
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

VNF Placement and Sharing in NFV-based Cellular Networks / Malandrino, Francesco; Chiasserini, Carla Fabiana - In:
Wiley 5G Ref: The Essential 5G reference Online / Rahim Tafazolli, Chin-Liang Wang and Periklis Chatzimisios. -
STAMPA. - [s.l] : John Wiley & Sons, Ltd., 2020. - ISBN 9781119471509. [10.1002/9781119471509]

Original

VNF Placement and Sharing in NFV-based Cellular Networks

Wiley postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1002/9781119471509

Terms of use:

Publisher copyright

This is the peer reviewed version of the above quoted article, which has been published in final form at
http://dx.doi.org/10.1002/9781119471509.This article may be used for non-commercial purposes in accordance with
Wiley Terms and Conditions for Use of Self-Archived Versions.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2783712 since: 2020-07-27T17:05:49Z

John Wiley & Sons, Ltd.

Article title: VNF Placement and Sharing in NFV-based Cellular Networks

First author: Full name and affiliation; plus email address if corresponding author
Francesco Malandrino
CNR-IEIIT
c.so Duca degli Abruzzi, 24
10129 Torino
francesco.malandrino@ieiit.cnr.it
Second author: Full name and affiliation; plus email address if corresponding author
Carla Fabiana Chiasserini
Politecnico di Torino, CNR-IEIIT
c.so Duca degli Abruzzi, 24
10129 Torino

Abstract
Network Function Virtualization is one of the most relevant enabling technologies for 5G:
conceiving a vertical service as a set of virtual functions (a.k.a. VNFs) makes it possible to
implement a service at the network edge in a fast and flexible manner, using computing,
networking, and storage resources available therein. However, while deploying the VNFs
composing a service, it is critical (i) to meet the key performance indices required by the
vertical, and (ii) to use the available resources in the most efficient manner so as to both cope
with possible resource shortage and minimize the overall deployment cost.
To successfully address the above issues, several works have tackled the problem of VNF
placement at the network edge and, more recently, the problem of VNF sharing, i.e., of reusing
the same VNF for multiple concurrent services.
In this chapter, we first introduce VNF placement in 5G cellular networks and review existing
solutions to this aspect. Then we focus on the problem of how to efficiently reuse VNFs and
how to adapt the resources assigned to the virtual machines where such VNFs run, so that
that the vertical KPIs are still satisfied. Importantly, it has been shown that carefully prioritizing
the traffic of the services sharing a set of VNFs can lead to a significant cost reduction while
still meeting the services KPIs. Such priorities can be set through an efficient algorithm, which
provides a solution within a constant factor from the optimum, in polynomial time.

Keywords
Network function virtualization; service provisioning; VNF placement; VNF sharing; 5G.

Main text

[A] Introduction

Network function virtualization (NFV) has revolutionized the concept of service, conceiving it
as a set of software, namely, virtual, interconnected functions, referred to as VNFs: the service
data traffic then flows through the sequence of VNFs composing the service, and is processed
by each them. In parallel, new generation cellular networks have become capable not only to
efficiently transfer traffic but also to process and store data, thus they can effectively
implement a large variety of services that may be requested by the so-called verticals, i.e.,
content providers, automotive, or e-health industries. Deploying services within the cellular
network instead of the cloud can indeed bring significant advantages, among which, lower

service latencies, local data processing (hence, lower bandwidth consumption due to data
transfer through the network infrastructure), and lower energy consumption.
Network providers and vertical industries have therefore built a new relation, regulated by
Service Level Agreements (SLA), which define the level of quality of service that a network
provider has to ensure in order to match the fee paid by a vertical. As a consequence, upon
receiving a service request, a network provider has to put into place service deployment
strategies that allow the fulfillment of the target key performance indicators (KPIs), e.g.,
throughput, delay, or reliability, while minimizing the cost, i.e., the amount of resources
necessary to run the service. Below, we describe in more detail these two important issues
and briefly discuss some relevant works that have dealt with them.
Target KPI. To effectively address the target KPIs, network providers can resort to network
slices (NGMN Alliance 2016), i.e., reserve a suitable amount of computing, network, and
memory resources for a service, or a set of services with no isolation requirements and similar
target KPIs. As an example, such safety services as forward collision warning or intersection
collision avoidance (Malinverno et al. 2019) by the same automotive industry, can be
implemented using virtual machines (VMs) in servers, along with network links for data
transfer, that are sufficiently capable to match millisecond-order latencies. Creating a network
slice thus implies that the network provider needs to identify the VMs where to place the VNFs
composing the service, how much CPU and memory to assign to each of such VMs, and which
links to use to transfer data traffic from one VNF to the next one, if they are located at different
servers. This problem, often referred to as VNF placement, is typically formulated as a
Generalized Assignment Problem (GAP) (Cohen et al. 2015), which minimizes the
cost assignment of VNFs to VMs such subject to capacity and KPIs constraints. Optimization
is indeed an especially popular approach, aiming at minimizing load imbalance (Hirwe and
Kataoka 2016), network utilization (Kuo et al. 2016), or energy consumption (Pham et al.
2017). Other works have built more complex cost functions, accounting for several network-
related aspects (Mechtri, Ghribi, and Zeghlache 2016), (Gu et al. 2016) and/or energy
consumption (Marotta and Kassler 2016), (Khoury, Ayoubi, and Assi 2016).
Optimization approaches usually result in a mixed-integer linear programming (MILP)
formulation; since MILP problems are impractical to solve in real-world scenarios, the
aforementioned works have envisioned finding near-optimal solutions through heuristic
approaches. An alternative approach is represented by works tying VNF placement to more
general problems, e.g., shortest path with limited resources (Martini et al. 2015), and set
covering (Tomassilli et al. 2018). These works prove competitive ratio properties for the
algorithms they propose, and such algorithms are also valid for problems other than VNF
placement. The recent work (Bega et al. 2019) aims at simplifying the problem of VNF
placement by foreseeing the evolution of the load to be served; specifically, the authors
observe that the needed capacity is easier to foresee than the actual traffic demand, and
employ deep neural networks to that end.

