factory (SF) 
eNB 50 
EPC PGW 50 
EPC SGW 50 
EPC HSS 5 
EPC MME 5 
Robotics control 50 
Video feed from robots 5 

Entertainment (EN) 
eNB 179.82 
EPC PGW 179.82 
EPC SGW 179.82 
EPC HSS 17.98 
EPC MME 17.98 



Video origin server 17.9 
Video CDN 179.82 

Tab. 2: services and arrival rate in the realistic scenario 
 
Traffic multiplier Synthetic scenario Realistic scenario 

1 4 6 
1.2 5 7 
1.4 6 6 
1.6 5 10 
1.8 7 9 

2 7 12 
Tab. 3: Running time (in minutes) of our FlexShare implementation, in the synthetic and 
realistic scenarios 
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