Cost minimization. To minimize deployment costs, instead, one may exploit the fact that
several services may have one or more VNFs in common, i.e., services may be composed of
a same VNF sub-graph, corresponding to a child service (Rost et al. 2017). This implies that
several services, as well as several slices, may contain common sub-slices (5G PPP
Architecture Working Group 2017), (IETF 2017), and that such sub-slices can be shared
instead of being replicated for each single service. For instance, the aforementioned safety
services may share the same LTE eNB or 5G gNB when their service coverage overlap;
similarly, they can share the same database where the vehicles’ information, like position,
speed, or heading, can be stored before data are processed (Rost et al. 2017). Importantly,
VNF sharing is a multi-faced problem, which requires that the network operator not only
identifies which VNFs (sub-slices) can be shared and among which services, but also how the
amount of CPU and memory assigned to the VMs implementing them should be set so as to
still fulfil the target KPIs of all involved services. VNF sharing is a new aspect that has been
scarcely addressed so far. In 2017, the brief contribution in (Yi, Wang, and Huang 2017)

proposed a scheduling scheme for VNF-based networks where the same VNF instance may
be used for multiple services. In the same year, (Soualah et al. 2017) mentioned VNF sharing
as one of several viable strategies to improve the energy efficiency of networks. More recently,
(Malandrino et al. 2019) has identified VNF sharing as a distinct problem from VNF placement,
arising within datacenters (points of presence, PoPs) and thus calling for different decisions
on (i) whether a given VNF instance should be shared, (ii) how much capacity it shall be
assigned, and (iii) the priority to give to different services sharing the same VNF instance.
In this chapter, we first summarize in Section B some important issues related to VNF
placement and sharing. Then Section C presents the 5G-PPP 5G reference architecture,
highlighting the role of the orchestrator, as well as possible multi-access edge computing
(MEC)-based architectures, where, due to resource scarcity, effective service deployment is
utmost important. Section C also introduces the main quantities that need to be taken into
account, the decision to be made in terms of resource scaling and service/traffic priority
setting, and the objective one seeks to optimize. Section D describes the state-of-the-art
solution strategy FlexShare (Malandrino et al. 2019), which, as mentioned, can make effective
decisions in polynomial time, thus permitting a swift and efficient network and system
management. Section F discusses some numerical results, obtained through FlexShare,
considering real-world services and realistic network scenarios. Finally, we draw our
conclusions and highlight possible directions for future work in Section G.

[B] Related issues

It is worth mentioning that both VNF placement and VNF sharing are related to the network
(NGMN Alliance 2016) concept and are actually part of a network slice creation process.
Indeed, network (NGMN Alliance 2016) is a network paradigm whereby the same physical
infrastructure – including networking and computing equipment – is concurrently used by
multiple services, each of which is guaranteed isolation from the others. Earlier works like
(Zhang et al. 2017) and (Rost et al. 2017) focus on architectural aspects, including the entities
in charge of making decisions on infrastructure usage.

Specifically, (Zhang et al. 2017) identifies mobility management as one of the main challenges
arising in (NGMN Alliance 2016)-based 5G networks, due to their multi-RAT (radio-access
technology) nature. Indeed, 5G networks embed several different radio access technologies,
from Wi-Fi to mmWave, with significantly different characteristics, e.g., availability and
reliability. This poses two challenges when users move from a network to another: first,
ensuring that the new network is consistent with the user’s quality-of-service (QoS) needs;
second, ensuring that the end-to-end, service performance experienced by the user is not
jeopardized under the new network. The latter becomes especially complex when slices have
not only data transfer capabilities but also processing ones, e.g., VNFs deployed on edge
servers: the edge servers may be too far away from the new RAT the user is connected to,
and a VNF migration may be triggered. The result is that handover procedures in 5G are much
more complex than their counterparts in 4G/LTE, and require deeper coordination among the
involved actors.

Focusing on the same multi-RAT scenario, (Rost et al. 2017) focuses on scheduling issues
arising from the integration of different network technologies. Among the challenges to tackle,
the authors identify the need to decide at which level RATs shall be shared, e.g., whether
MAC-level decisions for different RATs shall be made jointly by centralized entities or locally
at the individual RATs. Furthermore, the authors raise the issue of network (NGMN Alliance
2016) request brokerage: since spectrum is a finite resource and overprovisioning is
impossible, an admittance strategy for new slice requests must be defined. Upon denying a
slice request, the authors envision that the network may reply with a counter-offer, suggesting
to offer a different RAT that is more plentiful and offer comparable performance.

Other works, including (Samdanis et al. 2017) and (Vassilaras et al. 2017), tackle instead the
problem of how those decisions should be made, including algorithmic and complexity
challenges. Indeed, (Samdanis et al. 2017) identifies software-defined networking (SDN) and
network function virtualization (NFV) as two of the main enabling technologies network (NGMN
Alliance 2016), which itself one of the main innovations of 5G networks. The authors also point
out the potential challenges due to the increased complexity of the network control plane, and
identify two main ways to tackle such a complexity: on the one hand, using network slice
templates to reduce the number of decisions to make; on the other, crafting efficient and
effective decision-making algorithms. Relatedly, (Vassilaras et al. 2017) identifies two main
decisions to be made concerning network (NGMN Alliance 2016), namely (i) which resources
should be used to build the slice, and (ii) how to connect them. The authors map both decisions
to solving a virtual network embedding (VNE) problem, whereby the physical infrastructure at
the operator’s disposal is mapped to the virtualized slice to build. Such a problem is NP-hard,
as proven via a reduction from the multi-way separator problem; indeed, even deciding the
connection between resources is NP-hard, as proved via a reduction from the unsplittable
multicommodity flow problem.

The process of creating, updating, and deleting network slices is known as orchestration. The
work (Li et al. 2018), supported by the European project 5G-TRANSFORMER, identifies
service orchestration as one of the main tasks 5G networks have to perform. Orchestration
decisions need to account for a variety of different factors, including service requirements, the
available infrastructure, and inter-operator agreements concerning resource sharing (multi-
domain federation). To make all these decisions, the authors envision a three-layer
architecture, whereby a vertical slicer (VS) translates business-related service goals into
technical slice requirements, a service orchestrator (SO) selects the resources to use, possibly
from different domains, and a mobile transport platform (MTP) manages the virtual and
physical hardware. The entity in charge of most orchestration decisions is the SO, implements
and extend the functionality standardized by ETSI in standard NFV-MAN 001 (“Management
and Orchestration”).

The authors of (Santos et al. 2017) consider multi-domain federation scenarios, and address
the unique security challenges therein. A first one concern information: on the one hand,
operators need to exchange information in order to make effective orchestration decisions; on
the other, they do not want to disclose critical information on the (mis)configuration of their
own infrastructure, and the global resources at their disposal. A second one is represented by
isolation: while all services should be transparent to each other, some may require stronger
isolation, e.g., by avoiding to share VNF instances with other services. Such stronger isolation
increases security – in the example, a malformed or malicious input at one service cannot
compromise the other –, but increase the resource consumption and therefore the cost.

As discussed earlier, services can be decomposed into virtual network functions (VNFs),
which can then be placed at different locations throughout the infrastructure. In many relevant
scenarios, services can be described as sequences or chains of VNFs that incoming flows
have to traverse; in this case, the problem of placing VNFs across the available hosts takes
the name of VNF chaining. Works talking VNF chaining usually aim at optimizing a cost
function, subject to constraints concerning the available resources and the target delays
(Pham et al. 2017). (Liu et al. 2017) follows a similar approach but also accounts for the
coexistence between already-deployed and newly-requested services, which may share some
of their VNFs; the resulting optimization problem is solved via a column generation-based
approximation. Other works aim at bringing into the picture additional real-world limitations,
including memory access issues in multi-core servers, e.g., (Zheng et al. 2019). The authors
formulate the problem as a non-linear, integer optimization problem; then, in view of its
complexity, follow a heuristic approach whereby a performance drop index is defined,
measured, and used to efficiently make near-optimal decisions.

More recent works have accounted for additional metrics beyond sheer performance, the most
relevant of which is reliability. As an example, (J. Zhang et al. 2019) pursues the goal of
resilience to server failures, and tackles the problems of (i) how many additional VNF
instances shall be created, (ii) where they shall be placed, and (iii) how many resources they
should be assigned to. The resulting problem is NP-hard and is solved through a greedy,
iterative algorithm. (Chemodanov, Calyam, and Esposito 2019) considers instead the physical
location of servers (especially those at the network edge), and makes VNF placement
decisions able to guarantee the geographical availability of services. Making such decisions
requires to solve a multi- commodity-chain flow (MCCF) problem, which is tackled through a
metapath composite variable approach, reaching near-optimal performance in the average
case.

Several recent works tie network (NGMN Alliance 2016) and resource allocation with other
problems, hitherto considered separate or orthogonal to it. As an example, (Mandelli et al.
2019) MAC-level scheduling, with the objective of ensuring that network slices are able to
deliver the data they process to the users needing them. In a similar spirit, (Q. Zhang, Liu, and
Zeng 2019) jointly addresses the problems of choosing (i) the best location within the network
to process the data at, and (ii) the best radio technology to deliver the results to the users, in
order to reduce interference and increase the throughput.

(Jošilo and Dán 2019) addresses a hybrid scenario, where individual devices can choose
between performing their computation tasks themselves or leveraging the resources available
at the network edge. The authors model the resulting interaction between devices and network
operators a Stackelberg game, and propose several decentralized algorithms converging to
the equilibrium. (Liu and Han 2019) addresses cross-domain (also known as federation)
scenarios, whereby different mobile operators decide to pool their resources in order to
provide their services with a lower cost. In this context, the authors propose a distributed
decision-making algorithm based (i) decomposing the original problem into subproblems via
the alternating direction method of multipliers (ADMM) method, and (ii) solving the individual
subproblems via learning-assisted optimization (LAO).

[C] System model and decisions to make

Several NFV-architecture for 5G networks have been proposed; examples include the one
envisioned by the EU 5GPPP (and further interpreted by the EU 5G-PPP 5G-TRANSFORMER
project), those proposed by the NGMN alliance and the IETF, and those considered in the
works addressing VNF placement such as (Cao et al. 2016), (Cohen et al. 2015), (Agarwal et
al. 2018), (Einziger, Goldstein, and Sa’ar 2019). These architectures foresee that all decisions
on VNF placement and resource allocation are made by a centralized entity, namely the NFV
Orchestrator (NFVO) (see the ETSI Management and Orchestration (MANO) framework
(ETSI 2014), (IETF 2017). Thus, it is the NFVO that makes fine-grained decisions on the
allocation and usage of individual hosts and links.
With reference to VNF placement in real-world implementations, it is important to underline
that ETSI (ETSI 2016) specifies four hierarchical levels, namely,

• individual host;
• zone, defined a s a set of hosts with similar features;
• zone group, defined as a set of zones;
• point of presence (PoP), e.g., a datacenter.

Real-world 5G networks, also demonstrated through testbeds (Antevski et al. 2018), (Sayadi
et al. 2016), (De la Oliva et al. 2018), consider that the NFVO makes VNF placement decisions
at the PoP level, while different entities are in charge of placement and sharing decisions
within each PoP (such entities are referred to using different names depending on the
standardization body or association, e.g., ETF (IETF 2017), NGMN alliance (NGMN Alliance
2017), or 5G-PPP (5G PPP Architecture Working Group 2017).

In the following, we focus on the architecture foreseen by ETSI and reported in the 5GPPP
document entitled “View on 5G Architecture” (2019). With reference to such proposal, the
pictorial representation of the architecture in Fig.1 underlines the relationship of Software
Defined Networking (SDN) and MANO controllers and their relation with the network, storage,
and computing resources, abstracted through the Virtual Infrastructure Manager (VIM). The
VIM summarizes the details of such deployed units as containers and virtual machines (VMs).
Importantly, the VIM also abstracts the edge computing or multi-access edge computing
(MEC) resources. The SDN controller’s task is to correctly configure the network, while the
MANO’s task is to control storage and computing resources, both acting on behalf of the
NFVO. Slice management can be part of the NFVO’s tasks, or another entity can be included
with this specific purpose. Finally, the service management block should interact with tenants,
and the same or similar entities with vertical industries requiring a service to be deployed.
In this scenario, it is worth emphasizing how MEC resources can be managed and allocated.
We again refer to the ETSI specifications (ETSI 2018). Possible scenarios all foresee one or
more edge PoPs, each hosting a server and leveraging radio access functionalities. Such
servers can be directly connected to points of access of the Radio Access Network (RAN), or
to entities such as the Evolved Packet Core (EPC) in LTE, i.e., dealing with IP packets.
Importantly, the ETSI NFV MANO considers applications at the mobile edge as regular VNFs.
It follows that the MEC computing, storage, and network resources have to be orchestrated
as well as the deployment of VNFs composing services that require to be in the MEC must be
carefully instantiated so as to meet the service KPIs (e.g., ultra-low latency) and maximize the
resource efficiency utilization. The latter is indeed particularly critical at the MEC, due to the
limited available resources therein.

Turning our attention back to the problem of VNF placement and sharing, given the above
architecture and upon receiving a new service request, the NFVO should make decisions
about:

• whether any of the VNFs composing the newly requested service shall be provided
through existing instances of such VNFs;

• if existing instances can be re-used, how to set the priorities for the traffic flows
belonging to the services sharing the same VNF instance;

• else, which VM to exploit to deploy the VNF instance;
• how to scale up or scale down the computing resources assigned to the VMs within

the PoP.
Below, we will focus on a single PoP and consider that the VNFs composing a service should
be instantiated or be co-located within the PoP. This implies that network latencies due to
traffic flows transiting from one VNF to another can be neglected, thanks to the high-speed
switching that is possible between VMs within the same datacenter (Xia et al. 2017)). As a
consequence, the only contribution that is relevant to the latency KPI is the data processing
time within the VNFs composing the service.

[C.1] Relevant quantities for VNF placement and sharing

Without loss of generality, we consider that VNFs instances are deployed within VMs and that
each VM can host exactly one VNF instance; also, VNF are assumed not to require isolation.
As considered in many recent works (Cohen et al. 2015), (Agarwal et al. 2018), (Bhamare et
al. 2017), each VNF instance running within a VM is represented as an M/M/1 queue with
FIFO queueing and preemption. For simplicity, we focus on adapting computing capabilities
of VMs and neglect instead memory and storage. In order to reflect real-world conditions, we
account for the fact that the computing resources assigned to a VNF instance can be varied
(i.e., scaled up/down). For instance, a VNF requiring 1 computational unit and running on a
VM with capability equal to 1 unit, it takes 1 time unit to process the traffic associated to the
service that includes that VNF. Using instead that VM for a VNF requiring 2 computational
units leads to a processing time of 2 time units. Importantly, the requirement values do not

depend on the service that includes that VNF, but only on the VNF itself. Crucially, varying the
amount of computing resources per VM influences the processing time at flows at the VNF
hosted by that VM. As in real-world implementation, the amount of computational resources
used by a VM cannot exceed a given maximum value.

As mentioned, services may be composed of a number of VNF; in the following we consider
as target KPI the maximum average delay of a service, although the model and discussion
can be extended to other KPIs as well.

[C.2] Objective and constraints

Deployment cost is one of the main concerns for the mobile network providers as well as for
the vertical industries. Such a cost typically consists of two components: the cost for a VM
instantiation, which is a fixed contribution, and a variable cost, which depends on the
computing resources consumed by the VM hosting a given VNF instance (a proportional
dependency is commonly assumed).
The main constraints instead to account for when making placement and scaling decisions
are:

• at most one instance of at most one VNF can run at each VM;
• VMs cannot be scaled beyond their maximum capability;
• all traffic of all services must be served;
• per-service processing time targets must be honored.

The last constraint is especially important to honor and complex to formulate: indeed, the
service time experienced by flows of a given service at a VNF depend upon (i) the
computational capability available to the VNF; (ii) the arrival rate of flows (of any service) to
the VNF; (iii) the priority of the service, relative to other services sharing the same VNF.
Due to the many factors to account for, as well as the sheer number of available options,
making optimal decisions about VM scaling and VNF placement is exceedingly complex, and
impractical in most real-world scenarios. To this end, in Sec. C below we present a simpler,
efficient and effective solution strategy called FlexShare, able to perform near-optimal
decisions in a short – namely, polynomial – time.

[D] The FlexShare algorithm

The problem formulated above is too complex to be directly solved with off-the-shelf solvers
like CPLEX or Gurobi. Therefore, (Malandrino et al. 2019) proposes an efficient and effective
solution methodology named FlexShare, whose high-level approach is summarized in Fig. 2.
FlexShare considers service requests one by one, and previously-made priority decisions –
though not placement ones – can be adjusted as new services are deployed.
The first step of FlexShare is described in Sec. C.1, and deals with placement decisions, i.e.,
which VNF deploy at which VM. To this end, FlexShare builds a bipartite graph, whose nodes
correspond to VNFs to deploy and VMs the latter can be deployed to. Edges of the bipartite
graph connect (VNF, VM) pairs such that the newly-requested service can use the VNF
instance deployed at the VM. The weights of edges correspond to the cost of providing the
VNF with that VM, including the proportional component (which is influenced by the service
traffic) and the fixed component (which is not incurred if the VM is already active, that is, if the
VNF instance can be shared).
Given the bipartite graph, step 2 leverages the Hungarian algorithm, (Kuhn 1955) to obtain
the minimum-weight (hence, cheapest) assignment to VNFs to VM. Such an assignment is
solely based on the weights on the bipartite graph and, critically, is not guaranteed to be
feasible.
In step 3, the decisions made in step 2 are used as constraints of a convex (hence, simple to
solve efficiently) optimization problem, detailed in Sec. D.2. The purpose of the problem is to

(i) setting the priorities of each service within every VNF, (ii) set the capabilities of each VM,
and, crucially, (iii) verify if the placement decisions made in step 2 are feasible. If the
optimization succeeds, then FlexShare terminates successfully.
If step 3 fails, i.e., the problem solved therein is infeasible, then FlexShare moves to step 4
and tries to prune the bipartite graph. Indeed, an infeasible problem in step 3 can be due to
too much sharing in step 2, i.e., too many VNF-to-VM edges in step 1. To correct this,
FlexShare removes one of the edges from the bipartite graph, and restarts from step 2. This
implies that placement decisions will foresee less VNF sharing and thus have a higher cost,
but also a higher likelihood to result in a feasible problem in step 3.

[D.1] Placement decisions

On the left-hand side of the bipartite graph created in step 1 of FlexShare, we find the VNFs
to place; on the right-hand one, the VMs they can be placed at. Edges are drawn between
(VM, VNF) pairs such that the VNF can be provided by the VM. This happens in two cases:

• the VM is currently unused, therefore, a new instance of the VNF can be deployed
therein;

• the VM already hosts an instance of the VNF, and such an instance can be shared
between already-deployed services and the newly-requested one.

The weight of the edge represents the cost of providing the VNF through a given VM; if the
VM is currently inactive, the edge weight also includes the fixed activation cost.
Importantly, edges are not drawn if the VM cannot be scaled up to a capacity sufficient to
serve the newly-requested service while keeping stability. This, however, does not imply that
service time requirements are met; indeed, such a condition is checked in step 3 as discussed
in Sec. D.2.
Once the bipartite graph is ready, the Hungarian algorithm (Kuhn 1955) is employed to find a
minimum-cost matching between VNFs and VMs. Specifically, the Hungarian algorithms
selects a set of edges such that (i) each VNF is connected (hence, is deployed) in exactly one
VM, and (ii) the total weight of the selected edges is as low as possible. Importantly, the
Hungarian algorithm has polynomial (namely, cubic) complexity in the size of the graph. The
edges selected by the Hungarian algorithm correspond to placement decisions, including:

• activation of currently-inactive VMs, if need be;
• sharing of already-deployed VNF instances, if warranted.

These decisions are fed to the optimization problem in step 3, as described in Sec. D.2 next.

[D.2] Priority, scaling, and pruning

Step 3 of FlexShare takes as an input the deployment decisions made by the Hungarian
algorithm in step 2, and then solves a convex optimization problem where:

• the objective is to minimize the total cost;
• the constraints concern VM capability and per-service, end-to-end target delays;
• the decision variables are the capability to assign to each VM and the priorities to give

to each service sharing every VM.
Importantly, all decision variables are real, hence, the problem can be solved in polynomial
(cubic) time through commercial solvers (Boyd and Vandenberghe 2004); indeed, embedded
convex optimization is routinely used in real-time applications. If the optimization succeeds,
i.e., if the problem is feasible, then FlexShare terminates and the placement decisions made
in step 2, along with the scaling and priority decisions made in step 3, can be applied.
If the optimization fails, then FlexShare proceeds to step 4, i.e., pruning the bipartite graph.
The intuition behind the pruning procedure is that one cause for infeasibility is too aggressive
sharing of VNF instances. To fix that, one edge of the bipartite graph is removed; to select
such an edge, FlexShare resorts to the irreducible infeasible set (IIS) (Chinneck 2007). The
IIS contains all constraints that, if removed, would render the problem feasible; intuitively, it

provides an explanation as to why the optimization failed. Among constraints in the IIS, step
4 of FlexShare identifies the one that:

• concerns VM capability;
• involves a VNF used by the newly-deployed service;
• involves the VM closest to its maximum capability,

The intuition behind the latter item is that VMs close to their maximum capability are more
likely to introduce long delays, hence, lead to infeasible problem instances. By removing the
corresponding edge from the bipartite graph, we ensure that such a placement decision is not
made in subsequent iterations of FlexShare.
Note that it is possible to prove that the IIS contains at least one VM-capability constraint,
hence, it is always possible to perform the procedure in step 4.

[E] Reference scenarios and benchmark strategies

We evaluate the performance of FlexShare using two reference scenarios, namely, a
synthetic, small-scale scenario allowing us to perform a comparison against the optimum,
and a large-scale scenario including real-world services.

[E.1] Synthetic scenario

In order to understand how FlexShare operates and to compare its performance to alternative
approaches, we first leverage a simple, synthetic scenario. The scenario includes three
services and five VNFs, with a many-to-many relationship among them. Services have
different request rates and target delays, as reported in Tab. 1. The available infrastructure is
composed of 10 VMs, with capability varying between 5 and 10 units; all VMs have an
activation cost of 8 units and a proportional cost of 0.5 units.
Thanks to its small size, in the synthetic scenario it is possible to compare the performance of
FlexShare against the optimum; specifically, optimal decisions are found through brute-force.

[E.2] Real-world scenario

The FlexShare performance is also studied in a real-world, large-scale scenario, including five
services belonging to the domains of smart city and smart factory. The VNFs composing each
service, as well as the traffic each of them has to process, are based on (Casetti et al. 2018),
(Taleb, Ksentini, and Kobbane 2014) and (Taleb, Afolabi, and Bagaa 2019), as reported in
Tab. 2. The reference topology is the Luxembourg City center (Codeca, Frank, and Engel
2015).
Three services, namely, Intersection Collision Avoidance (ICA), vehicular see-through (CT),
and entertainment (CDN) concern vehicles and their drivers/passengers. In ICA, the
cooperative awareness messages (CAMs) broadcasted by vehicles are processed by a
collision detector in order to check whether some vehicles are set on a collision course and, if
so, alert them. All vehicles within 50 m of an intersection send a CAM message every 100 ms.
In the CT service, vehicles can display on their on-board screen a video feed coming from
preceding vehicles (e.g., a truck blocking the view), so that their driver can be aware of
impeding obstacles and/or hazards. Messages are sent every 200 ms by any vehicle within
100 m of an intersection.
The CDN service is used by 10% of all vehicles on the topology, randomly chosen with uniform
probability; such vehicles consume a 25-fps video.
For the smart-city domain, an Internet-of-Things (IoT) service is considered, including a total
of 200 sensors deployed throughout the topology; as per the 3GPP standard (Taleb, Ksentini,
and Kobbane 2014), each sensor transmits 10 packets per second.
Finally, smart-factory applications are represented by a smart-robot service, controlling 50
robots in real time (which requires one packet per millisecond per robot); furthermore, 10% of
all robots also need to transmit a 25-fps video feed.

As for the operator infrastructure, we assume it contains a total of 10 VMs, whose capability
can be scaled up to 1000 units, and whose fixed and proportional cost are (respectively) 1000
units and 1 unit.

[E.3] Benchmark strategies

The performance evaluation includes several priority assignment strategies, with different
levels of flexibility.
The lowest-flexibility option is represented by service-level priorities (service in plots),
whereby priority levels are associated to whole services (the lower the delay target, the higher
the priority); all requests of a given service have the same priority.
An intermediate option is represented by VNF-level priorities, where different services can
have different priority levels at different VNFs (but all requests of the same service in the same
VNF have the same priority). Priority levels can be decided through FlexShare (VNF/FS in
plots) or through brute-force (VNF/brute).
Finally, at the highest level of flexibility, there are per-request priorities, assigned via FlexShare
(req./FS in plots).
All solutions are implemented in Python, and a Xeon E5-2640 server with 16 GByte of RAM
is used to run all tests.

[F] Numerical results

We begin from the synthetic scenario described in Sec. E.1. Fig. 3(left) shows the cost
sustained by the MNO as the traffic changes; such costs become, consistently with our
intuition, higher as the traffic grows. It is more interesting to remark that, for a given quantity
of traffic, more flexibility always means smaller costs.
In Fig. 3(center), we turn our attention to sharing, and display the number of services using,
on average, a given VNF instance. Again, more flexibility results in more sharing; intuitively,
operators are able to more fully utilize their VNF instances, hence, need to deploy fewer of
them.
Accordingly, Fig. 3(right) shows that the used VM capability, as well as the maximum capability
to which used VMs could be scaled to, decrease with more flexible priority assignments. This
is consistent with Fig. 3(center): how higher flexibility is associated with more sharing, hence
a better usage of the deployed VMs, hence the need to deploy fewer VMs.
Moving to the realistic scenario – where, due to its size, comparison with the optimum is
impossible –, it is possible to observe the same trends. Fig. 4(left) highlights how more
flexibility consistently results in smaller costs. Also notice how, when n becomes very high,
the costs associated with all strategy overlap; this is because, in very high traffic conditions,
no VNF can be shared for any priority assignment.
Consistently with Fig. 3(center), Fig. 4(center) confirms that more flexibility results in more
sharing. Furthermore, the intermediate approach of per-VNF priorities tends to perform better
than it does in Fig. 3(center), which suggests that such an approach can be a viable option in
those cases where per-request priorities are too complex to implement.
Moving to VM capabilities, Fig. 4(right) shows a very significant difference between used and
potential VM capabilities; in other words, VMs are used less efficiently than in the synthetic
scenario, for all priority assignments. This may seem surprising; however, recall that, as seen
in Tab. 2, the real-world scenario has fewer common VNFs between services, hence, it
presents fewer sharing opportunities in the first place.
We now ask a different question, namely, how efficient FlexShare is, that is, how long it takes
to make its decisions. As summarized in Tab. 3, FlexShare takes at most a few minutes to
run, even for the complex, real-world scenario summarized in Tab. 2. Consistently with our
intuitive expectations, FlexShare takes longer to run in the realistic scenario; the main reason
is that such a scenario has more alternatives to explore and compare.
It is also interesting to observe how, in general, more traffic tends to correspond to longer run
times, but such a trend is by no means monotonic. The explanation for this effect lies in Fig.

2. Indeed, the runtime of FlexShare is associated with the number of times the cycle in Fig. 2
is repeated, and such a cycle is repeated every time a deployment is found to be infeasible.
How often this happens does not depend upon the traffic per se, but rather upon how close
VMs operate to their maximum capacity.
Finally, it is important to stress that all runtimes can be substantially reduced if need be, by
replacing the current Python implementation of FlexShare, which leverages the venerable but
old optimization routines of the scipy library, with more optimized code leveraging more
modern, state-of-the-art solvers like CPLEX and Gurobi.

[G] Conclusion

The problem of VNF placement and sharing in NFV-based networks is one of the main issues
to overcome in 5G-and-beyond network systems. The support of the services target KPIs,
along with the efficiency of resource utilization, are main concerns of both network providers
and vertical industries wishing to make their services available to mobile users.
In this work, we first introduced the most widely-accepted system architecture and highlighted
the main challenges that it poses, along with some solutions that have been proposed to
address them. Among the most relevant existing approaches, the FlewShare scheme
promises to make swift decisions on resource allocation and sharing among different services,
achieving a performance close to the optimum.
Such an approach however considered a single point of presence, and neglected the network
latency due to traffic transfer from one point of presence to another. Interesting directions for
future research thus include the definition of strategies for making the same VNF instances
be re-used by several services even when such instances are not deployed within the same
datacenter. Furthermore, different target KPIs can be considered, beside the maximum
average latency. To tackle this last point and introduce stricter delay guarantees, new
modeling strategies are needed. Finally, the envisioned algorithmic solutions should be fully
implemented in real-world networks to actually verify their ability to cope with practical issues
and requirements.

Acknowledgment
This work was partially supported by the EU 5GROWTH project (Grant No. 856709).

References
5G PPP Architecture Working Group. 2017. “View on 5G Architecture.”
Agarwal, Satyam, Francesco Malandrino, Carla-Fabiana Chiasserini, and Swades De. 2018.
“Joint VNF Placement and CPU Allocation in 5G.” In IEEE INFOCOM.
Antevski, Kiril, Jorge Martín-Pérez, Nuria Molner, Carla Fabiana Chiasserini, Francesco
Malandrino, Pantelis A. Frangoudis, Adlen Ksentini, et al. 2018. “Resource Orchestration of
5G Transport Networks for Vertical Industries.” In IEEE PIMRC.
Bega, Dario, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez. 2019.
“DeepCog: Cognitive Network Management in Sliced 5G Networks with Deep Learning.” In
IEEE INFOCOM.
Bhamare, Deval, Mohammed Samaka, Aiman Erbad, Raj Jain, Lav Gupta, and H. Anthony
Chan. 2017. “Optimal Virtual Network Function Placement in Multi-Cloud Service Function
Chaining Architecture.” Computer Communications.
Boyd, Stephen, and Lieven Vandenberghe. 2004. Convex Optimization. Cambridge university
press.
Cao, J., Y. Zhang, W. An, X. Chen, Y. Han, and J. Sun. 2016. “VNF Placement in Hybrid NFV
Environment: Modeling and Genetic Algorithms.” In IEEE ICPADS.
Casetti, Claudio, Carla Fabiana Chiasserini, Nuria Molner, Jorge Martin-Perez, Thomas Deiss,
Cao-Thanh Phan, Farouk Messaoudi, Giada Landi, and Juan Brenes Baranzano. 2018.
“Arbitration Among Vertical Services.” In IEEE PIMRC.

Chemodanov, Dmitrii, Prasad Calyam, and Flavio Esposito. 2019. “A Near Optimal Reliable
Composition Approach for Geo-Distributed Latency-Sensitive Service Chains.” In IEEE
INFOCOM.
Chinneck, John W. 2007. Feasibility and Infeasibility in Optimization:: Algorithms and
Computational Methods. Springer.
Codeca, Lara, Raphaël Frank, and Thomas Engel. 2015. “Luxembourg SUMO Traffic (LuST)
Scenario: 24 hours of mobility for vehicular networking research.” In IEEE VNC.
Cohen, R., L. Lewin-Eytan, J. S. Naor, and D. Raz. 2015. “Near Optimal Placement of Virtual
Network Functions.” In IEEE INFOCOM.
De la Oliva, Antonio, Xi Li, Xavier Costa-Perez, Carlos J Bernardos, Philippe Bertin, Paola
Iovanna, Thomas Deiss, et al. 2018. “5G-Transformer: Slicing and Orchestrating Transport
Networks for Industry Verticals.” IEEE Communications Magazine.
Einziger, G., M. Goldstein, and Y. Sa’ar. 2019. “Faster Placement of Virtual Machines Through
Adaptive Caching.” In IEEE INFOCOM.
ETSI. 2014. “Network Functions Virtualisation (NFV); Management and Orchestration.”
———. 2016. “Network Functions Virtualisation (NFV); Management and Orchestration; Or-
Vnfm reference point – Interface and Information Model Specification.”
———. 2018. “MEC Deployments in 4G and Evolution Towards 5G.”
Gu, Lin, Sheng Tao, Deze Zeng, and Hai Jin. 2016. “Communication Cost Efficient Virtualized
Network Function Placement for Big Data Processing.” In IEEE INFOCOM Workshops.
Hirwe, A., and K. Kataoka. 2016. “LightChain: A Lightweight Optimization of VNF Placement
for Service Chaining in NFV.” In IEEE NetSoft.
IETF. 2017. “Network Slicing Management and Orchestration.”
Jošilo, Slaana, and György Dán. 2019. “Wireless and Computing Resource Allocation for
Selfish Computation Offloading in Edge Computing.” In IEEE INFOCOM.
Khoury, N. E., S. Ayoubi, and C. Assi. 2016. “Energy-Aware Placement and Scheduling of
Network Traffic Flows with Deadlines on Virtual Network Functions.” In IEEE Cloudnet.
Kuhn, Harold W. 1955. “The Hungarian Method for the Assignment Problem.” Wiley Naval
Research Logistics.
Kuo, T. W., B. H. Liou, K. C. J. Lin, and M. J. Tsai. 2016. “Deploying Chains of Virtual Network
Functions: On the Relation Between Link and Server Usage.” In IEEE INFOCOM.
Li, Xi, Josep Mangues-Bafalluy, Iñaki Pascual, Giada Landi, Francesca Moscatelli, Kiril
Antevski, Carlos J Bernardos, et al. 2018. “Service Orchestration and Federation for Verticals.”
In IEEE WCNC Workshops.
Liu, Junjie, Wei Lu, Fen Zhou, Ping Lu, and Zuqing Zhu. 2017. “On Dynamic Service Function
Chain Deployment and Readjustment.” IEEE Transactions on Network and Service
Management.
Liu, Qiang, and Tao Han. 2019. “DIRECT: Distributed Cross-Domain Resource Orchestration
in Cellular Edge Computing.” In ACM Mobihoc.
Malandrino, Francesco, Carla Fabiana Chiasserini, Gil Einziger, and Gabriel Scalosub. 2019.
“Reducing Service Deployment Cost Through VNF Sharing.” IEEE/ACM Transactions on
Networking.
Malinverno, Marco, Giuseppe Avino, Claudio Casetti, Carla Fabiana Chiasserini, Francesco
Malandrino, and Salvatore Scarpina. 2019. “MEC-Based Collision Avoidance for Vehicles and
Vulnerable Users.” IEEE Vehicular Technology Magazine.
Mandelli, Silvio, Matthew Andrews, Sem Borst, and Siegfried Klein. 2019. “Satisfying Network
Slicing Constraints via 5G Mac Scheduling.” In IEEE INFOCOM.
Marotta, A., and A. Kassler. 2016. “A Power Efficient and Robust Virtual Network Functions
Placement Problem.” In IEEE ITC.
Martini, Barbara, Federica Paganelli, Paola Cappanera, Stefano Turchi, and Piero Castoldi.
2015. “Latency-aware Composition of Virtual Functions in 5G.” In IEEE NetSoft.
Mechtri, M., C. Ghribi, and D. Zeghlache. 2016. “A Scalable Algorithm for the Placement of
Service Function Chains.” IEEE Trans. On Network and Service Management.
NGMN Alliance. 2016. “Description of Network Slicing Concept.”
———. 2017. “5G Network and Service Management including Orchestration.”

Nguyen, Quang-Huy, Michel Morold, Klaus David, and Falko Dressler. 2019. “Adaptive Safety
Context Information for Vulnerable Road Users with MEC Support.” In IEEE/IFIP WONS.
Pham, Chuan, Nguyen H Tran, Shaolei Ren, Walid Saad, and Choong Seon Hong. 2017.
“Traffic-Aware and Energy-Efficient VNF Placement for Service Chaining: Joint Sampling and
Matching Approach.” IEEE Transactions on Services Computing.
Rost, Peter, Christian Mannweiler, Diomidis S Michalopoulos, Cinzia Sartori, Vincenzo
Sciancalepore, Nishanth Sastry, Oliver Holland, et al. 2017. “Network Slicing to Enable
Scalability and Flexibility in 5G Mobile Networks.” IEEE Comm. Mag.
Samdanis, Konstantinos, Steven Wright, Albert Banchs, Antonio Capone, Mehmet Ulema, and
Kazuaki Obana. 2017. “5G Network Slicing – Part 2: Algorithms and Practice.” IEEE Comm.
Mag.
Santos, Mateus Augusto Silva, Alireza Ranjbar, Gergely Biczók, Barbara Martini, and
Francesco Paolucci. 2017. “Security Requirements for Multi-Operator Virtualized Network and
Service Orchestration for 5G.” In Guide to Security in SDN and NFV. Springer.
Sayadi, Bessem, Marco Gramaglia, Vasilis Friderikos, Dirk von Hugo, Paul Arnold, Marie-Line
Alberi-Morel, Miguel A Puente, Vincenzo Sciancalepore, Ignacio Digon, and Marcos Rates
Crippa. 2016. “SDN for 5G Mobile Networks: NORMA perspective.” In Springer Crowncom.
Soualah, Oussama, Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. 2017. “Energy
Efficient Algorithm for VNF Placement and Chaining.” In IEEE/ACM CCGRID.
Taleb, Tarik, Ibrahim Afolabi, and Miloud Bagaa. 2019. “Orchestrating 5G Network Slices to
Support Industrial Internet and to Shape Next-Generation Smart Factories.” IEEE Network.
Taleb, Tarik, Adlen Ksentini, and Abdellatif Kobbane. 2014. “Lightweight Mobile Core
Networks for Machine Type Communications.” IEEE Access.
Tomassilli, Andrea, Frédéric Giroire, Nicolas Huin, and Stéphane Pérennes. 2018. “Provably
Efficient Algorithms for Placement of Service Function Chains with Ordering Constraints.” In
IEEE INFOCOM.
Xia, Wenfeng, Peng Zhao, Yonggang Wen, and Haiyong Xie. 2017. “A Survey on Data Center
Networking (DCN): Infrastructure and Operations.” IEEE Comm. Surveys & Tutorials.
Yi, Bo, Xingwei Wang, and Min Huang. 2017. “A Generalized VNF Sharing Approach for
Service Scheduling.” IEEE Communications Letters.
Zhang, Haijun, Na Liu, Xiaoli Chu, Keping Long, Abdol-Hamid Aghvami, and Victor CM Leung.
2017. “Network Alicing based 5G and Future Mobile Networks: Mobility, Resource
Management, and Challenges.” IEEE Comm. Mag.
Zhang, Jiao, Zenan Wang, Chunyi Peng, Linquan Zhang, Tao Huang, and Yunjie Liu. 2019.
“RABA: Resource-Aware Backup Allocation for a Chain of Virtual Network Functions.” In IEEE
INFOCOM.
Zhang, Qixia, Fangming Liu, and Chaobing Zeng. 2019. “Adaptive Interference-Aware VNF
Placement for Service-Customized 5G Network Slices.” In IEEE INFOCOM.
Zheng, Zhilong, Jun Bi, Heng Yu, Haiping Wang, Chen Sun, Hongxin Hu, and Jianping Wu.
2019. “Octans: Optimal Placement of Service Function Chains in Many-Core Systems.” In
IEEE INFOCOM.

Figure captions
Fig. 1: ETSI architecture as reported in (5G PPP Architecture Working Group 2017).
Fig. 2: The FlexShare strategy. Step 1 builds a bipartite graph showing which VMs could
run each VNF. Step 2 runs the Hungarian algorithm on such a graph to obtain the
placement decisions. Step 3 solves a convex optimization problem to make scaling and
priority assignment decisions. If such a problem is infeasible, the bipartite graph is
pruned (step 4) and the procedure restarts from step 2.
Fig. 3: Synthetic scenario: total cost (left); average number of services sharing a VNF
instance (center); used and maximum VM capability (right). Per-VNF and per-flow
priorities are assigned via FlexShare; per-service priorities are assigned by giving
higher priorities to lower-delay services.
Fig. 4: Realistic scenario: total cost (left); average number of services sharing a VNF
instance (center); used and maximum VM capability (right). Per-VNF and per-flow

priorities are assigned via FlexShare; per-service priorities are assigned by giving
higher priorities to lower-delay services.

Tables

Service Arrival rate [flows/ms] Max. delay [ms]
s1 2 10
s2 1.5 7.5
s3 1 5

Tab. 1: Services in the synthetic scenario

VNF Flow arrival rate

Intersection Collision Avoidance (ICA)
eNB 117.69
EPC PGW 117.69
EPC SGW 117.69
EPC HSS 11.77
EPC MME 11.77
Car information management (CIM) 117.69
Collision detector 117.69
Car manufacturer database 117.69
Alarm generator 11.77

See through (CT)
eNB 179.82
EPC PGW 179.82
EPC SGW 179.82
EPC HSS 17.98
EPC MME 17.98
Car information management (CIM) 179.82
CT server 179.82
CT database 17.98

Sensing (IoT)
eNB 50
EPC PGW 50
EPC SGW 50
EPC HSS 5
EPC MME 5
IoT authentication 20
IoT application server 20

Smart factory (SF)
eNB 50
EPC PGW 50
EPC SGW 50
EPC HSS 5
EPC MME 5
Robotics control 50
Video feed from robots 5

Entertainment (EN)
eNB 179.82
EPC PGW 179.82
EPC SGW 179.82
EPC HSS 17.98
EPC MME 17.98

Video origin server 17.9
Video CDN 179.82

Tab. 2: services and arrival rate in the realistic scenario

Traffic multiplier Synthetic scenario Realistic scenario

1 4 6
1.2 5 7
1.4 6 6
1.6 5 10
1.8 7 9

2 7 12
Tab. 3: Running time (in minutes) of our FlexShare implementation, in the synthetic and
realistic scenarios

Bio Sketches
Francesco Malandrino received his Ph.D. degree from Politecnico di Torino in 2012 and is
now a tenured researcher at the National Research Council of Italy (CNR-IEIIT). Prior to his
current appointment, he has been an assistant professor and a research fellow at Politecnco
di Torino. His research interests include the architecture and management of wireless, cellular,
and vehicular networks.
Carla Fabiana Chiasserini (M’98, SM’09, F’18) received her Ph.D. from Politecnico di Torino
in 2000. She is currently a Full Professor with the Department of Electronic Engineering and
Telecommunications at Politecnico di Torino. Her research interests include architectures,
protocols, and performance analysis of wireless networks.

Figure 1

Figure 2

Figure 3

Figure 4

